TRAFFIC IMPACT ANALYSIS

For

QUARRY CREEK MASTER PLAN

Prepared for

THE CITY OF CARLSBAD

and

QUARRY CREEK INVESTORS, LLC

Final Report: October 5, 2012

TRANSPORTATION ANALYSIS TABLE OF CONTENTS

Section	<u>Pag</u>	<u>e</u>
ES	EXECUTIVE SUMMARYES-	1
1.0	INTRODUCTION	1
2.0	ANALYSIS METHODOLOGY2-	1
3.0	EXISTING CONDITIONS	1
4.0	PROJECT DESCRIPTION4-	1
5.0	EXISTING PLUS PROJECT CONDITIONS	1
6.0	NEAR TERM WITHOUT PROJECT6-	1
7.0	NEAR TERM PLUS PROJECT7-	1
8.0	BUILDOUT ALTERNATIVE 1 8-	1
9.0	BUILDOUT ALTERNATIVE 2 9-	1
10.0	PROJECT CIRCULATION ROADWAYS 12-	1
11.0	PEDESTRIAN / TRANSIT MASTER PLAN GUIDELINES	1
12.0	CONCLUSIONS AND RECOMMENDATIONS	1
13.0	REFERENCES	1
14.0	URBAN SYSTEMS ASSOCIATES, INC. PREPARERS16-	-1

LIST OF FIGURES

Numl	<u>Page</u>
1-1	Project Location Map1-2
3-1	Existing Roadway Classifications
3-2	Existing Average Daily Traffic Volumes
3-3	Study Area Intersection Key
3-4	Existing Lane Configurations (3 pages)
3-5	Existing AM / PM Peak Hour Volumes (3 pages)
4- 1	Quarry Creek Master Plan Site Plan
5-1	Project Trip Distribution Percentages -No RDO Interchange / No RDO Extension / No Marron
	Road
5-2	Project Only Average Daily Traffic Volumes – For Existing Conditions No RDO Interchange / No
	RDO Extension / No Marron Road
5-3	Project Only AM / PM Peak Hour Volumes – Alternative 4 No RDO Interchange / No RDO
	Extension / No Marron Road (3 pages)
5-4	Existing + Project Average Daily Traffic Volumes
5-5	Existing + Project AM / PM Peak Hour Volumes (3 pages)5-8
6-1	Other Approved Projects Locations
6-2	Other Approved Project Average Daily Traffic Volumes
6-3	Near Term Without Project Average Daily Traffic
6-4	Other Projects Only AM / PM Peak Hour Volumes (3 pages)
6-5	Existing + Other Projects AM / PM Peak Hour Volumes (3 pages)
6-6	Near Term Lane Configurations (3 Pages)
7-1	Near Term Plus Project Average Daily Traffic Volumes

LIST OF FIGURES (Continued)

Numb	<u>er</u> <u>Pa</u>	<u>ge</u>
7-1-A	Near Term Plus Project Deficient Segment Peak hour Analysis	0
7-2	Near Term Plus Project AM / PM Peak Hour Traffic (3 Pages)	-3
7-3	Near Term Lane Plus Project Configurations (3 Pages)	-6
8-1	Project Trip Distribution Percentages – Alternative 1 Circulation Element Roadways (All In) 8-	-2
8-2	Buildout ADT Volumes – Alternative 1 Project Only 8	-3
8-3	Buildout ADT Volumes – Alternative 1 Without Project	-4
8-4	Buildout ADT Volumes – Alternative 1 With Project	-5
8-5	Project Only AM / PM Peak Hour Volumes - Alternative 1 With RDO Interchange / With RDO	
	Extension / With Marron Road (3 pages)	13
8-6	Buildout Without Project AM / PM Peak Hour Volumes – Alternative 1 (3 pages) 8-1	16
8-7	Buildout With Project AM / PM Peak Hour Volumes – Alternative 1 (3 pages) 8-1	19
8-8	Buildout Alternative – 1 Lane Configurations (3 Pages) 8-2	22
9-1	Project Trip Distribution Percentages – Alternative 2 With RDO Interchange / No RDO Extension	on
	/ No Marron Road9	-2
9-2	Buildout ADT Volumes – Alternative 2 Project Only9	-3
9-3	Buildout ADT Volumes – Alternative 2 Without Project	-4
9-4	Buildout ADT Volumes – Alternative 2 With Project	-5
9-5	Project Only AM / PM Peak Hour Volumes — Alternative 2 With RDO Interchange / No RDO	
	Extension / NO Marron Road (3 pages)	13
9-6	Buildout Without Project AM / PM Peak Hour Volumes – Alternative 2 (3 pages)9-	16
9-7	Buildout With Project AM / PM Peak Hour Volumes - Alternative 2 (3 pages)9-	19
9-8	Buildout Alternative – 2 Lane Configurations (3 Pages)9-	22

LIST OF FIGURES (Continued)

Numl	<u>ber</u>	Page
10-1	Project Only AM / PM Peak Hour Volumes – Alternative 1	10-2
10-2	Project Only AM / PM Peak Hour Volumes – Alternative	10-3
11-1	Pedestrian, Bike and Trail Circulation Plan	11-2
11-2	Vehicular Circulation Plan.	11-3

LIST OF TABLES

Numb	<u>er</u>	<u>Page</u>
ES-1	Mitigation Summary (6 Pages)	ES-10
ES-2	Alternative Land Alternative 2 Intersection Delay Comparison	ES-17
2-1	Circulation Element Roadway Classification LOS & Capacity	2-2
2-2	HCM Level of Service Description for Signalized Intersections	2-4
2-3	SR-78 Freeway Segment Level of Service Definitions	2-6
3-1	Existing Street Segment Levels of Service Within Oceanside	3-7
3-2	Existing Street Segment Levels of Service Within Carlsbad	3-8
3-3	Existing Intersection Levels of Service	3-17
3-4	Existing Freeway Segment Levels of Service	3-19
4- 1	Project Trip Generation	4-4
5-1	Project Plus Existing Street Segment Levels of Service Within Oceanside	5-11
5-2	Project Plus Existing Street Segment Levels of Service Within Carlsbad	5-14
5-3	Project Plus Existing Intersection Levels of Service	5-16
5-4	Project Plus Existing Freeway Segment Levels of Service	5-18
6-1	Near Term Without Project Street Segment Levels of Service Within Oceanside	6-6
6-2	Near Term Without Project Street Segment Levels of Service Within Carlsbad	6-10
6-3	Near Term Without Project Intersection Levels of Service	6-19
6-3-A	Near Term Without Project Intersection Levels of Service (With Planned but Unfunded	
	Improvements)	6-20
6-4	Near Term Without Project Freeway Segment Levels of Service	6-21
7-1	Near Term Plus Project Street Segment Levels of Service Within Oceanside	7-9
7-1-A	Near Term Plus Project Deficient Segment Peak Hour Analysis	7-10

LIST OF TABLES (Continued)

Numb	<u>er</u>	<u>Page</u>
7-2	Near Term Plus Project Street Segment Levels of Service Within Carlsbad	7-14
7-3	Near Term Plus Project Intersection Levels of Service	7-16
7 - 3-A	Near Term Plus Project Intersection Levels of Service (With Planned but Unfunded	
	Improvements)	7-17
7-4	Near Term Plus Project Freeway Segment Levels of Service	7-19
8-1	Buildout Alternative 1 Street Segment Levels of Service Within Oceanside	8-8
8-1-A	Buildout Alternative 1 Deficient Segment Peak Hour Analysis	8-9
8-2	Buildout Alternative -1 Street Segment Levels of Service Within Carlsbad	8-11
8-3	Alternative 1 Intersection Levels of Service.	8-26
8-3-A	Alternative 1 Intersection Levels of Service (With Planned but Unfunded Improvements)	8-27
8-4	Buildout Alternative 1 Freeway Segment Levels of Service	8-29
9-1	Buildout Alternative 2 Street Segment Levels of Service Within Oceanside	9-7
9-1-A	Buildout Alternative 2 Deficient Segment Peak Hour Analysis	9-8
9-2	Buildout Alternatives 2 Street Segment Levels of Service Within Carlsbad	9-11
9-3	Alternative 2 Intersection Levels of Service (Without Mitigation)	9-25
9-3-A	Alternative 2 Intersection Levels of Service (With Planned but Unfunded Improvements)	9-27
9-4	Buildout Alternative 2 Freeway Segment Levels of Service	9-29
12-1	Mitigation Summary (6 Pages)	12-18
12-2	Alternative 1 and Alternative 2 Intersection Delay Comparison	12-25

APPENDICES

- A. Existing Conditions
- B. Near-Term Without Project
- C. Near-Term With Project
- D. Buildout Alternative 1
- E. Buildout Alternative 2

ES EXECUTIVE SUMMARY

This report evaluates potential traffic impacts due to development of the 656 dwelling unit Quarry Creek Master Plan. The Quarry Creek Master Plan also includes 1.5 net acres of community facilities that might include a day-care, and a 0.9 acre park and ride lot.

The project is expected to generate 5,578 average daily vehicle trips, 469 AM peak hour trips (121 inbound; 348 outbound), and 572 PM peak hour trips (386 inbound; 186 outbound). External trips have been adjusted down slightly to account for a transit reduction for planning area R-1, R-2, and R-3, which will be within one-fourth mile of transit service. The transit reduction decreases average daily vehicle trips by 2.8% and AM / PM peak hour trips by 2.6%.

The project is located in northern Carlsbad and will have access from Marron Road, which currently extends through the Quarry Creek Shopping Center from College Boulevard and Haymar Drive in the City of Oceanside.

This traffic analysis was conducted for Existing Conditions, Project Plus Existing Conditions, Near-Term and Near-Term Plus Project Conditions, Buildout and Buildout Plus Project Conditions.

The Existing Conditions, Project Plus Existing Conditions, Near-Term and Near-Term Plus Project Conditions evaluations were conducted assuming the current existing street network without the future extensions of Marron Road to the west to connect with El Camino Real, and without the State Route (SR) 78 / Rancho Del Oro Road interchange, and the Rancho Del Oro Road extension to Marron Road.

The Buildout and Buildout Plus Project Conditions were evaluated for two street network alternatives:

<u>Alternative 1</u> – This street network assumes all roadways that are included in the City of Carlsbad and City of Oceanside General Plan Circulation Plans. This street network assumes the extension of Marron Road from the existing east end at the Quarry Creek Shopping Center property line, to the existing west end approximately 1,000 feet east of El Camino Real, all within the City of Carlsbad.

<u>Alternative 2</u> – This street network assumes the Rancho Del Oro Road interchange at SR-78 is constructed, but the Marron Road extension is not included, nor is the Rancho Del Oro Road extension to Marron Road.

Significance Thresholds

In order to determine if the project would have a significant traffic impact on roadway segments or intersections, both the SANTEC / ITE Guidelines and the City of Carlsbad Growth Management Plan Circulation Performance Standard were used.

- 1. If the addition of project traffic to a roadway segment or intersection causes the level of service to decrease from "D" to "E" or "F", then the project is considered to have a significant impact.
- 2. If a facility is at level of service "E" or "F" before the addition of project traffic, then the following changes are allowed:
 - Roadway Segments An increase in the volume to capacity (v/c) ratio based on average daily traffic volumes, of no more than 0.02 is acceptable. However, a segment peak hour analysis must be completed under project conditions to determine peak hour significance of project impacts. A decrease in segment average travel speed of greater than one mile per hour indicates a significant impact.
 - Intersections An increase in delay of no more than 2.0 seconds is acceptable.
 - Freeways An increase in volume to capacity (V/C) ratio of no more than 0.01 is acceptable.

Provided below are conclusions and recommendations that describe project traffic impacts and possible mitigation.

ES.1 EXISTING CONDITIONS

Street Segments Within Oceanside

Of the 18 study area street segments in Oceanside only two segments currently operate deficiently:

• Vista Way between College Boulevard and the SR-78 westbound ramps.

Mitigation: The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that overriding considerations should be adopted.

• Lake Boulevard between Thunder Drive and Sundown Lane, at LOS "E".

Mitigation: Widen to a 4-lane Secondary Collector with two-way left turn lane. However, the Oceanside Circulation Element Update Final EIR recommends retaining this segment as two lanes and adopting Overriding Considerations, due to an agreement between the City and the residents to maintain this as a two lane road with a two-way left turn lane pocket.

Street Segments Within Carlsbad

Of the 11 roadway segments evaluated in Carlsbad, no segments evaluated operate deficiently during the AM and PM peak hours, as required by the City's Growth Management Plan.

Intersections

Within Oceanside, 14 intersections were evaluated and none currently operate deficiently.

Within Carlsbad, five intersections were evaluated and none currently operate deficiently.

State Route 78 Mainlines

Four segments of State Route 78 were evaluated, and one currently operates at level of service "E" during peak hours.

• El Camino Real to College Boulevard (LOS "E").

<u>Mitigation:</u> Regional SR-78 studies are currently being conducted by SANDAG / Caltrans, and improvements to add High Occupancy Vehicle (HOV) lanes have been included in the Year 2050 Regional Transportation Plan.

ES.2 PROJECT PLUS EXISTING CONDITIONS

The Project Plus Existing Conditions were evaluated for significant impacts due to the addition of project traffic to existing conditions volumes.

Street Segments Within Oceanside

Two segments in Oceanside would have significant direct project impacts:

• College Boulevard, between Vista Way and Plaza Drive. (Project Responsibility – 100%)

Mitigation Recommendation: Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of this segment of College Boulevard from a six-lane Major Arterial to a six-lane Prime Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Vista Way, between College Boulevard and the SR-78 westbound ramps. This segment is at level of service "E" under existing conditions and with project traffic added. The project change in volume to capacity ratio is greater than 0.02, at 0.041, so this would be a significant impact. (Project Responsibility – 100%)

<u>Mitigation Recommendation</u>: The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Street Segments in Carlsbad

Project traffic impacts would be less than significant.

Intersections

Project traffic impacts would be less than significant at intersections within Oceanside and Carlsbad.

State Route 78 Mainlines

Project traffic impacts would be less than significant to State Route 78 segments evaluated.

ES.3 NEAR-TERM PLUS PROJECT CONDITIONS

The Near-Term cumulative impacts from other approved and reasonably feasible pending projects that are expected to influence the study area at approximately the same time frame as the Quarry Creek project were evaluated without and with project traffic added.

No additional significant project impacts were identified for this condition beyond those previously discussed in prior sections of this report.

Street Segments Within Oceanside

Five street segments in Oceanside would operate deficiently at level of service "E" or "F", and three segments would have a significant direct impact.

• El Camino Real between Vista Way and the SR-78 westbound ramp, level of service "E", but project impacts are less than significant.

 College Boulevard between Vista Way and Plaza Drive, level of service "F", the project impact is a significant direct impact.
 (Project Responsibility – 45.8%)

Mitigation Recommendation: Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of segments of College Boulevard from a six-lane Major Arterial to a six-lane Prime Arterial. This reclassification would mitigate the project significant impact. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Vista Way between College Boulevard and the SR-78 westbound ramps, at level of service "F", the project impact is a significant direct impact.

(Project Responsibility – 25.5%)

<u>Mitigation Recommendation:</u> The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Lake Boulevard between Thunder Drive and Sundown Lane, at level of service "F", but the project impact is less than significant, so no project mitigation is required.

Street Segments Within Carlsbad

Of the 11 roadway segments evaluated in Carlsbad, no segments evaluated operate deficiently during the AM and PM peak hours, as required by the City's Growth Management Plan.

Intersections

One intersection is Oceanside would operate deficiently, at level of service "E" during the PM peak hour, but the project impact is less than significant.

• El Camino Real / Vista Way, at level of service "E" during the PM peak hour, but the project impact is less than significant so that no project mitigation is required.

Intersections within Carlsbad would operate acceptably so project impacts would be less than significant and no project mitigation is required.

State Route 78 Mainlines

Project traffic impacts would be less than significant.

ES.4 BUILDOUT ALTERNATIVE 1

Street Segments Within Oceanside

Five segments are expected to be at level of service "F" during Buildout of Alternative 1, but only three would have a significant cumulative project impact.

- College Boulevard between Barnard Way and Vista Way, at level of service "F", but the project impact is less than significant.
- College Boulevard between Vista Way and Plaza Drive, at level of service "F", and the project impact is a significant cumulative impact. (Project Responsibility – 15.5%)
- College Boulevard between Plaza Drive and Marron Road, at level of service "F" as determined by a peak hour segment analysis, and the project impact is a significant cumulative impact. (Project Responsibility 32.8%)
- College Boulevard between Marron Road and the south City limit, at level of service "F", and the project impact is a significant cumulative impact.
 (Project Responsibility 6.4%)

Mitigation Recommendation: Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of these segments of College Boulevard from a six-lane Major Arterial to a six-lane Prime Arterial and a four-lane Major Arterial to a six-lane Major Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification and widening infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the

subject impacted segments are located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Vista Way between College Boulevard and the SR-78 westbound ramps, at level of service "F", but the project impact is less than significant as indicated by the allowable increase in volume to capacity ratio and a peak hour segment analysis that shows a decrease in average travel speed of no more than one mile per hour. No project mitigation is required.

Street segments within Carlsbad are expected to operate acceptably during peak hours as required by the City's Growth Management Plan.

Intersections

Two intersections within Oceanside are expected to be at deficient levels of service, one has less than a significant project impact and the other has a significant cumulative impact.

- El Camino Real / Vista Way, at level of service "E" during the PM peak, but the project impact is less than significant with no project mitigation required.
- College Boulevard / Marron Road Lake Boulevard, at level of service "E" during the PM peak hour. The project will have a significant cumulative impact at this intersection, and should contribute a fair-share of the planned mitigation. (Project Responsibility – 13.3%)

Mitigation: The Oceanside Circulation Element Update Final EIR recommends adding a second northbound right-turn only lane on College Boulevard to eastbound Lake Boulevard.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted intersection is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

State Route 78 Mainlines

Project traffic impacts would be less than significant.

ES.5 BUILDOUT ALTERNATIVE 2

Street Segments Within Oceanside

Five segments are expected to be at level of service "F" during Buildout of Alternative 1, but only three would have a significant cumulative project impact.

- College Boulevard between Barnard Way and Vista Way, at level of service "F", but the project impact is less than significant.
- College Boulevard between Vista Way and Plaza Drive, at level of service "F", and the project impact is a significant cumulative impact. (Project Responsibility – 20.1%)
- College Boulevard between Plaza Drive and Marron Road, at level of service "F" as a result of a peak hour segment analysis, and the project impact is a significant cumulative impact. (Project Responsibility 28.6%)
- College Boulevard between Marron Road and the south City limit, at level of service "F", and the project impact is a significant cumulative impact.

 (Project Responsibility 7.3%)

Mitigation Recommendation: Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of these segments of College Boulevard from a six-lane Major Arterial to a six-lane Prime Arterial and a four-lane Major Arterial to a six-lane Major Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification and widening infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segments are located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Vista Way between College Boulevard and the SR-78 westbound ramps, at level of service "F" with or without project traffic, and the project impact is significant cumulatively as indicated by the increase in volume to capacity of more than 0.02 at 0.04. (Project Responsibility – 30.8%)

<u>Mitigation Recommendation:</u> The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of

Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Intersections

Two intersections within Oceanside are expected to be at deficient levels of service, one has less than a significant project impact and the other has a significant cumulative impact.

- El Camino Real / Vista Way, at level of service "E" during the PM peak, but the project impact is less than significant with no project mitigation required.
- College Boulevard / Marron Road Lake Boulevard, at level of service "E" during the PM peak hour. The project will have a significant cumulative impact at this intersection, and should contribute a fair-share of the planned mitigation. (Project Responsibility 61.2%)

Mitigation: The Oceanside Circulation Element Update Final EIR recommends adding a second northbound right-turn only lane on College Boulevard to eastbound Lake Boulevard.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted intersection is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Intersections within Carlsbad are expected to operate acceptably during peak hours as required by the City's Growth Management Plan.

State Route 78 Mainlines

Project traffic impacts would be less than significant.

ES.6 MITIGATION SUMMARY

Table ES-1 lists for all alternatives evaluated segments and intersections that will have significant project impacts, and describes the recommended mitigation measures.

ES.7 CIRCULATION NETWORK ALTERNATIVES COMPARISON

Two buildout circulation network were evaluated, all using the same Quarry Creek land use plan.

Alternative 1 and 2 both included the Rancho Del Oro interchange at SR-78, while Alternative 2 deleted the extension of Marron Road through the designated Open Space area.

The preferred alternative for the Quarry Creek Investors, LLC is Alternative 2, which deletes the Marron Road extension through the Open Space area.

Page 1 of 6

TABLE ES-1

MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Existing Plus Project	Segments: College Blvd. (Vista Way to Plaza Dr.) Impact: Direct	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of this segment of Colleg Boulevard from a six-lane Major Arterial to a six-lane Prim Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final EIR recommend Overriding Considerations. The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impactance considered significant and unmitigable. See CEQ. Guidelines Section 15091 (a) (2).
	Vista Way (College Blvd. to SR-78 WB Ramps) Impacts: Direct	The Oceanside Circulation Element Update recommend providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the Colleg Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted. The changes or alterations are within the responsibility are jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program accept payments in lieu of construction. Due to the fact the subject impacted segment is located outside the jurisdiction.
	Intersections; None	and regulatory authority of the City of Carlsbad, these impact are considered significant and unmitigable. See CEQ Guidelines Section 15091 (a) (2). Fair Share: 100% None

Page 2 of 6

TABLE ES-1

MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Near-Term Plus Project	Segments: College Blvd. (Vista Way to Plaza Dr.) Impact: Direct	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of this segment of Colleg Boulevard from a six-lane Major Arterial to a six-lane Prim Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final EIR recommend Overriding Considerations.
		The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construct suc improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impact are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2). Fair Share: 45.8%
	Vista Way (College Blvd. to SR-78 WB Ramps) Impacts: Direct	The Oceanside Circulation Element Update recommend providing a westbound dedicated right-turn lane an lengthening the westbound left-turn lanes at the Colleg Boulevard / Vista Way intersection by restriping the existin lanes. As stated in the Update, these improvements woul improve peak hour operations but would not fully mitigat segment impacts, so that Overriding Considerations should be adopted.
		The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construct suc improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impact are considered significant and unmitigable. See CEQ. Guidelines Section 15091 (a) (2).
	Intersections: None	None

Page 3 of 6

TABLE ES-1

MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Buildout Alternative 1	Segments: College Blvd. (Vista Way to Plaza Dr.) Impact: Cumulative	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Eleme Update recommends reclassification of this segment of College Boulevard from a six-lane Major Arterial to a six lane Prime Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final Element recommends Overriding Considerations.
		The changes or alterations are within the responsibility an jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct suc improvements and there does not appear to be a program accept payments in lieu of construction. Due to the fact the the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsback these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).
	College Blvd. (Plaza Dr. to Marron Rd.)	Fair Share: 15.5% Since physical improvements to add lanes are infeasible, the
	Impact: Cumulative	Final, April 2012 City of Oceanside Circulation Eleme Update recommends reclassification of this segment College Boulevard from a six-lane Major Arterial to a si lane Prime Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final Elementary of the Circulation Considerations. The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct sufimprovements and there does not appear to be a program accept payments in lieu of construction. Due to the fact the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsba
		these impacts are considered significant and unmitigable. S CEQA Guidelines Section 15091 (a) (2).
		Fair Share: 32.8%

Page 4 of 6

TABLE ES-1

MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Buildout Alternative 1 (Continued)	College Blvd. (Marron Rd. to South City Limit) Impact: Cumulative	The Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of this segment of College Boulevard from a four-lane Major Arterial to a six lane Major Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification and widening infeasible, so that the Oceanside Circulation Element Update Final Ell recommends Overriding Considerations.
		The changes or alterations are within the responsibility an jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construct suc improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsback these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2). Fair Share: 6.4%
	Intersections:	
	College Blvd. / Marron Rd Lake Blvd) Impact: Cumulative	The Oceanside Circulation Element Update Final El recommends adding a second northbound right-turn only lar on College Boulevard to eastbound Lake Boulevard. The changes or alterations are within the responsibility an jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construct suc improvements and there does not appear to be a program accept payments in lieu of construction. Due to the fact the subject impacted intersection is located outside the jurisdiction and regulatory authority of the City of Carlsbacthese impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).
		Fair Share: 13.3%

Page 5 of 6

TABLE ES-1

MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Buildout Alternative 2	Segments: College Blvd. (Vista Way to Plaza Dr.) Impact: Cumulative	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of this segment of College Boulevard from a six-lane Major Arterial to a six lane Prime Arterial. This reclassification would mitigate the project significant impacts. However, the Oceansid Update considers roadway reclassification infeasible, so the the Oceanside Circulation Element Update Final Element Commends Overriding Considerations. The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construction.
		such improvements and there does not appear to be program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant an unmittigable. See CEQA Guidelines Section 15091 (a) (2). Fair Share: 20.1%
	College Blvd. (Plaza Dr. to Marron Rd.) Impact: Cumulative	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of this segment of College Boulevard from a six-lane Major Arterial to a six-lane Prime Arterial. This reclassification would mitigate the project significant impacts. However, the Oceansid Update considers roadway reclassification infeasible, so the Oceanside Circulation Element Update Final Elem
		The changes or alterations are within the responsibility ar jurisdiction of the City of Oceanside. The City of Oceansidoes not appear to have adopted a program to construsuch improvements and there does not appear to be program to accept payments in lieu of construction. Due the fact that the subject impacted segment is located outsit the jurisdiction and regulatory authority of the City Carlsbad, these impacts are considered significant at unmitigable. See CEQA Guidelines Section 15091 (a) (2) Fair Share: 28.6%
	College Blvd. (Marron Rd. to South City Limit) Impact: Cumulative	The Final, April 2012 City of Oceanside Circulation Eleme Update recommends reclassification of this segment of College Boulevard from a four-lane Major Arterial to a silane Major Arterial. This reclassification would mitigate the project significant impacts. However, the Oceansid Update considers roadway reclassification and widening infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations.
		The changes or alterations are within the responsibility ar jurisdiction of the City of Oceanside. The City of Oceansidoes not appear to have adopted a program to construsuch improvements and there does not appear to be program to accept payments in lieu of construction. Due the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City Carlsbad, these impacts are considered significant ar unmitigable. See CEQA Guidelines Section 1509 (a) (2). Fair Share: 7.3%

Page 6 of 6

TABLE ES-1

MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Buildout Alternative 2 (Continued)	Vista Way (College Blvd. to SR-78 WB Ramps) Impacts: Direct	The Oceanside Circulation Element Update recommer providing a westbound dedicated right-turn lane a lengthening the westbound left-turn lanes at the Colle Boulevard / Vista Way intersection by restriping the exist lanes. As stated in the Update, these improvements wor improve peak hour operations but would not fully mitig segment impacts, so that Overriding Considerations show be adopted.
		The changes or alterations are within the responsibility a jurisdiction of the City of Oceanside. The City of Oceans does not appear to have adopted a program to construction improvements and there does not appear to be program to accept payments in lieu of construction. Due the fact that the subject impacted segment is located outs the jurisdiction and regulatory authority of the City Carlsbad, these impacts are considered significant a unmittigable. See CEQA Guidelines Section 15091 (a) (2 Fair Share: 30.8%
	Intersections:	
	College Blvd. / Marron Rd Lake Blvd) Impact: Cumulative	The Oceanside Circulation Element Update Final I recommends adding a second northbound right-turn of lane on College Boulevard to eastbound Lake Boulevard. The changes or alterations are within the responsibility a jurisdiction of the City of Oceanside. The City of Oceans does not appear to have adopted a program to construction improvements and there does not appear to be program to accept payments in lieu of construction. Due the fact that the subject impacted intersection is local outside the jurisdiction and regulatory authority of the City Carlsbad, these impacts are considered significant aummitigable. See CEQA Guidelines Section 15091 (a) (2)

To determine if the Marron Road deletion causes significant impacts, a comparison of intersection levels of service for the alternatives shows that only two intersections would be at unacceptable levels of service (LOS "E" or "F"), without mitigation, for Alternatives 1 and 2.

For Alternatives 1 and 2, both of these locations are at acceptable levels of service. Since alternative 2 includes the deletion of Marron Road, and all evaluated intersections would be at acceptable levels of service after planned mitigation consistent with the Oceanside General Plan Circulation Element Update, it can be concluded that the Alternative 2 deletion of Marron Road would have less than significant impacts.

To isolate the effect of deleting Marron Road with the Rancho Del Oro Road interchange, a comparison of intersection delay at the two intersections with acceptable levels of service after mitigation was conducted for Alternatives 1 and 2.

Table ES-2 below shows the results of this comparison.

Since both intersections are at an acceptable level of service after the same mitigation was applied to both alternatives, it can be stated that the deletion of Marron Road would have less than significant impacts to study area intersections.

TABLE ES-2
Alternative 1 and Alternative 2 Intersection Delay Comparison

	WITH MARRON RD.	WITHOUT MARRON RD.		
	Alternative 1	Alternative 2		
ECR / Vista Way (PM)	45.6 LOS D	47.8 LOS D		
College Blvd. / Marron Rd. – Lake Blvd.	55.0 LOS D	54.9 LOS D		
	EE CHARLETTAG BEHENDINGS	N. C. S. L. S. C. Garago, S.		

As shown, without Marron road, the increase in PM peak hour intersection delay at these two locations is within the allowable delay for an acceptable level of service "D", so that it can be concluded that the Alternative 2 deletion of Marron Road would have less than significant impacts to study area intersections.

1.0 INTRODUCTION

Urban Systems Associates, Inc. (USAI) has been retained by Quarry Creek Investors, LLC to evaluate potential traffic impacts due to development of the 656 dwelling unit Quarry Creek Master Plan. The Quarry Creek Master Plan also includes 1.5 net acres of community facilities, and a 0.9 acre park and ride lot.

The project is located in northern Carlsbad and will have access from Marron Road, which currently extends through the Quarry Creek Shopping Center from College Boulevard in the City of Oceanside, and from Haymar Drive which extends to the west from College Boulevard. **Figure 1-1** shows the project location.

This traffic analysis was conducted for Existing Conditions, Project Plus Existing Conditions, Near-Term and Near-Term Plus Project Conditions, Buildout and Buildout Plus Project Conditions.

The Existing Conditions, Project Plus Existing Conditions, Near-Term and Near-Term Plus Project Conditions evaluations were conducted assuming the current existing street network without the future extensions of Marron Road to the west to connect with El Camino Real, and without the State Route (SR) 78 / Rancho Del Oro Road interchange, and the Rancho Del Oro Road extension to Marron Road.

The Buildout and Buildout Plus Project Conditions were evaluated for two street network alternatives:

<u>Alternative 1</u> – This street network assumes all roadways that are included in the City of Carlsbad and City of Oceanside General Plan Circulation Plans. This street network assumes the extension of Marron Road from the existing east end at the Quarry Creek Shopping Center property line, to the existing west end approximately 1,000 feet east of El Camino Real, and through a designated open spare area, all within the City of Carlsbad.

<u>Alternative 2</u> – This street network assumes the Rancho Del Oro Road interchange at SR-78 is constructed, but the Marron Road extension through the designated open space area is not included, nor is the Rancho Del Oro Road extension to Marron Road.

The project preferred alternative is Alternative 2 which does not assume the Marron Road extension through the open space area.

These alternatives and the scope of this study were coordinated for agreement from both Oceanside and Carlsbad engineering departments.

The Quarry Creek site is identified by SANDAG as a Smart Growth Community Center on the Smart Growth Concept Map for the San Diego Region. The project site is located in close proximity to other uses, including retail, employment and educational uses. In addition, the site is served by transit and the project proposes a new park and ride lot on the north side of Haymar Drive within the project boundary. The mixed use environment of the area, the availability of transit services and park and ride facilities and the walkable nature of the planned development will reduce traffic generation from the site by promoting

alternative forms of transportation (walking, biking and transit) and by facilitating multiple destinations in a single vehicle trip. While it is realistic to expect some reductions in trips, the analysis in this report does not include any mixed use credits and therefore represents a worst-case scenario in terms of vehicular trip generation from the proposed project.

2.0 ANALYSIS METHODOLOGY

The <u>San Diego Traffic Engineers' Council (SANTEC)</u> / <u>Institution of Transportation Engineers (ITE – California Border Station) Guidelines for Traffic Impact Studies in the San Diego Region</u> was used as a guide in the preparation of this traffic study.

The Final Program Environmental Impacts Report for the City of Oceanside Circulation Element Update (April 2012) was also reviewed for determining intersection and street segment analysis for those locations within the project study area that are within the City of Oceanside.

The City of Carlsbad Growth Management Plan Circulation Performance Standards were used for evaluating intersections and street segments within the City of Carlsbad.

The <u>Caltrans Guide for the Preparation of Traffic Impact Studies</u>, December 2002, was consulted for determining the evaluation criteria for State Route 78.

2.1 SEGMENT ANALYSIS

Much of the study area roadway segments are in the City of Oceanside, so that City of Oceanside criteria were used for the analysis of those segments. **Table 2-1** shows the Roadway Classification, Level of Service, and Capacity table from the Final Program Environmental Impact Report for the Oceanside Circulation Element Update, Appendix E which includes the City of Oceanside Master Transportation Plan. Also, as stated in that Circulation Element Update, segment level of service (LOS) "D" is to be considered acceptable in Oceanside, which is consistent with regional and City of Carlsbad acceptable levels of service for roadway segments.

TABLE 2-1

Circulation Element Roadway Classification LOS & Capacity (Use for City of Oceanside Only)

		Cross Section (1)	Level of Service				
Class	Lanes		A	В	C	D	E
Expressway	6	102/160, 122/200	30,000	42,000	60,000	70,000	80,000
Expressway	4	102/160, 122/200	25,000	35,000	50,000	55,000	60,000
Prime Arterial	6	104/124	25,000	35,000	50,000	55,000	60,000
6-Lane Major Arterial	6	104/124	20,000	28,000	40,000	45,000	50,000
5-Lane Major Arterial (2)	5	102/122	17,500	24,500	35,000	40,000	45,000
4-Lane Major Arterial	4	80/100	15,000	21,000	30,000	35,000	40,000
Secondary Collector (4 lanes with 2-way left turn lane)	4	64/84	10,000	14,000	20,000	25,000	30,000
Secondary Collector (4 lanes without 2-way left-turn lane, with left turn pockets)	4	54/74, 60/80	9,000	13,000	18,000	22,000	25,000
Collector (commercial fronting, 2-lanes with 2-way left turn lane) (3)	2	50/70	5,000	7,000	10,000	13,000	15,000
Collector (residential streets in the Circulation Element or industrial fronting)	2	40/60, 50/70	4,000	5,500	7,500	9,000	10,000
Local Street (residential streets NOT in the Circulation Element)	2	36/56, 40/60	2	4-4-	2,200		

Note:

- 1. Cross sections are listed as curb-to-curb width / total right-of-way width, in feet.
- 2. Vandergrift Boulevard is the only roadway designated as a 5-Lane Major Arterial. It is not intended that other roadways be built to 5-Lane Major Arterial standards.
- 3. This capacity will also be assumed for two-lane one-way collectors.

Source:

Traffic Impact Analysis Report Oceanside Master Transportation Plan Final, April 2012, Table 3-1.

Within Carlsbad, the Growth Management Plan Circulation Performance Standard is used for roadway segment level of service determination. That standard requires a peak hour level of service "D" to be considered acceptable. Following that methodology, the levels of service for street segments between intersections were determined using a 1,800 vehicles per hour capacity per lane and volume to capacity ratio corresponding to levels of service.

2.2 INTERSECTION ANALYSIS

For the determination of direct project impacts at intersections within Carlsbad, as required by the City of Carlsbad Growth Management Plan Circulation Performance Standard, the Intersection Capacity Utilization method of signalized intersection evaluations was used for Existing and Project Plus Existing Conditions.

For Near-Term and Buildout conditions, and for all conditions within Oceanside, the intersection evaluation follows the procedures obtained in the Highway Capacity Manual (HCM) 2000, chapter 16.

The Highway Capacity Manual computer software program was used for these intersection analyses and to estimate average seconds of traffic control delay per vehicle and to relate the delay to levels of service.

Table 2-2 shows the level of service relation to delay used for this analysis.

2.3 SIGNIFICANCE THRESHOLDS

In order to determine if the project would have a significant traffic impact on roadway segments or intersections, both the SANTEC / ITE Guidelines and the City of Carlsbad Growth Management Plan Circulation Performance Standard were used.

TABLE 2-2

HCM Level of Service Description for Signalized Intersections

Level of Service Description of Traffic Conditions		Control Delay (sec/veh)	
A	Insignficant delays: no approach phase is fully utilized and no vehicle waits longer than one red indication		
В	Minimal delays: an occasional approach phase is fully utilized. Drivers begin to feel restricted.	>10-20	
C	Acceptable delays: major approach phase may become fully utilized. Most drivers feel somewhat restricted.	>20-35	
D	Tolerable delays: drivers may wait through more than one red indication. Queues may develop but dissipate rapidly, without excessive delays.	>35-55	
Ē	Significant delays: volumes approaching capacity. Vehicles may wait through several cycles and long vehicle queues form upstream.	>55-80	
F	Excessive delays: represents conditons at capacity, with extremely long delays. Queues may block upstream intersections.		

Source: Highway Capacity Manual, Transportation Research Board, 2000

- 1. If the addition of project traffic to a roadway segment or intersection causes the level of service to decrease from "D" to "E" or "F", then the project is considered to have a significant impact.
- 2. If a facility is at level of service "E" or "F" before the addition of project traffic, then the following changes are allowed:
 - Roadway Segments An increase in the volume to capacity (v/c) ratio based on average daily
 traffic volumes, of no more than 0.02 is acceptable. However, a segment peak hour analysis must
 be completed under project conditions to determine peak hour significance of project impacts.
 - Intersections An increase in delay of no more than 2.0 seconds is acceptable.
 - <u>Freeways</u> An increase in volume to capacity (V/C) ratio of no more than 0.01 is acceptable.

2.4 STATE ROUTE 78 MAINLINE SEGMENTS

As described in the Caltrans Guidelines a peak hour analysis for both AM and PM peak hours is provided. Average daily traffic volumes on SR-78 were converted to peak hour flows by using a Design Hour Factor (K), and the Directional Factor (D), as published in Caltrans' traffic volume summaries for SR-78. The peak hour volumes are compared to the capacity of the freeway segment and the resulting volume to capacity ratio relates to a level of service for multi-lane highways. **Table 2-3** shows the level of service based on volume to capacity ratios typically used by Caltrans and also provided in the HCM.

TABLE 2-3
SR-78 Freeway Segment Level of Service Definitions

Caltrans District 11			
reeway Level of Service Definit	ions		
LOS	V/C	Congestion / Delay	Traffic Description
Jsed for freeways, expressways,	and conventional highways		
A	0-00.41	None	Free Flow
В	0.42-0.62	None	Free to stable flow, light to moderate volumes.
С	0.63-0.80	None to minimal	Stable flow, moderate volumes, freedom to maneuver noticeably restricted.
D	0.81-0.92	Minimal to substantial	Approaches unstable flow, heavy volumes, very limited freedom to maneuver.
Е	0.93-1.00	Significant	Extremly unstable, slow, manueverability and psychological comfort extremely poor.
Jsed for freeways and expresswa	ays		
F0	1.01-1.25	Considerable (0-1 hour delay)	Forced flow, heavy congestion, long queues form behind breakdown points, stop and go.
F1	1.26-1.35	Severe (1-2 hour delay)	Very heavy congestion, very long queues.
F2	1.36-1-45	Very severe (2-3 hour delay)	Extremely heavy congestion, longer queues, more numerous breakdown points, longer stop periods.
F3	>1.46	Extremely severe (3+hours of delay)	Gridlock.

Source: Caltrans, 1992

3.0 EXISTING CONDITIONS

The SANTEC / ITE Guidelines for the Preparation of Traffic Impact Studies in the San Diego Region recommends the scope of a traffic study to include local roadway segments and intersections that are expected to have fifty or more project peak hour trips added in either direction to the existing roadway traffic. As shown in the project description section of this report (Section 4.0), the study area has been determined by reviewing select zone assignments from the SANDAG computer traffic forecasts that predict the directional distribution of project traffic. In addition other locations of interest were evaluated to compare the effects of the different roadway alternatives.

3.1 STREET SEGMENTS

The following describes roadways expected to be impacted by fifty or more project peak hour vehicle trips and other key roadways, and are shown in **Figure 3-1** along with current functional roadway classifications.

College Boulevard: This roadway is a major arterial of varying width and lanes extending from north of State Route 78 in the City of Oceanside to south of the Oceanside City limit into Carlsbad. Within Carlsbad this roadway is constructed with four lanes from the City limit to Cannon Road. Cannon Road extends to the west from College Boulevard providing access to Central Carlsbad and Interstate 5. The segment of College Boulevard connecting to El Camino Real has not yet been constructed, but is expected to be completed before the Quarry Creek Master Plan adds traffic to this location.

FIGURE 3-1
Existing Roadway Classifications

Marron Road: This roadway is a four lane secondary arterial (with left turn lane) within Oceanside extending west from College Boulevard through the Quarry Creek Shopping Center to the City boundary. Within Carlsbad, this future roadway is classified as a four lane secondary arterial and would extend to El Camino Real through an open space area if constructed.

A short segment is constructed east of El Camino Real and serves the adjacent shopping centers and residential neighborhoods. Marron Road extends west of El Camino Real adjacent to the Plaza Camino Real Shopping Center.

<u>Lake Boulevard</u>: This street is a Secondary Collector that provides access to residential neighborhoods east of College Boulevard in Oceanside. It is a four-lane roadway with a continuous left turn lane from College Boulevard to Thunder Drive, and reduces to two lanes east of Thunder Drive.

<u>Plaza Drive</u>: This street is a Secondary Collector, divided, with four lanes from College Boulevard to the SR-78 eastbound off-and-on ramps, in Oceanside. The roadway narrows to two lanes between the SR-78 ramp intersection and Thunder Drive.

<u>Haymar Drive</u>: This cul-de-sac street extends to the west from College Boulevard as a two-lane Collector with a left turn lane at the College Boulevard intersection. The western portion is unimproved and provides access into and out of the existing quarry at this location, and will be improved as a two lane local street within Carlsbad, providing access to the Quarry Creek project.

<u>Vista Way:</u> This roadway is a Secondary Collector and provides access to residential neighborhoods and retail / commercial centers. It is a four-lane roadway with a continuous two-way left turn lane between Jefferson Street and the east City limits of Oceanside.

El Camino Real: This roadway is a six-lane Prime Arterial within the study area in Oceanside extending from north of SR-78 to the southern City limit. Within Carlsbad this is also a six-lane Prime Arterial within the study area, but varies in width south of Chestnut Drive.

Existing twenty-four hour roadway segment volumes were obtained from a traffic count subcontractor, and are shown in **Figure 3-2**.

Table 3-1 shows roadway segment existing levels of service for those segments within Oceanside using the capacity and level of service standards shown in **Table 2-1**. Only two study area Oceanside segments currently operate deficiently, Vista Way between College Boulevard and the SR-78 westbound ramps, and Lake Boulevard between Thunder Drive and Sundown Lane, both at LOS "E".

On Vista Way, the Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted. The dedicated westbound right-turn-only lane is a future unfunded project, while the restriping is a condition of approval for the Tri-City Medical Office project.

On Lake Boulevard the Oceanside Circulation Element Update Final EIR recommends retaining this segment as two lanes and adopting Overriding Considerations, due to an agreement between the City and the residents to maintain this as a two lane road with a two-way left turn lane pocket.

The roadway segments within Carlsbad have been evaluated during AM and PM peak hours, as required by the City's Growth Management Plan. The peak hour segment volumes are tabulated in **Table 3-2**. No Carlsbad roadway segments evaluated operate deficiently, as shown in this table.

FIGURE 3-2
Existing Average Daily Traffic Volumes

TABLE 3-1
Existing Street Segment Levels of Service

Within Oceanside

			Existing				
	Current	LOS E					
Segment	Classification	Capacity (1)	Volume	V/C (2)	LOS (3		
			1	Ī	1		
El Camino Real	C.D.	60,000	27.775	0.611			
Via Las Rosas to Vista Way	6-PA	60,000	36,675	0.611	C		
Vista Way to SR-78 WB Ramps	6-PA	60,000	53,859	0.898	D		
College Blvd.							
Barnard Dr. to Vista Way	6-MA	50,000	37,572	0.751	C		
Vista Way to Plaza Dr.	6-MA	50,000	44,884	0.898	D		
Plaza Dr. to Marron Rd.	6-MA	50,000	36,219	0.724	C		
Marron Rd./ to South City Limit	4-MA	40,000	24,475	0.612	C		
Vista Way				4.0.1			
Jefferson St. to El Camino Real	4-SCL	30,000	15,579	0.519	C		
El Camino Real to Rancho Del Oro Rd.	4-SCL	30,000	15,330	0.511	C		
Rancho Del Oro Rd. to College Blvd.	4-SCL	30,000	20,300	0.677	D		
College Blvd. to SR-78 WB Ramps	4-SCL	30,000	28,000	0.933	E		
SR-78 WB Ramps to Thunder Dr.	4-SCL	30,000	16,097	0.537	С		
Marron Rd. / Lake Blvd.		-			100		
Driveway to College Blvd.	4-SCL	30,000	16,907	0.564	C		
College Blvd. to Thunder Dr.	4-SCL	30,000	13,813	0.460	C		
Thunder Dr. to Sundown Ln.	2-CL	15,000	14,800	0.987	E		
Haymar Dr. / Plaza Dr.		4.653			-		
Driveway to College Blvd.	2-C	10,000	1,510	0.151	A		
College Blvd. to SR-78 EB Ramps	4-SCL	30,000	22,063	0.735	D		
SR-78 EB Ramps to Thunder Dr.	2-CL	15,000	11,965	0.798	D		
Rancho Del Oro Rd.		V.21.1.2.0	754 Wen	22.2			
Vista Way to Tournament Dr.	4-MA	40,000	13,900	0.348	A		

Notes:

- 1. Capacity of roadway at LOS E per City of Oceanside Master Transportation Plan, April 2012, Table 3-1.
- 2. V/C = Volume to capacity at LOS Eratio.
- 3. LOS = Level of Service.

TABLE 3-2 **Existing Street Segment Levels of Service**

Within Carlsbad

Segment	D		AMI	PEAK HOUR	2	PMI	PEAK HOU	R
		Lanes	Peak Hour Volume	V/C(1)	LOS	Peak Hour Volume	V/C(1)	LOS
	1		I				1	
El Camino Real SR-78 EB Ramps - Plaza Dr.	NB	3	880	0.16	Α	1,873	0.35	A
SR-78 EB Ramps - Plaza Dr.	SB	3	1,707	0.10	A	1,581	0.33	A
N- D- M D4	NB	3	708	0.32	A	1,357	0.25	A
Plaza Dr Marron Rd.	SB		7 7 7 7 7 7 7	0.13	A	1,035	0.19	A
M DI CILITE D		3	1,065	200	A	4,000,000	0.19	A
Marron Rd Carlsbad Village Dr.	NB	3	641	0.12	0.0	1,324	0.23	A
	SB	3	1,037	0.19	A	894	0.15-0	
Carlsbad Village Dr Chestnut Ave.	NB	3	421	0.08	A	1,256	0.23	A
	SB	3	940	0.17	A	684	0.13	A
College Blvd.	1.70		0.00	0.07		1.470	0.42	
Lake Blvd Carlsbad Village Dr.	NB	2	962	0.27	A	1,479	0.42	A
	SB	2	1,869	0.52	Α	954	0.27	A
Carlsbad Village Dr Cannon Rd.	NB	2	442	0.12	Α	1,351	0.38	A
	SB	2	1,572	0.44	Α	684	0.19	Α
Marron Rd.			- Maria			The state of	article in	
Monroe Ave El Camino Real	EB	2	110	0.03	Α	391	0.11	A
	WB	2	138	0.04	Α	397	0.11	A
El Camino Real - East End	EB	2	146	0.04	Α	453	0.13	A
	WB	2	241	0.07	Α	417	0.12	A
Carlsbad Village Dr.						-	1	
El Camino Real - Avenida De Anita	EB	2	207	0.06	A	493	0.14	A
	WB	2	702	0.20	A	369	0.10	A
Tamarack Ave College Blvd.	EB	2	389	0.11	Α	368	0.10	A
	WB	2	427	0.12	Α	416	0.12	A

D = Direction

(1) = Based on 1,800 vehicles per lane per hour.

V/C = Volume divided by capacity

Source: Highest Approach Volumes at Intersections.

3.2 INTERSECTIONS

Traffic volumes for study area intersections were obtained for AM and PM peak hours. The locations are shown in **Figure 3-3**, and lane configurations are shown in **Figure 3-4**. The turning movement traffic volumes are shown in **Figure 3-5**.

The City of Carlsbad requires existing intersection levels of service to be evaluated using the Intersection Capacity Utilization method, while intersections within Oceanside were evaluated using HCM software. Therefore, two intersection level of service methods have been combined in the following table.

Table 3-3 shows intersection levels of service for portions of the study area within Oceanside using intersection delay (Delay) in seconds, while the Carlsbad intersections are evaluated using a percentage of intersection capacity (ICU), as footnoted.

As shown in this table, there are currently no deficiently operating intersections within the study area. Deficient operations occur at level of service "E" or "F", while the evaluated intersections are at an acceptable "D" or better.

Appendix A includes intersection traffic count summaries and levels of service worksheets.

Page 1 of 3

FIGURE 3-4
Existing Lane Configurations

Page 2 of 3

FIGURE 3-4
Existing Lane Configurations

Page 3 of 3

FIGURE 3-4
Existing Lane Configurations

Page 1 of 3

FIGURE 3-5
Existing AM/PM Peak Hour Volumes

Page 2 of 3

FIGURE 3-5
Existing AM/PM Peak Hour Volumes

Page 3 of 3

FIGURE 3-5
Existing AM/PM Peak Hour Volumes

TABLE 3-3
Existing Intersection Levels of Service

- Y		Intersection City AM Pe				Hour	
Number	umber Intersection		ICU/ Delay (1)	LOS	ICU/ Delay (1)	LOS	
1	El Camino Real / Vista Way	OS	33.5	C	49.0	D	
2	El Camino Real / SR-78 WB Ramps	OS	21.4	C	26.7	C	
3	El Camino Real / SR-78 EB Ramps	OS	16.7	В	36.3	D	
4	El Camino Real / Plaza Dr.	CB	0.34(1)	Α	0.65(1)	A	
5	El Camino Real / Marron Rd.	СВ	0.34(1)	A	0.52(1)	Α	
6	El Camino Real / Carlsbad Village Dr.	СВ	0.45 (1)	A	0.55 (1)	A	
7	Vista Way / Rancho Del Oro Rd.	OS	35.7	D	42.8	D	
8	Rancho Del Oro Rd. / SR-78 WB Ramps	OS	N/A	N/A	N/A	N/A	
9	Rancho Del Oro Rd. / SR-78 EB Ramps	OS	N/A	N/A	N/A	N/A	
10	Marron Rd. / Rancho Del Oro Rd.	OS	N/A	N/A	N/A	N/A	
11	College Blvd. / Vista Way	OS	34.7	C	40.3	D	
12	College Blvd. / SR-78 EB Off Ramp	OS	8.2	A	8.7	A	
13	College Blvd. / Plaza Dr.	OS	17.7	В	30.7	C	
14	College Blvd. / Marron Rd. / Lake Blvd.	OS	27.7	C	29.6	C	
15	College Blvd. / Carlsbad Village Dr.	CB	0.69(1)	В	0.48(1)	Α	
16	College Blvd. / Cannon Rd.	СВ	N/A	N/A	N/A	N/A	
17	Vista Way / SR-78 WB Ramps	OS	29.8	С	32.8	C	
18	Plaza Dr. / SR-78 EB Ramps	OS	14.8	В	26.7	C	
19	Lake Blvd. / Thunder Dr.	OS	29.8	C	32.1	C	
20	College Blvd. / Waring Rd.	OS	26.7	C	30.4	C	
21	Marron Rd. / Quarry Creek Ctr.	OS	23.5	C	32.4	C	

Notes:

(1) ICU used in Carlsbad for existing conditions only.

N/A = Not Built

City:

OS = Oceanside

CB = Carlsbad

LOS	ICU	Seconds Delay
A	0.00 - 0.60	0.00 - 10.0
В	0.61 - 0.70	10.1 - 20.0
С	0.71 - 0.80	20.1 - 35.0
D	0.81 - 0.90	35.1 - 55.0
E	0.91 - 1.00	55.1 - 80.0
F	Over 1.00	Over 80.0

3.3 STATE ROUTE 78 MAINLINES

Table 3-4 shows existing State Route 78 freeway mainline segment levels of service.

As shown in this table, during peak hours segments of SR-78 operate at level of service "E".

The Regional Congestion Management Program (CMP) has established the level of service standard for SR-78 between Interstate 5 and Rancho Santa Fe Road at LOS "F", so the existing conditions do not exceed the CMP Freeway System Level of Service Standard.

TABLE 3-4 Existing Freeway Segment Levels of Service

Segment	Lanes (1-Way)	Сар.	ADT (1)	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	LOS (3)
State Route 78									
I-5 to Jefferson St.	3+AUX	8,850	133,000	8	6:4	0.95	6,720	0.76	D
Jefferson St. to El Camino Real	3+AUX	8,850	124,000	8	6:4	0.95	6,265	0.71	C
El Camino Real to Rancho Del Oro Rd.	3	7,050	136,000	8	6:4	0.95	6,872	0.97	E
Rancho Del Oro Rd. to College Blvd.	3	7,050	136,000	8	6:4	0.95	6,872	0.97	E
College Blvd. to Emerald Dr.	3	7,050	123,000	8	6:4	0.95	6,215	0.88	D

Legend:

Cap. = Capacity
Mainlane Cap. @ 2,350 VPHPL

Auxillary Lane Cap.@ 1,800 VPHPL

ADT= Average Daily Traffic

V/C= Volume to Capacity Ratio

LOS= Level of Service

Direction Split = % of Peak Hour in Peak Direction

Truck Factor = Represents Capacity Reduction due to Heavy Vehicles

Notes:

- (1) Source: Caltrans 2010 Traffic Volumes.
- (2) Highway Capacity Manual (2000) EQN. (3-2); assume 5% trucks plus RVs.
- (3) Caltrans District 11 LOS Estimation Procedures, See Table 2-3

4.0 PROJECT DESCRIPTION

The Quarry Creek Master Plan consists of 656 dwelling units, including a mix of detached units, attached units, and apartments. The Master Plan also includes 1.5 net acres for community facilities that might include a day-care, and 0.9 acres for a park-and-ride lot. **Figure 4-1** shows the Quarry Creek Master Plan Site Plan.

Table 4-1 includes the vehicle trip generation for the Quarry Creek Master Plan. As shown in this table, the project is expected to generate 5,578 average daily vehicle trips, 469 AM peak hour trips (121 inbound; 348 outbound), and 572 PM peak hour trips (386 inbound: 186 outbound). External trips have been adjusted down slightly to account for a transit reduction for planning area R-1, R-2, and R-3, which will be within one-fourth mile of transit service. The transit reduction decreases average daily vehicle trips by 2.8% and AM / PM peak hour trips by 2.6%.

Marron Road will extend into the site from the east, and Haymar Drive will also be extended into the site from the east.

Two roadway network alternatives are evaluated in this report.

Alternative 1 – This street network assumes all roadways that are included in the City of Carlsbad and City of Oceanside General Plan Circulation Plans, including the Rancho Del Oro Road interchnage. This street network assumes the extension of Marron Road from the existing east end at the Quarry Creek Shopping Center property line, to the existing west end approximately 1,000 feet east of El Camino Real, all within the City of Carlsbad, and through a designated open space area.

<u>Alternative 2</u> – This street network assumes the Rancho Del Oro Road interchange at SR-78 is constructed, but the Marron Road extension is not included, nor is the Rancho Del Oro Road extension to Marron Road.

The SANDAG Series 11 Combined North County Model was used to determine Buildout average daily traffic volumes for each street network and are included in the following evaluation of project traffic impacts.

The Quarry Creek site is identified by SANDAG as a Smart Growth Community Center on the Smart Growth Concept Map for the San Diego Region. The project site is located in close proximity to other uses, including retail, employment and educational uses. In addition, the site is served by transit and the project proposes a park and ride lot on the north side of Haymar Drive just west of College Boulevard. The mixed use environment of the area, the availability of transit services and park and ride facilities and the walkable nature of the planned development will reduce traffic generation from the site by promoting alternative forms of transportation (walking, biking and transit) and by facilitating multiple destinations in a single vehicle trip. While it is realistic to expect some reductions in trips, the analysis in this report does not include any mixed use credits and therefore represents a worst-case scenario in terms of vehicular trip generation from the proposed project.

FIGURE 4-1 Quarry Creek Master Plan Site Plan

TABLE 4-1

Project Trip Generation

	en excellence the sections	tion the same of	and the second second	enter constitutions	Plant beredalie		30 5 P. T. T. C.			5-1-C-0000000000000000000000000000000000	damin da in		**************************************
					AM	PEAK HO	UR				PEAK HO	UR	
PLANNING AREA	AMOUNT	TRIP RATE*	ADT	%*	#	1/0	IN	OUT	%*	#	1/0	IN	ОИТ
R-1	99 DU	6 / DU	594	8	48	2:8	10	38	9	53	7:3	37	16
R-1, R-2	232 DU	8 / DU	1,856	8	148	2:8	30	118	10	186	7:3	130	56
R-3	81 DU	8 / DU	648	8	52	2:8	10	42	10	65	7:3	46	19
R-4 (East)	125 DU	8 / DU	1,000	8	80	2:8	16	64	10	100	7:3	70	30
R-4 (West)	63 DU	10 / DU	630	8	50	3:7	15	35	10	63	7:3	44	19
R-5	56 DU	10 /.DU	560	8	45	3:7	13	32	10	56	7:3	39	17
Community Facilities	1.5 AC.	100 / AC.**	150	17	26	5:5	13	13	18	28	5:5	14	14
Park and Ride	28 Spaces	5 / Space	140	14	20	7:3	14	6	1 5	21	3:7	6	15
Total			5,578		469		121	348		572		386	186
to program there we are the control of the control			Trij	Genera	ation Ad	justmen	ts						
			NO.5					CONNECTIONS		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 20 20		
etty o senem Folkstolpgene Governie i Destection.			V 2	SAME TO STATE OF STREET	26 (000) 4: 330)	A CONTRACTOR OF THE PARTY OF TH	Carried Agents		And a second of the second	. ,		12/11/20 14/11/19	
	200.486, 1044, 105.35 (1.16.5.564)		2	15 W12 JA (1777 18)	AM	PEAK H	OUR			PM	PEAK H	OUR	,
erre po porte estro de establecia de trotto de el Calebra Calebra.			ADT		AM #	PEAK H	OUR IN	ОUТ		PM #	РЕАК НО	OUR IN	оит
Total Gross Trip Gene	ration		ADT 5,578			PEAK H		OUT 348			PEAK HO		OUT
Total Gross Trip Gene 1 -5% Transit Re		R-2, R-3 only.			#	PEAK H	IN			#	PEAK HO	IN	·
1 -5% Transit Re		R-2, R-3 only.	5,578		# 469	PEAK H	IN 121	348		# 572	PEAK HO	IN 386	186
1 -5% Transit Re	eduction: R-1,	R-2, R-3 only.	5,578 -155		# 469 -12	PEAK H	IN 121 -2	348 -10		# 572 -15	PEAK HO	IN 386 -11	186 -4 182
1 -5% Transit Re	eduction: R-1,	R-2, R-3 only.	5,578 -155 5,423		# 469 -12 457	PEAK H	IN 121 -2 119	348 -10 338		# 572 -15 557	PEAK HO	IN 386 -11 375	186 -4 182
	eduction: R-1,	R-2, R-3 only.	5,578 -155 5,423		# 469 -12 457	PEAK H	IN 121 -2 119	348 -10 338		# 572 -15 557	PEAK HO	IN 386 -11 375	186 -4 182
1 -5% Transit Re Net External Trips Percentage of Reduct	eduction: R-1,		-155 5,423 2.8%	for land	# 469 -12 457 2.6%		-2 119 1.8%	348 -10 338 2.8%	ansitstati	# 572 -15 557 2.6%		-11 375 2.8%	186 -4 182 2.2%
1 -5% Transit Re Net External Trips Percentage of Reduct Notes:	eduction: R-1,		-155 5,423 2.8%	for land	# 469 -12 457 2.6%		-2 119 1.8%	348 -10 338 2.8%	ansit stat	# 572 -15 557 2.6%		-11 375 2.8%	186 -4 182 2.2%
1 -5% Transit Re Net External Trips Percentage of Reduct Notes:	eduction: R-1,		-155 5,423 2.8%	forland	# 469 -12 457 2.6%		-2 119 1.8%	348 -10 338 2.8%	ansitstat	# 572 -15 557 2.6%		-11 375 2.8%	186 -4 182 2.2%
1 -5% Transit Re Net External Trips Percentage of Reduct Notes:	eduction: R-1,	ommends a 5% trip	5,578 -155 5,423 2.8%	**************************************	# 469 -12 457 2.6%		IN 121 -2 119 1.8%	348 -10 338 2.8%	ansitstat	# 572 -15 557 2.6%		-11 375 2.8%	186 -4 182 2.2%
1 -5% Transit Re Net External Trips Percentage of Reduct Notes:	eduction: R-1,	ommends a 5% trip	5,578 -155 5,423 2.8%	**************************************	# 469 -12 457 2.6%	transit cen	IN 121 -2 119 1.8%	348 -10 338 2.8%	ansit stat	# 572 -15 557 2.6%		-11 375 2.8%	186 -4 182 2.2%
1 -5% Transit Re Net External Trips Percentage of Reduct Notes: 1 = SANDAG Generatio	eduction: R-1,	ommends a 5% trip	5,578 -155 5,423 2.8%	**************************************	# 469 -12 457 2.6%	PART OF	IN 121 -2 119 1.8%	348 -10 338 2.8%	ansitstat	# 572 -15 557 2.6%		IN 386 -11 375 2.8%	186 -4 182 2.2%
1 -5% Transit Re Net External Trips Percentage of Reduct Notes: 1 = SANDAG Generatio	eduction: R-1,	ommends a 5% trip	5,578 -155 5,423 2.8%	**************************************	# 469 -12 457 2.6%	transit cen	IN 121 -2 119 1.8%	348 -10 338 2.8%	ansit stat	# 572 -15 557 2.6%	ssible with	IN 386 -11 375 2.8%	186 -4 182 2.2%

5.0 EXISTING PLUS PROJECT CONDITONS

5.1 PROJECT ONLY TRAFFIC VOLUMES

The Combined North County traffic model forecast for Alternative 4 was used to determine the project only vehicle trip directional distribution percentages, and are shown in **Figure 5-1**.

The project only average daily traffic volumes are shown in Figure 5-2.

The project only AM and PM peak hour traffic volumes at study area intersections are shown in **Figure 5**-3.

5.2 STREET SEGMENTS WITHIN OCEANSIDE

Project only average daily traffic volumes were added to existing traffic volumes and are shown in **Figure** 5-4.

The roadway segments within Oceanside with project traffic added to existing volumes are shown in Table 5-1.

Three segments in this table have possible project significant impacts:

• College Boulevard, between Vista Way and Plaza Drive, decreases from level of service "D" to "E", and the change in volume to capacity ratio is greater than 0.02. Therefore the project has a significant direct impact to this segment.

FIGURE 5-1
Project Trip Distribution Percentages
No RDO Interchange / No RDO Extension / No Marron Road

FIGURE 5-2
Project Only Average Daily Traffic Volumes - For Existing Conditions
No RDO Interchange / No RDO Extension / No Marron Road

Page 1 of 3

Project Only AM/PM Peak Hour Volumes
No RDO Interchange / No RDO Extension / No Marron Road

Page 2 of 3

Project Only AM/PM Peak Hour Volumes
No RDO Interchange / No RDO Extension / No Marron Road

Page 3 of 3

FIGURE 5-3 Project Only AM/PM Peak Hour Volumes No RDO Interchange / No RDO Extension / No Marron Road

FIGURE 5-4
Existing + Project Average Daily Traffic Volumes

Page 1 of 3

Existing + Project AM/PM Peak Hour Volumes

Page 2 of 3

FIGURE 5-5
Existing + Project AM/PM Peak Hour Volumes

Page 3 of 3

FIGURE 5-5

Existing + Project AM/PM Peak Hour Volumes

TABLE 5-1
Project Plus Existing Street Segment Levels of Service

Within Oceanside

			Project Plus Existing					
Segment	Current Classification	LOS E Capacity (1)	Volume	V / C (2)	ΔV/C (4)	LOS (3)		
El Camino Real								
Via Las Rosas to Vista Way	6-PA	60,000	36,783	0.613	0.002	C		
Vista Way to SR-78 WB Ramps	6-PA	60,000	53,967	0.899	0.001	D		
College Blvd.								
Barnard Dr. to Vista Way	6-MA	50,000	33,331	0.767	0.016	C		
Vista Way to Plaza Dr.	6-MA	50,000	47,662	0.953	0.055	E		
Plaza Dr. to Marron Rd.	6-MA	50,000	38,842	0.777	0.053	C		
Marron Rd. to South City Limit	4-MA	40,000	25,885	0.647	0.035	C		
Vista Way								
Jefferson St. to El Camino Real	4-SCL	30,000	15,633	0.521	0.002	C		
El Camino Real to Rancho Del Oro Rd.	4-SCL	30,000	15,446	0.515	0.004	C		
Rancho Del Oro Rd. to College Blvd.	4-SCL	30,000	20,544	0.685	0.008	D		
College Blvd. to SR-78 WB Ramps	4-SCL	30,000	29,206	0.974	0.041	Ε		
SR-78 WB Ramps to Thunder Dr.	4-SCL	30,000	16,260	0.542	0.005	C		
Marron Rd. / Lake Blvd.								
Driveway to College Blvd.	4-SCL	30,000	19,619	0.654	0.090	D		
College Blvd. to Thunder Dr.	4-SCL	30,000	14,084	0.469	0.009	C		
Thunder Dr. to Sundown Ln.	2-CL	15,000	15,017	1.001	0.014	F*		
Haymar Dr. / Plaza Dr.				-	53.00			
Driveway to College Blvd.	2-C	10,000	3,950	0.395	0.244	A		
College Blvd. to SR-78 EB Ramps	4-SCL	30,000	22,754	0.758	0.023	D		
SR-78 EB Ramps to Thunder Dr.	2-CL	15,000	12,128	0.809	0.011	D		
Rancho Del Oro Rd.								
Vista Way to Tournament Dr.	4-MA	40,000	13,954	0.349	0.001	A		

NOTES:

- 1. Capacity of roadway at LOS E per City of Oceanside Master Transportation Plan, April 2012, Table 3-1.
- 2. V/C = Volume to capacity at LOS E ratio; Δ V/C = Change in V/C.
- 3. LOS = Level of service.
- 4. Δ V/C = Change in V/C: A significant impact occurs at LOS "E" or "F" and the change in V/C ratio is greater than 0.02.
- *Not Significant since the change in V/C ratio is no more than 0.02.

Since physical improvements to add lanes are infeasible, the April 2012 Final EIR for the City of Oceanside Circulation Element Update recommends reclassification of this segment from a six-lane Major Arterial to a six-lane Prime Arterial. This reclassification would mitigate the project significant impact. However, Oceanside considers roadway reclassification infeasible, so that the Oceanside Update ultimately recommends the adoption of Overriding Conditions.

The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Vista Way, between College Boulevard and the SR-78 westbound ramps. This segment is at level of service "E" under existing conditions and with project traffic added. The project change in volume to capacity ratio is greater than 0.02, at 0.041, so this would be a significant impact.

The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Lake Boulevard, between Thunder Drive and Sundown Lane, decreases from level of service "E" to "F". However, the change in volume to capacity ratio is less than 0.02 so that this is not considered a significant impact to this segment. No project mitigation is required.

No other segments evaluated within the City of Oceanside would be significantly impacted by project traffic for the Project Plus Existing condition.

5.3 STREET SEGMENTS WITHIN CARLSBAD

Project only AM and PM peak hour traffic volumes were added to existing peak hour traffic volumes between study area intersections in Carlsbad and the results are displayed in **Table 5-2**.

As shown in this table, all street segments within Carlsbad would operate acceptably with project traffic added to existing peak hour volumes on roadway segments between intersections.

TABLE 5-2
Project Plus Existing Street Segment Levels of Service

Within Carlsbad

Segment			AM1	PEAK HOUF	PM PEAK HOUR			
	D	Lanes	Peak Hour Volume	V/C(1)	LOS	Peak Hour Volume	V/C(1)	LOS
Fl Coming Deal								
El Camino Real SR-78 EB Ramps - Plaza Dr.	NB	3	884	0.16	Α	1,881	0.35	Α
SK-76 LB Kamps - Haza Di.	SB	3	1,716	0.32	A	1,584	0.29	A
Plaza Dr Marron Rd.	NB	3	710	0.13	A	1,361	0.25	A
riaza Di Mailoli Ku.	SB	3	1,068	0.13	A	1,037	0.19	A
Marron Rd Carlsbad Village Dr.	NB	3	643	0.12	A	1,326	0.25	A
Walton Rd Carlsbad Village Dt.	SB	3	1,039	0.12	A	896	0.17	A
Carlsbad Village Dr Chestnut Ave.	NB	3	422	0.08	A	1,257	0.23	A
Carisbad village Dr Chestnut Ave.	SB	3	941	0.03	A	685	0.13	A
College Blvd.	JD.	-	241	0.17	71	005	0.15	- 1
Lake Blvd Carlsbad Village Dr.	NB	2	994	0.28	Α	1,585	0.44	Α
Lake Bivd. * Carisbad vinage Bi.	SB	2	1,971	0.55	A	1,012	0.28	Α
Carlsbad Village Dr Cannon Rd.	NB	2	461	0.13	A	1,419	0.39	Α
Carisbaa vinage Dr. Camion Ra.	SB	2	1,629	0.45	A	716	0.2	A
Marron Rd.	- 52		3,022					
Monroe Ave El Camino Real	EB	2	111	0.03	Α	393	0.11	A
	WB	2	140	0.04	Α	399	0.11	A
El Camino Real - East End	EB	2	148	0.04	Α	455	0.13	A
2, 20111110 10011	WB	2	243	0.07	Α	420	0.12	Α
Carlsbad Village Dr.								
El Camino Real - Avenida De Anita	EB	2	210	0.06	A	496	0.14	Α
All President at Mark Charles Statement Sec. (120)	WB	2	705	0.20	Α	372	0.11	A
Tamarack Ave College Blvd.	EB	2	399	0.11	Α	399	0.11	A
Comment of the contract of the	WB	2	456	0.13	Α	433	0.12	A

D = Direction

(1) = Based on 1,800 vehicles per lane per hour.

V/C=Volume divided by capacity

Source: Highest Approach Volumes at Intersections.

5.4 INTERSECTIONS

Project peak hour traffic volumes were added to existing turning movement volumes at study area intersections and peak hour levels of service were calculated.

Table 5-3 shows the results of the intersection level of service evaluation. Also shown in this table are existing levels of service and delay for comparison. The Carlsbad intersections were evaluated using the ICU method so that intersection capacity utilization percentages are shown for those locations.

A significant impact would occur at the Carlsbad locations if the level of service decreases to "E" or "F". Within Oceanside, a significant impact would occur if the intersection is at level of service "E" or "F", and the increase in delay resulting from the project is more than 2.0 seconds.

As shown in this table, the intersections within Carlsbad maintain an acceptable level of service (i.e. LOS D or better) and therefore there are no significant project impacts at those locations and no project mitigation is needed.

Also shown, the intersections within Oceanside are expected to operate acceptably with project peak hour traffic added to existing peak hour volumes, and therefore there are no significant project impacts at those locations in Oceanside and no project mitigation is needed.

Appendix B includes Project Plus Existing intersection levels of service worksheets.

TABLE 5-3 Project Plus Existing Intersection Levels of Service

ALC: N	The second second		Exis	ting		Project Plus Existing							
Number	Intersection	AM Pe	ak Hour	PM Pea	k Hour	AM Peak Hour			PM Peak Hour				
		D	LOS	D	LOS	D	LOS	ΔD	S?	D	LOS	ΔD	S?
				40.0	6	33.6	С	0.1	N	49,5	D	0.5	N
1 OS	El Camino Real / Vista Way	33.5	С	49.0	D		17			26.8	C	0.1	N
2 OS	El Camino Real / SR-78 WB Ramps	21.4	С	26.7	C	21.4	С	0.0	N				N
3 OS	El Camino Real / SR-78 EB Ramps	16.7	В	36.3	D	16.7	В	0.0	N	36.3	С	0	
4 CB	El Camino Real / Plaza Dr.(1)	0.34	A	0.65	В	0.35	A	0.01	N	0.65	В	0.00	N
5 CB	El Camino Real / Marron Rd.(1)	0.34	A	0.52	В	0.34	A	0.00	N	0.52	Α	0.00	N
6 CB	El Camino Real / Carlsbad Village Dr. 1	0.45	A	0.55	A	0.45	A	0.00	N	0.55	Α	0.00	N
7 OS	Vista Way / Rancho Del Oro Rd.	35.7	D	42.8	D	35.7	D	0.00	N	43.4	D	0.6	N
8 OS	Rancho Del Oro Rd. / SR-78 WB Ramps	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/4
9 OS	Rancho Del Oro Rd. / SR-78 EB Ramps	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
10 CB	Marron Rd. / Rancho Del Oro Rd.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N//
11 OS	College Blvd. / Vista Way	34.7	С	40.3	D	36.6	D	1.9	N	48.9	D	3.6	N
12 OS	College Blvd. / SR-78 EB Off Ramp	8.2	A	8.7	A	8.2	Α	0.0	N	11.3	В	3.6	N
13 OS	College Blvd. / Plaza Dr.	17.7	В	30.7	С	19.7	В	2.0	N	31.8	C	1.1	N
14 OS	College Blvd. / Marron Rd. / Lake Blvd.	27.7	С	29.6	C	30.3	С	2.6	N	31.5	C	1.9	N
15 CB	College Blvd. / Carlsbad Village Dr.(1)	0.69	В	0.48	A	0.71	C	0.02	N	0.51	A	0.03	N
16 CB	College Blvd. / Cannon Rd.(1)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
17 OS	Vista Way / SR-78 WB Ramps	29.8	С	32.8	C	29.6	C	0.0	N	33.7	С	0.9	N
18 OS	Plaza Dr. / SR-78 EB Ramps	14.8	В	26.7	С	14.5	В	0.0	N	27.0	C	0.3	N
19 OS	Lake Blvd. / Thunder Dr.	29.8	C	32.1	С	30.0	С	0.2	N	32.4	C	0.3	N
20 OS	College Blvd. / Waring Rd.	26.7	С	30.4	С	27.3	C	0.6	N	30.6	C	0.2	N
21 OS	Marron Rd. / Quarry Creek Ctr.	23.5	С	32.4	C	22.2	С	0.0	N	33.6	C	1.2	N
22 OS	Marron Rd. / Street B	N/A	N/A	N/A	N/A	(2)	A	(2)	N	(2)	A	(2)	N

 $\overline{\bigoplus}$ ICU used in Carlsbad for Existing and Existing Plus Project Conditions. N/A = Not Built

(2) Roundabout: Delay is not applicable; LOS is based on V/C; AM and PM V/C is LOS A.

City: OS = Oceanside

CB = Carlsbad

D = Control Delay LOS = Level of Service

 ΔD = Change in Delay

S? = Significant Impact: Yes (Y) or No (N).

LOS	ICU	Seconds Delay		
A	0.00 - 0.60	0.00 - 10.0		
В	0.61 - 0.70	10.1 - 20.0		
C	0.71 - 0.80	20.1 - 35.0		
D	0.81 - 0.90	35.1 - 55.0		
E	0.91 - 1.00	55.1 - 80.0		
F	Over 1.00	Over 80.0		

5.5 STATE ROUTE 78 MAINLINES

The project traffic volumes added to existing SR-78 average daily traffic volumes are included in **Table 5-4.** This table shows existing and project plus existing freeway volumes. This table also compares levels of service and volume to capacity (V/C) ratios, and indicates if the project has or has not a significant freeway impact. At levels of service "E" or "F" an increase in V/C ratio of no more than 0.01 is acceptable. As shown in this table, segments at level of service "E" have V/C increases of less than 0.01 so that the project has less than significant impacts to SR-78 mainlines.

TABLE 5-4
Project Plus Existing Freeway Segment Levels of Service

EXISTING									
Segment	Lanes (1-Way)	Сар.	ADT (1)	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	LOS (3)
State Route 78			1						
I-5 to Jefferson St.	3+AUX	8,850	133,000	8	6:4	0.95	6,720	0.759	C
Jefferson St. to El Camino Real	3+AUX	8,850	123,000	8	6:4	0.95	6,215	0.702	C
El Camino Real to Rancho Del Oro Rd.	3	7,050	135,000	8	6:4	0.95	6,821	0.968	E
Rancho Del Oro Rd. to College Blvd.	3	7,050	135,000	8	6:4	0.95	6,821	0.968	E
College Blvd. to Emerald Dr.	3	7,050	123,000	8	6:4	0.95	6,215	0.882	D

		PROJ	ECT PLU	S EXISTING	3				
Segment	Lanes (1-Way)	Сар.	ADT	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	LOS (3)
State Route 78						0.05		0.565	
I-5 to Jefferson St.	3+AUX	8,850	133,910	8	6:4	0.95	6,766	0.765	C
Jefferson St. to El Camino Real	3+AUX	8,850	123,910	8	6:4	0.95	6,261	0.707	С
El Camino Real to Rancho Del Oro Rd.	3	7,050	136,153	8	6:4	0.95	6,879	0.976	Е
Rancho Del Oro Rd. to College Blvd.	3	7,050	136,153	8	6:4	0.95	6,879	0.976	Е
College Blvd. to Emerald Dr.	3	7,050	123,728	8	6:4	0.95	6,252	0.887	D

Segment	V/C With	LOS	V/C Without Project	LOS	Change in V/C	S?
State Route 78					45.555	337
I-5 to Jefferson St.	0.765	C	0.759	C	0.006	N
Jefferson St. to El Camino Real	0.707	C	0.702	C	0.005	N
El Camino Real to Rancho Del Oro Rd.	0.976	E	0.968	E	0.008	N
Rancho Del Oro Rd. to College Blvd.	0.976	E	0.968	E	0.008	N
College Blvd. to Emerald Dr.	0.887	D	0.882	D	0.005	N

Legend:

Cap. = Capacity

Mainlane Cap. @ 2,350 VPHPL

Auxillary Lane Cap.@ 1,800 VPHPL

ADT= Average Daily Traffic

V/C= Volume to Capacity Ratio

LOS= Level of Service

Direction Split = % of Peak Hour in Peak Direction

Truck Factor = Represents Capacity Reduction for Heavy Vehicles

Notes:

- (1) Source: Caltrans 2010 Traffic Volumes.
- (2) Highway Capacity Manual (2000) EQN. (3-2); assume 5% trucks plus RV's.
- (3) Caltrans District 11 LOS Estimation Procedures, See Table 2-3
- S? = Significant Impact: Yes (Y), No (N).
- (At LOS E or F, an increase in V/C of no more than 0.01 is acceptable).

6.0 NEAR TERM WITHOUT PROJECT

The cumulative condition impacts from other approved and reasonably feasible pending projects that are expected to influence the study area are evaluated in this section.

Other projects in Oceanside and Carlsbad considered to be adding traffic before or at approximately the same time as the Quarry Creek Master Plan are listed below:

- Within the City of Oceanside:
- El Corazon Specific Plan (Phase 1A, 1D, 1E, and 1F; 7,960 ADT).
- Tri-City Medical Office building (60,000 S.F.; 3,000 ADT).
- Within the City of Carlsbad:
- Plaza Camino Real Westfield Shopping Center Revitalization Project (5,186 ADT from vacant leasable space; 1,240 ADT from new space).
- Carlsbad High School (Phase I; 1,500 students; 1,950 ADT).
- Robertson Ranch (1,162 D.U.; 10.0 AC.Commercial; 13 AC. Park; 66.0 KSF Office; 17,800 ADT).
- Holly Springs Catarini (239 D.U.; 2,250 ADT)
- Dos Colinas (309 retirement D.U.; 29 D.U. affordable housing; 1,340 ADT).
- Palomar Airport Road Commons (16.6 acre Community Shopping Center; 12,370 ADT).
- La Costa Town Square (284,000 S.F. Community Shopping Center; 198 D.U.; 55,000 S.F. Office; 25,516 ADT).

<u>Appendix B</u> includes excerpts from other projects traffic reports showing each project trip generation and directional distribution of peak hour and daily traffic volumes.

Figure 6-1 shows the location of the other projects.

6.1 STREET SEGMENTS WITHIN OCEANSIDE

Figure 6-2 includes average daily traffic volumes to be added to the street network as a result of other projects.

Figure 6-3 shows existing plus other project's average daily traffic volumes.

Table 6-1 includes roadway segments within Oceanside with cumulative projects added. This table indicates that all segments evaluated within Oceanside would operate acceptably with cumulative projects added, except at the following segments:

- El Camino Real between Vista Way and SR-78 Westbound Ramps, at level of service "E".
- College Boulevard between Vista Way and Plaza Drive, at level of service "E";
- Vista Way between College Boulevard and the SR-78 Westbound Ramps, at level of service "F";
- Lake Boulevard between Thunder Drive and Sundown Lane, at level of service "F".

6.2 STREET SEGMENTS WITHIN CARLSBAD

Cumulative other project's AM and PM peak hour volumes at existing intersections are shown in **Figure** 6-4. These volumes were added to street segments within Carlsbad and street segment levels of service were calculated, as shown in **Table 6-2.** As indicated, all Carlsbad segments evaluated would operate acceptably with cumulative project's traffic added.

FIGURE 6-2 Other Approved Projects Average Daily Traffic

FIGURE 6-3
Near Term Without Project Average Daily Traffic

TABLE 6-1

Near Term Without Project Street Segment Levels of Service

Within Oceanside

Segment	Current Classification	LOS E Capacity (1)	Volume	V/C (2)	LOS (3)
El Camino Real				Autorita de	1.75
Via Las Rosas to Vista Way	6-PA	60,000	39,800	0.663	С
Vista Way to SR-78 WB Ramps	6-PA	60,000	57,300	0.955	Е
College Blvd.					
Barnard Dr. to Vista Way	6-MA	50,000	39,200	0.784	C
Vista Way to Plaza Dr.	6-MA	50,000	48,200	0.964	Е
Plaza Dr. to Marron Rd.	6-MA	50,000	39,500	0.790	C
Marron Rd./ to South City Limit	4-MA	40,000	27,800	0.695	C
Vista Way		75. (5.)	2.7.291		
Jefferson St. to El Camino Real	4-SCL	30,000	15,700	0.523	C
El Camino Real to Rancho Del Oro Rd.	4-SCL	30,000	22,900	0.763	D
Rancho Del Oro Rd. to College Blvd.	4-SCL	30,000	21,900	0.730	D
College Blvd. to SR-78 WB Ramps	4-SCL	30,000	31,500	1.050	F
SR-78 WB Ramps to Thunder Dr.	4-SCL	30,000	19,000	0.633	C
Marron Rd. / Lake Blvd.		20.000	17.600	0.505	0
Driveway to College Blvd.	4-SCL	30,000	17,600	0.587	C
College Blvd. to Thunder Dr.	4-SCL	30,000	14,300	0.476	C
Thunder Dr. to Sundown Ln.	2-CL	15,000	15,300	1.020	F
Haymar Dr. / Plaza Dr.		77.7			
Driveway to College Blvd.	2-C	10,000	1,500	0.150	A
College Blvd. to SR-78 EB Ramps	4-SCL	30,000	23,400	0.780	D
SR-78 EB Ramps to Thunder Dr.	4-SCL	30,000	12,100	0.403	В
Rancho Del Oro Rd.		40.000	15.500	0.200	70
Vista Way to Tournament Dr.	4-MA	40,000	15,600	0.390	В

Notes:

- 1. Capacity of roadway at LOS E per City of Oceanside Master Transportation Plan, April 2012, Table 3-1.
- 2. V/C = Volume to capacity at LOS E ratio.
- 3. LOS = Level of Service.

Page 1 of 3

FIGURE 6-4
Other Projects Only AM/PM Peak Hour Volumes

Page 2 of 3

Page 3 of 3

FIGURE 6-4
Other Projects Only AM/PM Peak Hour Volumes

TABLE 6-2

Near Term Without Project Street Segment Levels of Service

Within Carlsbad

			AMI	PEAK HOUF	3	PMI	PEAK HOU	R
Segment	D	Lanes	Peak Hour Volume	V/C(1)	LOS	Peak Hour Volume	V/C(1)	LOS
							T	
El Camino Real	XID	2	1.000	0.19	Α	2,137	0.40	A
SR-78 EB Ramps - Plaza Dr.	NB	3	1,020	100000000000000000000000000000000000000	A		0.40	A
	SB	3	1,750	0.32	1.5	1,901	5,000	A
Plaza Dr Marron Rd.	NB	3	867	0.16	A	1,582	0.29	
	SB	3	1,171	0.22	A	1,259	0.23	A
Marron Rd Carlsbad Village Dr.	NB	3	907	0.17	Α	1,599	0.30	A
	SB	3	1,185	0.22	A	1,241	0.23	A
Carlsbad Village Dr Chestnut Ave.	NB	3	733	0.14	Α	1,510	0.28	A
	SB	3	1,175	0.22	A	1,064	0.20	A
College Blvd.		-					7.37.1	
Lake Blvd Carlsbad Village Dr.	NB	2	1,192	0.33	A	1,619	0.45	A
	SB	2	2,047	0.57	A	1,236	0.34	A
Carlsbad Village Dr Cannon Rd.	NB	2	591	0.16	A	1,499	0.42	Α
	SB	2	1,718	0.48	Α	716	0.20	A
Marron Rd.	-							
Monroe Ave El Camino Real	EB	2	181	0.05	A	586	0.16	A
	WB	2	277	0.08	Α	555	0.15	A
El Camino Real - East End	EB	2	211	0.06	Α	527	0.15	A
	WB	2	286	0.08	A	504	0.14	A
Carlsbad Village Dr.								
El Camino Real - Avenida De Anita	EB	2	227	0.06	Α	535	0.15	A
Transfer of the state of the st	WB	2	744	0.21	Α	412	0.11	A
Tamarack Ave College Blvd.	EB	2	528	0.15	A	464	0.13	A
Tulinatack ATVC College DIVG.	WB	2	515	0.14	Α	624	0.17	A

D = Direction

(1) = Based on 1,800 vehicles per lane per hour.

V/C = Volume divided by capacity

Source: Highest Approach Volumes at Intersections.

V/C	LOS
0.00-0.60	A
0.61-0.70	В
0.71-0.80	C
0.81-090	D
0.91-1.00	E
Over 1.00	F

6.3 INTERSECTIONS

For this traffic condition the Highway Capacity Manual method of estimating intersection control delay and corresponding levels of service were used for intersections within Oceanside and Carlsbad.

Figure 6-5 shows AM and PM peak hour volumes at study area intersections with the cumulative projects' traffic added to existing volumes.

Figure 6-6 includes intersection lane configurations for Near-Term conditions.

There are five intersections within the City of Oceanside that have planned but mostly unfunded improvements for Near-Term conditions as a result of previous traffic studies. The City of Oceanside has requested these improvements be assumed for Near-Term and Buildout conditions:

- Intersection #1, El Camino Real / Vista Way: On El Camino Real, add a northbound to eastbound right-turn-only lane;
- Intersection #11, College Boulevard / Vista Way: On College Boulevard add a second northbound
 to eastbound right-turn-only lane (a condition of approval for the Tri-City Medical Office); on
 Vista Way add a westbound to northbound right-turn-only lane;
- Intersection #13, College Boulevard / Haymar Drive Plaza Drive: on College Boulevard, add a northbound to eastbound right-turn-only lane;
- Intersection #14, College Boulevard / Marron Road Lake Boulevard: on College Boulevard, add
 a second northbound to eastbound right-turn-only lane;

Page 1 of 3

Existing + Other Projects AM/PM Peak Hour Volumes

Page 2 of 3

Existing + Other Projects AM/PM Peak Hour Volumes

Page 3 of 3

FIGURE 6-5
Existing + Other Projects AM/PM Peak Hour Volumes

Page 1 of 3

Near Term Lane Configurations

Page 2 of 3

001307-Report_H.doc

Page 3 of 3

Intersection #20, College Boulevard / Barnard Drive — Waring Road: on College Boulevard in the northbound direction, convert the dedicated right-turn-only lane to a third northbound shared-through / right turn lane. Widen the far side of the intersection to accept the third northbound shared through-right turn lane.

Table 6-3 includes intersection levels of service for the Near-Term Without Project conditions, but without the planned improvements. As indicated in this table all evaluated intersections would operate acceptably under this condition, with existing lane configurations, except at the El Camino Real / Vista Way intersection at level of service "E" during the PM peak hour.

Table 6-3-A shows five intersections that have planned improvements by the City of Oceanside. With mitigation, adding a northbound right turn only lane on El Camino Real to eastbound Vista Way, would mitigate the level of service in the PM peak hour to "D".

Appendix C includes intersection levels of service worksheets for Near-Term conditions.

6.4 STATE ROUTE 78 MAINLINES

The other pending project's traffic volumes were added to existing SR-78 freeway volumes and the mainline peak hour level of service are included in **Table 6-4**.

TABLE 6-3

Near Term Without Project Intersection Levels of Service

Number	Intersection	C:+	AM Peal	k Hour	PM Peal	Hour
Number	Intersection	City	Delay (1)	LOS	Delay (1)	LOS
1	El Camino Real / Vista Way	os	36.9	D	64.6	Е
2	El Camino Real / SR-78 WB Ramps	OS	24.3	С	30.7	C
3	El Camino Real / SR-78 EB Ramps	OS	18.6	В	51.5	D
4	El Camino Real / Plaza Dr.	СВ	11.0	В	29.1	С
5	El Camino Real / Marron Rd.	СВ	18.3	В	36.5	D
6	El Camino Real / Carlsbad Village Dr.	CB	34.3	С	33.1	С
7	Vista Way / Rancho Del Oro Rd.	OS	37.9	D	53.6	D
8	Rancho Del Oro Rd. / SR-78 WB Ramps	OS	N/B	N/B	N/B	N/B
9	Rancho Del Oro Rd. / SR-78 EB Ramps	OS	N/B	N/B	N/B	N/B
10	Marron Rd. / Rancho Del Oro Rd.	СВ	N/B	N/B	N/B	N/B
11	College Blvd. / Vista Way	OS	41.2	D	38.7	D
12	College Blvd. / SR-78 EB Off Ramp	OS	8.8	A	11.8	В
13	College Blvd. / Plaza Dr.	OS	18.8	В	40.8	D
14	College Blvd. / Marron Rd. / Lake Blvd.	OS	29.7	С	31.6	C
15	College Blvd. / Carlsbad Village Dr.	CB	42.9	D	19.9	В
16	College Blvd. / Cannon Rd.	CB	29.6	C	35.6	D
17	Vista Way / SR-78 WB Ramps	OS	33,2	C	39.7	D
18	Plaza Dr. / SR-78 EB Ramps	OS	21.3	C	26.7	С
19	Lake Blvd. / Thunder Dr.	OS	29.6	C	31.8	С
20	College Blvd. / Waring Rd.	OS	27.1	C	34.0	С
21	Marron Rd. / Quarry Creek Ctr.	OS	23.5	C	33.0	C

Notes:

N/B= Not Built

City:

OS = Oceanside

CB = Carlsbad

(1) = Average Control Delay in Seconds.

LOS	Seconds Delay
A	0.00-10.0
В	10.1-20.0
C	20.1-35.0
D	35.1-55.0
Е	55.1-80.0
F	Over 80.0

TABLE 6-3-A

Near Term Without Project Intersection Levels of Service

(With Planned but Unfunded Improvements)

Number	Intersection	Near Term Without Project						
Number	intersection	AM Pe	PM Peak Hour					
		D	LOS	D	LOS			
1 OS	El Camino Real / Vista Way (1)	36.3	D	42.3	D			
11 OS	College Blvd. / Vista Way (2)	35.9	D	38.2	D			
13 OS	College Blvd. / Plaza Dr. (3)	17.7	В	39.2	D			
14 OS	College Blvd. / Marron Rd. / Lake Blvd. (4)	29.7	C	30.9	D			
20 OS	College Blvd. / Waring Rd. (5)	27.1	С	32.5	С			

- 1 = Add a Northbound Right-Turn-Only lane on El Camino Real to Eastbound Vista Way.
- = Add a second Northbound Right-Turn-Only lane on College Blvd. to Eastbound Vista Way. Add a Westbound Right-Turn-Only lane to Northbound College Blvd.
- (3) = Add a Northbound Right-Turn-Only lane on College Blvd. to Eastbound Plaza Dr.
- 4 = Add a second Northbound Right-Turn-Only lane on College Blvd. to Eastbound Lake Blvd.
- (5) = Restripe Northbound Right-Turn-Only lane for a third Northbound shared Through-Right Turn lane. Widen far-side College Blvd. to accept the added Northbound through lane.

Notes:

N/B = Not BuiltD = Control Delay

LOS = Level of Service

LOS	SECONDS DELAY
A	0.00-10.0
C	20.1-35.0
D	35.1-55.0
E	55.1-80.0
F	Over 80.0

TABLE 6-4

Near Term Without Project Freeway Segment Levels of Service

Segment	Lanes (1- Way)	Сар.	ADT	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	LOS (3)
State Route 78				1					
I-5 to Jefferson St.	3+AUX	8,850	136,500	8	6:4	0.95	6,897	0.779	C
Jefferson St. to El Camino Real	3+AUX	8,850	126,500	8	6:4	0.95	6,392	0.722	C
El Camino Real to Rancho Del Oro Rd.	3	7,050	138,200	8	6:4	0.95	6,983	0.990	E
Rancho Del Oro Rd. to College Blvd.	3	7,050	138,200	8	6:4	0.95	6,983	0.990	Ē
College Blvd. to Emerald Dr.	3	7,050	128,200	8	6:4	0.95	6,478	0.919	D

Legend:

Cap. = Capacity
Mainlane Cap. @ 2,350 VPHPL
Auxillary Lane Cap.@ 1,800 VPHPL
ADT= Average Daily Traffic
V/C= Volume to Capacity Ratio
LOS= Level of Service

Direction Split = % of Peak Hour in Peak Direction

Truck Factor = Represents Capacity Reduction for Heavy Vehicles

Notes:

- (1) Source: Caltrans 2010 Traffic Volumes.
- (2) Highway Capacity Manual (2000) EQN. (3-2); assume 5% trucks plus RVs.
- (3) Caltrans District 11 LOS Estimation Procedures, See Table 2-3

7.0 NEAR TERM PLUS PROJECT

The Quarry Creek Master Plan project only average daily traffic volumes were added to street segments and intersections evaluated under the Near-Term Without Project condition and levels of service were calculated.

Figure 7-1 shows average daily traffic volumes for the Near-Term Plus Project conditions.

Figure 7-2 includes project only AM and PM peak hour volumes added to the Near-Term Without Project conditions.

Figure 7-3 shows Near-Term Plus Project intersection lane configurations.

The roadway system for this Near-Term evaluation assumes no Marron Road extension since the extension would be a long term project, currently unfunded.

7.1 STREET SEGMENTS WITHIN OCEANSIDE

Table 7-1 includes roadway segments within Oceanside with project traffic added to Near-Term conditions. This table indicates that all segments evaluated within Oceanside would operate acceptably with project traffic added except at four locations.

FIGURE 7-1
Near Term + Project Average Daily Traffic

Page 1 of 3

Near Term + Project AM/PM Peak Hour Traffic

Page 2 of 3

Near Term + Project AM/PM Peak Hour Traffic

Page 3 of 3

FIGURE 7-2 Near Term + Project AM/PM Peak Hour Traffic

Page 1 of 3

Page 2 of 3

Near Term + Project Lane Configurations

Page 3 of 3

FIGURE 7-3
Near Term + Project Lane Configurations

TABLE 7-1

Near Term Plus Project Street Segment Levels of Service Within Oceanside

			Project Plus Existing						
Segment	Current Classification	LOS E Capacity (1)	Volume	V / C (2)	ΔV/C	LOS (3)			
El Camino Real									
Via Las Rosas to Vista Way	6-PA	60,000	39,900	0.665	0.002	C			
Vista Way to SR-78 WB Ramps	6-PA	60,000	57,400	0.957	0.002	E*			
College Blvd.		100000		1371					
Barnard Dr. to Vista Way	6-MA	50,000	40,000	0.800	0.016	D			
Vista Way to Plaza Dr.	6-MA	50,000	51,000	1.020	0.056	F			
Plaza Dr. to Marron Rd.	6-MA	50,000	42,100	0.842	0.052	D			
Marron Rd. to South City Limit	4-MA	40,000	29,200	0.730	0.035	C			
Vista Way					-				
Jefferson St. to El Camino Real	4-SCL	30,000	15,800	0.527	0.004	C			
El Camino Real to Rancho Del Oro Rd.	4-SCL	30,000	23,000	0.767	0.004	D			
Rancho Del Oro Rd. to College Blvd.	4-SCL	30,000	22,100	0.737	0.007	D			
College Blvd. to SR-78 WB Ramps	4-SCL	30,000	32,700	1.090	0.040	F			
SR-78 WB Ramps to Thunder Dr.	4-SCL	30,000	19,200	0.640	0.007	С			
Marron Rd. / Lake Blvd.									
Driveway to College Blvd.	4-SCL	30,000	20,500	0.683	0.096	C			
College Blvd. to Thunder Dr.	4-SCL	30,000	14,600	0.487	0.011	C			
Thunder Dr. to Sundown Ln.	2-CL	15,000	15,500	1.033	0.013	F*			
Haymar Dr. / Plaza Dr.					- AT 7				
Driveway to College Blvd.	2-C	10,000	4,000	0.400	0.250	A			
College Blvd. to SR-78 EB Ramps	4-SCL	30,000	24,100	0.803	0.023	D			
SR-78 EB Ramps to Thunder Dr.	4-SCL	30,000	12,300	0.410	0.007	В			
Rancho Del Oro Rd.									
Vista Way to Tournament Dr.	4-MA	40,000	15,700	0.393	0.003	В			

NOTES:

^{1.} Capacity of roadway at LOS E per City of Oceanside Master Transportation Plan, April 2012, Table 3-1.

^{2.} V/C = Volume to capacity at LOS E ratio; Δ V/C = Change in V/C.

^{3.} LOS = Level of service.

^{4.} \triangle V/C = Change in V/C; A significant impact occurs at LOS "E" or "F" and the change in V/C ratio is greater than 0.02.

^{* =} Not significant since the change in V/C ratio is no more than 0.02.

TABLE 7-1-A

Near-Term Plus Project Deficient Segment Peak Hour Analysis

Segment	From / To		AM Peak Hour				PM Peak Hour				
			Speed (MPH) LOS			Speed (MPH)		LOS			
			W/O	With	W/O	With	W/O	With	W/O	With	
El Camino Real	Vista Way to SR-78 WB Ramps	NB	7.7	7.7	F	F	2.8	2.8	F	F	
		SB	7.9	7.9	F	F	9.0	9.0	F	F	
College Boulevard	Waring Road to Vista Way	NB	20.5	20.3	D	D	20.2	21.1	D	D	
		SB	18.4	18.3	D	D	10.5	9.5	F	F	
College Boulevard	Vista Way to Plaza Drive	NB	16.7	16.6	Е	E	12.4	12.7	F	F	
		SB	35.5	35.6	A	A	33.6	32.9	В	В	
College Boulevard	Plaza Drive to Lake Blvd.	NB	18.0	17.0	D	D	18.3	18.3	D	D	
		SB	22.7	22.3	C	C	21.6	21.5	D	D	
Vista Way	College Blvd. to SR-78 WB Ramps	EB	9.2	9.1	F	F	4.6	4.5	F	F	
		WB	8.2	8.2	F	F	7.3	7.3	F	F	
Lake Boulevard	Thunder Drive to Sundown Lane	EB	25.5	25.4	В	В	22.6	22.6	C	C	
		WB	28.8	28.8	В	В	27.5	27.5	В	В	

Notes.

At LOS "E" or "F", if the segment travel speed decreases by more than one MPH due to the addition of project traffic, the project will have a significant impact.

Note: No segment at LOS "E" or "F" decreases in travel speed by more than one mph for the Near-Term Plus Project Condition.

^{*}Shading inidcates a significant impact.

- El Camino Real between Vista Way and SR-78 Westbound Ramps, at level of service "E". The project change in volume to capacity ratio is no more than 0.02 (at 0.002) so that the project impact would be less than significant and, therefore, no project mitigation would be needed.
- College Boulevard, between Vista Way and Plaza Drive, is at level of service "F", and the change in volume to capacity ratio is greater than 0.02. Therefore the project has a significant direct impact to this segment.

Mitigation Recommendations: Since physical improvements to add lanes are infeasible, the April 2012 Final EIR for the City of Oceanside Circulation Element Update recommends reclassification of this segment from a six-lane Major Arterial to a six-lane Prime Arterial. This reclassification would mitigate the project significant impact. However, the Oceanside Update considers roadway reclassification as infeasible, so that the Oceanside Update recommends the adoption of Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Vista Way between College Boulevard and the SR-78 Westbound Ramps, at level of service "E".
 The project change in volume to capacity ratio is greater than 0.02 so this would be a significant project impact.

The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted. The dedicated westbound right-turn-only lane is a future unfunded Oceanside project, while the restriping is a condition of approval for the Tri-City Medical Office project.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Lake Boulevard, between Thunder Drive and Sundown Lane, decreases from level of service "E" to "F". However, the change in volume to capacity ratio is less than 0.02 (at 0.013) so that this is not considered a significant impact to this segment, and no project mitigation is required.

No other segments evaluated within the City of Oceanside would be significantly impacted by project traffic for the Near-Term Plus Project condition.

7.2 STREET SEGMENTS WITHIN CARLSBAD

Project only AM and PM peak hour traffic volumes were added to Near-Term Without Project conditions on roadway segments between intersections, and are displayed in **Table 7-2**.

As shown in this table, all street segments within the Carlsbad study area would operate acceptably with project traffic added for the Near-Term Plus Project condition. The project would have less than significant impacts to these segments.

7.3 INTERSECTIONS

Project only peak hour traffic volumes were added to Near-Term Without Project turning movement volumes at study area intersections, and peak hour levels of service were calculated using the Highway Capacity Manual method for intersections within Oceanside and Carlsbad.

TABLE 7-2

Near Term Plus Project Street Segment Levels of Service

Within Carlsbad

			AMI	PEAK HOUF	1	PMI	PEAK HOU	R
Segment	D	Lanes	Peak Hour Volume	V/C(1)	LOS	Peak Hour Volume	V / C (1)	LOS
				1				
El Camino Real	NID	2	1.007	0.10		2,151	0.40	A
SR-78 EB Ramps - Plaza Dr.	NB	3	1,027	0.19	A		0.40	A
See Section 1995	SB	3	1,758	0.33	A	1,905	Deliver C.	
Plaza Dr Marron Rd.	NB	3	869	0.16	A	1,586	0.29	A
	SB	3	1,176	0.22	A	1,271	0.24	A
Marron Rd Carlsbad Village Dr.	NB	3	909	0.17	Α	1,606	0.30	A
	SB	3	1,189	0.22	A	1,253	0.23	A
Carlsbad Village Dr Chestnut Ave.	NB	3	734	0.14	A	1,512	0.28	A
	SB	3	1,177	0.22	A	1,068	0.2	A
College Blvd.								
Lake Blvd Carlsbad Village Dr.	NB	2	1,226	0.34	A	1,725	0.48	A
	SB	2	2,136	0.59	A	1,294	0.36	Α
Carlsbad Village Dr Cannon Rd.	NB	2	610	0.17	Α	1,558	0.43	A
Advantage Control	SB	2	1,775	0.49	A	748	0.21	A
Marron Rd.	100							
Monroe Ave El Camino Real	EB	2	183	0.05	A	591	0.16	A
	WB	2	278	0.08	A	560	0.16	A
El Camino Real - East End	EB	2	212	0.06	A	528	0.15	Α
Section of the sectio	WB	2	288	0.08	Α	509	0.14	Α
Carlsbad Village Dr.							-	
El Camino Real - Avenida De Anita	EB	2	228	0.06	Α	537	0.15	A
2	WB	2	758	0.21	Α	423	0.12	A
Tamarack Ave College Blvd.	EB	2	538	0.15	A	495	0.14	A
Tulliataon Tivo College Biva.	WB	2	544	0.15	A	641	0.18	Α

D = Direction

(1) = Based on 1,800 vehicles per lane per hour.

V/C=Volume divided by capacity

Source: Highest Approach Volumes at Intersections.

V/C	LOS
0.00-0.60	A
0.61-0.70	В
0.71-0.80	С
0.81-0.90	D
0.91-1.00	E
Over 1.00	F

Table 7-3 shows the results of the intersection level of service evaluation for the Near-Term Plus Project condition. Also shown in this table are levels of service without the project for comparison.

Within both Oceanside and Carlsbad, a significant impact would occur if the intersection is at level of service "E" or "F", and the increase in delay resulting from the project is more than 2.0 seconds.

As shown in this table, all evaluated intersections except one maintain an acceptable level of service (i.e., LOS D or better), and, therefore, project impacts are less than significant and no project mitigation would be needed at these locations.

All intersections were evaluated with existing lane configurations.

The El Camino Real / Vista Way intersection would operate at level of service "E" without or with project traffic added. The change in delay resulting from the project is less than 2.0 seconds so the project impact is less than significant, and no project mitigation is required.

<u>Table 7-3-A</u> includes five intersections within Oceanside that have planned improvements for Near-Term and Buildout conditions. The El Camino Real / Vista Way intersection would operate acceptably with the planned but unfunded Oceanside improvement of adding a northbound right-turn-only lane on El Camino Real.

Appendix D includes Near-Term Plus Project intersection levels of service worksheets.

TABLE 7-3

Near Term Plus Project Intersection Levels of Service

		- N	lear Term W	ithout Proje	ct				Near Term	Plus Project			
Number	Intersection	AM Pe	ak Hour	PM Per	ak Hour		AM Pea	ak Hour			PM Pez	k Hour	
		D	LOS	D	LOS	D	LOS	ΔD	S?	D	LOS	ΔD	S?
1 OS	El Camino Real / Vista Way	36.9	D	64.6	E	37.0	D	0.1	N	65.1	E	0.5	N
2 OS	El Camino Real / SR-78 WB Ramps	24.3	C	30.7	C	24.4	C	0.1	N	31.0	C	0.3	N
3 OS	El Camino Real / SR-78 EB Ramps	18.6	В	51.5	D	18.6	В	0.0	N	51.5	D	0.0	N
4 CB	El Camino Real / Plaza Dr.	11.0	В	29.1	C	11.0	В	0.0	N	29.3	C	0.2	N
5 CB	El Camino Real / Marron Rd.	18.3	В	36.5	D	18.4	В	0.1	N	36.7	D	0.2	N
6 CB	El Camino Real / Carlsbad Village Dr.	34.3	С	33.1	C	34.5	C	0.2	N	33.2	C	0.1	N
7 OS	Vista Way / Rancho Del Oro Rd.	37.9	D	53.6	D	37.9	D	0.0	N	54.4	D	0.8	N
8 OS	Rancho Del Oro Rd. / SR-78 WB Ramps	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/E
9 OS	Rancho Del Oro Rd. / SR-78 EB Ramps	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/E
10 CB	Marron Rd. / Rancho Del Oro Rd.	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/B	N/E
11 OS	College Blvd. / Vista Way	41.2	D	38.7	D	50.0	D	8.8	N	43.2	D	4.5	N
12 OS	College Blvd. / SR-78 EB Off Ramp	8.8	A	11,8	A	8.9	A	0.1	N	18.1	В	6.3	N
13 OS	College Blvd. / Plaza Dr.	18.8	В	40.8	D	21.6	В	2.8	N	41.7	D	0.9	N
14 OS	College Blvd. / Marron Rd. / Lake Blvd.	29.7	C	31.6	С	31.1	C	1.4	N	36.5	D	4.9	N
15 CB	College Blvd. / Carlsbad Village Dr.	42.9	D	19.9	В	45.1	D	2.2	N	20.3	C	0.4	N
16 CB	College Blvd. / Cannon Rd.	29.6	C	35.6	D	32.0	C	2.4	N	36.1	D	0.5	N
17 OS	Vista Way / SR-78 WB Ramps	33.2	C	39.7	D	33.7	C	0.5	N	41.2	D	1.5	N
18 OS	Plaza Dr. / SR-78 EB Ramps	21.3	C	26.7	C	21.4	C	0.1	N	27.1	C	0.4	N
19 OS	Lake Blvd. / Thunder Dr.	29.6	В	31.8	C	29.8	C	0.2	N	32.1	C	0.3	N
20 OS	College Blvd. / Waring Rd.	27.1	C	34.0	C	27.8	C	0.7	N	36.3	D	2.3	N
21 OS	Marron Rd. / Quarry Creek Dr.	23.5	C	33.0	C	23.3	C	0.3	N	34.0	C	1.0	N
22 OS	Marron Rd. / Street B	N/A	N/A	N/A	N/A	(1)	A	(1)	N	(1)	A	(1)	N

Notes:

N/B = Not Built

(1) Roundabout: Delay is not applicable; LOS is based on V/C; AM and PM V/C is LOS A.

(1) Roundabout: Delay is not applicated,

City:

OS = Oceanside

CB = Carlsbad

D = Control Delay

LOS = Level of Service

\[\D = Change in Delay

S ? = Significant Impact: Yes (Y) or No (N).

LOS	SECONDS DELAY
A	0.00-10.0
C	20.1-35.0
D	35.1-55.0
E	55.1-80.0
F	Over 80.0

TABLE 7-3-A

Near Term Plus Project Intersection Levels of Service

(With Planned but Unfunded Improvements)

		1	Near Term W	Near Term Without Project						Near Term Plus Project									
Number	Intersection	AM Pe	ak Hour	PM Pe	PM Peak Hour		AM Peak Hour				PM Peak Hour								
		D	LOS	D	LOS	D	LOS	ΔD	S?	D	LOS	ΔD	S?						
									-										
1 OS	El Camino Real / Vista Way (1)	36.3	D	42.3	D	36.4	D	0.1	N	42.6	D	0.3	N						
11 OS	College Blvd. / Vista Way (2)	35.9	D	38.2	D	37.7	D	1.8	N	42.7	D	4,5	N						
13 OS	College Blvd. / Plaza Dr. (3)	17.7	В	39.2	D	19.8	В	2.1	N	39.6	D	0.4	N						
14 OS	College Blvd. / Marron Rd. / Lake Blvd. (4)	29.7	С	31.6	D	31.1	C	1.4	N	35.8	D	0.0	N						
20 OS	College Blvd. / Waring Rd. (5)	27.1	C	32.5	С	27.8	C	0.7	N	34.5	C	2.0	N						

- = Add a Northbound Right-Turn-Only lane on El Camino Real to Eastbound Vista Way.
- and a second Northbound Right-Turn-Only lane on College Blvd. to Eastbound Vista Way. Add a Westbound Right-Turn-Only lane to Northbound College Blvd.
- 3 = Add a Northbound Right-Turn-Only lane on College Blvd. to Eastbound Plaza Dr.
- = Add a second Northbound Right-Turn-Only lane on College Blvd. to Eastbound Lake Blvd.
- Restripe Northbound Right-Turn-Only lane for a third Northbound shared Through-Right Turn lane. Widen far-side College Blvd. to accept the added Northbound through lane.

Notes:

N/B = Not Built

(1) Roundabout: Delay is not applicable; LOS is based on V/C; AM and PM V/C is LOS A.

City

OS = Oceanside

CB = Carlsbad

D = Control Delay

LOS = Level of Service

 Δ D = Change in Delay

S? = Significant Impact: Yes (Y) or No (N).

LOS	SECONDS DELAY
A	0.00-10.0
C	20.1-35.0
D	35.1-55.0
E	55.1-80.0
F	Over 80.0

7.4 STATE ROUTE 78 MAINLINES

The project traffic volumes were added to Near-Term Without Project SR-78 average daily traffic volumes and are included in **Table 7-4**. This table shows Near-Term With and Without Project freeway volumes. This table also compares levels of service and volume to capacity (V/C) ratios, and indicates if the project has or has not a significant freeway impact. At levels of service "E" or "F" an increase in V/C ratio of no more than 0.01 is acceptable. As shown in this table, segments at level of service "E" have V/C increases of less than 0.01 so that the project has less than significant impacts to SR-78 mainlines.

Near Term Plus Project Freeway Segment Levels of Service

TABLE 7-4

	N	EAR TE	RM WITI	HOUT PROJ	ECT				
Segment	Lanes (1-Way)	Сар.	ADT	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	(3)
State Route 78				1					
I-5 to Jefferson St.	3+AUX	8,850	136,500	8	6:4	0.95	6,897	0.779	C
Jefferson St. to El Camino Real	3+AUX	8,850	126,500	8	6:4	0.95	6,392	0.722	C
El Camino Real to Rancho Del Oro Rd.	3	7,050	138,200	8	6:4	0.95	6,983	0.990	Е
Rancho Del Oro Rd. to College Blvd.	3	7,050	138,200	8	6:4	0.95	6,983	0.990	E
College Blvd. to Emerald Dr.	3	7,050	128,200	8	6:4	0.95	6,478	0.919	D

		NEAR '	TERM WI	TH PROJEC	CT				
Segment	Lanes (1-Way)	Сар.	ADT	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	(3)
State Route 78									
I-5 to Jefferson St.	3+AUX	8,850	137,300	8	6:4	0.95	6,937	0.784	C
Jefferson St. to El Camino Real	3+AUX	8,850	127,300	8	6:4	0.95	6,432	0.727	C
El Camino Real to Rancho Del Oro Rd.	3	7,050	139,300	8	6:4	0.95	7,038	0.998	E
Rancho Del Oro Rd. to College Blvd.	3	7,050	139,300	8	6:4	0.95	7,038	0.998	E
College Blvd. to Emerald Dr.	3	7,050	128,900	8	6:4	0.95	6,513	0.924	D

	LEVEL OF SE		D V/C COMPARISON		1	-
Segment	V/C With	LOS	V/C Without Project	LOS	Change in V/C	S?
State Route 78		T			1	
I-5 to Jefferson St.	0.784	C	0.779	C	0.005	N
Jefferson St. to El Camino Real	0.727	C	0.722	C	0.005	N
El Camino Real to Rancho Del Oro Rd.	0.995	E	0.990	E	0.008	N
Rancho Del Oro Rd. to College Blvd.	0.995	E	0.990	E	0.008	N
College Blvd. to Emerald Dr.	0.924	D	0.919	D	0.005	N

Legend:

Cap. = Capacity

Mainlane Cap. @ 2,350 VPHPL

Auxillary Lane Cap.@ 1,800 VPHPL

ADT= Average Daily Traffic

V/C= Volume to Capacity Ratio

LOS= Level of Service

Direction Split = % of Peak Hour in Peak Direction

Truck Factor = Represents Capacity Reduction for Heavy Vehicles

Notes:

- (1) Source: Caltrans 2010 Traffic Volumes.
- (2) Highway Capacity Manual (2000) EQN. (3-2); assume 5% trucks plus RV's.
- (3) Caltrans District 11 LOS Estimation Procedures, See Table 2-3
- S? = Significant Impact: Yes (Y), No (N).
- (At LOS E or F, an increase in V/C of no more than 0.01 is acceptable).

8.0 BUILDOUT ALTERNATIVE 1

The land use for the Quarry Creek Master Plan remains the same for each of the two street network alternatives.

The base street network for Alternative 1 assumes all roadways that are included in the City of Carlsbad and City of Oceanside General Plan Circulation Plans. The Alternative 1 street network assumes the extension of Marron Road from the existing east end at the Quarry Creek Shopping Center property line, to the existing west end approximately 1,000 feet east of El Camino Real within the City of Carlsbad. This alternative includes the Rancho Del Oro interchange with State Route 78 and the extension to the south to connect with Marron Road.

The SANDAG Series 11 Combined North County Traffic Model was used for each alternative to predict Buildout average daily traffic volumes. A select zone plot of project only traffic distribution was also prepared to provide an indication of project only traffic distribution percentages.

Figure 8-1 shows the project only vehicle trip distribution percentages for Alternative 1.

Figure 8-2 includes the project only average daily traffic volumes based on the select zone trip distribution.

Figure 8-3 shows the study area street network with average daily traffic volumes for Alternative 1 without project traffic.

Figure 8-4 includes the Alternative 1 full Buildout average daily traffic volumes with project traffic.

FIGURE 8-1
Project Trip Distribution Percentages - Alternative 1
Circulation Element Roadways (All In)

Buildout ADT Volumes - Alternative 1
Project Only

FIGURE 8-3
Buildout ADT Volumes - Alternative 1
Without Project

FIGURE 8-4
Buildout ADT Volumes - Alternative 1
With Project

8.1 STREET SEGMENTS WITHIN OCEANSIDE

Table 8-1 displays the Buildout Alternative 1 average daily traffic volumes without and with project traffic. The project would have a significant impact to street segments if a segment is at level of service E or F and the increase in volume to capacity ratio due to added project traffic is greater than 0.02. This table indicates that all segments evaluated within Oceanside would operate acceptably with project traffic added except at four locations. These segments would be at LOS F without or with project traffic. The project would have a significant cumulative impact at only two of these segments:

- College Boulevard between Vista Way and Plaza Drive (a six-lane Major Arterial); the project fair share is 15.5%;
- College Boulevard between Marron Road and the southern City limit (a four-lane Major Arterial); the project fair share is 6.4%.

A peak hour segment analysis was conducted for the deficiently operating College Boulevard corridor and the results are shown in **Table 8-1-A**. This analysis indicates one additional segment of this corridor would have a significant project impact.

• College Boulevard (Plaza Drive to Marron Road – Lake Boulevard). The average travel speed decreases by more than one mile per hour with project traffic added, which indicates a significant impact. The project fair share is 32.8%.

Mitigation Recommendations: Since physical improvements are infeasible, the Final City of Oceanside Circulation Element Update EIR recommends reclassification of these segments from a six-lane Major Arterial, and four-lane Major Arterial, to six-lane Prime Arterials. This reclassification would mitigate

the project significant impact. However, the Oceanside Update considers roadway reclassification as infeasible, so that the Oceanside Update Final EIR recommends adoption of Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

TABLE 8-1

Buildout Alternative -1 Street Segment Levels of Service

Within Oceanside

				No Projec	t		Plus I	Project	
Segment	Current Classification	LOS E Capacity (1)	ADT	(3) LOS	V/C (2)	ADT	(3) LOS	V/C (2)	Δ (4) V/C
El Camino Real									
Via Las Rosas to Vista Way Vista Way to SR-78 WB Ramps	6-PA 6-PA	60,000 60,000	40,600 50,100	C D	0.677 0.835	40,800 50,100	C D	0.680 0.835	0.003 0.000
College Blvd.									
Barnard Dr. to Vista Way	6-MA	50,000	51,400	F	1.028	51,900	F*	1.038	0.010
Vista Way to Plaza Dr.	6-MA	50,000	50,900	F	1.018	52,000	F	1.040	0.022
Plaza Dr. to Marron Rd.	6-MA	50,000	39,500	C	0.790	41,100	D	0.822	0.032
Marron Rd. to South City Limit	4-MA	40,000	42,100	F	1.053	43,300	F	1.083	0.030
Vista Way	570.2								
Jefferson St. to El Camino Real	4-SCL	30,000	20,800	D	0.693	20,900	D	0.697	0.004
El Camino Real to Rancho Del Oro Rd.	4-SCL	30,000	18,200	C	0.607	18,600	C	0.620	0.013
Rancho Del Oro Rd. to College Blvd.	4-SCL	30,000	24,600	D	0.820	24,700	D	0.823	0.003
College Blvd. to SR-78 WB Ramps	4-SCL	30,000	31,100	F	1.037	31,700	F*	1.057	0.020
SR-78 WB Ramps to Thunder Dr.	4-SCL	30,000	18,800	C	0.627	19,000	C	0.633	0.006
Marron Rd. / Lake Blvd.									
Quarry Creek Driveway to College Blvd.	4-SCL	30,000	17,000	C	0.531	18,600	C	0.620	0.089
College Blvd. to Thunder Dr.	4-SCL	30,000	19,500	C	0.650	19,700	C	0.657	0.006
Thunder Dr. to Sundown Ln.	2-CL	15,000	11,300	D	0.753	11,500	D	0.767	0.014
Haymar Dr. / Plaza Dr.									100
R-1 Driveway to College Blvd.	2-C	10,000	5,800	C	0.580	7,400	C	0.740	0.160
College Blvd. to SR-78 EB Ramps	4-SCL	30,000	22,400	D	0.747	23,100	D	0.770	0.023
SR-78 EB Ramps to Thunder Dr.	4-SCL	30,000	16,100	C	0.537	16,300	C	0.543	0.006
Rancho Del Oro Rd.			12.		37			E-	1000
Vista Way to Tournament Dr.	4-MA	40,000	27,900	С	0.698	28,100	C	0.703	0.005

NOTES:

^{1.} Capacity of roadway at LOS Eper City of Oceanside Master Transportation Plan, April 2012, Table 3-1.

^{2.} V/C = Volume to capacity at LOS Eratio; Δ V/C = Change in V/C.

^{3.} LOS = Level of service.

^{4.} Δ V/C = Change in V/C: A significant impact occurs at LOS "E" or "F" and the change in V/C ratio is greater than 0.02.

^{* =} Not significant since change in V/C ratio is no more than 0.02.

TABLE 8-1-A

Buildout Alternative 1

Deficient Segment Peak Hour Analysis

			AM Peak Hour					PM Pea	k Hour	
Segment	From / To	Speed	(MPH)	L	OS	Speed	(MPH)	LOS		
		W/O	With	W/O	With	W/O	With	W/O	With	
College Boulevard	Waring Road to Vista Way	NB	20.7	20.6	D	D	22.5	22.5	C	С
College Boulevard	waning Road to vista way	SB	18.4	18.3	D	D	10.1	9.5	F	F
Callery Davidson	Water Waret Diagram	NB	31.2	31.2	В	В	23.6	23.6	C	C
College Boulevard	Vista Way to Plaza Drive	SB	31.2	31.2	В	В	27.0	27.0	С	C
0 II D 1 1	D. D	NB	18.4	18.1	D	D	13.5	10,1	E	F
College Boulevard	Plaza Drive to Lake Blvd.	SB	18.1	17.0	D	D	19.9	21.0	D	D
17.4.117	C. II. DI I . SP 70 WD D	EB	8.6	8.5	F	F	5.1	5.0	F	F
Vista Way	College Blvd. to SR-78 WB Ramps	WB	9.4	9.4	F	F	9.8	9.7	F	F

Notes:

At LOS "E" or "F", if the segment travel speed decreases by more than one MPH due to the addition of project traffic, the project will have a significant impact.

^{*}Shading inidcates a significant impact.

• Vista Way, between College Boulevard ad the SR-78 westbound ramps. This segment is at level of service "F" under Buildout Alternative 1 conditions without and with project traffic added. The project change in volume to capacity ratio is no more than 0.020, at 0.020, so that project impacts are less than significant. A peak hour segment analysis also indicates the project impact is less than significant on this segment since the addition of project traffic does not reduce the segment travel speed by more than one mile per hour, as indicated in **Table 8-1-A**.

No other segments evaluated within the City of Oceanside would be significantly impacted by project traffic for the Buildout Alternative 1 condition.

8.2 STREET SEGMENTS WITHIN CARLSBAD

Project only AM and PM peak hour traffic volumes were added to Buildout Alternative 1 peak hour traffic volumes between study area intersections within Carlsbad and the results are shown in **Table 8-2**.

As shown in this table, all evaluated street segments within Carlsbad would operate acceptably with project traffic added to Buildout Alternative 1 peak hour volumes on roadway segments between intersections.

TABLE 8-2

Buildout Alternative 1 Street Segment Levels of Service

Within Carlsbad

			AMI	PEAK HOUF	1	PMI	PEAK HOU	R
Segment	D	Lanes	Peak Hour Volume	V/C(1)	LOS	Peak Hour Volume	V/C(1)	LOS
El Camino Real						1		
SR-78 EB Ramps - Plaza Dr.	NB	3	1,175	0.22	A	2,360	0.44	A
SIC 16 ED Namps - 1 laza DI.	SB	3	1,780	0.33	A	1,825	0.34	Α
Plaza Dr Marron Rd.	NB	3	1,152	0.21	A	2,066	0.38	A
riaza Di, - ivianon Ra.	SB	3	1,527	0.28	A	1,567	0.29	A
Marron Rd Carlsbad Village Dr.	NB	3	1,069	0.20	Α	1,841	0.34	Α
Wallon Rd. Carboad Ymage Di.	SB	3	1,494	0.28	A	1,365	0.25	A
Carlsbad Village Dr Chestnut Ave.	NB	3	864	0.16	A	1,712	0.32	A
Cariboad (mage b). Chestilat (1)	SB	3	1,451	0.27	A	1,144	0.21	A
College Blvd.								
Lake Blvd Carlsbad Village Dr.	NB	2	1,213	0.34	A	1,868	0.52	A
	SB	2	1,800	0.50	Α	1,360	0.38	Α
Carlsbad Village Dr Cannon Rd.	NB	2	651	0.18	A	1,878	0.52	A
	SB	2	1,516	0.42	A	1,090	0.30	Α
Marron Rd.								
Monroe Ave El Camino Real	EB	2	168	0.05	A	731	0.20	A
	WB	2	205	0.06	Α	501	0.14	A
El Camino Real - Rancho Del Oro Rd.	EB	2	681	0.19	A	698	0.19	A
	WB	2	408	0.11	Α	1,059	0.29	A
Rancho Del Oro Rd Quarry Creek (Street B)	EB	2	439	0.12	A	919	0.26	A
	WB	2	601	0.17	A	898	0.25	A
Carlsbad Village Dr.				Toront				
El Camino Real - Avenida De Anita	EB	2	243	0.07	Α	542	0.15	A
	WB	2	763	0.21	Α	407	0.11	A
Tamarack Ave College Blvd.	EB	2	431	0.12	Α	457	0.13	A
	WB	2	460	0.13	A	513	0.14	A

D = Direction

(1) = Based on 1,800 vehicles per lane per hour.

V/C=Volume divided by capacity

Source: Highest Approach Volumes at Intersections, taken from Figure 8-7.

V/C	LOS
0.00-0.60	Α
0.61-0.70	В
0.71-0.80	C
0.81-0.90	D
0.91-1.00	Е
Over 1.00	F

8.3 INTERSECTIONS

The Oceanside Circulation Element Update April 2012 Final Program EIR includes peak hour volumes at intersections for their base condition, which used the same SANDAG Series 11 Combined North County Model as the base forecast that was used for the Buildout Alternative 1 forecast volumes, but without the full Quarry Creek Master Plan included. That Final EIR was used to prepare the peak hour volumes at intersections within the study area, with adjustments to add project only peak hour traffic.

Figure 8-5 shows the project only AM and PM peak hour traffic volumes for each traffic movement at study area intersections. These vehicle trips were distributed based on the trip distribution percentages previously shown in Figure 8-1.

Figure 8-6 displays the base Buildout Alternative 1 intersection peak hour volumes, without project traffic.

Figure 8-7 includes project only peak hour traffic added to the base Buildout Alternative 1 traffic.

Figure 8-8 shows intersection lane configurations for Buildout Alternative 1 conditions.

Page 1 of 3

FIGURE 8-5
Project Only AM/PM Peak Hour Volumes - Alternative 1
With RDO Interchange / With RDO Extension / With Marron Road

N,

Page 2 of 3

Project Only AM/PM Peak Hour Volumes - Alternative 1
With RDO Interchange / With RDO Extension / With Marron Road

N.

Page 3 of 3

FIGURE 8-5
Project Only AM/PM Peak Hour Volumes - Alternative 1
With RDO Interchange / With RDO Extension / With Marron Road

Page 1 of 3

FIGURE 8-6
Buildout Without Project AM/PM Peak Hour Volumes - Alternative 1

Page 2 of 3

FIGURE 8-6
Buildout Without Project AM/PM Peak Hour Volumes - Alternative 1

Page 3 of 3

FIGURE 8-6

Buildout Without Project AM/PM Peak Hour Volumes - Alternative 1

Page 1 of 3

FIGURE 8-7
Buildout With Project AM/PM Peak Hour Volumes - Alternative 1

Page 2 of 3

FIGURE 8-7
Buildout With Project AM/PM Peak Hour Volumes - Alternative 1

Page 3 of 3

FIGURE 8-7
Buildout With Project AM/PM Peak Hour Volumes - Alternative 1

Page 1 of 3

FIGURE 8-8
Buildout Alternative 1 Lane Configurations

Page 2 of 3

FIGURE 8-8
Buildout Alternative 1 Lane Configurations

001307

Page 3 of 3

FIGURE 8-8
Buildout Alternative 1 Lane Configurations

Table 8-3 compares the peak hour intersection levels of service without and with project traffic added to Buildout Alternative 1 peak hour volumes. Also included in this table is the change in control delay at each intersection due to the addition of project traffic. An increase in average control delay greater than 2.0 seconds, at level of service E or F, indicates a significant project impact.

The intersection lane configurations for the intersections listed in Table 8-3 are the same as for existing conditions and do not include planned mitigation by the City of Oceanside as a result of other traffic studies.

Only two intersections are expected to operate at level of service "E" under Buildout Alternative 1 conditions.

• El Camino Real / Vista Way is at level of service "E" during the PM peak hour without or with project traffic. The change in average control delay is not greater than 2.0 seconds, at 0.4 secons, so that project impacts are less than significant and no project mitigation is required.

Table 8-3-A lists the five intersections with planned but mostly unfunded improvements by the City of Oceanside, including the El Camino Real / Vista Way intersection. The addition of a northbound right-turn-only lane on College Boulevard to eastbound Vista Way would mitigate the deficient level of service at the location.

College Boulevard / Marron Road – Lake Boulevard is at level of service "E" during the PM peak hour without or with project traffic. The change in average control delay with the addition of project traffic is greater than 2.0 seconds so that the project would have a significant cumulative impact. A project fair share contribution towards mitigation is recommended. The project fair share is 13.3%

Table 8-3 **Alternative 1 Intersection Levels of Service**

Number	Intersection	Alternative 1 Without Project				Alternative 1 With Project								
		AM Peak Hour		PM Peak Hour		AM Peak Hour				PM Peak Hour				
		D	LOS	D	LOS	D	LOS	ΔD	S?	D	LOS	ΔD	S?	
1 OS	El Camino Real / Vista Way	37.2	D	58.8	E	37.3	D	0.1	N	59.2	E	0.4	N	
2 OS	El Camino Real / SR-78 WB Ramps	28.6	C	40.7	D	28.6	C	0.0	N	40.7	D	0.0	N	
3 OS	El Camino Real / SR-78 EB Ramps	18.0	В	44.0	D	18.0	В	0.0	N	44.0	D	0.0	N	
4 CB	El Camino Real / Plaza Dr.	9.6	A	43.6	D	9.7	A	0.1	N	43.7	D	0.1	N	
5 CB	El Camino Real / Marron Rd.	14.9	В	40.3	D	15.4	В	0.5	N	40.9	D	0.6	N	
6 CB	El Camino Real / Carlsbad Village Dr.	34.5	С	37.6	D	34.9	C	0.4	N	37.9	D	0.3	N	
7 OS	Vista Way / Rancho Del Oro Rd.	30.6	С	49.4	D	31.3	C	0.7	N	51.1	D	1.7	N	
8 OS	Rancho Del Oro Rd. / SR-78 WB Ramps	41.1	D	32.7	C	41.1	D	5.0	N	33.5	C	0.8	N	
9 OS	Rancho Del Oro Rd. / SR-78 EB Ramps	29.6	C	32.5	C	29.9	С	0.3	N	33.7	C	1.2	N	
10 CB	Marron Rd. / Rancho Del Oro Rd.	15.0	В	21.9	C	15.0	В	0.0	N	29.7	C	7.8	N	
11 OS	College Blvd. / Vista Way	26.6	C	32.6	C	28.2	С	1.6	N	34.1	C	1.5	N	
12 OS	College Blvd. / SR-78 EB Off Ramp	9.7	A	10.3	В	9.8	A	0.0	N	10.4	В	0.1	N	
13 OS	College Blvd. / Plaza Dr.	21.8	C	33.0	C	24.5	C	2.7	N	37.5	D	4.5	N	
14 OS	College Blvd. / Marron Rd. / Lake Blvd.	37.4	D	58.9	E	40.0	D	2.6	N	63.5	Е	4.6	Y	
15 CB	College Blvd. / Carlsbad Village Dr.	25.7	C	27.4	C	31.5	C	5.8	N	33.3	C	5.9	N	
16 CB	College Blvd. / Cannon Rd.	41.0	D	47.2	D	43.2	D	2.2	N	49.8	С	2.6	N	
17 OS	Vista Way / SR-78 WB Ramps	32.5	С	36.8	D	32.6	C	0.1	N	38.6	D	1.8	N	
18 OS	Plaza Dr. / SR-78 EB Ramps	17.1	В	36.4	D	17.2	В	0.2	N	37.4	D	1.0	N	
19 OS	Lake Blvd. / Thunder Dr.	31.2	С	32.3	С	31.3	C	0.1	N	32.5	С	0.2	N	
20 OS	College Blvd. / Waring Rd.	27.7	C	31.9	C	28.4	C	0.7	N	32.1	C	0.2	N	
21 OS	Marron Rd. / Quarry Creek Ctr.	21.9	C	34.7	C	22.9	C	1.0	N	36.2	D	1.5	N	
22 CB	Marron Rd. / Street B	N/A	N/A	N/A	N/A	14.2	В	N/A	N	15.6	В	N/A	N	

Notes: N/A = Not Built

City: OS = Oceanside CB = Carlsbad

D = Control Delay

LOS = Level of Service

AD = Change in Delay

S? = Significant Impact: Yes (Y) or No (N). (Significant at LOS E or F and change in delay is greater than 2.0 seconds)

	LOS	SECONDS DELAY						
t	Α	0.0-10.0						
Ī	В	10.1-20.0						
- [C	20,1-35,0						
	D	35.1-55.0						
	E	55.1-80.0						
	F	Over 80.0						

Table 8-3-A

Alternative 1 Intersection Levels of Service

(With Planned but Unfunded Improvements)

	Intersection	Alternative 1 Without Project				Alternative 1 With Project								
Number		AM Peak Hour		PM Peak Hour		AM Peak Hour				PM Peak Hour				
		D	LOS	D	LOS	D	LOS	ΔD	S?	D	LOS	ΔD	S?	
1 OS	El Camino Real / Vista Way (1)	36.3	D	45.1	D	36.3	D	0.0	N	45.6	D	0.5	N	
11 OS	College Blvd. / Vista Way (2)	19.7	В	32.9	C	20.0	В	0.3	N	34.4	C	1.5	N	
13 OS	College Blvd. / Plaza Dr. (3)	20.7	C	29.8	C	23.1	С	2.4	N	35.2	D	5.4	N	
14 OS	College Blvd. / Marron Rd. / Lake Blvd. 4	37.4	D	50.1	D	40.0	D	0.0	N	55.0	D	4.9	N	
20 OS	College Blvd. / Waring Rd. (5)	27.7	С	30.7	С	28.4	C	0.7	N	30.9	C	0.2	N	

- 1 = Add a Northbound Right-Turn-Only lane on El Camino Real to Eastbound Vista Way.
- (2) = Add a second Northbound Right-Turn-Only lane on College Blvd. to Eastbound Vista Way. Add a Westbound Right-Turn-Only lane to Northbound College Blvd.
- = Add a Northbound Right-Turn-Only lane on College Blvd. to Eastbound Plaza Dr.
- = Add a second Northbound Right-Turn-Only lane on College Blvd. to Eastbound Lake Blvd.
- ERestripe Northbound Right-Turn-Only lane for a third Northbound shared Through-Right Turn lane. Widen far-side College Blvd. to accept the added Northbound through lane.

Notes: N/A = Not Built City: OS = Oceanside CB = Carlsbad D = Control Delay LOS = Level of Service

Δ D = Change in Delay

A 0.0-10.0
B 10.1-20.0
C 20.1-35.0
D 35.1-55.0
E 55.1-80.0
F Over 80.0

LOS

SECONDS

S? = Significant Impact: Yes (Y) or No (N). (Significant at LOS E or F and change in delay is greater than 2.0 seconds)

The planned but unfunded mitigation at this location, as identified in the Oceanside Circulation Element Update FEIR, is the addition of a second northbound right-turn-only lane to eastbound Lake Boulevard. As shown in **Table 8-3-A** the addition of the second right turn only lane provides mitigation for the deficient operation at this location.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

8.4 STATE ROUTE 78 MAINLINES

The project traffic volumes are included in Buildout Alternative 1 SR-78 average daily traffic volumes shown in **Table 8-4**. This table shows freeway volumes without and with project traffic. This table also compares levels of service and volume to capacity (V/C) ratios, and indicates if the project has or has not a significant freeway impact. At levels of service "E" or "F" an increase in V/C ratio of no more than 0.01 is acceptable. As shown in this table, segments at level of service "E" or "F" have V/C increases of less than 0.01 so that the project has less than significant impacts to SR-78 mainlines.

<u>Appendix D</u> includes the Alternative 1 traffic model documentation and intersection levels of service worksheets.

Table 8-4
Buildout Alternative -1 Freeway Segment Levels of Service

		W	THOUT	PROJECT					
Segment	Lanes (1-Way)	Сар.	ADT	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	LOS (3)
State Route 78									
I-5 to Jefferson St.	3+AUX	8,850	194,800	8	6:4	0.95	9,842	1.112	F0
Jefferson St. to El Camino Real	3+AUX	8,850	169,800	8	6:4	0.95	8,579	0.969	E
El Camino Real to Rancho Del Oro Rd.	3	7,050	174,200	8	6:4	0.95	8,802	1.249	F0
Rancho Del Oro Rd. to College Blvd.	3	7,050	177,500	8	6:4	0.95	8,968	1.272	F1
College Blvd. to Emerald Dr.	3	7,050	164,700	8	6:4	0.95	8,322	1.180	F0

			WITHPE	ROJECT					
Segment	Lanes (1-Way)	Cap.	ADT	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	LOS (3)
State Route 78							10.75		
I-5 to Jefferson St.	3+AUX	8,850	195,700	8	6:4	0.95	9,888	1.117	F0
Jefferson St. to El Camino Real	3+AUX	8,850	170,700	8	6:4	0.95	8,625	0.975	E
El Camino Real to Rancho Del Oro Rd.	3	7,050	175,100	8	6:4	0.95	8,847	1.255	F0
Rancho Del Oro Rd. to College Blvd.	3	7,050	177,500	8	6:4	0.95	8,968	1.272	F1
College Blvd. to Emerald Dr.	3	7,050	165,300	8	6:4	0.95	8,352	1.185	F0

	TEART OF 2E	RVICEAN	D V/C COMPARISON			
Segment	V/C With	LOS	V/C Without Project	LOS	Change in V/C	S?
		1				
State Route 78			4 14		545.5	
I-5 to Jefferson St.	1.117	F0	1.112	F0	0.005	N
Jefferson St. to El Camino Real	0.975	Е	0.969	E	0.006	N
El Camino Real to Rancho Del Oro Rd.	1.255	F0	1.249	F0	0.006	N
Rancho Del Oro Rd. to College Blvd.	1.272	F1	1.272	F1	0.000	N
College Blvd. to Emerald Dr.	1.185	F0	1.180	F0	0.005	N

Legend:

Cap. = Capacity

Mainlane Cap. @ 2,350 VPHPL

Auxillary Lane Cap.@ 1,800 VPHPL

ADT= Average Daily Traffic

V/C= Volume to Capacity Ratio

LOS=Level of Service

Direction Split = % of Peak Hour in Peak Direction

Truck Factor = Represents Capacity Reduction for Heavy Vehicles

Notes:

- (1) Source: Caltrans 2010 Traffic Volumes.
- (2) Highway Capacity Manual (2000) EQN. (3-2); assume 5% trucks plus RVs.
- (3) Caltrans District 11 LOS Estimation Procedures, See Table 2-3
- S? = Significant Impact: Yes (Y), No (N).
- (At LOS E or F, an increase in V/C of no more than 0.01 is acceptable).

9.0 BUILDOUT ALTERNATIVE 2

The land uses for the Quarry Creek Master Plan remain the same for Alternative 2 as was used for Alternative 1.

The street network for Alternative 2 is the same as Alternative 1, except for the deletion of Marron Road between the Quarry Creek Master Plan west boundary and the existing extension east of El Camino Real in Carlsbad. The Rancho Del Oro / SR-78 interchange is included, but the Rancho Del Oro extension to the south of the interchange is deleted.

The SANDAG Series 11 Combined North County Traffic Model was used for this alternative, with the street network change described above. A select zone plot was prepared to show project only traffic volumes and to establish the project only trip distribution percentages.

Figure 9-1 shows the project only vehicle trip distribution percentages for Alternative 2.

Figure 9-2 includes the project only average daily traffic volumes based on the select zone trip distribution.

Figure 9-3 shows the study area street network with average daily traffic volumes for Alternative 2 without project traffic.

Figure 9-4 includes the Alternative 2 full Buildout average daily traffic volumes with project traffic included.

FIGURE 9-1
Project Trip Distribution Percentages - Alternative 2
With RDO Interchange / No RDO Extension / No Marron Road

FIGURE 9-2
Buildout ADT Volumes - Alternative 2
Project Only

FIGURE 9-3
Buildout ADT Volumes - Alternative 2
Without Project

Buildout ADT Volumes - Alternative 2
With Project

9.1 STREET SEGMENTS WITHIN OCEANSIDE

Table 9-1 compares the Buildout Alternative 2 average daily traffic volumes without and with project traffic. The project would have a significant impact to street segments if a segment is at level of service E or F and the increase in volume to capacity ratio due to added project traffic is greater than 0.02. This table indicates that all segments evaluated within Oceanside would operate acceptably with project traffic added except at four locations. As with Alternative 1, these segments would be at LOS F without or with project traffic. The project would have a significant impact at only two of these segments, the same as for the Alternative 1 analysis:

- College Boulevard between Vista Way and Plaza Drive (a six-lane Major Arterial); the project fair share is 20.1%;
- College Boulevard between Marron Road and the southern City limit (a four-lane Major Arterial); the project fair share is 7.3%.

A peak hour segment analysis was conducted for the deficiently operating College Boulevard corridor and the results are shown in **Table 9-1-A**. This analysis indicates one additional segment of this corridor would have a significant project impact.

 College Boulevard (Plaza Drive to Marron Road – Lake Boulevard). The average travel speed decreases by more than one mile per hour with project added, which indicates a significant impact.
 The project fair share is 28.6%.

Mitigation Recommendations: Since physical improvement are infeasible, the Final, April 2012, City of Oceanside Circulation Element Update EIR recommends reclassification of these segments from a six-lane Major Arterial, and four-lane Major Arterial, to six-lane Prime Arterials. This reclassification and widening would mitigate the project significant impacts.

TABLE 9-1

Buildout Alternative - 2 Street Segment Levels of Service

Within Oceanside

				No Projec	t		Plus I	Project	
Segment	Current Classification	LOS E Capacity (1)	ADT	(3) LOS	V/C (2)	ADT	(3) LOS	V/C (2)	Δ (4) V/C
El Camino Real	1	I							
Via Las Rosas to Vista Way Vista Way to SR-78 WB Ramps	6-PA 6-PA	60,000 60,000	40,700 52,900	C D	0.678 0.882	40,800 53,000	C D	0.680 0.883	0.002
College Blvd.									
Barnard Dr. to Vista Way	6-MA	50,000	51,000	F	1.020	51,700	F*	1.034	0.01
Vista Way to Plaza Dr.	6-MA	50,000	55,600	F	1.111	58,300	F	1.166	0.05
Plaza Dr. to Marron Rd.	6-MA	50,000	42,700	D	0.854	45,300	D	0.906	0.05
Marron Rd. to South City Limit	4-MA	40,000	42,200	F	1.055	43,600	F	1.090	0.03
Vista Way									
Jefferson St. to El Camino Real	4-SCL	30,000	20,600	D	0.687	20,700	D	0.690	0.00
El Camino Real to Rancho Del Oro Rd.	4-SCL	30,000	19,900	C	0.663	20,100	D	0.670	0.00
Rancho Del Oro Rd. to College Blvd.	4-SCL	30,000	24,700	D	0.823	24,900	D	0.830	0.00
College Blvd. to SR-78 WB Ramps	4-SCL	30,000	30,900	F	1.030	32,100	F	1.070	0.04
SR-78 WB Ramps to Thunder Dr.	4-SCL	30,000	18,800	С	0.627	19,000	C	0.633	0.00
Marron Rd. / Lake Blvd.		- AT 5							
Quarry Creek Driveway to College Blvd.	4-SCL	30,000	16,300	C	0.543	19,000	C	0.633	0.09
College Blvd. to Thunder Dr.	4-SCL	30,000	18,000	C	0.600	18,200	C	0.607	0.00
Thunder Dr. to Sundown Ln.	2-CL	15,000	10,500	D	0.700	10,700	D	0.713	0.01
Haymar Dr. / Plaza Dr.			14.3		7.7.1	1 355		3830	
R1 Driveway to College Blvd.	2-C	10,000	5,500	В	0.550	8,000	D	0.800	0.25
College Blvd. to SR-78 EB Ramps	4-SCL	30,000	21,600	D	0.720	22,400	D	0.747	0.02
SR-78 EB Ramps to Thunder Dr.	4-SCL	30,000	16,500	С	0.550	16,700	С	0.557	0.00
Rancho Del Oro Rd.	1 1301	The state of	Sire was	-57		Vie u.s.	1	15.07	
Vista Way to Tournament Dr.	4-MA	40,000	27,800	C	0.695	27,800	C	0.695	0.00

NOTES:

^{1.} Capacity of roadway at LOS Eper City of Oceanside Master Transportation Plan, April 2012, Table 3-1.

^{2.} V/C = Volume to capacity at LOS E ratio; Δ V/C = Change in V/C.

^{3.} LOS = Level of service.

^{4.} Δ V/C = Change in V/C; A significant impact occurs at LOS "E" or "F" and the change in V/C ratio is greater than 0.02.

^{* =} Not significant since the change in V/C ratio is no more than 0.02.

TABLE 9-1-A

Buildout Alternative 2

Deficient Segment Peak Hour Analysis

				AM Pea	ak Hour		4	PM Pea	k Hour	
Segment	From / To	Speed	(MPH)	L	OS	Speed	(MPH)	LOS		
			W/O	With	W/O	With	W/O	With	W/O	With
C. II. D. 1 1	Wester Design Washington	NB	20.6	20.5	D	D	9.0	8.5	F	F
College Boulevard	Waring Road to Vista Way	SB	16.7	16.7	E	E	12.4	12.0	F	F
C. II. D. L	IF . W DI D.	NB	31.2	31.2	В	В	19.4	19.2	D	D
College Boulevard	Vista Way to Plaza Drive	SB	31.3	31.3	В	В	14.5	13.9	E	Е
0 " 0 1 1	N D'	NB	17.8	16.6	D	Е	12.8	10.7	F	F
College Boulevard	Plaza Drive to Lake Blvd.	SB	17.2	17.3	D	D	18.3	18.2	D	D
	G # PI 1 GP 70 H/P P	EB	5.4	5.4	F	F	6.0	6.1	F	F
Vista Way	College Blvd. to SR-78 WB Ramps	WB	9.4	9.4	F	F	9.8	9.7	F	F

Notes:

At LOS "E" or "F", if the segment travel speed decreases by more than one MPH due to the addition of project traffic, the project will have a significant impact.

^{*}Shading inidcates a significant impact.

However, the Oceanside Update considers roadway reclassification as infeasible, so that the Oceanside Update Final EIR recommends adoption of Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Vista Way, between College Boulevard and the SR-78 westbound ramps. This segment is at level of service "F" without or with project traffic added. The project change in volume to capacity ratio is greater than 0.02, at 0.04, so that this is a significant cumulative project impact.

The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the update, these improvements would not fully mitigate segment impacts so that overriding considerations should be adopted.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

9.2 STREET SEGMENTS WITHIN CARLSBAD

Project only AM and PM peak hour traffic volumes were added to Buildout Alternative 2 peak hour traffic volumes between study area intersections within Carlsbad and the results are shown in **Table 9-2**.

As shown, and the same as Alternative 1, all evaluated street segments within Carlsbad would operate acceptably, and project impacts would be less than significant to Carlsbad roadway segments.

TABLE 9-2
Buildout Alternative 2 Street Segment Levels of Service
Within Carlsbad

			AM1	PEAK HOUF	2	PMI	PEAK HOU	R
Segment	D	Lanes	Peak Hour Volume	V/C(1)	LOS	Peak Hour Volume	V/C(1)	LOS
El Camino Real		1	*			1		
SR-78 EB Ramps - Plaza Dr.	NB	3	1,330	0.25	Α	2,577	0.48	Α
SK-76 LB Kamps - Haza DI.	SB	3	1,851	0.23	A	1,918	0.36	A
Plaza Dr Marron Rd.	NB	3	1,292	0.24	A	2,267	0.42	A
riaza Di Marion Ru.	SB	3	1,562	0.24	A	1,606	0.30	A
Marron Rd Carlsbad Village Dr.	NB	3	1,202	0.23	A	2,026	0.38	A
Walfoli Rd Calistad Village Dr.	SB	3	1,496	0.22	A	1,382	0.26	A
Carlsbad Village Dr Chestnut Ave.	NB	3	861	0.16	A	1,711	0.32	A
Carisbad vinage Dr Chestilut Ave.	SB	3	1,486	0.10	A	1,156	0.21	A
College Blvd.	SD.		1,100	0.27	21	1,130	0.21	
Lake Blvd Carlsbad Village Dr.	NB	2	1,177	0.33	Α	2,024	0.56	Α
Zane Biva. Caristoaa vinage Bi.	SB	2	1,875	0.52	A	1,323	0.37	Α
Carlsbad Village Dr Cannon Rd.	NB	2	685	0.19	A	1,769	0.49	A
Carlotad Thiage 211 Cannon Tail	SB	2	1,509	0.42	A	1,041	0.29	A
Marron Rd.			10,000			,,,,,,		
Monroe Ave El Camino Real	EB	2	153	0.08	Α	589	0.16	A
	WB	2	219	0.19	Α	522	0.15	A
El Camino Real - East End	EB	2	160	0.04	Α	480	0.13	A
200 (24 (10 200 4) 20004 (0.00 () 1 0.00	WB	2	250	0.07	Α	430	0.12	A
Carls bad Village Dr.				33-610				
El Camino Real - Avenida De Anita	EB	2	252	0.07	Α	572	0.16	A
	WB	2	807	0.22	Α	437	0.13	A
Tamarack Ave College Blvd.	EB	2	488	0.14	Α	521	0.15	A
	WB	2	519	0.14	Α	573	0.16	A

D = Direction

(1) = Based on 1,800 vehicles per lane per hour.

V/C=Volume divided by capacity

Source: Highest Approach Volumes at Intersections, taken from Figure 9-7.

V/C	LOS
0.00-0.60	Α
0.61-0.70	В
0.71-0.80	C
0.81-0.90	D
0.91-1.00	E
Over 1.00	F

9.3 INTERSECTIONS

The intersection peak hour volumes used for Alternative 1 were modified to account for the project only redistribution without the Marron Road extension.

Figure 9-5 shows the project only AM and PM peak hour traffic volumes for each study area intersection. These trips were distributed according to the trip distribution percentages shown in **Figure 9-1**.

Figure 9-6 shows the Buildout Alternative 2 intersection peak hour volumes, without project traffic.

Figure 9-7 includes project only peak hour traffic added to the Buildout Alternative 2 traffic.

Figure 9-8 shows intersection lane configurations for Buildout Alternative 2.

Table 9-3 compares the peak hour intersection levels of service without and with project traffic added to Buildout Alternative 2 peak hour volumes. A change in average control delay is also included in this table, showing the effect of project traffic. An increase in average control delay, at level of service E or F, if more than 2.0 seconds, indicates a significant project impact.

The intersection lane configurations for the intersections listed in Table 9-3 are the same as for existing conditions and do not include the planned mostly unfunded mitigation by the City of Oceanside as a result of other traffic studies.

Page 1 of 3

FIGURE 9-5

Project Only AM/PM Peak Hour Volumes - Alternative 2 With RDO Interchange / No RDO Extension / No Marron Road

Page 2 of 3

FIGURE 9-5

Project Only AM/PM Peak Hour Volumes - Alternative 2 With RDO Interchange / No RDO Extension / No Marron Road

Page 3 of 3

FIGURE 9-5 Project Only AM/PM Peak Hour Volumes - Alternative 2 With RDO Interchange / No RDO Extension / No Marron Road

Page 1 of 3

Buildout Without Project AM/PM Peak Hour Volumes - Alternative 2

Page 2 of 3

Buildout Without Project AM/PM Peak Hour Volumes - Alternative 2

Page 3 of 3

FIGURE 9-6

Buildout Without Project AM/PM Peak Hour Volumes - Alternative 2

Page 1 of 3

Buildout With Project AM/PM Peak Hour Volumes - Alternative 2

Page 2 of 3

Buildout With Project AM/PM Peak Hour Volumes - Alternative 2

Page 3 of 3

FIGURE 9-7

Buildout With Project AM/PM Peak Hour Volumes - Alternative 2

Page 1 of 3

Buildout Alternative 2 Lane Configurations

Page 2 of 3

Buildout Alternative 2 Lane Configurations

Page 3 of 3

FIGURE 9-8

Buildout Alternative 2 Lane Configurations

TABLE 9-3

Alternative 2 Intersection Levels of Service (Without Mitigation)

		A	Iternative 2 V	Vithout Proj	ect				Alternative 2	With Project	et		
Number	Intersection	AM Pe	ak Hour	PM Pe	ak Hour		AM Pe	ak Hour			PM Pea	ak Hour	
		D	LOS	D	LOS	D	LOS	ΔD	S?	D	LOS	ΔD	S
						(1)							
1 OS	El Camino Real / Vista Way	38.2	D	65.4	E	38.3	D	0.1	N	65.9	E	0.5	N
2 OS	El Camino Real / SR-78 WB Ramps	33.4	С	48.1	D	33.9	C	0.5	N	48.5	D	0.4	N
3 OS	El Camino Real / SR-78 EB Ramps	21,2	C	53.7	D	21.4	C	0.2	N	54.4	D	0.7	N
4 CB	El Camino Real / Plaza Dr.	9.9	A	53.9	D	9.9	A	0.0	N	54.1	D	0.2	N
5 CB	El Camino Real / Marron Rd.	14.1	В	46.2	D	14.1	В	0.0	N	46.3	D	0.1	N
6 CB	El Camino Real / Carlsbad Village Dr.	37.1	D	39.1	D	37.2	D	0.1	N	39,2	D	0.1	N
7 OS	Vista Way / Rancho Del Oro Rd.	30.9	C	49.1	D	31.2	C	0.3	N	49.9	D	0.8	N
8 OS	Rancho Del Oro Rd. / SR-78 WB Ramps	34.2	С	28.0	C	34.5	C	0.3	N	28.2	С	0.2	N
9 OS	Rancho Del Oro Rd. / SR-78 EB Ramps	5.1	A	11.7	В	5.1	A	0.0	N	11.7	В	0.0	N
10 CB	Marron Rd. / Rancho Del Oro Rd.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
11 OS	College Blvd. / Vista Way	25.6	C	34.0	С	31.2	С	5.6	N	36.4	D	2.4	N
12 OS	College Blvd. / SR-78 EB Off Ramp	9.4	Α	9.8	A	9.5	A	0.1	N	13.3	В	3.5	N
13 OS	College Blvd. / Plaza Dr.	26.6	C	39.7	D	32,3	C	5.7	N	50.8	D	11,1	N
14 OS	College Blvd. / Marron Rd. / Lake Blvd.	32.6	C	53.0	D	34.4	C	1.8	N	58.8	E	5.8	Y
15 CB	College Blvd. / Carlsbad Village Dr.	29.2	C	22.5	C	37.2	D	8.0	N	25.2	C	2.7	N
16 CB	College Blvd. / Cannon Rd.	42,2	D	46.0	D	44.6	D	2.4	N	49.4	D	3.4	N
17 OS	Vista Way / SR-78 WB Ramps	28.2	C	36.8	D	28.4	C	0.2	N	38.4	D	1.6	N
18 OS	Plaza Dr. / SR-78 EB Ramps	22.9	С	35.7	D	22,9	C	0.0	N	37.5	D	1.8	N
19 OS	Lake Blvd. / Thunder Dr.	31.3	C	32.3	C	31.4	С	0.1	N	32.5	C	0.2	N
20 OS	College Blvd. / Waring Rd.	36.7	D	47.8	D	38.0	D	1.3	N	49.8	D	2.0	N
21 OS	Marron Rd. / Quarry Creek Ctr.	23.2	C	34.3	С	23.4	С	0.2	N	34.9	C	0.6	N
22 CB	Marron Rd. / Street B	N/A	N/A	N/A	N/A	(1)	A	(1)	N	(1)	A	(1)	N

(1) = Roundabout: Delay is not applicable; LOS is based on V/C; AM and PM V/C is at LOS A.

Notes: N/A = Not Built

City: OS = Oceanside

CB = Carlsbad

D = Control Delay LOS = Level of Service

Δ D = Change in Delay S ? = Significant Impact: Yes (Y) or No (N). (Significant at LOS E or F and change in delay is greater than 2.0 seconds)

	LOS	SECONDS DELAY
- [A	0.0-10.0
	В	10.1-20.0
	C	20.1-35.0
	D	35.1-55.0
	E	55.1-80.0
	F	Over 80.0

Only two intersections are expected to operate at level of service "E" under Buildout Alternative 1 conditions:

• El Camino Real / Vista Way is at level of service "E" during the PM peak hour without or with project traffic. The change in average control delay is not greater than 2.0 seconds, at 0.5 second, so that project impacts are less than significant and no project mitigation is required.

Table 9-3-A lists the five intersections with planned but mostly unfunded improvements by the City of Oceanside, including the El Camino Real / Vista Way intersection. The addition of a northbound right-turn-only lane on College Boulevard to eastbound Vista Way would mitigate the deficient level of service at this location.

• College Boulevard / Marron Road – Lake Boulevard is at level of service "E" during the PM peak hour without or with project traffic. The change in average control delay with the addition of project traffic is greater than 2.0 seconds so that the project would have a significant cumulative impact. A project fair share contribution towards mitigation is recommended. The project fair share is 61.2%.

The planned but unfunded mitigation at this location, as identified in the Oceanside Circulation Element Update FEIR, is the addition of a second northbound right-turn-only lane to eastbound Lake Boulevard. As shown in **Table 9-3-A** the addition of the second right turn only lane provides mitigation for the deficient operation at this location.

Buildout Alternative 2 project traffic effects at all other study area intersections would also be less than significant.

TABLE 9-3-A

Alternative 2 Intersection Levels of Service

(With Planned but Unfunded Improvements)

		A	Alternative 2 Without Project				Alternative 2 With Project								
Number	Intersection	AM Pe	ak Hour	PM Per	ak Hour		AM Pea	k Hour			PM Pea	ık Hour			
		D	LOS	D	LOS	D	LOS	ΔD	S?	D	LOS	ΔD	S?		
108	El Camino Real / Vista Way (1)	37.1	D	47.4	D	37.2	D	0.1	N	47.8	D	0.4	N		
11 OS	College Blvd. / Vista Way (2)	23.1	C	35.7	D	23.7	C	0.6	N	37.8	C	2.1	N		
13 OS	College Blvd. / Plaza Dr. (3)	25.1	C	28.5	С	29.4	C	4.3	N	35.2	D	6.7	N		
14 OS	College Blvd. / Marron Rd. / Lake Blvd. 4	32.5	C	52.7	D	34.4	С	1.9	N	54.9	D	2.2	N		
20 OS	College Blvd. / Waring Rd. (5)	36.6	D	29.5	С	38.0	D	1.4	N	29.8	C	0.3	N		

- = Add a Northbound Right-Turn-Only lane on E Camino Real to Eastbound Vista Way.
- 2) = Add a second Northbound Right-Turn-Only lane on College Blvd. to Eastbound Vista Way. Add a Westbound Right-Turn-Only lane to Northbound College Blvd.
- 3 = Add a Northbound Right-Turn-Only lane on College Blvd. to Eastbound Plaza Dr.
- = Add a second Northbound Right-Turn-Only lane on College Blvd. to Eastbound Lake Blvd.
- (§) = Restripe Northbound Right-Turn-Only lane for a third Northbound Shared Through-Righ Turn lane. Widen far-side College Blvd. to accept the added Northbound through lane.

Notes: N/A = Not Built

City:

OS = Oceanside

CB = Carlsbad

D = Control Delay

LOS = Level of Service

 Δ D = Change in Delay

S? = Significant Impact: Yes (Y) or No (N). (Significant at LOS E or F and change in delay is greater than 2.0 seconds)

LOS	SECONDS DELAY
A	0.0-10.0
В	10.1-20.0
С	20.1-35.0
D	35.1-55.0
E	55.1-80.0
F	Over 80.0

9.4 STATE ROUTE 78 MAINLINES

The project traffic volumes are included in Buildout Alternative 2 SR-78 average daily traffic volumes shown in **Table 9-4**. This table shows freeway volumes without and with project traffic. This table also compares levels if service and volume to capacity (V/C) ratios, and indicates if the project has or has not a significant freeway impact. At levels of service "E" or "F" an increase in V/C ratio of no more than 0.01 is acceptable. As shown in this table, segments at level of service "E" or "F" have V/C increases of less than 0.01 so that the project has less than significant impacts to SR-78 mainlines.

<u>Appendix E</u> includes the Alternative 2 traffic model documentation and intersection levels of service worksheets.

TABLE 9-4
Buildout Alternative-2 Freeway Segment Levels of Service

		W	THOUT	PROJECT					
Segment	Lanes (1-Way)	Сар.	ADT	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	LOS (3)
State Route 78									
I-5 to Jefferson St.	3+AUX	8,850	194,900	8	6:4	0.95	9,848	1.113	F0
Jefferson St. to El Camino Real	3+AUX	8,850	170,400	8	6:4	0.95	8,615	0.973	E
El Camino Real to Rancho Del Oro Rd.	3	7,050	180,800	8	6:4	0.95	9,135	1.296	F1
Rancho Del Oro Rd. to College Blvd.	3	7,050	181,900	8	6:4	0.95	9,191	1.304	F1
College Blvd. to Emerald Dr.	3	7,050	165,100	8	6:4	0.95	8,342	1.183	FO

WITH PROJECT											
Segment	Lanes (1-Way)	Сар.	ADT	Peak Hour % (1)	Direction Split (1)	Truck Factor (2)	Peak Volume	V/C	(3)		
State Route 78											
I-5 to Jefferson St.	3+AUX	8,850	195,800	8	6:4	0.95	9,893	1.118	F0		
Jefferson St. to El Camino Real	3+AUX	8,850	171,300	8	6:4	0.95	8,655	0.978	E		
El Camino Real to Rancho Del Oro Rd.	3	7,050	181,800	8	6:4	0.95	9,186	1.303	Fl		
Rancho Del Oro Rd. to College Blvd.	3	7,050	183,100	8	6:4	0.95	9,251	1.312	F1		
College Blvd. to Emerald Dr.	3	7,050	165,800	8	6:4	0.95	8,377	1.188	F0		

Segment	V/C With	LOS V/C Without Project		LOS	Change in V/C	S?
State Route 78	en e					
I-5 to Jefferson St.	1.118	FO	1.113	F0	0.005	N
Jefferson St. to El Camino Real	0.978	Е	0.973	Е	0.005	N
El Camino Real to Rancho Del Oro Rd.	1.303	F1	1.296	F1	0.007	N
Rancho Del Oro Rd. to College Blvd.	1.312	F1	1.304	F1	0.008	N
College Blvd. to Emerald Dr.	1.188	F0	1.183	F0	0.005	N

Legend:

Cap. = Capacity

Mainlane Cap. @ 2,350 VPHPL

Auxillary Lane Cap.@ 1,800 VPHPL

ADT= Average Daily Traffic

V/C= Volume to Capacity Ratio

LOS= Level of Service

Direction Split = % of Peak Hour in Peak Direction

Truck Factor = Represents Capacity Reduction for Heavy Vehicles

Notes:

- (1) Source: Caltrans 2010 Traffic Volumes.
- (2) Highway Capacity Manual (2000) EQN. (3-2); assume 5% trucks plus RV's.
- (3) Caltrans District 11 LOS Estimation Procedures, See Table 2-3
- S? = Significant Impact: Yes (Y), No (N).
- (At LOS E or F, an increase in V/C of no more than 0.01 is acceptable).

10.0 PROJECT CIRCULATION ROADWAYS

The project circulation roadways are shown on the attached Quarry Creek site plans, with AM and PM peak hour volumes shown at the project intersections.

10.1 ALTERNATIVE 1

Figure 10-1 shows the circulation roadway within the project with the assumed connection of Marron Road through the open space area to the west of the project boundary. The Marron Road / Street B intersection is recommended to be signalized with this alternative.

10.2 ALTERNATIVE 2

Figure 10-2 shows these circulation roadways and peak hour volumes at project intersections.

The Marron Road / Street B intersection would be a round-about controlled intersection with this alternative since there would be no through traffic on Marron Road and the traffic volumes would be lower than for Alternative 1.

Under both of these alternatives, the internal circulation roadways, Street A and Street B will have onstreet parking prohibited, with bike lanes. These local streets will be of sufficient capacity to adequately accommodate the expected low volumes.

FIGURE 10-1
Project Only AM/PM Peak Hour Volumes - Alternative 1

11.0 PEDESTRIAN / TRANSIT MASTER PLAN GUIDELINES

The Quarry Creek Master Plan has established a pedestrian, bike, and trail circulation plan.

Figure 11-1 shows an excerpt from the Master Plan indicating pedestrian trails, sidewalks and bike lanes.

Section 7.3 of this Quarry Creek Master plan shows the vehicular circulation plan, indicating the future bus transit route that will extend from the existing Quarry Creek Shopping Center to the planned park and ride lot within the Quarry Creek Master Plan area. This is shown in **Figure 11-2**.

FIGURE 11-1
Pedestrian, Bike and Trail Circulation Plan

FIGURE 11-2
Vehicular Circulation Plan

12.0 CONCLUSIONS AND RECOMMENDATIONS

This report evaluates potential traffic impacts due to development of the 656 dwelling unit Quarry Creek Master Plan. The Quarry Creek Master Plan also includes 1.5 net acres of community facilities that might include a day-care, and a 0.9 acre park and ride lot.

The project is expected to generate 5,578 average daily vehicle trips, 469 AM peak hour trips (121 inbound; 348 outbound), and 572 PM peak hour trips (386 inbound; 186 outbound). External trips have been adjusted down slightly to account for a transit reduction for planning area R-1, R-2, and R-3, which will be within one-fourth mile of transit service. The transit reduction decreases average daily vehicle trips by 2.8% and AM / PM peak hour trips by 2.6%.

The project is located in northern Carlsbad and will have access from Marron Road, which currently extends through the Quarry Creek Shopping Center from College Boulevard in the City of Oceanside.

This traffic analysis was conducted for Existing Conditions, Project Plus Existing Conditions, Near-Term and Near-Term Plus Project Conditions, Buildout and Buildout Plus Project Conditions.

The Existing Conditions, Project Plus Existing Conditions, Near-Term and Near-Term Plus Project Conditions evaluations were conducted assuming the current existing street network without the future extensions of Marron Road to the west to connect with El Camino Real, and without the State Route (SR) 78 / Rancho Del Oro Road interchange, and the Rancho Del Oro Road extension to Marron Road.

The Buildout and Buildout Plus Project Conditions were evaluated for two street network alternatives:

<u>Alternative 1</u> – This street network assumes all roadways that are included in the City of Carlsbad and City of Oceanside General Plan Circulation Plans. This street network assumes the extension of Marron Road from the existing east end at the Quarry Creek Shopping Center property line, to the existing west end approximately 1,000 feet east of El Camino Real, all within the City of Carlsbad.

<u>Alternative 2</u> – This street network assumes the Rancho Del Oro Road interchange at SR-78 is constructed, but the Marron Road extension is not included, nor is the Rancho Del Oro Road extension to Marron Road.

Significance Thresholds

In order to determine if the project would have a significant traffic impact on roadway segments or intersections, both the SANTEC / ITE Guidelines and the City of Carlsbad Growth Management Plan Circulation Performance Standard were used.

- 1. If the addition of project traffic to a roadway segment or intersection causes the level of service to decrease from "D" to "E" or "F", then the project is considered to have a significant impact.
- 2. If a facility is at level of service "E" or "F" before the addition of project traffic, then the following changes are allowed:

- Roadway Segments An increase in the volume to capacity (v/c) ratio based on average daily
 traffic volumes, of no more than 0.02 is acceptable. However, a segment peak hour analysis must
 be completed under project conditions to determine peak hour significance of project impacts. A
 decrease in segment average travel speed of greater than one mile per hour indicates a significant
 impact.
- Intersections An increase in delay of no more than 2.0 seconds is acceptable.
- Freeways An increase in volume to capacity (V/C) ratio of no more than 0.01 is acceptable.

Provided below are conclusions and recommendations that describe project traffic impacts and possible mitigation.

12.1 EXISTING CONDITIONS

Street Segments Within Oceanside

Of the 18 study area street segments in Oceanside only two segments currently operate deficiently:

• Vista Way between College Boulevard and the SR-78 westbound ramps.

Mitigation: The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these

improvements would improve peak hour operations but would not fully mitigate segment impacts, so that overriding considerations should be adopted.

• Lake Boulevard between Thunder Drive and Sundown Lane, at LOS "E".

Mitigation: Widen to a 4-lane Secondary Collector with two-way left turn lane. However, the Oceanside Circulation Element Update Final EIR recommends retaining this segment as two lanes and adopting Overriding Considerations, due to an agreement between the City and the residents to maintain this as a two lane road with a two-way left turn lane pocket.

Street Segments Within Carlsbad

Of the 11 roadway segments evaluated in Carlsbad, no segments evaluated operate deficiently during the AM and PM peak hours, as required by the City's Growth Management Plan.

Intersections

Within Oceanside, 14 intersections were evaluated and none currently operate deficiently.

Within Carlsbad, five intersections were evaluated and none currently operate deficiently.

State Route 78 Mainlines

Four segments of State Route 78 were evaluated, and one currently operates at level of service "E" during peak hours.

El Camino Real to College Boulevard (LOS "E").

Mitigation: Regional SR-78 studies are currently being conducted by SANDAG / Caltrans, and improvements to add High Occupancy Vehicle (HOV) lanes have been included in the Year 2050 Regional Transportation Plan.

12.2 PROJECT PLUS EXISTING CONDITIONS

The Project Plus Existing Conditions were evaluated for significant impacts due to the addition of project traffic to existing conditions volumes.

Street Segments Within Oceanside

Two segments in Oceanside would have significant direct project impacts:

College Boulevard, between Vista Way and Plaza Drive.
 (Project Responsibility – 100%)

Mitigation Recommendation: Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of this segment of College Boulevard from a six-lane Major Arterial to a six-lane Prime Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Vista Way, between College Boulevard and the SR-78 westbound ramps. This segment is at level of service "E" under existing conditions and with project traffic added. The project change in volume to capacity ratio is greater than 0.02, at 0.041, so this would be a significant impact.
 (Project Responsibility – 100%)

Mitigation Recommendation: The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Street Segments in Carlsbad

Project traffic impacts would be less than significant.

Intersections

Project traffic impacts would be less than significant at intersections within Oceanside and Carlsbad.

State Route 78 Mainlines

Project traffic impacts would be less than significant to State Route 78 segments evaluated.

12.3 NEAR-TERM PLUS PROJECT CONDITIONS

The Near-Term cumulative impacts from other approved and reasonably feasible pending projects that are expected to influence the study area at approximately the same time frame as the Quarry Creek project were evaluated without and with project traffic added.

No additional significant project impacts were identified for this condition beyond those previously discussed in prior sections of this report.

Street Segments Within Oceanside

Five street segments in Oceanside would operate deficiently at level of service "E" or "F", and three segments would have a significant direct impact.

- El Camino Real between Vista Way and the SR-78 westbound ramp, level of service "E", but project impacts are less than significant.
- College Boulevard between Vista Way and Plaza Drive, level of service "F", the project impact is a significant direct impact.

(Project Responsibility – 45.8%)

Mitigation Recommendation: Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of segments of College Boulevard from a six-lane Major Arterial to a six-lane Prime Arterial. This reclassification would mitigate the project significant impact. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Vista Way between College Boulevard and the SR-78 westbound ramps, at level of service "F", the project impact is a significant direct impact.

(Project Responsibility – 25.5%)

Mitigation Recommendation: The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Lake Boulevard between Thunder Drive and Sundown Lane, at level of service "F", but the project impact is less than significant, so no project mitigation is required.

Street Segments Within Carlsbad

Of the 11 roadway segments evaluated in Carlsbad, no segments evaluated operate deficiently during the AM and PM peak hours, as required by the City's Growth Management Plan.

Intersections

One intersection is Oceanside would operate deficiently, at level of service "E" during the PM peak hour, but the project impact is less than significant.

• El Camino Real / Vista Way, at level of service "E" during the PM peak hour, but the project impact is less than significant so that no project mitigation is required.

Intersections within Carlsbad would operate acceptably so project impacts would be less than significant and no project mitigation is required.

State Route 78 Mainlines

Project traffic impacts would be less than significant.

12.4 BUILDOUT ALTERNATIVE 1

Street Segments Within Oceanside

Five segments are expected to be at level of service "F" during Buildout of Alternative 1, but only three would have a significant cumulative project impact.

• College Boulevard between Barnard Way and Vista Way, at level of service "F", but the project impact is less than significant.

- College Boulevard between Vista Way and Plaza Drive, at level of service "F", and the project impact is a significant cumulative impact.
 (Project Responsibility 15.5%)
- College Boulevard between Plaza Drive and Marron Road, at level of service "F" as determined by a peak hour segment analysis, and the project impact is a significant cumulative impact.
 (Project Responsibility 32.8%)
- College Boulevard between Marron Road and the south City limit, at level of service "F", and the project impact is a significant cumulative impact.
 (Project Responsibility 6.4%)

Mitigation Recommendation: Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of these segments of College Boulevard from a six-lane Major Arterial to a six-lane Prime Arterial and a four-lane Major Arterial to a six-lane Major Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification and widening infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segments are located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Vista Way between College Boulevard and the SR-78 westbound ramps, at level of service "F", but the project impact is less than significant as indicated by the allowable increase in volume to capacity ratio and a peak hour segment analysis that shows a decrease in average travel speed of no more than one mile per hour. No project mitigation is required.

Street segments within Carlsbad are expected to operate acceptably during peak hours as required by the City's Growth Management Plan.

Intersections

Two intersections within Oceanside are expected to be at deficient levels of service, one has less than a significant project impact and the other has a significant cumulative impact.

- El Camino Real / Vista Way, at level of service "E" during the PM peak, but the project impact is less than significant with no project mitigation required.
- College Boulevard / Marron Road Lake Boulevard, at level of service "E" during the PM peak hour. The project will have a significant cumulative impact at this intersection, and should contribute a fair-share of the planned mitigation.

(Project Responsibility – 13.3%)

Mitigation: The Oceanside Circulation Element Update Final EIR recommends adding a second northbound right-turn only lane on College Boulevard to eastbound Lake Boulevard.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted intersection is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

State Route 78 Mainlines

Project traffic impacts would be less than significant.

12.5 BUILDOUT ALTERNATIVE 2

Street Segments Within Oceanside

Five segments are expected to be at level of service "F" during Buildout of Alternative 1, but only three would have a significant cumulative project impact.

- College Boulevard between Barnard Way and Vista Way, at level of service "F", but the project impact is less than significant.
- College Boulevard between Vista Way and Plaza Drive, at level of service "F", and the project impact is a significant cumulative impact.

(Project Responsibility – 20.1%)

- College Boulevard between Plaza Drive and Marron Road, at level of service "F" as a result of a peak hour segment analysis, and the project impact is a significant cumulative impact.
 (Project Responsibility 28.6%)
- College Boulevard between Marron Road and the south City limit, at level of service "F", and the project impact is a significant cumulative impact.
 (Project Responsibility 7.3%)

Mitigation Recommendation: Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of these segments of College Boulevard from a six-lane Major Arterial to a six-lane Prime Arterial and a four-lane Major Arterial to a six-lane Major Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification and widening infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segments are located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

• Vista Way between College Boulevard and the SR-78 westbound ramps, at level of service "F" with or without project traffic, and the project impact is significant cumulatively as indicated by the increase in volume to capacity of more than 0.02 at 0.04.

(Project Responsibility – 30.8%)

Mitigation Recommendation: The Oceanside Circulation Element Update recommends providing a westbound dedicated right-turn lane and lengthening the westbound left-turn lanes at the College Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Intersections

Two intersections within Oceanside are expected to be at deficient levels of service, one has less than a significant project impact and the other has a significant cumulative impact.

• El Camino Real / Vista Way, at level of service "E" during the PM peak, but the project impact is less than significant with no project mitigation required.

College Boulevard / Marron Road - Lake Boulevard, at level of service "E" during the PM peak
hour. The project will have a significant cumulative impact at this intersection, and should
contribute a fair-share of the planned mitigation.

(Project Responsibility – 61.2%)

Mitigation: The Oceanside Circulation Element Update Final EIR recommends adding a second northbound right-turn only lane on College Boulevard to eastbound Lake Boulevard.

The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted intersection is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Intersections within Carlsbad are expected to operate acceptably during peak hours as required by the City's Growth Management Plan.

State Route 78 Mainlines

Project traffic impacts would be less than significant.

12.6 MITIGATION SUMMARY

Table 12-1 lists for all alternatives evaluated segments and intersections that will have significant project impacts, and describes the recommended mitigation measures.

12.7 CIRCULATION NETWORK ALTERNATIVES COMPARISON

Two buildout circulation network were evaluated, all using the same Quarry Creek land use plan.

Alternative 1 and 2 both included the Rancho Del Oro interchange at SR-78, while Alternative 2 deleted the extension of Marron Road through the designated Open Space area.

The preferred alternative for the Quarry Creek Investors, LLC is Alternative 2, which deletes the Marron Road extension through the Open Space area.

Page 1 of 6

TABLE 12-1 MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Existing Plus Project	Segments: College Blvd. (Vista Way to Plaza Dr.) Impact: Direct	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Eleme Update recommends reclassification of this segment of Colleg Boulevard from a six-lane Major Arterial to a six-lane Prin Arterial. This reclassification would mitigate the projest significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final EIR recomment Overriding Considerations. The changes or alterations are within the responsibility are jurisdiction of the City of Oceanside. The City of Oceansides not appear to have adopted a program to construct such improvements and there does not appear to be a program accept payments in lieu of construction. Due to the fact the the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacted are considered significant and unmitigable. See CEQ
	Vista Way (College Blvd. to SR-78 WB Ramps)	Guidelines Section 15091 (a) (2). Fair Share: 100% The Oceanside Circulation Element Update recommend
	Impacts: Direct	providing a westbound dedicated right-turn lane ar lengthening the westbound left-turn lanes at the Colleg Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements wou improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted.
		The changes or alterations are within the responsibility an jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construct suc improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impactance considered significant and unmitigable. See CEQ. Guidelines Section 15091 (a) (2).
	Intersections: None	None

Page 2 of 6

TABLE 12-1 MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Near-Term Plus Project	Segments: College Blvd. (Vista Way to Plaza Dr.) Impact: Direct	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Eleme Update recommends reclassification of this segment of Colleg Boulevard from a six-lane Major Arterial to a six-lane Prin Arterial. This reclassification would mitigate the projes significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final EIR recommend Overriding Considerations.
		The changes or alterations are within the responsibility ar jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construct suc improvements and there does not appear to be a program accept payments in lieu of construction. Due to the fact the subject impacted segment is located outside the jurisdictic and regulatory authority of the City of Carlsbad, these impactance considered significant and unmitigable. See CEQ Guidelines Section 15091 (a) (2).
	Vista Way (College Blvd. to SR-78 WB Ramps) Impacts: Direct	Fair Share: 45.8% The Oceanside Circulation Element Update recommend providing a westbound dedicated right-turn lane ar lengthening the westbound left-turn lanes at the Colleg Boulevard / Vista Way intersection by restriping the existing lanes. As stated in the Update, these improvements would improve peak hour operations but would not fully mitigate segment impacts, so that Overriding Considerations should be adopted.
		The changes or alterations are within the responsibility are jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construct such improvements and there does not appear to be a program accept payments in lieu of construction. Due to the fact the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impactance considered significant and unmitigable. See CEQ. Guidelines Section 15091 (a) (2).
	Intersections: None	None

Page 3 of 6

TABLE 12-1 MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Buildout Alternative I	Segments: College Blvd. (Vista Way to Plaza Dr.) Impact: Cumulative	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of this segment of College Boulevard from a six-lane Major Arterial to a six lane Prime Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final Element Update Fina
		The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construct suc improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsback these impacts are considered significant and unmitigable. Se CEQA Guidelines Section 15091 (a) (2). Fair Share: 15.5%
	College Blvd. (Plaza Dr. to Marron Rd.) Impact: Cumulative	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Element Update recommends reclassification of this segment of College Boulevard from a six-lane Major Arterial to a six lane Prime Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification infeasible, so that the Oceanside Circulation Element Update Final Element Transport of College Overriding Considerations. The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construct such improvements and there does not appear to be a program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsback these impacts are considered significant and unmitigable. See CEQA Guidelines Section 15091 (a) (2).

Page 4 of 6

TABLE 12-1 MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Buildout Alternative 1 (Continued)	College Blvd. (Marron Rd. to South City Limit) Impact: Cumulative	The Final, April 2012 City of Oceanside Circulation Eleme Update recommends reclassification of this segment College Boulevard from a four-lane Major Arterial to a siz lane Major Arterial. This reclassification would mitigate the project significant impacts. However, the Oceanside Update considers roadway reclassification and widening infeasible, so that the Oceanside Circulation Element Update Final El recommends Overriding Considerations.
		The changes or alterations are within the responsibility at jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construct suimprovements and there does not appear to be a program accept payments in lieu of construction. Due to the fact the subject impacted segment is located outside to jurisdiction and regulatory authority of the City of Carlsba these impacts are considered significant and unmitigable. Sec CEQA Guidelines Section 15091 (a) (2). Fair Share: 6.4%
1	Intersections:	
	College Blvd. / Marron Rd Lake Blvd) Impact: Cumulative	The Oceanside Circulation Element Update Final E recommends adding a second northbound right-turn only la on College Boulevard to eastbound Lake Boulevard. The changes or alterations are within the responsibility a jurisdiction of the City of Oceanside. The City of Oceansidoes not appear to have adopted a program to construct su improvements and there does not appear to be a program accept payments in lieu of construction. Due to the fact the subject impacted intersection is located outside t jurisdiction and regulatory authority of the City of Carlsbathese impacts are considered significant and unmittigable. S CEQA Guidelines Section 15091 (a) (2). Fair Share: 13.3%

Page 5 of 6

TABLE 12-1 MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Buildout Alternative 2	Segments: College Blvd. (Vista Way to Plaza Dr.) Impact: Cumulative	Since physical improvements to add lanes are infeasible, the Final, April 2012 City of Oceanside Circulation Elema Update recommends reclassification of this segment College Boulevard from a six-lane Major Arterial to a slane Prime Arterial. This reclassification would mitigate the project significant impacts. However, the Oceansi Update considers roadway reclassification infeasible, so the Oceanside Circulation Element Update Final Element Opdate Final Element Opdat
	College Blvd. (Plaza Dr. to Marron Rd.) Impact: Cumulative	Since physical improvements to add lanes are infeasible, Final, April 2012 City of Oceanside Circulation Elem Update recommends reclassification of this segment College Boulevard from a six-lane Major Arterial to a slane Prime Arterial. This reclassification would mitigate project significant impacts. However, the Oceans Update considers roadway reclassification infeasible, so the Oceanside Circulation Element Update Final Frecommends Overriding Considerations. The changes or alterations are within the responsibility a jurisdiction of the City of Oceanside. The City of Oceans does not appear to have adopted a program to construction in the subject impacted segment is located outs the fact that the subject impacted segment is located outs the jurisdiction and regulatory authority of the City Carlsbad, these impacts are considered significant a unmitigable. See CEQA Guidelines Section 15091 (a) (2 Fair Share: 28.6%
	College Blvd. (Marron Rd. to South City Limit) Impact: Cumulative	The Final, April 2012 City of Oceanside Circulation Elem Update recommends reclassification of this segment College Boulevard from a four-lane Major Arterial to a same Major Arterial. This reclassification would mitigate project significant impacts. However, the Oceans Update considers roadway reclassification and wider infeasible, so that the Oceanside Circulation Element Update Final EIR recommends Overriding Considerations. The changes or alterations are within the responsibility jurisdiction of the City of Oceanside. The City of Oceans does not appear to have adopted a program to construction but the fact that the subject impacted segment is located outs the jurisdiction and regulatory authority of the City Carlsbad, these impacts are considered significant unmitigable. See CEQA Guidelines Section 1509 (a) (2) Fair Share: 7.3%

Page 6 of 6

TABLE 12-1 MITIGATION SUMMARY

ALTERNATIVE	SIGNIFICANT IMPACT WITH PROJECT	MITIGATION
Buildout Alternative 2 (Continued)	Vista Way (College Blvd. to SR-78 WB Ramps) Impacts: Direct	The Oceanside Circulation Element Update recommend providing a westbound dedicated right-turn lane an lengthening the westbound left-turn lanes at the Colleg Boulevard / Vista Way intersection by restriping the existin lanes. As stated in the Update, these improvements woul improve peak hour operations but would not fully mitigat segment impacts, so that Overriding Considerations should be adopted.
		The changes or alterations are within the responsibility and jurisdiction of the City of Oceanside. The City of Oceanside does not appear to have adopted a program to construit such improvements and there does not appear to be program to accept payments in lieu of construction. Due to the fact that the subject impacted segment is located outside the jurisdiction and regulatory authority of the City of Carlsbad, these impacts are considered significant and unmittigable. See CEQA Guidelines Section 15091 (a) (2). Fair Share: 30.8%
0	Intersections:	
	College Blvd. / Marron Rd Lake Blvd) Impact: Cumulative	The Oceanside Circulation Element Update Final El recommends adding a second northbound right-turn on lane on College Boulevard to eastbound Lake Boulevard. The changes or alterations are within the responsibility ar jurisdiction of the City of Oceanside. The City of Oceansid does not appear to have adopted a program to construst such improvements and there does not appear to be program to accept payments in lieu of construction. Due the fact that the subject impacted intersection is located outside the jurisdiction and regulatory authority of the City Carlsbad, these impacts are considered significant ar unmittigable. See CEQA Guidelines Section 15091 (a) (2).

To determine if the Marron Road deletion causes significant impacts, a comparison of intersection levels of service for the alternatives shows that only two intersections would be at unacceptable levels of service (LOS "E" or "F"), without mitigation, for Alternatives 1 and 2.

For Alternatives 1 and 2, both of these locations are at acceptable levels of service. Since alternative 2 includes the deletion of Marron Road, and all evaluated intersections would be at acceptable levels of service after planned mitigation consistent with the Oceanside General Plan Circulation Element Update, it can be concluded that the Alternative 2 deletion of Marron Road would have less than significant impacts.

To isolate the effect of deleting Marron Road with the Rancho Del Oro Road interchange, a comparison of intersection delay at the two intersections with acceptable levels of service after mitigation was conducted for Alternatives 1 and 2.

Table 12-2 below shows the results of this comparison.

Since both intersections are at an acceptable level of service after the same mitigation was applied to both alternatives, it can be stated that the deletion of Marron Road would have less than significant impacts to study area intersections.

Table 12-2
Alternative 1 and Alternative 2 Intersection Delay Comparison

	WITH MARRON RD.	WITHOUT MARRON RD.				
	Alternative 1	Alternative 2				
ECR / Vista Way (PM)	45.6 LOS D	47.8 LOS D				
College Blvd. / Marron Rd. – Lake Blvd.	55.0 LOS D	54.9 LOS D				

As shown, without Marron road, the increase in PM peak hour intersection delay at these two locations is within the allowable delay for an acceptable level of service "D", so that it can be concluded that the Alternative 2 deletion of Marron Road would have less than significant impacts to study area intersections.

13.0 REFERENCES

San Diego Region Traffic Engineer's Council (SANTEC) and Institute of Transportation Engineers (ITE),

California Border Section, <u>Guidelines for Congestion Management Program (CMP)</u>

<u>Traffic Impact Report</u>, San Diego, CA

San Diego Association of Governments, <u>2006 Congestion Management Program Update</u>, Appendix D, July 2006, San Diego, CA

14.0 <u>URBAN SYSTEMS ASSOCIATES, INC. PREPARERS</u>

Principal Engineer

Andrew P. Schlaefli; M.S. Civil Engineering, B.S. Civil Engineering Registered Civil Engineer, Licensed Traffic Engineer

Senior Project Manager

Sam P. Kab, II, Licensed Traffic Engineer

Project Manager

Jacob D. Swim; B.S. Civil Engineering

Senior Technical Support, Graphics and Illustrations

Jacob D. Swim

Word Processing, Report Production and Compilation

Lisa M. Diaz

This report is site and time specific and is intended for a one-time use for this intended project under the conditions described as "Proposed Project". Any changes or delay in implementation may require re-analysis and re-consideration by the public agency granting approvals. California land development planning involves subjective political considerations as well as frequently re-interpreted principals of law as well as changes in regulations, policies, guidelines and procedures. Urban Systems and their professionals make no warrant, either express or implied, regarding our findings, recommendations, or professional advice as to the ability to successfully accomplish this land development project.

Traffic is a consequence of human behavior and as such is predictable only in a gross cumulative methodology of user opportunities, using accepted standards and following patterns of past behavior and physical constraints attempting to project into a future window of circumstances. Any counts or existing conditions cited are only as reliable as to the time and conditions under which they were recorded. As such the preparer of this analysis is unable to warrant, either express or implied, that any forecasts are statements of actual true conditions which will in fact exist at any future date.

Services performed by Urban Systems professionals resulting in this document are of a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. No other representation expressed or implied and no warranty or guarantee is included or intended in this report, document opinion or otherwise.

Any changes by others to this analysis or re-use of document at a later point in time or other location, without the express consent and concurrence of Urban Systems releases and relieves Urban Systems of any liability, responsibility or duty for subsequent questions, claims, or damages.

APPENDIX A

- Existing Traffic Count Summaries
- Existing Intersection LOS Worksheets
- Project Plus Existing Intersection LOS Worksheets

Transition between LOS "C" and LOS "D" Criteria

(Reference Highway Capacity Manual)

BASIC FREEWAY SEGMENTS @ 65 mi/hr

LOS	Maximum Density (pc/mi/ln)	Minimum Speed (mph)	Maximum v/c **	Maximum Service Flow Rate (pc/hr/ln)	
A	11	65.0	0.30	710	
В	18	65.0	0.50	1170	
C	26	64.6	0.71	1680	
D	35	59.7	0.89	2090	N B E
E	45	52.2	1.00	2350	*

SIGNALIZED INTERSECTIONS and RAMP TERMINALS

LOS	Control Delay per Vehicle (sec/veh)
A	≤10
В	> 10 - 20
C	> 20 - 35
D	> 35 - 55
E	> 55 - 80
F	> 80

MULTI-LANE HIGHWAYS @ 55 mi/hr

LOS	Maximum Density (pc/mi/ln)	Minimum Speed (mph)	Maximum v/c	Maximum Service Flow Rate (pc/hr/ln)
A 11		55.0	0.29	600
В	18	55.0	0.47	990
C	26	54.9	0.68	1430
D	35	52.9	0.88	1850
E	41	51.2	1.00	2100

Dotted line represents the transition between LOS "C" and LOS "D"

PEAK HOUR VOLUME DATA

Peak hour volume data consists of hourly volume relationships and data location. The hourly volumes are expressed as a percentage of the Annual Average Daily Traffic (AADT). The percentages are shown for both the AM and the PM peak periods.

The principle data described here are the K factor, the D factor and their product (KD). The K factor is the percentage of AADT during the peak hour for both directions of travel. The D factor is the percentage of the peak hour travel in the peak direction. KD multiplied with the AADT gives the one way peak period directional flow rate or the design hourly volume (DHV). The design hourly volume is used for either Operational Analysis or Design Analysis. Refer to the 2000 Highway Capacity Manual for more details.

Following is a glossary of terms used in this listing of peak hour volume data:

Dir Indicates direction of travel for peak volume

AADT Annual Average Daily Traffic in vehicles per day (vpd).

AM Peak Represents the morning peak period for traffic analysis

CS Control Station Number, Caltrans identification number for

monitoring site.

CO County abbreviation used by Caltrans

D factor. The percentage of traffic in the peak direction during the

peak hour. Values in this book are derived by dividing the measured PHV by the sum of both directions of travel during the peak hour.

DAY Day of week for the peak volume.

DDHV The directional design hour volume, in vehicles per hour (vph)

DDHV=AADTxKxD. See equation (8-1) on page 8-11 of the 2000

Highway Capacity Manual.

DI Caltrans has twelve transportation districts statewide. This

abbreviation identifies the district in which the count station is

located.

HR The ending time for the peak hour volume listed. The volume

observed fro 1 to 2 would be recorded as 2.

SR. 78

K The percentage of the AADT in both directions during the peak hour. Values in this table are derived by dividing the measured 2-way PHV

by the AADT.

KD The product of K and D. The percentage of AADT in the peak

direction during the peak hour. Values in this table are derived by

dividing the measured 1-way PHV by the AADT.

LEG For traffic counting purposes, a highway intersection or interchange

is assigned two legs according to increasing postmiles (route direction) and with a postmile reference at the center of the intersection or interchange. The volume of traffic on each leg is denoted by an A, B or O. A = ahead leg, B = back leg, and O –

traffic volume being same for both back and ahead legs.

MNTH The month that the peak volume occurred.

PHV Peak Hour Volume in the peak direction. A one way volume in

vehicles per hour (vph) as used here. The PHV is analogous to the

DDHV as used for design purposes.

PM The Post Mile is the mileage measured from the county line, or from

the beginning of a route. Each postmile along a route in a county is

a unique location on the state highway system.

PM Peak Represents the afternoon peak period for traffic analysis.

PRE The postmile may have a prefix like R, T, L, M, etc. When a length of

highway is changed due to construction or realigment, new postmile values are assigned. To distinguish the new values from the old, an

alpha code is prefixed to the new postmile.

RTE The state highway route number

YR The year when the count was made. Traffic counting is on a 3-year

cycle.

LATEST TRAFFIC YEAR SELECTED CALTRANS TRAFFIC VOLUMES

05/14/2009 OTM32420

16:11:19

PEAK HOUR VOLUME DATA

HR DAY MINTH MAR SEP FEB JUN MAR OCT MAR NOV MAR MAR MAR NOV JAN NOV AUG MAR MAR JUN FEB OCT MAY MAR NOV NOV NOV OCT MAY SUN SUN SUN WED THU THU SAT SAT SUN SUN WED SUN TUE FRI WED FRI MON SUN SAT SUN FRI FRI SUN SUN THU SAT MON FRI FRI TUE TUE FRI 16 MON 16 16 16 16 13 20 13 15 17 16 16 16 15 16 16 16 10.26 13 14 14 16 14 14 14 18 13 Q 7.55 9.02 6.5 4.19 4.72 4.28 7.11 5.08 6.53 7.54 3.47 4.19 5.56 4.27 4.51 4.22 4.27 4.78 14.63 20.7 8.18 5.43 3.65 5.41 14.55 8.88 28.73 11.02 3.81 14.31 11.07 3.95 69.75 83.85 84.96 74.3 53.79 52.88 55.59 74.96 85.08 56.5 77.04 55.35 58.85 82.02 50.63 55.89 50.87 64.46 53.15 54.2 55,15 54.77 61.04 76.4 55.18 65.83 65.75 67.55 57.91 55.22 58.42 58.11 PEAK PM 00 1 8.39 8.15 28.9 8.39 10.75 9.94 7.89 7.74 8.12 8.77 10.83 7.82 19.41 13.59 11.65 8.72 24.33 11.46 19.26 12.45 8.05 6.28 6.58 20.86 37.61 9.21 12.97 11.51 14.37 6.24 6.83 £ 60:40 SPLIN PHV 5496 279 379 356 6826 7313 678 428 5518 6390 888 926 569 383 479 696 509 326 7024 887 454 282 120 365 454 208 263 460 6653 1117 2491 9257 131 HR DAY MNTH Dir 45E89 SEP JAN MAR FEB FEB FEB MAY APR SEP FEB SEP MAR MAR MAR MAR MAR FEB NOV MAY DEC NON DEC OCT FEB MAR OCT MAR JUL DEC MAR OCT OCT SUN SAT SUN SAT THU THU SAT SAT SAT SUN SUN SAT SUN SUN SUN SUN SUN SAT SUN SUN THU THU SAT WED SAT THU SUN WED TUE SUN MON FRI THU 12 H 10 11 10 11 12 12 12 12 0 9 12 12 12 7.28 11 11 ∞ 10 11 5.56 12 20.99 8.96 4.98 4.26 3.82 4.39 7.98 4.38 7.36 4.64 12.57 7.02 6.6 3.96 3.59 3.79 B 3.82 10.38 5.34 6.63 19.02 15.61 9.28 11.41 4.64 3.74 6.47 4.13 4.01 53.44 65.63 o/o D 62.44 58.08 63.42 58.59 72.45 68.39 83.69 67.4 55.25 73.58 52.99 59.39 52.92 58.03 86.94 58.86 60.62 64.96 75.69 69.2 63.78 72.1 52.38 56.26 68.09 79.62 54.71 74.23 60.13 79.23 68.4 AM PEAK o/0 14 7.89 7.97 7.18 7.29 8.29 12.58 9.55 11.09 14.45 5.29 7.21 6.81 7.48 12.37 13.07 28.97 8.13 10.42 10.01 7.15 6.93 7.41 6.71 15.51 16.82 12.01 16.27 22.93 26.49 5.47 6.07 5.97 1 WAY PHV 4986 128 186 394 199 1129 5197 5925 870 826 832 464 497 373 263 317 885 504 390 406 370 122 279 362 234 393 6866 7307 6992 7338 1001 LEG YR Dir 07 830 831 832 983 878 838 712 714 973 840 420 842 843 719 713 849 845 546 971 987 877 837 711 841 844 941 952 247 17.30 101 CS PM 1.498 8.65 27.37 17.30 .098 15.49 17.68 19.09 22.56 58.13 58.13 13.17 13.18 5.04 15.04 .044 2.27 .216 5.983 7.615 52.32 4.384 51.11 21.02 80.74 53.04 19.16 5.823 10.02 35.52 70.01 32.87 TI CR PRE N. X H M K IMP IMP IMP IMP IMP IMP RIV RIV ALA ALA IMP SD 00 SD SD SD SD SD CC RTE 910 910 910 910 078 078 078 078 078 079 110 078 078 078 078 078 078 078 078 078 078 078 078 078 079 079 079 079 080 080 080 080

08

512.78 417

2009

Annual Average Daily Truck Traffic

on the

California State Highway System

Compiled by

Traffic and Vehicle Data Systems

State of California

Business, Transportation and Housing Agency

Department of Transportation

Prepared in cooperation with the

U.S. Department of Transportation

Federal Highway Administration

DECEMBER 2010

PREFACE

The annual average daily truck traffic is shown for selected locations on the State Highway System. Truck traffic is classified by number of axles. The two-axle class includes 11/2-ton trucks with dual rear tires and excludes pickups and vans with only four tires. Total vehicle AADT for the same year is taken from the Traffic Volumes on California State Highways booklet also published by the California Department of Transportation.

Annual average daily truck traffic is the total truck traffic volume divided by 365 days. Truck counting is done throughout the state in a counts. The partial day and 24-hour counts are usually made on high volume, urban highways. The 7-day counts are made on low volume, rural highways. The counts are usually taken only once in the year. About one-sixth of the locations are counted annually. The resulting variables that may be present. Annual average daily truck traffic is necessary for presenting a statewide picture of truck flow, evaluating program of continuous truck count sampling. The sampling includes a partial day, 24-hour, 7-day and continuous vehicle classification counts are adjusted to an estimate of annual average daily truck traffic by compensating for seasonal influence, weekly variation, and other truck trends, planning and designing highways and for other purposes. The column entitled "Year Ver/Est" indicates the year the truck percents were either verified (V) or estimated (E). It represents the year the truck percentages were verified (counted continuously or quarterly) or estimated. Selected points on a route will be counted and the ones in between will be estimated. At some locations, truck volumes are static and no new counts are made until there is a change in traffic on the route. All truck AADT's listed are for 2008. California State Highways are listed in legislative route number order. The legislative route number is the same as the signed route number

Each count location is identified by the post mile value corresponding to that point on the highway. The post mile values increase from the beginning of a route within a county to the next county line. The post mile values start over again at each county line. Post mile values increase usually from south to north or west to east depending on the general direction the route follows within the state.

When a section of road is relocated, new post miles (usually noted by an alphabetical prefix such as "R" or "M") are established for it. If relocation results in a change in length, "post mile equations" are introduced so that post miles on the remainder of the route within the The post mile at a given location will remain the same year after year except in a few cases when the route was relocated/redesignated. county will remain unchanged. Post mile equations are not shown on this listing.

50	18
(117)
1	

YEAR VER/ EST	075	075	07臣	07E	070	97臣	86日	396	96E	396E	81E	87E	87V	937	A83	88臣	88E	
EAL 2-WAY (1000)	556	1043	1074	983	1154	809	47	101	126	112	119	36	112	27	19	20	54	
2+	35.19	35.19	35.19	35.19	35.19	30.7	7.5	15.5	15.6	15.5	27.9	33.7	15.1	6	4.4	4.5	3.7	
AADT le4	77.77	7.77	7.77	7.77	7.77	5.4	15.3	2.4	2.3	2.4	6.1	4.2	4.4	8	5.4	4.5	3.5	
TRUCK AADT By Axle - 3 4	10.12	10.12	10.12	10.12	10.12	9.4	23.8	12.3	12.3	12.3	15.9	22.3	11.4	11.6	12.2	12.5	12	
%	46.92	46.92	46.92	46.92	46.92	54.5	53.4	8.69	8.69	8.69	50.1	39.8	1.69	6.07	78	78.5	80.8	
TOTAL	1233	2314	2383	2182	2562	1318	40	169	211	187	241	7.8	181	30	13	37	35	
AADT T Axle -4	272	511	526	482	566	232	81	26	31	50	53	10	53	29	17	37	33	
TRUCK By 3	355	665	685	628	737	404	126	134	166	149	138	52	137	39	37	103	112	
2	1644	3085	3178	2910	3416	2340	283	762	942	843	433	92	829	238	239	645	756	
TRUCK % TOT VEH	4.67	4.87	5.17	4.77	4.55	5.3	Н	9	9	6.1	9.4	2.2	5.5	9	7.2	16.6	24.3	
TRUCK AADT TOTAL	3503	6575	6773	6201	7280	4293	530	1092	1350	1208	865	231	1199	336	306	822	936	
VEHICLE AADT TOTAL	75000	135000	131000	130000	160000	81000	53000	18200	22500	19800	9200	10500	21800	2600	4250	4950	3850	
DESCRIPTION	OCEANSIDE, JCT. RTE. 5	OCEANSIDE, EL CAMINO REAL	VISTA, MELROSE DRIVE	VISTA, MELROSE DRIVE	ESCONDIDO, JCT. RTE.	ESCONDIDO, CENTRE CITY PARKWAY	ESCONDIDO, BROADWAY/LINCOLN PARKWAY	ESCONDIDO ASH STREET	ESCONDIDO ASH STREET	ESCONDIDO, GRAND AVENUE	BANDY CANYON ROAD	JCT, RIE, 67 SOUTHWEST	JCT. RIE. 67 SOUTHWEST	WEST JCT. RTE. 79	WEST JCT. RIE. 79	EAST JCT. RIE. 79	EAST JCT. RIE. 79	
ныо !	K	A	ф	A	9 B	m	щ	М	4 A	A	5 A	9 B	9 A	ш	A	m	A,	
POST	.004	1.498	5.944	5.944	R16.53	R17.268	N17.68	T19.094	T19.09	18.94	R27.31	35.51	35.51	51.108	51.108	58.133	58.133	
YINC	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	
DIST CNTX	11	11	11	11	11	11	11	11	11	11 8	11	11	11	11	11	11 8	11	
RTE DI	078	078	078	078	078	078	078	078	078	078	078	078	078	078	078	078	078	

Street	Lanes ^a	Classification	LOS E Capacity ^b	ADT°	[O2 _q
El Camino Real to Mission Avenue	4TWLT	Secondary Collector	30,000	21,000	D
Mission Ave. to SR-76	4U	Major Arterial	40,000	20,400	В
El Camino Real					
Douglas Drive to Mission Ave.	4TWLT	Major Arterial	40,000	22,600	C
Mission Avenue to Mesa Drive	4D	Major Arterial	40,000	21,200	С
Mesa Dr. to Oceanside Blvd.	4D	Major Arterial	40,000	33,000	D
Oceanside Boulevard to Fire	6D	Prime Arterial	60,000	35,800	C
Mountain Road	1				
Fire Mountain Rd to Via Las Rosas	6D	Prime Arterial	60,000	36,200	С
Via Las Rosas to Vista Way	6D	Prime Arterial	60,000	43,700	С
Vista Way to SR-78	6D	Prime Arterial	60,000	51,100	D
Emerald Drive		""。" "	4.7 自由的优生基		ed filt to the
Lake Boulevard to Sunset Dr	4TWLT	Secondary Collector	30,000	2,300	A
Frazee Road					
Old Grove Road to SR-76	4D	Major Arterial	40,000	5,500	Α
SR-76 to College Boulevard	4D	Major Arterial	40,000	9,300	Α
College Boulevard to Sagewood Drive	2D/U	Collector	10,000	3,600	Α
Lake Boulevard	7071 404 5475				
College Boulevard to Thunder Drive	4TWLT	Secondary Collector	30,000	13,100	В
Thunder Drive to Sundown Lane	2TWLT	Collector	15,000	14,800	E
Sundown Lane to Sky Haven Lane	4TWLT	Secondary Collector	39,000	14,800	C
Sky Haven Lane to Cannon Road	4TWLT	Secondary Collector	30,000	13,400	В
Melrose Drive					
SR-76 to Spur Avenue	4D	Major Arterial	40,000	9,300	Α
N. Santa Fe Avenue to Oceanside Boulevard	2/4D	Major Arterial	40,000	14,300	Α
Oceanside Boulevard to City Limits	4D	Major Arterial	40,000	19,400	В
City Limits to Cannon Road	6D	Prime Arterial	60,000	27,400	В
Cannon Road to Southern City Limits	6D	Prime Arterial	60,000	30,000	В
Mesa Drive		17 A.45 False (348)	JACK BOOKE	并继续定置	
Mission Avenue to Foussat Road	2U	Collector	10,000	5,600	С
Foussat Road to El Camino Real	2TWLT	Collector	15,000	4,700	Α
El Camino Real to Rancho Del Oro Road	4U/TWLT /D	Secondary Collector	30,000	13,300	В

TABLE 4.2-3 Circulation Element Roadway Classification LOS & Capacity

Class	Lanes	Cross		i i le	vel of Ser	vice	
		Section ¹	Α	В	С	_D	// E
Expressway	6	102/160, 122/200	30,000	42,000	60,000	70,000	80,000
Expressway	4	102/160, 122/200	25,000	35,000	50,000	55,000	60,000
Prime Arterial	6	104/124	25,000	35,000	50,000	55,000	60,000
6-Lane Major Arterial	6	104/124	20,000	28,000	40,000	45,000	50,000
5-Lane Major Arterial ²	5	102/122	17,500	24,500	35,000	40,000	45,000
4-Lane Major Arterial	4	80/100	15,000	21,000	30,000	35,000	40,000
Secondary Collector (4 lanes with 2- way left turn lane)	4	64/84	10,000	14,000	20,000	25,000	30,000
Secondary Collector (4 lanes without 2- way left-turn lane, with left turn pockets)	4	54/74, 60/80	9,000	13,000	18,000	22,000	25,000
Collector (commercial fronting, 2-lanes with 2-way left turn lane) ³	2	50/70	5,000	7,000	10,000	13,000	15,000
Collector (residential streets in the Circulation Element or industrial fronting)	2	40/60, 50/70	4,000	5,500	7,500	9,000	10,000
Local Street (residential streets NOT in the Circulation Element)	2	36/56, 40/60	-	-	2,200		

Note:

- 1. Cross sections are listed as curb-to-curb width/total right-of-way width, in feet.
- 2. Vandegrift Boulevard is the only roadway designated as a 5-Lane Major Arterial. It is not intended that other roadways be built to 5-lane Major Arterial standards.
- 3. This capacity will also be assumed for two-lane, one-way collectors.

Source: IBI Group, 2011.

Based on discussion with the City and a review of the roadway level of service standards and capacities throughout the San Diego region and southern California, it was determined that LOS D be used as the segment level threshold for acceptable LOS in this study.

For facilities that are forecast to operate at a deficient LOS in the final selected preferred alternative condition, mitigation measures are recommended to return the LOS value back to an acceptable level of service. The City may decide to give a statement of overriding consideration for a facility with unavoidable significant impacts that cannot be mitigated to achieve the desirable LOS threshold. According to the California Environmental Quality Act (CEQA), the City must state the specific reasons supporting the action based on the SOURCE OF SEGMENT LOS FOR OCEAUSIDE Final EIR or other substantial evidence in the record.

729 -- English (ENU)

Datasets:

[1109.05] COLLEGE BLVD (LAKE BLVD-PLAZA DR) NORTHBOUND 1 - North bound. - Lane= 0, Added to totals. (/2.000) Site:

Input A: 0 - Unused or unknown. - Lane= 0, Excluded from totals. Input B:

Survey Duration: 13:31 Wednesday, January 19, 2011 => 11:56 Friday, January 21, 2011

File: 1109.05.N21Jan2011.EC0 (Regular) Axle sensors - Separate (Count) Data type:

Profile:

0:00 Thursday, January 20, 2011 => 0:00 Friday, January 21, 2011 Filter time:

In profile: Events = 18114 / 33836 (53.53%)

* Thursday, January 20, 2011=18114, 15 minute drops

		-,,	** ! *****	, ~~,	,,		, .	~		4. OPC	,													
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
72	43	36	50	72	243	611	1027	1019	865	936	1077	1239	1298	1419	1396	1472	1690	1184	827	589	457	315	181	
31	13	11	9	16	41	117	180	336	226	240	242	313	311	335	321	336	395	390	242	170	125	80	52	-
17	9	10	13	9	59	147	262	236	215	225	262	283	311	321	367	364	482	329	235	134	136	82	49	-
8	11	4	11	24	73	171	247	198	195	220	298	313	319	360	341	361	396	252	195	144	96	86	48	-
16	10	11	17	23	70	177	338	250	230	252	276	330	359	404	367	412	418	215	156	142	101	68	33	-
AM Per	ak 114	5 - 124	5 (118/	II. AM	PHF=0	95																		

730 -- English (ENU)

Datasets:

Site: [1109.05] COLLEGE BLVD (LAKE BLVD-PLAZA DR) SOUTHBOUND

Input A: 3 - South bound. - Lane= 0, Added to totals. (/2.000)

input B: 0 - Unused or unknown. - Lane= 0, Excluded from totals.

Survey Duration: 13:33 Wednesday, January 19, 2011 => 11:53 Friday, January 21, 2011

Survey Duration: 13:33 Wednesday, January 19, 2011 => 11:53 Friday, January 21 1109.05.S21Jan2011.EC0 (Regular)

Data type: Axle sensors - Separate (Count)

Profile:

Filter time: 0:00 Thursday, January 20, 2011 => 0:00 Friday, January 21, 2011

In profile: Events = 18105 / 33571 (53.93%)

* Thursday, January 20, 2011=18105, 15 minute drops

			an (Gar)																					
0000	0100	0200	0300																					
54	62	43	62																			281		
13	17	12	13	31	28	131																	40	-
17	14	12	11	34	62	171	309	323	206	247	273	308	299	294	312	321	362	263	233	167	116	72	56	-
16	14	9				220																57		-
8	17	10	26	66	170	281	356	246	250	246	311	346	313	299	302	323	327	250	172	145	97	55	29	-
A 84 Page -			0.44440		DUE-4																			

AM Peak 0730 - 0830 (1310), AM PHF=0.92

448 -- English (ENU)

Datasets:

Site: [1109.08] MARRON RD (QUARRY CREEK CENTER-COLLEGE BLVD) EASTBOUND

Input A:

6 - West bound A>B, East bound B>A. - Lane= 0, Excluded from totals.

Input B:

Survey Duration:

0 - Unused or unknown. - Lane= 0, Added to totals. (/2.000) 14:45 Monday, January 24, 2011 => 13:40 Wednesday, January 26, 2011 1109.0826Jan2011.EC0 (Regular)

File:

Data type:

Axle sensors - Paired (Class/Speed/Count)

Profile:

Filter time:

0:00 Tuesday, January 25, 2011 => 0:00 Wednesday, January 26, 2011

In profile:

Events = 16907 / 26895 (62.86%)

* Tuesday, January 25, 2011=9186, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0000	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
5	6	5	4	16	36	94	231	320	400	529	660	723	724	788	787	800	834	707	570	454	294	147	59
1	4	3	0	5	9	17	56	66	84	129	159	201	192	184	192	197	231	196	164	146	76	60	22
0	2	1	1	1	5	21	49	83	84	126	152	151	185	222	183	202	215	199	132	117	79	26	19
2	0	0	2	7	14	27	53	100	114	134	1,65	1.83	178	179	204	221	199	165	155	99	80	27	11
2	0	1	1	3	8	30	73	71	120	140	1,65	188	170	204	208	181	190	146	120	93	60	34	7

AM Peak 1115 - 1215 (702), AM PHF=0.87

448 -- English (ENU)

Datasets:

[1109.08] MARRON RD (QUARRY CREEK CENTER-COLLEGE BLVD) SOUTHBOUND 6 - West bound A>B, East bound B>A. - Lane= 0, Excluded from totals. Site:

Input A:

0 - Unused or unknown. - Lane= 0, Added to totals. (/2.000) Input B:

Survey Duration: 14:45 Monday, January 24, 2011 => 13:40 Wednesday, January 26, 2011

File: 1109.0826Jan2011.EC0 (Regular)

Axle sensors - Paired (Class/Speed/Count) Data type:

Profile:

Filter time: 0:00 Tuesday, January 25, 2011 => 0:00 Wednesday, January 26, 2011

In profile: Events = 16907 / 26895 (62.86%)

* Tuesday, January 25, 2011=9186, 15 minute drops

	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
	5	6	5	4	16	36	94	231	320	400	529	660	723	724	788	787	600	834	707	570	454	294	147	59
	1	4	3	0	5	9	17	56	66	84	129	159	201	192	184	192	197	231	198	164	146	76	60	22
	0	2	1	1	1	5	21	49	83	84	126	152	151	185	222	183	202	215	199	132	117	79	26	19
	2	0	0	2	7	14	27	53	100	114	134	185	183	178	179	204	221	199	165	155	99	80	27	11
	2	0	1	1	3	8	30	73	71	120	140	165	188	170	204	208	181	190	146	120	93	60	34	7
- /	M Per	ak 1114	i - 121	5 (702)	, AM F	HF=0.	87																	

447 -- English (ENU)

Datasets:

[1109.08] MARRON RD (QUARRY CREEK CENTER-COLLEGE BLVD) WESTBOUND 6 - West bound A>B, East bound B>A. - Lane= 0, Added to totals. (/2.000) Site:

Input A:

Input B:

0 - Unused or unknown. - Lane= 0, Excluded from totals.

Survey Duration:

14:45 Monday, January 24, 2011 => 13:40 Wednesday, January 26, 2011 1109.0826Jan2011.EC0 (Regular)
Axle sensors - Paired (Class/Speed/Count)

File:

Data type:

Profile:

Filter time:

0:00 Tuesday, January 25, 2011 => 0:00 Wednesday, January 26, 2011

In profile:

Events = 16907 / 26895 (62.86%)

* Tuesday, January 25, 2011=7722, 15 minute drops

			,,		,,			-,																
	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
	5	4	7	9	30	51	107	214	330	414	508	638	691	631	632	670	637	638	510	422	279	193	76	30
	1	2	2	4	2	8	14	41	86	85	114	162	165	162	151	166	155	177	134	113	89	49	27	14
	0	2	1		3																64			
	4	0	1	1	7	8	26	58	7 7	122	135	163	184	154	153	158	171	155	131	86	58	46	18	6
	0	0	3	_				74	85	113	136	171	168	151	158	197	148	1 51	113	96	69	36	11	4
- 1	IM Pas	ak 1148	5 . 124	E (BOA)	AM F	OHE=0	94																	

449 -- English (ENU)

Datasets:

Site:

[1109.09] LAKE BLVD (COLLEGE BLVD-THUNDER DR) EASTBOUND

Input A:

input B:

Survey Duration:

2 - East bound. - Lane= 0, Added to totals. (/2.000)
0 - Unused or unknown. - Lane= 0, Excluded from totals.
15:11 Monday, January 24, 2011 => 13:36 Wednesday, January 26, 2011
1109.09.E26Jan2011.EC0 (Regular)

File:

Data type:

Axle sensors - Separate (Count)

<u>Profile:</u> Filter time:

0:00 Tuesday, January 25, 2011 => 0:00 Wednesday, January 26, 2011

In profile:

Events = 7181 / 11908 (60.31%)

* Tuesday, January 25, 2011=7181, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
21	20	14	7	11	54	137	355	308	267	304	419	437	473	589	728	740	783	572	327	263	210	98	49	
10	6	5	0	1	14	13	80	109	65	74	83	116	117	125	17B	174	193	162	84	75	61	29	14	-
5	9	3	3	4	14	24	B7	77	55	80	98	110	119	148	159	179	214	145	86	52	58	19	13	-
2	1	3	1	5	13	45	76	71	71	70	121	112	117	133	182	188	180	158	87	80	56	30	15	-
4	4	3	3	1	13	56	113	52	77	80	118	100	121	183	209	199	196	108	70	57	35	20	7	-
AM Per	ak 1130	n - 123	0 (464)	AM F	HF=0	98																		

450 -- English (ENU)

Datasets:

[1109.09] LAKE BLVD (COLLEGE BLVD-THUNDER DR) WESTBOUND Site:

Input A:

4 - West bound. - Lane= 0, Added to totals. (/2.000)

Input B:

0 - Unused or unknown. - Lane= 0, Excluded from totals.

Survey Duration:

15:09 Monday, January 24, 2011 => 13:35 Wednesday, January 26, 2011 1109.09.W26Jan2011.EC0 (Regular)

File:

Data type:

Axle sensors - Separate (Count)

Profile:

Filter time:

0:00 Tuesday, January 25, 2011 => 0:00 Wednesday, January 26, 2011

In profile:

Events = 6632 / 10836 (61.20%)

* Tuesday, January 25, 2011=6632, 15 minute drops

0000	0100	ดวกก	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
0000	- 02.00	12	18	51	161	374	734	526	398	418	419	400	412	494	473	421	425	350	196	155	88	74	21
	3	1.2	1	7	26	64	1.60	123	110	100	111	94	105	111	113	97	96	120	54	49	20	21	8
2	2	1	<u>.</u>	á	30	77	173	115	105	99	100	96	83	130	119	109	93	79	48	36	24	21	4
1	2	4	5	17	51	110	207	134	92	108	102	114	115	131	117	116	131	64	44	30	20	20	7
7	4	2	2	10	5.4	12/	105	155	91	112	107	97	109	123	124	99	106	87	50	40	25	12	2
<u>+</u>								133	22		10,												

AM Peak 0700 - 0800 (734), AM PHF=0.89

713 -- English (ENU)

Datasets:

[1109.01] EL CAMINO REAL (CARLSBAD VILLAGE DR-MARRON RD) NORTHBOUND Site:

1 - North bound. - Lane= 0, Added to totals. (/2.000) Input A: Input B:

3 - South bound. - Lane= 0, Excluded from totals.
13:50 Monday, January 17, 2011 => 11:38 Wednesday, January 19, 2011
1109.,0119Jan2011.EC0 (Base) Survey Duration:

File: Axle sensors - Separate (Count) Data type:

Profile:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011 Filter time:

Events = 25766 / 45954 (56.07%) In profile:

* Tuesday, January 18, 2011=13123, 15 minute drops

				, .																				
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
50				46																				
22	10	11	6	1.3	33																		30	-
15	3	8	7	11	29	67	132	161	175	199	208	233	226	248	267	316	381	244	138	73	40	31	27	-
10	4	3	4	1.0	34	82	12B	146	169	199	201	274	233	301	281	336	358	212	114	65	52	32	12	-
3	10	8	6	1,2	48	103	215	176	206	179	278	218	227	301	296	361	329	162	105	72	38	31	13	-
AM Pag	sk 114	5 . 124	5 (102)	NA O	PHF=f	192																		

714 -- English (ENU)

Datasets:

[1109.01] EL CAMINO REAL (CARLSBAD VILLAGE DR-MARRON RD) SOUTHBOUND Site:

1 - North bound. - Lane= 0, Excluded from totals. Input A: Input B:

3 - South bound. - Lane= 0, Added to totals. (/2.000) 13:50 Monday, January 17, 2011 => 11:38 Wednesday, January 19, 2011 Survey Duration:

1109.,0119Jan2011.EC0 (Base) File: Axle sensors - Separate (Count) Data type:

Profile:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011 Filter time:

Events = 25766 / 45954 (56.07%) In profile:

* Tuesday, January 18, 2011=12643, 15 minute drops

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	y, 00				120	,																
0000	01.00	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
28		20			312		1202	910	675	649	679	872	854	845	880	952	977	710	506	349	262	135	69
1.0	4	6	5	18	26	87	201	237	165	154	145	194	235	230	225	241	259					50	
6	6	8	5	38	58	111	293	273	188	161	158	217			219					84			10
7	7	3	7	50	106	165	375	237	156	160	175	221	188	165	219	234	214	143	112	90	66	25	15
5	6	3	12	39	123	202	334	164	167	175	202	241	205	232	217	264	234	193	115	79	56	34	10
444.5	1.644	- 004	F (4000		DUITMO	102																	

AM Peak 0715 - 0815 (1239), AM PHF=0.83

716 -- English (ENU)

Datasets:

Site: [1109.02] EL CAMINO REAL (HAYMAR DR-SR-78 EB RAMPS) NORTHBOUND

1 - North bound. - Lane= 0, Added to totals. (/2.000) Input A: 0 - Unused or unknown. - Lane= 0, Excluded from totals. Input B:

14:24 Monday, January 17, 2011 => 11:34 Wednesday, January 19, 2011 Survey Duration:

File:

1109.02.N19Jan2011.EC0 (Regular) Axle sensors - Separate (Count) Data type:

Profile:

Filter time: 0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011

Events = 20257 / 35843 (56.52%) In profile:

* Tuesday, January 18, 2011=20257, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
79	46	52	28	67	185	496	746	889	915	1146	1307	1495	1500	1691	1609	1764	2055	1489	1028	679	616	264	115	
32	13	14	6	14																			51	-
20	11	13	11	18	44	118	180	199	252	289	321	366	355	397	385	457	558	393	266	186	162	62	32	-
17	5	14	7	15	42	116	178	204	215	308	313	398	379	469	421	400	487	388	271	162	140	59	16	-
10	17	12	5	20	63	163	234	209	257	274	386	386	383	443	431	488	482	305	219	153	83	43	17	-
AMI Das	L 11/1	5 . 424	E (4.40)	S) AM	PHF=(n Qui																		

717 -- English (ENU)

Datasets:

[1109.02] EL CAMINO REAL (HAYMAR DR-SR-78 EB RAMPS) SOUTHBOUND 3 - South bound. - Lane= 0, Added to totals. (/2.000) Site:

Input A:

Input B: Survey Duration: 0 - Unused or unknown. - Lane= 0, Excluded from totals.

14:22 Monday, January 17, 2011 => 11:31 Wednesday, January 19, 2011

1109.02.S19Jan2011.EC0 (Regular)

File:

Data type:

Axle sensors - Separate (Count)

Profile:

Filter time:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011 Events = 20294 / 35309 (57.47%)

in profile:

* Tuesday, January 18, 2011=20294, 15 minute drops

ı u	coua	y, Jai	ııuaı y	, 10,	70 I I.	-202.	/~, iu	,	uic u	10ba													
0000	01.00	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
68	42	41	46	168	395	698	1452	1267	1190	1245	1329	1481	1441	1377	1475	1,511	1511	1,21,5	873	638	430	244	123
26	- 6	В	1.0	27	50	107	265	321	320	277	272	320	390	379	365	387	364	329	250	192	134	75	51
15	10	14	9	30	81	156	346	359	271	316	338	387	373	385	372	384	393	326	219	178	116	53	24
15	11	13	11	53	130	202	426	332	291	318	334	389	325	296	363	398	344	273	192	143	98	54	28
12	15	-6	16	69	134	234	415	276	309	335	386	385	354	318	375	342	410	287	214	126	83	63	20
M Per	ak 0730	o - 083	0 (152)	D). AM	PHF=0	0.89																	

715 -- English (ENU)

Datasets:

[1109.03] EL CAMINO REAL (SR-78 WB RAMPS-VISTA WY) NORTHBOUND

Site: 1 - North bound. - Lane= 0, Added to totals. (/2.000) Input A:

0 - Unused or unknown. - Lane= 0, Excluded from totals. Input B: 14:49 Monday, January 17, 2011 => 11:42 Wednesday, January 19, 2011 Survey Duration:

1108.03.N19Jan2011.EC0 (Regular) File: Axle sensors - Separate (Count)

Data type:

Profile:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011

Filter time: Events = 27122 / 45430 (59.70%) In profile:

* Tuesday, January 18, 2011=27122, 15 minute drops

	esua	γ, οα	iiuai y	10,	20 I I	-21 14		, ,,,,,,,	410 4	·vpu													
0000	0100	0200	0.300	0400	0.500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
116	72	75	46	78	281	627	1061	1.384	1416	1502	1717	1978	1788	1994	2209	2357	2664	2005	1382	931	769	418	255
	22	10	20		36		199	383	3/12	382	395	485	477	4.65	539	551	664	563	388	249	243	144	100
37	21	19	40	7.2	50	133		314	349				440	443		593	665	537	326	243	210	120	76
32	11	22	12	17	65	100								527	562	576					191		46
24	13	19	7	19				310	359			500	•										22
2.4	22	15	8	30	115	240	339	378	366	382	465	477	15	560	575	639	000	4.39	318	241	150	57	23
A 50 Pt.		. 494	E 14000			n oE																	

AM Peak 1145 - 1245 (1966), AM PHF=0.95

718 -- English (ENU)

Datasets:

[1109.03] EL CAMINO REAL (SR-78 WB RAMPS-VISTA WY) SOUTHBOUND Site:

3 - South bound. - Lane= 0, Added to totals. (/2.000) Input A: 0 - Unused or unknown. - Lane= 0, Excluded from totals. Input B:

14:52 Monday, January 17, 2011 => 11:41 Wednesday, January 19, 2011 Survey Duration:

1109.03.S19Jan2011.EC0 (Base) File:

Axle sensors - Separate (Count) Data type:

Profile:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011 Filter time:

Events = 26737 / 45668 (58.55%) In profile:

* Tuesday, January 18, 2011=26737, 15 minute drops

		,, ~~		, ,			. ,	,																
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
8.9	72	47	55	309	734	1284	2040	1703	1503	1566	1768	1857	1781	1740	2045	1697	1076	1459	1122	815	622	367	193	
33	18	1.2	6	40	99	205	437	430	387	397	404	437	468	460	472	494	495	369	298	239	187	126	84	-
22	1.7	20	5	71	143	294	517	450	367	381	465	476	437	451	505	510	514	382	286	243	147	. 85	50	-
22	23	10	22	101	233	386	558	413	364	382	425	467	427	411	512	257	446	353	282	182	160	83	33	-
1.2	14	5	22	97	260	400	530	410	385	407	474	478	450	419	557	436	422	356	256	152	129	73	26	-
AM Pe:	sk 0700																							

719 -- English (ENU)

Datasets:

[1109.04] EL CAMINO REAL (VISTA WAY-VIA LAS ROSAS) NORTHBOUND

Input A:

Site:

1 - North bound. - Lane= 0, Added to totals. (/2.000)

input B:

Survey Duration:

3 - South bound. - Lane= 0, Excluded from totals. 15:29 Monday, January 17, 2011 => 11:36 Wednesday, January 19, 2011

File: Data type: 1109.0419Jan2011.EC0 (Regular) Axle sensors - Separate (Count)

Profile:

Filter time:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011 Events = 36675 / 60271 (60.85%)

In profile:

* Tuesday January 18, 2011=17938, 15 minute drops

		,,		, ,			,																
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
100	52	55	41	57	199	492	763	858	818	859	1014	1128	1161	1304	1471	1682	1821	1270	933	712	62B	335	193
																						131	
34	6	11	9	12	42	97	190	201	205	219	234	277	272	289	368	393	467	329	235	181	180	94	55
18	11	14	10	15	53	127	184	201	207	188	239	276	308	347	360	424	452	305	206	173	145	68	35
13	18	10	12	19	77	192	216	237	205	243	304	312	301	378	412	465	440	287	230	159	120	42	23

AM Peak 1145 - 1245 (1120), AM PHF=0.92

720 -- English (ENU)

Datasets:

[1109.04] EL CAMINO REAL (VISTA WAY-VIA LAS ROSAS) SOUTHBOUND Site:

Input A: Input B:

1 - North bound. - Lane= 0, Excluded from totals. 3 - South bound. - Lane= 0, Added to totals. (/2.000)

Survey Duration:

15:29 Monday, January 17, 2011 => 11:36 Wednesday, January 19, 2011 1109.0419Jan2011.EC0 (Regular)

File:

Data type:

Axle sensors - Separate (Count)

Profile:

Filter time:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011 Events = 36675 / 60271 (60.85%)

In profile:

* Tuesday, January 18, 2011=18737, 15 minute drops

14	400	31 VU	HUMI	, ,			,	, ,,,,,,,																
nnnn	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	50	37	51	257	598	1020	1698	1311	1178	1112	1258	1254	1140	1116	1264	1.236	1361	1022	642	457	306	189	125	
20	15		7	30	78	168	323	331	308	280	296	314	274	300	288	297	375	317	187	144	91	60	51	
23	13	10	6				450	337		285	326	313	290	278	287	352	416	261	164	126				
9	13	7	18	86	212	317	453	345	265	240	287			269									19	
8	9	8	21	77	200	325	473	298	289	308	350	307	327	271	376	307	277	186	128	82	60	45	20	
AM Pe	ak 071	5 - 081	5 (170	6), AM	PHF=0	3.90																		

731 -- English (ENU)

Datasets:

[1109.06] COLLEGE BLVD (PLAZA DR-SR-78 EB RAMPS) NORTHBOUND Site:

1 - North bound. - Lane= 0, Added to totals. (/2.000) Input A:

0 - Unused or unknown. - Lane= 0, Excluded from totals. Input B:

12:03 Wednesday, January 19, 2011 => 11:52 Friday, January 21, 2011 1109.06.N21Jan2011.EC0 (Base) Survey Duration:

File: Axle sensors - Separate (Count) Data type:

Profile:

0:00 Thursday, January 20, 2011 => 0:00 Friday, January 21, 2011 Filter time:

Events = 18134 / 34010 (53.32%) In profile:

* Thursday, January 20, 2011=18134, 15 minute drops

	4.54	2 7 , ~~		,,	~~,	,	, .	•		• P+														
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	41		48	88	279	595	884	1017	940	1001	1090	1307	1379	1386	1459	1411	1625	1190	796	617	457	281	145	
30	15	В	15	14	46	125	149	284	262	267	236	294	354	360	362	343	381	385	246	172	140	67	46	
15	5	14	15	19	57	149	185	239	221	252	281	310	354	339	379	346	420	309	225	145	129	83	28	
5	9	9	7	29	75	156	221	187	234	245	288	358	307	334	332	357	408	250	185	148	94	72	47	
13	13	В	12	26	102	166	330	309	224	237	287	346	365	354	386	366	417	246	140	153	95	60	24	
AM Pos	sk 1148	5 - 124	5 (124)	3). AM	PHF=(0.87																		

732 -- English (ENU)

Datasets:

[1109.06] COLLEGE BLVD (PLAZA DR-SR-78 EB RAMPS) SOUTHBOUND

Site: Input A:

3 - South bound. - Lane= 0, Added to totals. (/2.000) 0 - Unused or unknown. - Lane= 0, Excluded from totals.

input B:

Survey Duration:

12:06 Wednesday, January 19, 2011 => 12:01 Friday, January 21, 2011

File: Data type:

1109.06.S21Jan2011.EC0 (Regular) Axle sensors - Separate (Count)

Profile:

Filter time:

0:00 Thursday, January 20, 2011 => 0:00 Friday, January 21, 2011

In profile:

Events = 26750 / 49562 (53.97%)

* Thursday, January 20, 2011=26750, 15 minute drops

በበበበ	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
	69	61	0200	2/7	573	1167	1930	1672	1478	1488	1729	1887	1807	1877	1893	1938	1925	1557	115B	B 60	638	380	227
102	0.5	OT	9.3	2.0	3/3	TTO ,	T)		2470	2200													
27	23	16	20	40	62	179	401	392	349	346	398	481	450	486	503	460	481	438	332	242	168	128	63
		10												1.00	4.40	600	F 0.1	200	217	222	160	101	66
25	18	18	16	43	92	241	485	455	361	380	431	441	443	4 50	442	502	DUIT	396	373	233	102	TOI	66
	2.0											400		1.00	407	400	400	260	274	107	162	80	50
27	1 #	10	21	69	200	327	493	440	364	.383	408	459	4.38	400	491	403	499	202	214	121	103	00	59
21	7.7	7.0		4.5	200															400			4.0
23	15	17	37	96	220	420	552	386	405	379	493	507	477	464	452	493	444	352	240	189	146	11	40
AM Do	~k 070	0.00	0 (403)	ni AM	DHF=	1 R7																	

AM Peak 0700 - 0800 (1930), AM PHF≈0.87

733 -- English (ENU)

Datasets:

[1109.07] COLLEGE BLVD (VISTA WAY-BARNARD DR) NORTHBOUND

Site: Input A:

1 - North bound. - Lane= 0, Added to totals. (/2.000)

Input B:

0 - Unused or unknown. - Lane= 0, Excluded from totals.

Survey Duration:

13:53 Wednesday, January 19, 2011 => 11:58 Fnday, January 21, 2011

File: Data type: 1109.07.N21Jan2011.EC0 (Base) Axle sensors - Separate (Count)

<u>Profile:</u> Filter time:

0:00 Thursday, January 20, 2011 => 0:00 Friday, January 21, 2011

In profile:

Events = 18899 / 34676 (54.50%)

* Thursday, January 20, 2011≂18899, 15 minute drops

, , , ,	4134	ay, o	111441	y 20,			, .	•			-										0 4 0 0	0000	0000
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
126	70	48	50	72	100	491	826	931	877	972	1074	1.153	1242	1468	1571	1604	1048	TAUU	909	113	030	44/	230
47	10	12			37	67	163	238	207	22.7	256	227	293	344	361	404	398	417	270	202	166	125	78
20	12	17	11	17	15	111	172	232	205	245	233	308	305	349	389	360	421	384	254	196	169	119	60
30	, ,	т/	7.7	1/	43	1177	117	272	202	210	200	210	205	301	401	401	415	310	255	198	159	117	62
27	22	7	12	22	52	136	225	213	422	213	290	313	290	204	401	440	410	200	21.0	170	1/3	97	50
23	20	12	11	15	56	175	269	249	239	286	288	300	350	392	4 Z T	940	41.5	290	210	1/3	143	٠,٠	50
23	20	12	YY	1.3	20	110	203	243	23,	200													

AM Peak 1145 - 1245 (1141), AM PHF=0.90

734 -- English (ENU)

Datasets:

Site: [1109.07] COLLEGE BLVD (VISTA WAY-BARNARD DR) SOUTHBOUND

Input A: 3 - South bound. - Lane= 0, Added to totals. (/2.000)
Input B: 0 - Unused or unknown. - Lane= 0, Excluded from totals.

Survey Duration: 13:52 Wednesday, January 19, 2011 => 11:50 Friday, January 21, 2011

File: 1109.07.S21Jan2011.EC0 (Regular)
Data type: Axle sensors - Separate (Count)

Profile:

Filter time: 0:00 Thursday, January 20, 2011 => 0:00 Friday, January 21, 2011

In profile: Events = 18673 / 34949 (53.43%)

* Thursday, January 20, 2011=18673, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
65	57	45	71	240	615	1189	1684	1286	1046	1123	1145	1151	1194	1160	1235	1265	1308	971	656	465	336	235	134
17	13	7	12	37	83	204	374	322	258	283	310	295	280	266	367	291	323	234	198	134	93	88	46
21	18	14	9	50	108	277	447	320	267	266	273	274	280	303	285	336	366	242	155	131	81	58	34
15	13	б	21	64	222	350	403	326	249	301	260	303	327	288	277	327	336	253	165	97	87	43	29
12	13	18	30	89	203	359	461	318	273	274	303	280	300	304	307	312	285	243	138	103	76	48	26
A 14 Po					DUID-6																		

AM Peak 0700 - 0800 (1684), AM PHF=0.91

452 -- English (ENU)

Datasets:

[1109.10] PLAZA DR (COLLEGE BLVD-SR-78 EB RAMPS) EASTBOUND Site:

Input A:

Input B:

4 - West bound. - Lane= 0, Excluded from totals.
2 - East bound. - Lane= 0, Added to totals. (/2.000)
16:24 Monday, January 24, 2011 => 13:33 Wednesday, January 26, 2011
1109.1026Jan2011.EC0 (Regular)
Axle sensors - Separate (Count)

Survey Duration:

File: Data type:

Profile:

0:00 Tuesday, January 25, 2011 => 0:00 Wednesday, January 26, 2011 Filter time:

in profile:

Events = 22063 / 32514 (67.86%)

* Tuesday, January 25, 2011=14970, 15 minute drops

,		,,		,			-,														0400	0000	0200
በበበበ	0100	0200	03.00	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
52	34	28	10	90	220	490	936	941	864	956	1050	1076	1086	106B	1190	1166	1076	84.6	611	461	420	1/1	TU/
	17			11	41	6.1	188	271	198	218	239	268	254	269	317	296	278	244	153	123	120	61	36
14	17	,	_	11	41	0.4	100	211	100	210	233	0.40	000	0.46	200	200	0.50	21.0	1.61	120	11/	41	30
15	8	б	5	14	51	102	237	236	214	241	276	249	282	248	302	280	200	2 T G	TOT	123	77.4	4.7	30
2.5	-			22	60	1/16	250	108	2/3	228	258	273	281	272	313	321	279	227	136	118	93	32	23
13	,	- 0	J.	26	0.0	747	233	130	273	220			202	056	0.50	0.50	057	150	1.00	111	0.5	20	10
9	2	10	6	33	69	169	252	237	209	271	278	287	269	279	259	269	251	128	102	777	93	30	18

AM Peak 1115 - 1215 (1079), AM PHF=0.97

451 -- English (ENU)

Datasets:

Site: [1109.10] PLAZA DR (COLLEGE BLVD-SR-78 EB RAMPS) WESTBOUND

Input A: 4 - West bound. - Lane= 0, Added to totals. (/2.000)

Input B: 2 - East bound. - Lane= 0, Excluded from totals.

Survey Duration: 16:24 Monday, January 24, 2011 => 13:33 Wednesday, January 26, 2011

File: 1109.1026Jan2011.EC0 (Regular)
Data type: Axle sensors - Separate (Count)

Profile:

Filter time: 0:00 Tuesday, January 25, 2011 => 0:00 Wednesday, January 26, 2011

in profile: Events = 22063 / 32514 (67.86%)

* Tuesday, January 25, 2011=7093, 15 minute drops

0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
22	7	6	19	67	177	266	337															38
6	0	0	1	10	30	60	75	84	89	127	142	151	145	158	155	142	121	90	87	52	31	13
7	4	1	3	12	49	65	82	89	102	126	158	137	145	143	119	157	127	73	63	45	18	7
2	1	2	9	19	44	63	91	89	138	138	179	177	142	144	140	152	115	76	55	35	22	11
7	2	3	6	26	55	79	90	91	118	145	162	134	142	142	153	128	97	63	41	33	16	7
	0100 22 6 7 2 7	0100 0200 22 7 6 0 7 4 2 1 7 2	22 7 6	22 7 6 19 6 0 0 1 7 4 1 3 2 1 2 9	22 7 6 19 67 6 0 0 1 10 7 4 1 3 12 2 1 2 9 19	22 7 6 19 67 177 6 0 0 1 10 30 7 4 1 3 12 49 2 1 2 9 19 44	22 7 6 19 67 177 266 6 0 0 1 10 30 60 7 4 1 3 12 49 65 2 1 2 9 19 44 63	22 7 5 19 67 177 266 337 6 0 0 1 10 30 60 75 7 4 1 3 12 49 65 82 2 1 2 9 19 44 63 91	22 7 6 19 67 177 266 337 353 6 0 0 1 10 30 60 75 84 7 4 1 3 12 49 65 82 89 2 1 2 9 19 44 63 91 89	22 7 6 19 67 177 266 337 353 446 6 0 0 1 10 30 60 75 84 89 7 4 1 3 12 49 65 82 89 102 2 1 2 9 19 44 63 91 89 138	22 7 5 19 67 1,77 266 337 353 446 535 6 0 0 1 10 30 60 75 84 89 127 7 4 1 3 12 49 65 82 89 102 126 2 1 2 9 19 44 63 91 89 138 138	22 7 6 19 67 177 266 337 353 446 535 640 6 0 0 1 10 30 60 75 84 89 127 142 7 4 1 3 12 49 65 82 89 102 126 158 2 1 2 9 19 44 63 91 89 138 138 139	22 7 6 19 67 177 266 337 253 446 535 640 599 6 0 0 1 10 30 60 75 84 89 127 142 151 7 4 1 3 12 49 65 82 89 102 126 158 137 2 1 2 9 19 44 63 91 89 138 138 139 179 177	22 7 6 19 67 177 266 337 353 446 535 640 599 574 6 0 0 1 10 30 60 75 84 89 127 142 151 145 7 4 1 3 12 49 65 82 89 102 126 158 137 145 2 1 2 9 19 44 63 91 89 138 138 179 177 142	22 7 5 19 67 177 266 337 353 446 535 640 599 574 587 6 0 0 1 10 30 60 75 84 89 127 142 151 145 158 7 4 1 3 12 49 65 82 89 102 126 158 137 145 143 2 1 2 9 19 44 63 91 89 138 138 179 177 142 144	22 7 6 19 67 177 266 337 353 446 535 640 599 574 587 567 6 0 0 1 10 30 60 75 84 89 127 142 151 145 158 155 7 4 1 3 12 49 65 82 89 102 126 158 137 145 143 119 2 1 2 9 19 44 63 91 89 138 138 179 177 142 144 140	22 7 6 19 67 177 266 337 253 446 535 640 599 574 587 567 579 6 0 0 1 10 30 60 75 84 89 127 142 151 145 158 155 142 7 4 1 3 12 49 65 82 89 102 126 158 137 145 143 119 157 2 1 2 9 19 44 63 91 89 138 138 179 177 142 144 140 152	22 7 6 19 67 177 266 337 353 446 535 640 599 574 587 567 579 459 6 0 0 1 10 30 60 75 84 89 127 142 151 145 156 155 142 121 7 4 1 3 12 49 65 82 89 102 126 158 137 145 143 119 157 127 2 1 2 9 19 44 63 91 89 138 138 179 177 142 144 140 152 115	22 7 5 19 67 177 266 337 353 446 535 640 599 574 587 567 579 459 301 6 0 0 1 10 30 60 75 84 89 127 142 151 145 158 155 142 121 90 7 4 1 3 12 49 65 82 89 102 126 158 137 145 143 119 157 127 73 2 1 2 9 19 44 63 91 89 138 138 179 177 142 144 140 152 115 76	22 7 6 19 67 177 266 337 353 446 595 640 599 574 587 567 579 459 301 245 6 0 0 1 10 30 60 75 84 89 127 142 151 158 155 142 121 90 87 7 4 1 3 12 49 65 82 89 102 126 158 137 145 143 119 157 127 73 63 2 1 2 9 19 44 63 91 89 138 138 179 177 142 144 140 152 115 76 55	22 7 6 19 67 177 266 337 253 446 535 640 599 574 587 567 579 459 301 245 165 6 0 0 1 1 3 0 60 75 84 89 127 142 151 145 155 142 121 90 87 52 7 4 1 3 12 49 65 82 89 102 126 158 137 145 143 119 157 127 73 63 45 2 1 2 9 19 44 63 91 89 138 139 177 142 144 140 152 115 76 55 35	6 0 0 1 10 30 60 75 84 89 127 142 151 145 158 155 142 121 90 87 52 31 7 4 1 3 12 49 65 82 89 102 126 158 137 145 143 119 157 127 73 63 45 18

AM Peak 1145 - 1246 (623), AM PHF=0.87

453 -- English (ENU)

Datasets:

[1109.11] PLAZA DR (SR-78 EB RAMPS-THUNDER DR) EASTBOUND Site:

input A:

Input B:

2 - East bound. - Lane= 0, Added to totals. (/2.000)
0 - Unused or unknown. - Lane= 0, Excluded from totals.
15:52 Monday, January 24, 2011 => 13:41 Wednesday, January 26, 2011
1109.11.E26Jan2011.EC0 (Base) Survey Duration:

File: Axle sensors - Separate (Count) Data type:

Profile:

0:00 Tuesday, January 25, 2011 => 0:00 Wednesday, January 26, 2011 Filter time:

Events = 5745 / 8546 (67.22%) In profile:

* Tuesday, January 25, 2011=5745, 15 minute drops

0000 0100 0200 030	0 0400 0500	0600 0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
25 15 14	7 9 29	81 140	218	255	338	439	515	493	4 68	481	542	504	435	282	188	148	80	44	
5 6 3	0 0 4	B 22	58	53	82	119	113	116	120	131	124	135	129	78	45	45	26	14	
5 4 4	1 1 9	15 34	60	60	77	117	129	131	98	139	140	130	118	81	58	39	21	14	
10 1 4	4 3 9	24 40	46	58	85	100	120	121	122	108	130	116	90	54	49	39	21	10	
5 4 3	2 4	34 45	55	85	95	105	154	126	129	104	149	123	99	69	36	25	12	6	

AM Peak 1145 - 1245 (466), AM PHF=0.91

454 -- English (ENU)

Datasets:

Site:

[1109.11] PLAZA DR (SR-78 EB RAMPS-THUNDER DR) WESTBOUND

Input A:

4 - West bound. - Lane= 0, Added to totals. (/2.000) 0 - Unused or unknown. - Lane= 0, Excluded from totals.

Input B:

Survey Duration:

15:48 Monday, January 24, 2011 => 13:44 Wednesday, January 26, 2011 1109.11.W26Jan2011.EC0 (Regular)

File:

Data type:

Axle sensors - Separate (Count)

Profile:

Filter time:

0:00 Tuesday, January 25, 2011 => 0:00 Wednesday, January 26, 2011

In profile:

Events = 6220 / 9278 (67.03%)

* Tuesday, January 25, 2011=6220, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
17	13	8	5	26	81	187			313	435	467	520	531	479	462	503	512	392	243	181	114	58	35	
5	3	2	1	2	13	39	64	80	83	99	111	124	127	108	115	150	122	110	64		33			
4	5	3	0	3	9	41	67	79	67	89	105	136	118	114	114	96	146	95	73	51	36	16	10	
5	2	2	ō	1.6	28	49	90	86	78	117	116	128	157	124	112	127	124	99	52	45	29	13	12	
3	5	1	4	5	31	59	90	88	85	131	136	132	130	133	122	130	120	88	54	29	17	12	5	
AM Pea	ık 114	5 - 124	5 (524), AM F	'HF=0.	96																		

721 -- English (ENU)

Datasets:

Site: [1109.12] VISTA WAY (JEFFERSON ST-EL CAMINO REAL) EASTBOUND

Input A:

2 - East bound. - Lane= 0, Added to totals. (/2.000)

Input B:

0 - Unused or unknown. - Lane= 0, Excluded from totals. 17:01 Monday, January 17, 2011 => 11:33 Wednesday, January 19, 2011

Survey Duration:

1109.12.E19Jan2011.EC0 (Base)

File: Data type:

Vehicle sensors - Separate (Count)

Profile:

Filter time:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011

In profile:

Events = 8204 / 12125 (67.66%)

* Tuesday January 18, 2011=8204, 15 minute drops

IU	y şua	y, Ja	nuar)	, 10,	20 I I -	-0204	, ,,,,,	mu		JPO														
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
20	10	4	6	1.4	37	61	112	219	334	481	572	693	708	721	703	691	791	628	588	403	243	121	48	
11	2	0	3	3	В	1.1	24	40	75	105	127	143	199	160					172			47		
1	1	ň	. 0	3	Ř	9	20	46	72	116	140	1.62	195	190	159	161	208	176	144	117	74	36	11	
A	4	2	1	4	14	14	31	52	82	122	167	185	159	186	176	195	202	140	145	78	56	22	6	
1	2	2	2	1	7	27	38	82	106	139	139	203	156	185	185	155	195	153	128	91	37	16	9	
	٠			- 4	,	2. 1	50	02	200	100			~											

AM Peak 1145 - 1245 (629), AM PHF=0.85

722 -- English (ENU)

Datasets:

[1109.12] VISTA WAY (JEFFERSON ST-EL CAMINO REAL) WESTBOUND Site:

Input A: Input B:

4 - West bound. - Lane= 0, Added to totals. (/2.000) 0 - Unused or unknown. - Lane= 0, Excluded from totals.

Survey Duration:

17:00 Monday, January 17, 2011 => 11:41 Wednesday, January 19, 2011 1109.12.W19Jan2011.EC0 (Base)

File: Data type:

Axle sensors - Separate (Count)

Profile:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011 Events = 7375 / 10880 (67.78%) Filter time:

in profile:

* Tuesday, January 18, 2011=7375, 15 minute drops

							-, 0, 0																		
	0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
	10	6	6	6	17	57	.92	189	255	402	543	631	706	606	591	612	597	602	574	395	262	135	55	28	
•	2	5	0	1	2	7	16	46	58	82	146	110	177	153	140	152	139	130	144	110	72	38	17	9	-
	1	0	4	3	5	12	13	42	65	93	132	180	176	151	146	149	155	155	166	102	75	38	12	11	-
	4	1	O	0	3	13	29	48	61	125	115	176	185	128	141	158	150	164	130	102	53	33	12	6	~
	3	0	2	2	7	25	35	54	72	103	150	166	169	175	165	154	153	153	127	81	64	26	14	2	-
	AM Per	ak 114	5 - 124	6 (703), AM F	PHF=0.	95																		

723 -- English (ENU)

Datasets:

[1109.13] VISTA WAY (EL CAMINO REAL-RANCHO DEL ORO DR) EASTBOUND

Site: Input A:

Input B: Survey Duration: 2 - East bound. - Lane= 0, Added to totals. (/2.000)
0 - Unused or unknown. - Lane= 0, Excluded from totals. 15:52 Monday, January 17, 2011 => 11:31 Wednesday, January 19, 2011

1109.13.E19Jan2011.EC0 (Base)

File: Data type:

Axle sensors - Separate (Count)

Profile:

Filter time:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011

In profile:

Events = 7666 / 11883 (64.51%)

* Tuesday, January 18, 2011=7666, 15 minute drops

		,, v					,														~ ~ ~ ~	0000	0200
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
27	1.7	13	7	8	42	115	210	320	375	446	451	555	563	610	680	690	871	601	375	279	227	121	98
	- 5	2	5	3	4	2.4	46	85	76	104	127	128	141	137	193	155	222	200	99	85	76	25	25
6	4	5	2	ก	7	19	48	74	97	110	106	122	163	131	137	150	256	159	103	71	53	39	21
٥		3	ก	2	13	35	42	71	106	113	113	158	117	194	182	214	202	129	86	52	58	33	13
5	3	3	n	3	18			91														24	
		·	U	_	10	٠,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															

AM Peak 1145 - 1245 (513), AM PHF=0.81

724 -- English (ENU)

Datasets:

[1109.13] VISTA WAY (EL CAMINO REAL-RANCHO DEL ORO DR) WESTBOUND Site:

Input A:

Input B:

4 - West bound. - Lane= 0, Added to totals. (/2.000)
0 - Unused or unknown. - Lane= 0, Excluded from totals.
15:50 Monday, January 17, 2011 => 11:30 Wednesday, January 19, 2011
1109.13.W19Jan2011.EC0 (Regular) Survey Duration:

File:

Axle sensors - Separate (Count) Data type:

Profile:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011 Filter time:

Events = 7664 / 12060 (63.55%) in profile:

* Tuesday, January 18, 2011=7664, 15 minute drops

IUCOU	July 1	,		, .			,										4000		1000	0000	0100	2200	2200
0000 010	າດັດ	200 (าลกกั	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1900	1900	2000	ZIUU.	2200	2300
17 1		B		EΩ	140	208	601	470	531	570	592	624	551	570	623	534	232	424	4.50	T20	102	04	
												4 4 4	216	4 2 7	176	100	150	133	50	30	33	20	12
6	5	1	- 1	g	27	4.5	116	107	119	132	116	160	TFP	13/	1/0	129	150	123	30	33	JZ	20	
U	_		-		=:			4.00		170	2.61	170	146	120	3 4 4	1/1	136	112	62	49	18	1.4	5
-3	2	.5	- 3	9	30	60	121	122	TT /	132	TOT	T/0	140	130	144	Tar	100	212	02				-
-			-					100	150	140	140	125	142	145	359	7 / 12	132	78	67	41	23	17	7
7	1	1.	- 7	12	30	TOO	125	777	126	140	149	120	142	140	130	140		, 0					-
	-							100	120	166	1.07	151	156	151	147	116	115	102	57	30	29	13	5
1	"	1	6	20	ÐΙ	93	T39	120	139	TOO	701	T-0-T	100	101	44,	220							

AM Peak 1130 - 1230 (653), AM PHF=0.92

726 -- English (ENU)

Datasets:

Site: [1109.14] VISTA WAY (RANCHO DEL ORO DR-COLLEGE BLVD) EASTBOUND

Input A:

4 - West bound. - Lane= 0, Excluded from totals. 2 - East bound. - Lane= 0, Added to totals. (/2.000)

Input B: Survey Duration:

16:06 Monday, January 17, 2011 => 11:33 Wednesday, January 19, 2011

File:

1109.1419Jan2011.EC0 (Regular)

Data type:

Axle sensors - Separate (Count)

Profile:

Filter time:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011

In profile:

Events = 13600 / 20599 (66.02%)

* Tuesday, January 18, 2011=6640, 15 minute drops

		,,	,,	, ,			.,																
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
16	7	12	20	21	68	204	434	413	354	456	410	466	523	529	526	559	652	378	201	162	122	73	40
7	0	- 5	9	3	7	25	84	112	73	90	117	120	142	114	162	128	177	119	59	52	41	17	13
2	3	3	3	3	19	46	123	98	84	126	110	103	114	124	114	132	165	120	58	37	29	21	9
4	4	2	1	8	25	60	107	93	108	124	93	119	126	157	132	156	169	74	42	31	30	21	13
3	0	2	7	7	17	73	121	110	90	118	90	124	141	135	119	144	142	65	42	42	22	14	5

AM Peak 1015 - 1115 (483), AM PHF=0.98

725 -- English (ENU)

Datasets:

[1109.14] VISTA WAY (RANCHO DEL ORO DR-COLLEGE BLVD) WESTBOUND Site:

4 - West bound. - Lane= 0, Added to totals. (/2.000) Input A:

Input B: 2 - East bound. - Lane= 0, Excluded from totals.

Survey Duration: 16:06 Monday, January 17, 2011 => 11:33 Wednesday, January 19, 2011

1109.1419Jan2011.EC0 (Regular) File: Axle sensors - Separate (Count) Data type:

<u>Profile:</u> Filter time: 0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011

In profile: Events = 13600 / 20599 (66.02%)

* Tuesday, January 18, 2011=6961, 15 minute drops

0000	0100	0200	0300	0400	0500	0600	0700	0000	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
28				29																			
10	4	4	3	3	10	28	67	89	100	95	105	133	135	128	141	143	147	122	59	45	35	18	8
6	1	6	3	6	17	30	60	118	114	120	157	136	132	147	135	134	1.38	97	65	42	38	25	₿
6	2	1	3	9	23	56	84	95	126	130	130	133	135	150	140	162	159	64	69	38	29	20	14
6	1	4	3	11	33	72	121	117	120	127	138	135	145	155	146	133	115	93	52	36	34	16	9

AM Peak 1115 - 1215 (558), AM PHF=0.89

727 -- English (ENU)

Datasets:

[1109.15] VISTA WAY (COLLEGE BLVD-TRI CITY HOSPITAL DR) EASTBOUND Site:

2 - East bound. - Lane= 0, Added to totals. (/2.000) input A: 0 - Unused or unknown. - Lane= 0, Excluded from totals. Input B:

16:31 Monday, January 17, 2011 => 11:40 Wednesday, January 19, 2011 1109.15.E19Jan2011.EC0 (Regular) Survey Duration:

File:

Axle sensors - Separate (Count) Data type:

Profile:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011 Filter time:

Events = 8206 / 12153 (67.53%) in profile:

* Tuesday, January 18, 2011=8206, 15 minute drops

144	coue,	y, Ja	iiuai j	, ,,,	2011	-OLU	J, 10		w u.,	-pu														
0000	01.00	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
38	18	24	23	29	93	284		611					657		637	590	580	438	277	184	135	93	70	
12	5	6	11	3	7	27	76	196	129	130	117	130	158	168	163	153	155	115	72	45	36	18	18	_
-8	3	7	5	6	19	36	127	140	121	130	152	156	154	164	164	125	142	114	71	61	34	32	20	-
6	4	5	1	10	27	75	136	117	122	132	129	140	162	171	159	150	149	87	69	42	32	21	22	_
12	6	6	7	10	40	146	210	158	168	171	109	166	183	181	152	163	135	123	65	37	34	22	10	-
444 0-	. 1. 072		n 100a		11 IT-0	a4																		

AM Peak 0730 - 0830 (682), AM PHF=0.81

728 -- English (ENU)

Datasets:

[1109.15] VISTA WAY (COLLEGE BLVD-TRI CITY HOSPITAL DR) WESTBOUND Site:

Input A:

4 - West bound. - Lane= 0, Added to totals. (/2.000)

Input B:

0 - Unused or unknown. - Lane= 0, Excluded from totals.

Survey Duration:

16:29 Monday, January 17, 2011 => 11:35 Wednesday, January 19, 2011

File:

1109.15.W19Jan2011.EC0 (Regular)

Data type:

Axle sensors - Separate (Count)

Profile:

Filter time:

0:00 Tuesday, January 18, 2011 => 0:00 Wednesday, January 19, 2011

In profile:

Events = 7891 / 11667 (67.64%)

* Tuesday January 18, 2011=7891, 15 minute drops

i ju	apria.	y, Ja	nuary	, 10,	Z O 1 1.	-105	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		OPO													0000	
0000	0100	กรถก	0300	0400	0500	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
41	10	9200	24	41	112	221	436	428	473	528	616	642	502	714	692	673	625	374	270	184	125	75	73	
**		10							103			193		164	174	173	215	115	61	62	26	23	16	_
14	8	2	7	4	9	38	65	122													43	2.4	1.5	
O	3	٦.	5	11	24	50	79	111	129	137	139	152	108	166	175	156	158	99	59	48	4.5	1.4	12	_
		_		3.0	2.0	50	133	105	129	141	155	158	133	200	174	177	139	88	86	4.3	29	27	23	
10	5	3	4	Tρ	32	59	133								2,72					22	27	- 1 - 1	19	
8	3	10	8	10	48	75	160	91	112	106	164	139	132	186	159	167	114	72	64	33	21	TT	19	_
AM Do	ab 4441	6 - 494	E (GBG	AM D	NE=0	86																		

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.01.EL CAMINO REAL.VISTA WY Site Code: 00000000 Start Date: 1/18/2011 Page No: 1

ed- Vehicles

	EI	CAMIN	O REAL			VISTA			E	L CAMIN Northb	O REAL			VISTA			
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tota
07:00	11	305	22	1	122	20	15	0	1.1	147	19	0	4	9	12	1	699
07:15	14	433	11	-1	85	28	23	2	17	172	50	0	3	8	7	0	854
07:30	18	443	12	1	104	21	14	0	17	190	50	0	2	8	17	0	89
07:45	26	437	17	0	108	33	16	1	27	223	83	0	7	14	17	0	100
Total	69	1618	62	3	419	102	68	3	72	732	202	0	16	39	53	1	345
08:00	19	330	17	1	97	25	15	0	45	226	88	1	10	15	24	0	91
08:15	16	335	17	0	86	35	18	1	29	196	63	2	10	12	21	3	84
08:30	21	306	20	4	96	31	24	2	28	199	45	1	8	14	31	1	83
08:45	24	287	28	2	83	36	19	0	47	231	72	0	10	· 23	33	2	89
Total	80	1258	82	7	362	127	76	3	149	852	268	4	38	64	109	6	348
BREAK ***																	
16:00	41	295	43	0	72	44	25	1	106	337	96	0	49	56	94	0	125
16:15	31	284	53	0	86	52	29	0	103	350	105	1	43	43	108	0	128
16:30	40	261	32	2	103	53	34	1	90	362	116	0	53	75	91	0	131
16:45	29	292	38	0	78	45	31	2	117	424	110	2	46	53	75	1	134
Total	141	1132	166	2	339	194	119	4	416	1473	427	3	191	227	368	1	520
17:00	42	307	37	0	92	53	40	1	97	407	142	1	37	67	93	1	141
17:15	51	347	46	0	84	59	30	0	95	438	148	0	42	101	94	0	153
17:30	42	263	41	0	90	48	30	0	117	419	122	0	52	87	92	0	140
17:45	33	239	45	0	69	39	26	0	113	393	143	1	44	73	102	0	132
Total	168	1156	169	0	335	199	126	1	422	1657	555	2	175	328	381	1	567
Grand Total	458	5164	479	12	1455	622	389	11	1059	4714	1452	9	420	658	911	9	1782
Apprch %	7.5	84.5	7.8	0.2	58.7	25.1	15.7	0.4	14.6	65.2	20.1	0.1	21	32.9	45.6	0.5	
Approi 70					8.2	3.5	2.2	0.1	5.9	26.5	8.1	0.1	2.4	3.7	5.1	0.1	

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.01.EL CAMINO REAL.VISTA WY Site Code: 00000000 Start Date: 1/18/2011 Page No : 2

			AMINC	REAL und				ISTA I					AMINO	REAL				ISTA I	19, 54		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
Peak Hour Analy	sis Fron	07:00 t	11:45 -	Peak 1 o	f 1					1.5541					3.240					10101	,,,,,,
Peak Hour fo	r Entire	e Inters	section	Begins	at 07:1	5															
07:15	14	433	11	1	459	85	28	23	2	138	17	172	50	0	239	3	8	7	0	18	854
07:30	18	443	12	1	474	104	21	14	0	139	17	190	50	0	257	2	8	17	0	27	897
07:45	26	437	17	0	480	108	33	16	1	158	27	223	83	0	333	7	14	17	0	38	1009
08:00	19	330	17	1	367	97	25	15	0	137	45	226	88	1	360	10	15	24	0	49	913
Total Volume	77	164 3	57	3	1780	394	107	68	3	572	106	811	271	1	1189	22	45	65	0	132	3673
% App. Total	4.3	92.3	3.2	0.2		68.9	18.7	11.9	0.5		8.9	68.2	22.8	0.1		16.7	34.1	49.2	0		
PHF	.740	.927	.838	.750	.927	.912	.811	.739	.375	.905	.589	.897	.770	.250	.826	.550	.750	.677	.000	.673	.910

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.01.EL CAMINO REAL.VISTA WY Site Code: 00000000 Start Date: 1/18/2011 Page No : 3

	17		AMINC	REAL und			0.00	ISTA V					AMINO	REAL und				ISTA \ astbou	7.1		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analy	sis From	12:00 to	0 17:45 -	Peak 1 o	f 1					17,770,50											
Peak Hour fo	r Entire	e Inters	section	Begins	at 16:4	15														53.50	
16:45	29	292	38	0	359	78	45	31	2	156	117	424	110	2	653	46	53	75	1	175	1343
17:00	42	307	37	0	386	92	53	40	1	186	97	407	142	1	647	37	67	93	1	198	1417
17:15	51	347	46	0	444	84	59	30	0	173	95	438	148	0	681	42	101	94	0	237	1535
17:30	42	263	41	0	346	90	48	30	0	168	117	419	122	0	658	52	87	92	0	231	1403
Total Volume	164	120 9	162	0	1535	344	205	131	3	683	426	168 8	522	3	2639	177	308	354	2	841	5698
% App. Total	10.7	78.8	10.6	0		50.4	30	19.2	0.4		16.1	64	19.8	0.1		21	36.6	42.1	0.2		
PHF	.804	.871	.880	.000	.864	.935	.869	.819	.375	.918	.910	.963	.882	.375	.969	.851	.762	.941	.500	.887	.928

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.02.EL CAMINO REAL.SR-78 WB RAMPS Site Code: 00000000 Start Date: 1/18/2011 Page No: 1

Groups Printed- Vehicles

Start Time	EL CAMINO REAL Southbound				SR-78 WB RAMPS Westbound				EL CAMINO REAL Northbound				SR-78 WB RAMPS Eastbound				
	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tota
07:00	0	302	130	0	55	0	67	0	34	112	0	0	0	0	0	1	70
07:15	0	414	103	0	62	0	87	0	30	140	0	0	0	0	0	0	83
07:30	0	439	110	0	93	0	85	0	29	160	0	0	0	0	0	0	91
07:45	0	459	119	0	101	0	121	0	28	207	0	0	0	0	0	0	103
Total	0	1614	462	0	311	0	360	0	121	619	0	0	0	0	0	1	34
08:00	0	346	106	0	81	0	103	0	38	241	0	0	0	0	0	0	9
08:15	0	348	75	0	91	0	104	0	29	180	0	0	0	0	0	2	8:
08:30	0	313	106	0	105	0	111	1	31	159	0	0	0	0	0	1	8
08:45	0	297	117	0	96	0	126	0	27	215	0	0	0	0	0	1	8
Total	0	1304	404	0	373	0	444	1	125	795	0	0	0	0	0	4	34
16:00	0	364	100	1	131	0	166	1	42	354	0	0	0	0	0	1	11
16:15	0	350	118	0	115	0	161	0	55	374	0	0	0	0	0	0	11
16:30	0	324	133	0	123	0	165	1	48	394	0	0	0	0	0	1	11
16:45	0	323	118	0	113	0	180	0	51	465	0	0	0	0	0	2	12
Total	0	1361	469	1	482	0	672	2	196	1587	0	0	0	0	0	4	47
17:00	0	371	122	0	108	0	174	1	44	474	0	0	0	0	0	0	12
17:15	0	382	125	0	103	0	177	0	26	480	0	0	0	0	0	2	12
17.10	0	326	110	0	106	0	177	0	41	461	0	0	0	0	0	0	12
17:30	-	045	102	0	122	0	162	1	54	477	0	0	0	0	0	2	12
7.0.70-2.1	0	315				0	690	2	165	1892	0	0	0	0	0	4	50
17:30	7.7	1394	459	0	439	U	222										
17:30 17:45 Total	0			1	1605	0	2166	5	607	4893	0	0	0	0	0	13	167
17:30 17:45 Total	0	1394	459	3.7			2002	5 0.1	607 11 3.6	4893 89 29.2	0	0	0 0	0 0 0	0	13 100 0.1	167

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.02.EL CAMINO REAL.SR-78 WB RAMPS Site Code: 00000000

Site Code : 00000000 Start Date : 1/18/2011 Page No : 2

			AMINO	REAL und	-		200	WB F	RAMPS and				AMINC	REAL und				WB F	RAMPS		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analy						7															
Peak Hour fo	r Entire	Inters	section	Begins	s at 07:1	15									5.79 cm /					7.1	
07:15	0	414	103	0	517	62	0	87	0	149	30	140	0	0	170	0	0	0	0	0	836
07:30	0	439	110	0	549	93	0	85	0	178	29	160	0	0	189	0	0	0	0	0	916
07:45	0	459	119	0	578	101	0	121	0	222	28	207	0	0	235	0	0	0	0	0	1035
08:00	0	346	106	0	452	81	0	103	0	184	38	241	0	0	279	0	0	0	0	0	915
Total Volume	0	165 8	438	0	2096	337	0	396	0	733	125	748	0	0	873	0	0	0	0	0	3702
% App. Total	0	79.1	20.9	0		46	0	54	0		14.3	85.7	0	0		0	0	0	0		
PHF	.000	.903	.920	.000	.907	.834	.000	.818	.000	.825	.822	.776	.000	.000	.782	.000	.000	.000	.000	.000	.894

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.02.EL CAMINO REAL.SR-78 WB RAMPS Site Code: 00000000

Site Code : 00000000 Start Date : 1/18/2011 Page No : 3

		7 7 7 7 7	AMINO	REAL				WB F	RAMPS und				AMINC	REAL und			200	8 WB F astbou	RAMPS ind		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analy	sis From	12:00 to	17:45 -	Peak 1 o	f 1																
Peak Hour fo	r Entire	Inters	section	Begins	at 16:4	15															
16:45	0	323	118	0	441	113	0	180	0	293	51	465	0	0	516	0	0	0	2	2	1252
17:00	0	371	122	0	493	108	0	174	1	283	44	474	0	0	518	0	0	0	0	0	1294
17:15	0	382	125	0	507	103	0	177	0	280	26	480	0	0	506	0	0	0	2	2	1295
17:30	0	326	110	0	436	106	0	177	0	283	41	461	0	0	502	0	0	0	0	0	1221
Total Volume	0	140 2	475	0	1877	430	0	708	1	1139	162	188 0	0	0	2042	0	0	0	4	4	5062
% App. Total	0	74.7	25.3	0		37.8	0	62.2	0.1		7.9	92.1	0	0		0	0	0	100		
PHF	.000	.918	.950	.000	.926	.951	.000	.983	.250	.972	.794	.979	.000	.000	.986	.000	.000	.000	.500	.500	.977

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.03.EL CAMINO REAL.SR-78 EB RAMPS Site Code: 00000000 Start Date: 1/18/2011 Page No: 1

Cuntina	Printed-	Mahialas
Grouns	Printen-	VALUE

								Printed-				-	-			-	
	E	L CAMIN Southb	A STATE OF THE PARTY OF		SF	R-78 EB Westb	RAMPS ound		El	CAMIN Northb	IO REAL			Eastb			
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tota
07:00	135	224	0	0	0	0	0	1	0	88	68	0	50	0	15	0	581
07:15	149	323	0	0	0	0	0	0	0	121	80	0	63	0	22	0	75
07:30	113	416	0	0	0	0	0	0	0	114	68	0	73	0	26	4	81
07:45	137	420	0	0	0	0	0	1	0	151	94	0	78	0	33	0	91
Total	534	1383	0	0	0	0	0	2	0	474	310	0	264	0	96	4	306
08:00	115	318	0	0	0	0	0	0	0	175	79	0	101	0	35	1	824
08:15	138	302	0	0	0	0	0	0	0	123	76	0	85	0	40	4	76
08:30	89	331	0	0	0	0	0	2	0	121	84	0	74	0	21	3	72
08:45	107	280	0	0	0	0	0	0	0	159	65	1	96	0	43	2	75
Total	449	1231	0	0	0	0	0	2	0	578	304	1	356	0	139	10	307
16:00 16:15	138 120	361 348	0	0	0	0	0	0	0	286 330	131 128	0	132 175	0	67 63	1	111 116
Control of the Control		1.50	_		100					0.00	1000	0	143	0	72	2	106
16:30	121	330	0	0	0	0	0	2	0	287 346	111 123	0	135	0	61	2	110
16:45	112	322	0	0	0	0	0			1249	493	0	585	0	263	5	445
Total	491	1361	0	0	0	0	0	4	0	1249	493	Ų,	500	U	203	3	440
17:00	133	347	0	0	0	0	0	0	0	338	124	1	146	0	57	1	114
17:15	135	358	0	0	0	0	0	1	0	349	125	0	158	0	65	2	119
17:30	123	304	0	0	0	0	0	0	0	360	118	0	147	0	67	1	112
17:45	113	321	0	0	0	0	0	0	0	341	118	0	163	0	62	0	111
Total	504	1330	0	0	0	0	0	1	0	1388	485	1	614	0	251	4	457
Grand Total	1978	5305	0	0	0	0	0	9	0	3689	1592	2	1819	0	749	23	1516
Ciana iotai	.0.0										~~ 4	0	700	0	000		
Apprch %	27.2	72.8	0	0	0	0	0	100 0.1	0	69.8 24.3	30.1 10.5	0	70.2 12	0	28.9 4.9	0.9	

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.03.EL CAMINO REAL.SR-78 EB RAMPS

Site Code : 00000000 Start Date : 1/18/2011 Page No : 2

			AMINC	REAL				8 EB F	RAMPS und				AMINO	REAL und				8 EB R	AMPS		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
eak Hour Analy	sis Fron	07:00 to	0 11:45 -	Peak 1 o	f 1					72,507										TOTAL	1011
Peak Hour fo	r Entire	e Inters	section	Begins	at 07:3	30															
07:30	113	416	0	0	529	0	0	0	0	0	0	114	68	0	182	73	0	26	4	103	814
07:45	137	420	0	0	557	0	0	0	1	1	0	151	94	0	245	78	0	33	0	111	914
08:00	115	318	0	0	433	0	0	0	0	0	0	175	79	0	254	101	0	35	1	137	824
08:15	138	302	0	0	440	0	0	0	0	0	0	123	76	0	199	85	0	40	4	129	768
Total Volume	503	145 6	0	0	1959	0	0	0	1	1	0	563	317	0	880	337	0	134	9	480	3320
% App. Total	25.7	74.3	0	0		0	0	0	100		0	64	36	0		70.2	0	27.9	1.9		
PHF	.911	.867	.000	.000	.879	.000	.000	.000	.250	.250	.000	.804	.843	.000	.866	.834	.000	.838	.563	.876	.908

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.03.EL CAMINO REAL.SR-78 EB RAMPS Site Code: 00000000 Start Date: 1/18/2011 Page No :3

	1		AMINO	REAL			100 C 24	8 EB R	RAMPS			777 - 75	AMINC orthbo	REAL und			2000	8 EB R astbou	AMPS and		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analy	sis From	12:00 to	17:45 -	Peak 1 o	f 1																
Peak Hour fo	r Entire	Inters	ection	Begins	at 17:0	00															
17:00	133	347	0	0	480	0	0	0	0	0	0	338	124	1	463	146	0	57	1	204	1147
17:15	135	358	0	0	493	0	0	0	1	1	0	349	125	0	474	158	0	65	2	225	1193
17:30	123	304	0	0	427	0	0	0	0	0	0	360	118	0	478	147	0	67	1	215	1120
17:45	113	321	0	0	434	0	0	0	0	0	0	341	118	0	459	163	0	62	0	225	1118
Total Volume	504	133	0	0	1834	0	0	0	1	1	0	138 8	485	1	1874	614	0	251	4	869	4578
% App. Total	27.5	72.5	0	0		0	0	0	100		0	74.1	25.9	0.1		70.7	0	28.9	0.5		
PHF	.933	.929	.000	.000	.930	.000	.000	.000	.250	.250	.000	.964	.970	.250	.980	.942	.000	.937	.500	.966	.959

A-A EX

El Camino Real at Plaza Drive

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

	me Period :		Sout	h Appr	(NB)	Nor	th Appr	(SB)	We	st Appr	(EB)	East	Appr (WB)
7:30 AM 8:30 AM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1		1 4 1			
Config -	(left)	2	1			1			1	1		1	1	
urations		3		1			1				1 .			1
		4		1			1							
		5		1	1		1	1	1					
		6				1								
	Outside	7												
	Free-flow													
Lane Setti	ngs		2	3	0	2	3	0	2	0	1	0	1	1
Capacity			3600	6000	0	3600	6000	0	3800	0	1800	0	2000	1800
the second state of the second	orth/South ph	ases	split (Y	/N)?	N									
Are the Ea	ast/West phase	es sp	lit (Y/N	1)?	Y									
Efficiency	Lost Factor		0.10											
Hourly Vo	olume		9	660	39	201	1021	27	12	2	2	42	6	78
Adjusted 1	Hourly Volun	ne	9	699	0	201	1048	0	16	0	4	0	48	126
Utilization			0.00	0.12	0.00	0.06	0.17	0.00	0.00	0.00	0.00	0.00	0.02	0.07
Critical Fa	actors		0.00				0.17		0.00					0.07

ICU Ratio = 0.34

LOS = A

Turning Movements at Intersection of:

El Camino Real and Plaza Drive

South Approach

El Camino Real at Plaza Drive

Lane Configuration for Intersection Capacity Utilization

Page 3 of 3

Pk. Hr. Ti	me Period :		Sout	h Appr	(NB)	Nort	h Appr	(SB)	Wes	t Appr	(EB)	East	Appr (\	NB)
4:45 PM 5:45 PM	to		Left	Thru	Right	Left	Thru	Right	_Left_	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1					
Config -	(left)	2	1			1			1	1		1	.1	
urations		3		1			1				1			1
		4		1			1		ľ					
		5		1	1		1	1						
		6												
	Outside	7												
	Free-flow													- 8
Lane Setti	ngs		2	3	0	2	3	0	2	0	1	0	1	1
Capacity			3600	6000	0	3600	6000	0	3800	0	1800	0	2000	1800
Are the N	orth/South ph	ases	split (Y	/N)?	N									
Are the Ea	ast/West phas	es sp	lit (Y/N)?	Y									
Efficiency	Lost Factor		0.10										5.60	2.2.3
Hourly Vo	olume		24	1305	28	359	908	148	302	24	27	53	13	186
Adjusted !	Hourly Volun	ne	24	1333	0	359	1056	0	353	0	51	0	66	252
Utilization	n Factor		0.01	0.22	0.00	0.10	0.18	0.00	0.09	0.00	0.03	0.00	0.03	0.14
Critical Fa	actors			0.22		0.10			0.09					0.14

ICU Ratio = 0.65 LOS = B

Turning Movements at Intersection of:

El Camino Real and Plaza Drive

South Approach

S-A EX

El Camino Real at Marron Road

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

Pk. Hr. Time			Sout	h Appr	(NB)	Nor	th Appr	(SB)	Wes	st Appr	(EB)	East	Appr (WB)
7:30 AM 8:30 AM	to		Left	Thru	Right	_Left_	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1								
Config -	(left)	2	1			1			1			1		
urations		3		1			1			1			1	
		4		1			1			1	1		1	1
		5		1	1		1	1						
		6			-1									
	Outside	7												
	Free-flow													
Lane Setting	ţS.		2	3	0	2	3	0	1	2	0	1	2	0
Capacity			3600	6000	0	3600	6000	0	1800	4000	0	1800	4000	0
Are the Nor	th/South ph	ases	split (Y	/N)?	N									
Are the East	West phase	es sp	lit (Y/N	1)?	N									
Efficiency L	ost Factor		0.10											
Hourly Volu	ime		27	585	29	87	896	71	33	30	47	93	41	107
Adjusted Ho	ourly Volum	1e	27	614	0	87	967	0	33	77	0	93	148	0
Utilization F	actor		0.01	0.10	0.00	0.02	0.16	0.00	0.02	0.02	0.00	0.05	0.04	0.00
Critical Fact	tors		0.01				0.16			0.02		0.05		

ICU Ratio = 0.34

LOS = A

Turning Movements at Intersection of:

El Camino Real and Marron Road

South Approach

El Camino Real at Marron Road

5-P EX

Page 3 of 3

Lane Configuration for Intersection Capacity Utilization

Pk. Hr. Tin	ne Period :	-	Sout	h Appr	(NB)	Nort	h Appr	(SB)	Wes	st Appr	(EB)	East	Appr (WB)
4:45 PM 5:45 PM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1						N. "		
Config -	(left)	2	1			1			1			1		
urations		3		1			1			1	- 1		1	
		4		1		N.	1			1	1		1	1
		5		1	1		1	1						
		6				4								
	Outside	7							-					
	Free-flow										100			
Lane Settin	ngs		2	3	0	2	3	0	1	2	0	1	2	0
Capacity			3600	6000	0	3600	6000	0	1800	4000	0	1800	4000	0
Are the No	rth/South ph	ases	split (Y	/N)?	N									
Are the Ea	st/West phase	es sp	lit (Y/N	1)?	N									
Efficiency	Lost Factor		0.10											75.8
Hourly Vo	lume		159	1072	93	241	662	132	160	139	92	137	106	174
Adjusted H	Iourly Volun	ie	159	1165	0	241	794	0	160	231	0	137	280	0
Utilization	Factor		0.04	0.19	0.00	0.07	0.13	0.00	0.09	0.06	0.00	0.08	0.07	0.00
Critical Fa	ctors			0.19		0.07			0.09				0.07	

ICU Ratio = 0.52 LOS = A

Turning Movements at Intersection of:

El Camino Real and Marron Road

South Approach

El Camino Real at Carlsbad Village Drive

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

Pk. Hr. Tir		-	Sout	h Appr	(NB)	Nor	th Appr	(SB)	Wes	st Appr	(EB)	East	Appr (WB)
7:30 AM 8:30 AM	to	4.	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			Ī			1		
Config -	(left)	2		1			1			1	4.1		1	
urations		3		1			1			1	1		1	1
		4		1	1	, .	1	1						
		5												
		6												
	Outside	7						- 4						
	Free-flow											-		
Lane Setti	ngs		1	3	0	1	3	0	1	2	0	1	2	0
Capacity	-		1800	6000	0	1800	6000	0	1800	4000	0	1800	4000	0
and the second s	orth/South ph	ases	split (Y	/N)?	N									
Are the Ea	st/West phase	es sp	lit (Y/N	1)?	N									
	Lost Factor		0.10											
Hourly Vo	lume		38	368	15	93	818	61	119	99	55	66	307	129
Adjusted I	Hourly Volum	ne	38	383	0	93	879	0	119	154	0	66	436	0
Utilization			0.02	0.06	0.00	0.05	0.15	0.00	0.07	0.04	0.00	0.04	0.11	0.00
Critical Fa	ctors		0.02				0.15		0.07				0.11	

ICU Ratio = 0.45 L

LOS = A

Turning Movements at Intersection of:

El Camino Real and Carlsbad Village Drive

South Approach

El Camino Real at Carlsbad Village Drive

Lane Configuration for Intersection Capacity Utilization

Page 3 of 3

	me Period :	-	Sout	h Appr	(NB)	Nor	th Appr	(SB)	Wes	st Appr	(EB)	East	Appr (WB)
4:45 PM 5:45 PM	to	-	Left	Thru	Right	Left	. Thru	Right	L,eft_	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1		-11	1			1		
Config -	(left)	2		1			1			1			1	
urations		3		1	- 310		1			1	1		1	1
		4		1	1		1	1			7			
		5												
		6												
	Outside	7			1						1			
	Free-flow													
Lane Setti	ings		1	3	0	1	3	0	1	2	0	1	2	0
Capacity			1800	6000	0	1800	6000	0	1800	4000	0	1800	4000	0
Are the N	orth/South pha	ases	split (Y	/N)?	N									
Are the E	ast/West phase	es sp	lit (Y/N	1)?	N									
Efficiency	Lost Factor		0.10											
Hourly V	olume		105	1094	57	179	585	120	143	257	60	37	202	130
Adjusted	Hourly Volum	ie	105	1151	0	179	705	0	143	317	0	37	332	0
Utilization	n Factor		0.06	0.19	0.00	0.10	0.12	0.00	0.08	0.08	0.00	0.02	0.08	0.00
Critical F	actors			0.19		0.10			0.08				0.08	

ICU Ratio = 0.55

LOS = A

Turning Movements at Intersection of:

El Camino Real and Carlsbad Village Drive

South Approach

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.10.RANCHO DEL ORO DR.VISTA WY Site Code: 00000000 Start Date: 1/25/2011 Page No: 1

Groups Printed- Vehicles

		South		112		VISTA Westb	ound		RAN	CHO DI Northb	EL ORO	DR		VISTA Eastb			
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. To
07:00	64	4	80	0	8	34	38	0	0	0	3	0	40	17	3	2	29
07:15	89	1	85	1	2	37	26	0	2	0	5	1	38	40	3	0	33
07:30	87	4	80	1	17	40	36	0	3	1	1	1	69	30	7	0	37
07:45	74	11	100	0	19	46	46	1	4	1	2	0	41	33	5	1	38
Total	314	20	345	2	46	157	146	1	9	2	11	2	188	120	18	3	138
08:00	59	7	69	0	23	40	40	0	4	0	2	0	46	32	14	0	33
08:15	54	9	54	0	17	38	23	0	5	4	2	0	22	32	24	0	28
08:30	57	8	49	2	23	46	28	0	9	2	2 3	0	50	35	12	0	32
08:45	49	7	74	0	18	62	36	0	4	3	4	0	39	40	20	0	35
Total	219	31	246	2	81	186	127	0	22	9	11	0	157	139	70	0	130
BREAK ***																	Huio
16:00	60	2	68	2	7	73	48	0	9	6	4	0	91	81	5	1	45
16:15	60	1	66	0	6	100	60	0	7	8	4	1	87	78	5	0	4
16:30	44	1	67	0	10	71	56	0	9	14	3	0	125	97	3	0	5
16:45	71	3	69	0	5	74	53	0	4	13	3	0	96	92	2	1	4
Total	235	7	270	2	28	318	217	0	29	41	14	1	399	348	15	2	19
17:00	51	3	63	1	2	76	60	0	11	8	4	0	115	127	4	0	53
17:15	50	1	70	1.	2	74	78	0	6	6	0	1	109	106	1	0	50
17:30	44	1	86	0	2	67	63	0	5	4	1	0	132	102	2	0	5
17:45	46	1	71	1	1	73	54	0	3	0	1	0	125	94	1	0	4
Total	191	6	290	3	7	290	255	0	25	18	6	1	481	429	8	0	20
Grand Total	959	64	1151	9	162	951	745	1	85	70	42	4	1225	1036	111	5	662
1.00	43.9	2.9	52.7	0.4	8.7	51.2	40.1	0.1	42.3	34.8	20.9	2	51.5	43.6	4.7	0.2	0.02
Apprch %																	

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.10.RANCHO DEL ORO DR.VISTA WY Site Code: 00000000

Site Code : 00000000 Start Date : 1/25/2011 Page No : 2

	R		O DEL	ORO I	DR		1.5	ISTA I	7.7		R	1707 7 03	O DEL	ORO I	DR			ISTA V	7.53		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
Peak Hour Analy	sis Fron	07:00 to	0 11:45 -	Peak 1 o	f1																
Peak Hour for	Entire	Intersec	ction Be	egins at	07:15																
07:15	89	1	85	1	176	2	37	26	0	65	2	0	5	1	8	38	40	3	0	81	330
07:30	87	4	80	1	172	17	40	36	0	93	3	1	1	1	6	69	30	7	0	106	377
07:45	74	11	100	0	185	19	46	46	1	112	4	1	2	0	7	41	33	5	1	80	384
08:00	59	7	69	0	135	23	40	40	0	103	4	0	2	0	6	46	32	14	0	92	336
Total Volume	309	23	334	2	668	61	163	148	1	373	13	2	10	2	27	194	135	29	1	359	1427
% App. Total	46.3	3.4	50	0.3		16.4	43.7	39.7	0.3		48.1	7.4	37	7.4		54	37.6	8,1	0.3		
PHF	.868	.523	.835	.500	.903	.663	.886	.804	.250	.833	.813	.500	.500	.500	.844	.703	.844	.518	.250	.847	.929

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.10.RANCHO DEL ORO DR.VISTA WY Site Code: 00000000

Start Date : 1/25/2011

Page No : 3

	R		O DEL	ORO	DR			ISTA Vestbo			R		O DEL	ORO I	DR			ISTA I			
Start Time	Left	Thru	Right	10000	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analy	sis Fron	12:00 to	o 17:45 -	Peak 1 o	of 1																
Peak Hour for	Entire	Interse	ction Be	egins at	16:45																
16:45	71	3	69	0	143	5	74	53	0	132	4	13	3	0	20	96	92	2	1	191	486
17:00	51	3	63	1	118	2	76	60	0	138	11	8	4	0	23	115	127	4	0	246	525
17:15	50	1	70	1	122	2	74	78	0	154	6	6	0	1	13	109	106	1	0	216	505
17:30	44	1	86	0	131	2	67	63	0	132	5	4	1	0	10	132	102	2	0	236	509
Total Volume	216	8	288	2	514	11	291	254	0	556	26	31	8	1	66	452	427	9	1	889	2025
% App. Total	42	1.6	56	0.4		2	52.3	45.7	0		39.4	47	12.1	1.5		50.8	48	1	0.1		1000
PHF	.761	.667	.837	.500	.899	.550	.957	.814	.000	.903	.591	.596	.500	.250	.717	.856	.841	.563	.250	.903	.964

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.07.COLLEGE BLVD,W VISTA WY Site Code: 00000000 Start Date: 1/18/2011 Page No: 1

Groups Printed- Vehicles

	C	OLLEGI				VISTA Westb	0.75			Northb				VISTA Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tot
07:00	4	375	6	0	84	27	33	0	17	105	123	0	3	16	79	0	87
07:15	4	403	5	0	83	19	57	0	29	121	159	0	8	26	112	0	102
07:30	5	404	4	0	117	40	62	1	38	130	146	0	6	32	102	0	108
07:45	17	355	15	0	118	48	49	0	52	178	201	0	10	38	97	0	117
Total	30	1537	30	0	402	134	201	1	136	534	629	0	27	112	390	0	410
08:00	20	245	11	0	112	43	58	0	32	163	187	0	20	25	89	0	100
08:15	9	294	8	0	91	69	63	0	38	131	168	0	6	22	95	0	9
08:30	10	297	11	0	96	43	49	0	34	155	196	0	9	32	82	0	10
08:45	9	276	16	0	94	44	67	0	43	153	176	0	14	29	77	0	9
Total	48	1112	46	0	393	199	237	0	147	602	727	0	49	108	343	0	40
16:00	9	277	20	2 0	101	86	92	4	58	289	162	0	35	32	66	0	12
16:15	9	240	24	0	125	76	93	5	67	324	171	0	16	28	98	0	12
16:30	7	291	29	0	138	79	73	0	75	304	176	0	21	38	96	0	13
16:45	13	269	16	0	109	100	94	2	64	307	155	0	18	50	76	0	12
Total	38	1077	89	2	473	341	352	11.	264	1224	664	0	90	148	336	0	51
17:00	8	262	23	0	148	75	75	1	79	297	144	0	42	46	108	0	13
17:15	8	325	24	2	116	87	101	7	73	271	158	0	37	67	97	0	13
	9	236	25	1	108	66	95	1	80	285	135	0	38	46	100	0	12
17:30		231	28	1.	125	61	71	3	52	254	141	0	32	55	72	0	11
17:30 17:45	9	231				289	342	12	284	1107	578	0	149	214	377	0	50
200 00 00 00 00	9 34	1054	100	4	497	209	0.12										
17:45	•		100 265	6	497 1765	963	1132	24	831	3467	2598	0	315	582	1446	0	183
17:45 Total	34	1054	100					24 0.6	831 12.1	3467 50.3	2598 37.7	0	315 13.4	582 24.8 3.2	1446 61.7 7.9	0 0 0	183

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.07.COLLEGE BLVD.W VISTA WY

Site Code : 000000000 Start Date : 1/18/2011

Page No : 2

		1000	LEGE	55750				STA W					LEGE orthbo	1000				STA Wastbou	9.00		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
Peak Hour Analy						2															
Peak Hour fo	r Entire	e Inters	section	Begins	s at 07:1	5						100	90.45	450	J. (2.5)	200	12/12/	Augus		202.1	
07:15	4	403	5	0	412	83	19	57	0	159	29	121	159	0	309	8	26	112	0	146	1026
07:30	5	404	4	0	413	117	40	62	1	220	38	130	146	0	314	6	32	102	0	140	1087
07:45	17	355	15	0	387	118	48	49	0	215	52	178	201	0	431	10	38	97	0	145	1178
08:00	20	245	11	0	276	112	43	58	0	213	32	163	187	0	382	20	25	89	0	134	1005
Total Volume	46	140 7	35	0	1488	430	150	226	1	807	151	592	693	0	1436	44	121	400	0	565	4296
% App. Total	3.1	94.6	2.4	0		53.3	18.6	28	0.1		10.5	41.2	48.3	0		7.8	21.4	70.8	0		
PHF	.575	.871	.583	.000	.901	.911	.781	.911	.250	.917	.726	.831	.862	.000	.833	.550	.796	.893	.000	.967	.91

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.07.COLLEGE BLVD.W VISTA WY Site Code: 00000000

Site Code : 00000000 Start Date : 1/18/2011 Page No : 3

			LEGE				6.3	STA V					LEGE	BLVD und				STA W			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analy	sis From	1 12:00 t	o 17:45 -	Peak 1 o	f1																
Peak Hour fo	r Entire	e Inters	section	Begins	at 16:3	30														15 E I	1.622
16:30	7	291	29	0	327	138	79	73	0	290	75	304	176	0	555	21	38	96	0	155	1327
16:45	13	269	16	0	298	109	100	94	2	305	64	307	155	0	526	18	50	76	0	144	1273
17:00	8	262	23	0	293	148	75	75	1	299	79	297	144	0	520	42	46	108	0	196	1308
17:15	8	325	24	2	359	116	87	101	7	311	73	271	158	0	502	37	67	97	0	201	1373
Total Volume	36	114 7	92	2	1277	511	341	343	10	1205	291	117 9	633	0	2103	118	201	377	0	696	5281
% App. Total	2.8	89.8	7.2	0.2		42.4	28.3	28.5	0.8		13.8	56.1	30.1	0		17	28.9	54.2	0		
PHF	.692	.882	.793	.250	.889	.863	.853	.849	.357	.969	.921	.960	.899	.000	.947	.702	.750	.873	.000	.866	.962

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.06.COLLEGE BLVD.SR-78 EB RAMP Site Code: 00000000 Start Date: 1/18/2011 Page No: 1

Groups	Printed-	Vehicles

							Groups	Printed-	Vehicle	es							
	C	OLLEG South	E BLVD			Westb				Northb				R-78 EE Eastb	ound	1.74	
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tot
07:00	0	392	146	0	0	0	0	0	0	245	0	0	0	0	0	1	78
07:15	0	467	131	0	0	0	0	2	0	309	0	0	0	0	0	0	90
07:30	0	496	127	0	0	0	0	2	0	314	0	0	0	0	0	0	93
07:45	0	460	110	0	0	0	0	2	0	431	0	0	0	0	0	0	100
Total	0	1815	514	0	0	0	0	6	0	1299	0	0	0	0	0	1	36
08:00	0	365	81	0	0	0	0	1	0	382	0	0	0	0	0	0	83
08:15	0	387	93	0	0	0	0	3	0	337	0	0	0	0	0	1	8
08:30	0	372	103	0	0	0	0	0	0	385	0	0	0	0	0	0	8
08:45	0	362	85	0	0	0	0	2	0	372	0	0	0	0	0	0	8
Total	0	1486	362	0	0	0	0	6	0	1476	0	0	0	0	0	1	33
16:00 16:15	0	344 385	100 78	0	0	0	0	3 5	0	509 562	0	0	0	0	0	0	9
16:30	0	424	101	0	0	0	0	0	0	555	0	0	0	0	0	0	10
16:45	0	366	88	0	0	0	0	4	0	526	0	0	0	0	0	1	9
Total	0	1519	367	0	0	0	0	12	0	2152	0	0	0	0	0	1	40
17:00	0	413	105	0	0	0	0	5	0	520	0	0	0	0	0	2	10
17:15	0	413	125	0	0	0	0	8	0	502	0	0	0	0	0	1	10
17:30	0	362	82	0	0	0	0	1	0	500	0	0	0	0	0	0	9
17:45	0	356	72	0	0	0	0	3	0	447	0	0	0	0	0	0	8
	0	1544	384	0	0	0	0	17	0	1969	0	0	0	0	0	3	39
Total	U																
Grand Total	0	6364	1627	0	0	0	0	41	0	6896	0	0	0	0	0	6	149
	- 12		1627 20.4 10.9	0 0 0	0 0 0	0 0 0	0	41 100 0.3	0 0	6896 100 46.2	0	0	0	0	0 0 0	6 100 0	149

4401 Twain Ave, Suite 27 San Diego, CA 92120

12-A

File Name: 1109.06.COLLEGE BLVD.SR-78 EB RAMP

Site Code : 000000000 Start Date : 1/18/2011 Page No : 2

			LEGE uthbo				w	estbo	und				LEGE orthbo					78 EB I astbou			•
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Rìght	Peds	App. Total	Int. T <u>otal</u>
Peak Hour Analy	sis From	07:00 to	11:45 -	Peak 1 c	of 1																
Peak Hour fo	r Entire	Inters	section	Begins	s at 07:1	5														_ 1	
07:15	0	467	131	Ō	598	0	0	0	2	2	0	309	0	0	309	0	0	0	0	0	909
07:30	0	496	127	0	623	0	0	0	2	2	0	314	0	0	314	0	0	0	0	0	939
07:45	0	460	110	0	570	0	0	0	2	2	0	431	0	0	431	0	0	0	0	0	1003
08:00	0	365	81	0	446	0	0	0	1	1	0	382	0	0	382	0	0	0	0	0	829
Total	0	178	449	0	2237	0	0	0	7	7	0	1 43 6	0	0	1436	0	0	0	0	0	3680
Volume		8			İ							Ų			1					Ì	
% App. Total	0	79.9	20.1	0	!	0	0	0	100		0	100	0	0		0	0	0	0		
PHF	.000	.901	.857	.000	.898	.000	.000	.000	.875	.875	.000	.833	.000	.000	<u>.8</u> 33	.000	.000	.000	.000	.000	.917

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.06.COLLEGE BLVD.SR-78 EB RAMP

Site Code : 00000000 Start Date : 1/18/2011 Page No : 3

			LEGE uthbo				w	estbo	und				LEGE orthbo					78 EB I astbou			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analy	sis From	12:00 to	0 17:45 -	Peak 1	of 1																
eak Hour fo	r Entire	e Inters	section	Begin	s at 16:3	10														. 1	
16:30	0	424	101	0	525	0	0	0	0	0	0	555	0	0	555	0	0	0	0	0]	1080
16:45	0	366	88	0	454	0	0	0	4	4	0	526	0	0	526	0	0	0	1	1	985
17:00	0	413	105	0	518	0	0	0	5	5	0	520	0	0	520	0	0	0	2	2	1045
17:15	0	413	125	0	538	0	0	0	8	8	0	502	0	0	502	0	0_	0	1	1	1049
Total Volume	0	161 6	419	0	2035	0	0	0	17	17	0	210 3	0	0	2103	0	0	0	4	4	4159
% App.	0	79.4	20.6	0		0	0	0	100		0	100	0	0	į	0	0	0	100		
PHF	.000	.953	.838	.000	.946	.000	.000	.000	.531	.531	.000	.947	.000	.000	.947	.000	.000	.000	.500	.500	.963

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.05.COLLEGE BLVD.PLAZA DR Site Code: 00000000 Start Date: 1/18/2011 Page No: 1

Groups Printed- Vehicles

		OLLEGE Southb	ound			PLAZ/ Westb	ound			Northb				PLAZ/ Eastbo	ound	1	
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tot
07:00	129	264	12	0	13	2	47	2	5	137	40	0	4	3	3	1	66
07:15	214	280	5	0	21	1	49	2	4	163	48	2	1	2	1	0	79
07:30	202	341	10	0	28	6	53	0	7	155	45	2	3	5	1	1	85
07:45	194	340	12	0	34	3	69	2	9	201	52	2	2	1	2	0	92
Total	739	1225	39	0	96	12	218	6	25	656	185	6	10	11	7	2	323
08:00	140	276	11	0	18	4	48	1	7	181	79	1	5	4	4	0	77
08:15	157	269	12	0	23	1	57	3	7	154	55	0	3	3	5	0	74
08:30	154	267	18	0	32	2	83	0	4	166	59	0	9	6	5	0	80
08:45	164	243	15	0	29	1	74	1	6	182	72	0	8	6	0	0	80
Total	615	1055	56	0	102	8	262	5	24	683	265	1	25	19	14	0	31
BREAK ***																	
16:00	184	285	9	0	45	2	106	1	4	263	25	5	15	11	3	1	9
16:15	176	293	9	0	43	2	113	0	5	304	49	2	7	7	4	0	10
16:30	189	341	8	0	47	1	131	0	8	268	33	1	16	4	2	0	10
16:45	172	300	4	0	26	5	100	5	5	304	24	0	5	4	11	1	9
Total	721	1219	30	0	161	10	450	6	22	1139	131	8	43	26	20	2	39
17:00	171	337	12	0	43	5	107	1	1	274	19	5	12	13	4	1	10
17:15	193	316	12	1	36	1	108	16	3	304	25	3	7	6	2	3	10
17:30	182	296	5	1	29	0	94	0	1	248	73	0	16	3	2	0	9
17:45	166	279	14	0	54	8	75	1	7	242	38	1	17	9	6	1	9
Total	712	1228	43	2	162	14	384	18	12	1068	155	9	52	31	14	5	39
Grand Total	2787	4727	168	2	521	44	1314	35	83	3546	736	24	130	87	55	9	142
Apprch %	36.3	61.5	2.2	0	27.2	2.3	68.7	1.8	1.9	80.8	16.8	0.5	46.3	31	19.6	3.2	
	19.5	33.1	1.2	0	3.7	0.3	9.2	0.2	0.6	24.9	5.2	0.2	0.9	0.6	0.4	0.1	

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name : 1109.05.COLLEGE BLVD.PLAZA DR Site Code : 00000000

Site Code : 00000000 Start Date : 1/18/2011 Page No : 2

		1000	LEGE outhbo				1.5	LAZA estbo	7.7.2			2000	LEGE	BLVD und				LAZA astbou			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
Peak Hour Analy	sis Fron	07:00 t	o 11:45 -	Peak 1 c	of 1																
Peak Hour fo	r Entire	e Inters	section	Begin:	s at 07:	15															
07:15	214	280	5	0	499	21	1	49	2	73	4	163	48	2	217	1	2	1	0	4	793
07:30	202	341	10	0	553	28	6	53	0	87	7	155	45	2	209	3	5	1	1	10	859
07:45	194	340	12	0	546	34	3	69	2	108	9	201	52	2	264	2	1	2	0	5	923
08:00	140	276	11	0	427	18	4	48	1	71	7	181	79	1	268	5	4	4	0	13	779
Total Volume	750	123 7	38	0	2025	101	14	219	5	339	27	700	224	7	958	11	12	8	đ	32	3354
% App. Total	37	61.1	1.9	0		29.8	4.1	64.6	1.5		2.8	73.1	23.4	0.7		34.4	37.5	25	3.1		
PHF	.876	.907	.792	.000	.915	.743	.583	.793	.625	.785	.750	.871	.709	.875	.894	.550	.600	.500	.250	.615	.90

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.05.COLLEGE BLVD.PLAZA DR Site Code: 00000000 Start Date: 1/18/2011 Page No: 3

			LEGE uthbo				5.5	LAZA estbo				10000	LEGE	BLVD und				LAZA astbou			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
Peak Hour Analy	sis From	12:00 to	0 17:45 -	Peak 1 c	of 1																
Peak Hour fo	Entire	Inters	section	Begin	s at 16:3	30				400										3.57	
16:30	189	341	8	0	538	47	1	131	0	179	8	268	33	1	310	16	4	2	0	22	1049
16:45	172	300	4	0	476	26	5	100	5	136	5	304	24	0	333	5	4	11	1	21	966
17:00	171	337	12	0	520	43	5	107	1	156	1	274	19	5	299	12	13	4	1	30	1005
17:15	193	316	12	1	522	36	1	108	16	161	3	304	25	3	335	7	6	2	3	18	1036
Total Volume	725	129 4	36	1	2056	152	12	446	22	632	17	115 0	101	9	1277	40	27	19	5	91	4056
% App. Total	35.3	62.9	1.8	0		24.1	1.9	70.6	3.5		1.3	90.1	7.9	0.7		44	29.7	20.9	5.5		
PHF	.939	.949	.750	.250	.955	.809	.600	.851	.344	.883	.531	.946	.765	.450	.953	.625	.519	.432	.417	.758	.967

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.04.COLLEGE BLVD.MARRON RD Site Code: 00000000 Start Date: 1/18/2011 Page No :1

Groups Printed- Vehicles

	C	OLLEG	- Total Co.			LAKE I	ound			Northb				MARRO Eastbo	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tot
07:00	48	180	26	2	79	9	50	2	13	107	14	1	21	5	11	0	56
07:15	43	228	21	0	106	10	85	0	12	124	31	0	24	7	17	1	70
07:30	33	248	47	1	135	24	80	0	21	127	44	1	19	4	24	0	80
07:45	55	286	43	1	140	19	82	0	45	150	69	0	36	5	31	0	96
Total	179	942	137	4	460	62	297	2	91	508	158	2	100	21	83	1	304
08:00	48	178	40	0	60	19	54	0	43	175	71	1	26	9	17	0	74
08:15	60	173	54	0	68	25	44	0	19	149	49	1	34	16	28	1	72
08:30	38	166	66	2	54	21	66	1	17	125	17	3	33	15	21	0	64
08:45	44	137	85	2	58	18	77	6	24	124	28	3	52	10	33	0	70
Total	190	654	245	4	240	83	241	7	103	573	165	8	145	50	99	1	28
REAK ***																	
16:00	29	18	26	0	10	11	16	0	13	24	10	0	33	12	14	0	2
16:15	69	122	124	3	37	33	56	3	46	170	88	4	122	52	43	0	9
16:30	56	124	129	2	35	30	45	0	49	148	82	0	93	25	40	0	8
16:45	64	164	120	2	47	37	45	0	43	218	95	3	129	56	48	0	10
Total	218	428	399	7	129	111	162	3	151	560	275	7	377	145	145	0	31
17:00	64	128	130	0	45	45	39	0	57	177	100	1	129	70	53	1	10
17:15	95	134	123	4	45	37	38	3	52	190	113	0	110	57	55	- 1	10
17:30	97	141	122	0	39	26	42	1	52	212	116	1	102	46	55	3	10
17:45	69	126	125	2	47	39	33	0	60	174	93	3	124	51	39	0	9
Total	325	529	500	6	176	147	152	4	221	753	422	5	465	224	202	5	41
Grand Total	912	2553	1281	21	1005	403	852	16	566	2394	1020	22	1087	440	529	7	131
Apprch %	19.1	53.6	26.9	0.4	44.2	17.7	37.4	0.7	14.1	59.8	25.5	0.5	52.7	21.3	25.6	0.3	
Total %	7	19.5	9.8	0.2	7.7	3.1	6.5	0.1	4.3	18.3	7.8	0.2	8.3	3.4	4	0.1	

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.04.COLLEGE BLVD.MARRON RD Site Code: 00000000

Site Code : 00000000 Start Date : 1/18/2011 Page No : 2

			LEGE uthbo	BLVD und				KE B				(12)577	LEGE					ARRON	22.55		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
eak Hour Analy	sis Fron	07:00 to	11:45 -	Peak 1 o	f 1					- 1					2 2 2 2 2 2						10.00
Peak Hour fo	r Entire	e Inters	section	Begins	at 07:3	30															
07:30	33	248	47	1	329	135	24	80	0	239	21	127	44	1	193	19	4	24	0	47	808
07:45	55	286	43	1	385	140	19	82	0	241	45	150	69	0	264	36	5	31	0	72	962
08:00	48	178	40	0	266	60	19	54	0	133	43	175	71	1	290	26	9	17	0	52	741
08:15	60	173	54	0	287	68	25	44	0	137	19	149	49	1	218	34	16	28	1	79	721
Total Volume	196	885	184	2	1267	403	87	260	0	750	128	601	233	3	965	115	34	100	1	250	3232
% App. Total	15.5	69.9	14.5	0.2		53.7	11.6	34.7	0		13.3	62.3	24.1	0.3		46	13.6	40	0.4		
PHF	.817	.774	.852	.500	.823	.720	.870	.793	.000	.778	.711	.859	.820	.750	.832	.799	.531	.806	.250	.791	.840

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.04.COLLEGE BLVD.MARRON RD Site Code: 00000000

Site Code : 000000000 Start Date : 1/18/2011 Page No : 3

			LEGE uthbo	BLVD und			7.00	KE BI	700			-0.3	LEGE orthbo				64.4	RRON astbou	9 6 6 7 7		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
Peak Hour Analy	sis Fron	12:00 to	0 17:45 -	Peak 1 o	f 1																
Peak Hour fo	r Entire	e Inters	section	Begins	s at 16:4	15															
16:45	64	164	120	2	350	47	37	45	0	129	43	218	95	3	359	129	56	48	0	233	1071
17:00	64	128	130	0	322	45	45	39	0	129	57	177	100	1	335	129	70	53	1	253	1039
17:15	95	134	123	4	356	45	37	38	3	123	52	190	113	0	355	110	57	55	1	223	1057
17:30	97	141	122	0	360	39	26	42	1	108	52	212	116	1	381	102	46	55	3	206	1055
Total Volume	320	567	495	6	1388	176	145	164	4	489	204	797	424	5	1430	470	229	211	5	915	4222
% App. Total	23.1	40.9	35.7	0.4		36	29.7	33.5	0.8		14.3	55.7	29.7	0.3	5.7	51.4	25	23.1	0.5		
PHF	.825	.864	.952	.375	.964	.936	.806	.911	.333	.948	.895	.914	.914	.417	.938	.911	.818	.959	.417	.904	.986

College Boulevard at Carlsbad Village Drive/Peninsula Drive

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

	me Period :		Sout	h Appr	(NB)	Nor	th Appr	(SB)	Wes	st Appr	(EB)	East	Appr (WB)
7:15 AM 8:15 AM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1			1		
Contig -	(left)	2		1	1		1		1	1			1	1
urations		3		1	1		1	1			1			
		4									9 (
		5												
		6									0.11			
	Outside	7												
	Free-flow													
Lane Setti	ngs		1	2	0	1	2	0	2	0	1	1	1	0
Capacity			1800	4000	0	1800	4000	0	3800	0	1800	1800	2000	0
Are the No	orth/South pha	ases	split (Y	/N)?	N									
Are the Ea	st/West phase	es sp	lit (Y/N	1)?	Y									
Efficiency	Lost Factor		0.10											
Hourly Vo	olume		55	386	1	4	1502	363	317	3	69	1	9	11
Adjusted I	Hourly Volum	ie	55	387	0	4	1865	0	320	0	69	1	20	0
Utilization	Factor		0.03	0.10	0.00	0.00	0.47	0.00	0.08	0.00	0.04	0.00	0.01	0.00
Critical Fa	actors		0.03				0.47		0.08				0.01	

ICU Ratio = 0.69

LOS = B

Turning Movements at Intersection of:

College Boulevard and Carlsbad Village Drive/Peninsula Drive

South Approach

College Boulevard at Carlsbad Village Drive/Peninsula Drive

Lane Configuration for Intersection Capacity Utilization

Page 3 of 3

	me Period :		Sout	h Appr	(NB)	Nor	th Appr	(SB)	Wes	st Appr	(EB)	East	t Appr (WB)
4;45 PM 5:45 PM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1		-16	1			1		
Config -	(left)	2		1			1	(3.0)	1	1			1	1
urations		3		1	1		1	1			1			
		4				1.					- 1	()		
		5									- 1			
		6												
	Outside	7												
	Free-flow													
Lane Setti	ngs		1	2	0	1	2	0	2	0	1	1	1	0
Capacity			1800	4000	0	1800	4000	0	3800	0	1800	1800	2000	0
Are the No	orth/South pha	ases	split (Y	/N)?	N									
Are the Ea	st/West phase	es sp	lit (Y/N	1)?	Y									
Efficiency	Lost Factor		0.10											
Hourly Vo	lume		101	1171	1	13	464	312	305	10	53	1	3	3
Adjusted I	Hourly Volum	e	101	1172	0	13	776	0	315	0	53	1	6	0
Utilization	Factor		0.06	0.29	0.00	0.01	0.19	0.00	0.08	0.00	0.03	0.00	0.00	0.00
Critical Fa	ictors			0.29		0.01			0.08				0.00	

ICU Ratio = 0.48

LOS = A

Turning Movements at Intersection of:

College Boulevard and Carlsbad Village Drive/Peninsula Drive

South Approach

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.08.SR-78 WB RAMPS.VISTA WY

Site Code : 00000000 Start Date : 1/25/2011 Page No : 1

							Groups	Printed	- Vehicle	s	3	Page No	:1				
	SHOP	PING CE	NTER D	RWY		VISTA					RAMPS	3		VIST	A WY		
		South	oound	136		Westb	ound			Northb	ound			Eastb	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tota
07:00	5	13	6	1	42	42	2	0	145	21	19	0	13	64	86	0	459
07:15	10	20	13	1	41	52	12	0	148	8	34	0	21	74	74	0	508
07:30	12	12	4	1	73	53	10	0	169	11	49	0	19	122	60	0	595
07:45	14	18	8	1	54	57	7	0	181	14	51	0	17	144	67	0	633
Total	41	63	31	4	210	204	31	0	643	54	153	0	70	404	287	0	2195
08:00	5	18	8	2	51	53	11	0	161	20	42	0	20	124	73	0	588
08:15	12	20	15	2	29	55	9	0	118	16	34	0	22	129	69	1	531
08:30	17	15	8	1	33	53	13	0	148	11	35	0	21	93	81	0	529
08:45	13	9	15	0	33	62	5	0	190	22	32	0	27	124	103	0	635
Total	47	62	46	5	146	223	38	0	617	69	143	0	90	470	326	1	2283
16:00	22	17	15	0	65	115	11	0	178	22	32	0	22	116	71	0	
10,000															71	0	686
16:15	14 11	27 22	12 15	2 0	67	109	10	0	186	15	30	0	18	118	74	0	682
16:30 16:45	18	17	14	2	79	98	9	0	163	12	29	1	23	123	82	0	66
Total	65	83	56	4	82 293	88	33	0	201	13	24	0	23	119	76	0	680
Total	63	83	36		293	410		0	728	62	115	1	86	476	303	0	271:
17:00	19	15	10	1	84	119	8	0	178	13	21	0	15	117	83	0	683
17:15	9	6	16	0	60	73	9	0	201	12	6	1	13	118	75	0	599
17:30	22	7	16	0	73	89	11	0	210	8	23	0	14	107	94	0	674
17:45	- 11	5	11	1	50	58	5	0	219	17	24	1	15	112	89	0	613
Total	61	33	53	2	267	339	33	0	808	50	74	2	57	454	341	0	2574
				27.1	A 5 %	3325	126	0.	2506	225	485	3	303	1004		- 1	076
Grand Total	214	241	186	15	916	1176	135	0	2796	235	483	3	303	1804	1257	1	9/6
Grand Total Apprch %	214 32.6	241 36.7	186 28.4	15 2.3	916 41.1	1176 52.8	6.1	0	79.5	6.7	13.8	0.1	303	53.6	37.4	0	9767

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.08.SR-78 WB RAMPS.VISTA WY Site Code: 00000000

Start Date : 1/25/2011

Page No : 2

	SHC		G CEN	ITER D	RWY		. 1977	ISTA V					B WB F	RAMPS und				ISTA I			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
Peak Hour Analy	sis Fron	n 07:00 t	o 11:45 -	Peak 1 o	f 1																
Peak Hour for	Entire	Interse	ction B	egins at	07:30																
07:30	12	12	4	1	29	73	53	10	0	136	169	11	49	0	229	19	122	60	0	201	595
07:45	14	18	8	1	41	54	57	7	0	118	181	14	51	0	246	17	144	67	0	228	633
08:00	5	18	8	2	33	51	53	11	0	115	161	20	42	0	223	20	124	73	0	217	588
08:15	12	20	15	2	49	29	55	9	0	93	118	16	34	0	168	22	129	69	1	221	531
Total Volume	43	68	35	6	152	207	218	37	0	462	629	61	176	0	866	78	519	269	1	867	2347
% App, Total	28,3	44.7	23	3.9		44.8	47.2	8	0		72.6	7	20.3	0		9	59.9	31	0.1		
PHF	.768	.850	.583	.750	.776	.709	.956	.841	.000	.849	.869	.763	.863	.000	.880	.886	.901	.921	.250	.951	.927

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.08.SR-78 WB RAMPS.VISTA WY Site Code: 00000000 Start Date: 1/25/2011

Page No : 3

	SHO		G CEN	TER Di	RWY			ISTA Vestbo					B WB F	RAMPS und			77.7	ISTA I			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analy	sis Fron	n 12:00 t	o 17:45 -	Peak 1 o	f1																
Peak Hour for	Entire	Interse	ction B	egins at	16:00																
16:00	22	17	15	0	54	65	115	11	0	191	178	22	32	0	232	22	116	71	0	209	686
16:15	14	27	12	2	55	67	109	10	0	186	186	15	30	0	231	18	118	74	0	210	682
16:30	11	22	15	0	48	79	98	9	0	186	163	12	29	1	205	23	123	82	0	228	667
16:45	18	17	14	2	51	82	88	3	0	173	201	13	24	0	238	23	119	76	0	218	680
Total Volume	65	83	56	4	208	293	410	33	0	736	728	62	115	1	906	86	476	303	0	865	2715
% App. Total	31.2	39.9	26.9	1.9		39.8	55.7	4.5	0		80.4	6.8	12.7	0.1		9.9	55	35	0		
PHF	.739	.769	.933	.500	.945	.893	.891	.750	.000	.963	.905	.705	.898	.250	.952	.935	.967	.924	,000	.948	.989

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.09.SR-78 EB RAMPS.PLAZA DR Site Code: 00000000 Start Date: 1/25/2011

Page No : 1

Groups Printed- Vehicles

		Southb		1		PLAZ/ Westb	ound		12.22	Northb				PLAZA Eastbo	ound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tot
07:00	8	2	4	1	6	51	3	0	6	2	0	0	152	16	6	0	25
07:15	23	6	5	2	1	53	11	0	3	1	0	1	202	25	2	0	33
07:30	12	2	7	1	5	60	12	0	6	0	1	1	209	44	4	0	36
07:45	18	4	6	1	7	60	7	0	11	1	2	3	186	45	4	0	3
Total	61	14	22	5	19	224	33	0	26	4	3	5	749	130	16	0	13
08:00	21	3	12	0	5	60	11	0	4	1	2	2	187	63	9	0	3
08:15	14	2	5	0	7	68	6	0	10	1	2 2 3	1	172	51	6	0	3
08:30	16	1	6	2	4	74	8	0	4	2	3	3	148	37	3	0	3
08:45	14	4	7	1	11	73	7	0	14	2	2	2	152	52	7	0	3
Total	65	10	30	3	27	275	32	0	32	6	9	8	659	203	25	0	13
16:00 16:15 16:30 16:45	36 25 36 26	8 13 6 11	11 13 11 4	2 5 3	28 22 17 29	91 71 101 89	13 10 15 21	0 0 2 0	27 41 37 40	11 13 8 12	18 13 11 12	4 3 9	213 182 191 205	78 81 75 85	19 17 10 9	4 0 9	5 5 5
and the same of th					96		59		145	44	54	17	791	319	55	13	21
Total	123	38	39	11.	96	352	59	2	145	44	54	17	791	319	55	13	21
17:00	18	13	4	1	21	106	12	0	38	9	7	3	188	76	14	2	5
17:15	30	9	11	0	20	117	23	0	46	8	12	6	172	67	12	3	5
17:30	21	12	9	0	18	96	12	0	41	12	15	0	185	71	22	1	5
17.00	19	8	11	0	25	76	20	0	39	20	13	0	170	70	9	0	4
17:45			35	1	84	395	67	0	164	49	47	9	715	284	57	6	20
	88	42															
17:45	337	104	126	20	226	1246	191	2	367	103	113	39	2914	936	153	19	68
17:45 Total	77		126 21.5	20 3.4	226 13.6	1246 74.8	191 11.5	2 0.1	367 59	103 16.6	113 18.2	39 6.3	2914 72.5	936 23.3	153 3.8 2.2	19 0.5 0.3	68

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.09.SR-78 EB RAMPS.PLAZA DR Site Code: 00000000

Site Code : 000000000 Start Date : 1/25/2011

⊃age	No	: 2	

			8 EB R	AMPS			(3)	LAZA estbo	E 17		SHC	0.0.000	G CEN	TER DI und	RWY		1000	LAZA astbou			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
eak Hour Analy	sis From	07:00 to	o 11:45 -	Peak 1 of	f1																
Peak Hour fo	r Entire	Inters	section	Begins	at 07:3	30															
07:30	12	2	7	1	22	5	60	12	0	77	6	0	1	1	8	209	44	4	0	257	364
07:45	18	4	6	1	29	7	60	7	0	74	11	1	2	3	17	186	45	4	0	235	355
08:00	21	3	12	0	36	5	60	11	0	76	4	1	2	2	9	187	63	9	0	259	380
08:15	14	2	5	0	21	7	68	6	0	81	10	1	2	1	14	172	51	6	0	229	345
Total Volume	65	11	30	2	108	24	248	36	0	308	31	3	7	7	48	754	203	23	0	980	1444
% App. Total	60.2	10.2	27.8	1.9		7.8	80.5	11.7	0		64.6	6.2	14.6	14.6		76.9	20.7	2.3	0		
PHF	.774	.688	.625	.500	.750	.857	.912	.750	.000	.951	.705	.750	.875	.583	.706	.902	.806	.639	.000	.946	.950

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.09.SR-78 EB RAMPS.PLAZA DR Site Code: 00000000

Site Code : 00000000 Start Date : 1/25/2011 Page No : 3

Start Time		AMPS und		PLAZA DR Westbound							G CEN	TER DI und	RWY	PLAZA DR Eastbound							
	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analy																					
Peak Hour fo	r Entire	e Inters	section	Begins	at 16:0	00										7.5					
16:00	36	8	11	2	57	28	91	13	0	132	27	11	18	4	60	213	78	19	4	314	563
16:15	25	13	13	5	56	22	71	10	0	103	41	13	13	3	70	182	81	17	0	280	509
16:30	36	6	11	3	56	17	101	15	2	135	37	8	11	9	65	191	75	10	9	285	54
16:45	26	11	4	1	42	29	89	21	0	139	40	12	12	1	65	205	85	9	0	299	545
Total Volume	123	38	39	11	211	96	352	59	2	509	145	44	54	17	260	791	319	55	13	1178	2158
% App. Total	58.3	18	18.5	5.2		18.9	69.2	11.6	0.4		55.8	16.9	20.8	6.5		67.1	27.1	4.7	1.1		
PHF	.854	.731	.750	.550	.925	.828	.871	.702	.250	.915	.884	.846	.750	.472	.929	.928	.938	.724	.361	.938	.958

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.11.THUNDER DR.LAVE BLVD Site Code: 00000000 Start Date: 1/25/2011 Page No: 1

Groups	Printed-	Vehicles

Start Time		THUND! Southb				LAKE I				THUND							
	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Int. Tota
07:00	7	0	46	0	0	104	12	0	1	0	0	0	11	65	0	0	246
07:15	14	0	42	0	0	136	19	2	0	1	0	0	23	62	0	1	300
07:30	13	1	61	0	1	150	21	5	0	0	1	1	23	52	0	2	33
07:45	9	1	53	0	1	140	24	4	0	1	1	0	49	64	2	0	349
Total	43	2	202	0	2	530	76	11	1	2	2	1	106	243	2	3	1226
08:00	17	0	35	0	0	80	20	0	0	0	0	0	42	68	0	0	262
08:15	18	3	32	0	1	84	21	1	1	0	0	1	24	49	0	2	23
08:30	14	0	28	0	1	109	18	1	0	1	1	1	21	49	1	2	24
08:45	8	1	21	2	1	131	27	1	1	2	0	0	13	39	0	0	24
Total	57	4	116	2	3	404	86	3	2	3	1	2	100	205	1	4	99
BREAK ***																	
16:00	36	2	24	0	0	66	28	3	2	1	1	3	53	120	0	1	34
16:15	35	0	29	1	1	82	21	1	1	1	1	0	51	121	0	0	34:
16:30	30	0	31	2	0	80	16	3	1	0	0	3	65	135	1	4	37
16:45	27	0	28	0	0	64	35	0	3	0	0	0	61	134	1	1	35
Total	128	2	112	3	1	292	100	7	7	2	2	6	230	510	2	6	141
17:00	31	0	31	0	0	64	27	1	0	0	0	1	61	128	1	1	34
17:15	32	1	30	0	1	66	28	0	1	2	0	0	78	148	1	3	39
17:30	31	2	35	0	2	91	23	1	0	0	2	2	54	126	1	0	37
17:45	30	0	37	1	2	67	21	4	0	0	4	0	59	132	2	0	35
Total	124	3	133	1	5	288	99	6	1	2	6	3	252	534	5	4	146
Grand Total	352	11	563	6	11	1514	361	27	11	9	11	12	688	1492	10	17	509:
And the second second	37.8	1.2	60.4	0.6	0.6	79.1	18.9	1.4	25.6	20.9	25.6	27.9	31.2	67.6	0.5	0.8	
Apprch %	31.0	1.2	00.1	0.0	0.2		7.1	0.5	0.2	0.2	0.2	0.2	13.5	29.3	0.2	0.3	

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name : 1109.11.THUNDER DR.LAVE BLVD Site Code : 00000000

Start Date : 1/25/2011 Page No : 2

		JNDE	A 1. 1		LAKE BLVD Westbound						THUNDER DR Northbound						LAKE BLVD Eastbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Rìght	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total	
Peak Hour Analy	sis From	07:00 to	0 11:45 -	Peak 1 o	f1																	
Peak Hour for	Entire :	Intersec	ction Be	egins at	07:15																	
07:15	14	0	42	0	56	0	136	19	2	157	0	1	0	0	1	23	62	0	1	86	300	
07:30	13	1	61	0	75	1	150	21	5	177	0	0	1	1	2	23	52	0	2	77	331	
07:45	9	1	53	0	63	1	140	24	4	169	0	1	1	0	2	49	64	2	0	115	349	
08:00	17	0	35	0	52	0	80	20	0	100	0	0	0	0	0	42	68	0	0	110	262	
Total Volume	53	2	191	0	246	2	506	84	11	603	0	2	2	1	5	137	246	2	3	388	1242	
% App. Total	21.5	0.8	77.6	0		0.3	83.9	13.9	1.8		0	40	40	20		35.3	63.4	0.5	0.8			
PHF	.779	.500	.783	.000	.820	.500	.843	.875	.550	.852	.000	.500	.500	.250	.625	.699	.904	.250	.375	.843	.890	

True Count

4401 Twain Ave, Suite 27 San Diego, CA 92120

File Name: 1109.11.THUNDER DR.LAVE BLVD Site Code: 00000000

Site Code : 00000000 Start Date : 1/25/2011 Page No : 3

		2000	JNDE	VINE SE			1000	KE BI				2.50	UNDER	715.63				AKE BI astbou			
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int Tota
Peak Hour Analy	sis Fron	12:00 to	0 17:45 -	Peak 1 o	f 1																
Peak Hour for	Entire	Intersec	ction Be	egins at	17:00																
17:00	31	0	31	0	62	0	64	27	1	92	0	0	0	1	1	61	128	1	1	191	346
17:15	32	1	30	0	63	1	66	28	0	95	1	2	0	0	3	78	148	1	3	230	391
17:30	31	2	35	0	68	2	91	23	1	117	0	0	2	2	4	54	126	1	0	181	370
17:45	30	0	37	1	68	2	67	21	4	94	0	0	4	0	4	59	132	2	0	193	359
Total Volume	124	3	133	1	261	5	288	99	6	398	1	2	6	3	12	252	534	5	4	795	1466
% App. Total	47.5	1.1	51	0.4		1.3	72.4	24.9	1.5		8.3	16.7	50	25		31.7	67.2	0.6	0.5		
PHF	.969	.375	.899	.250	.960	.625	.791	.884	.375	.850	.250	.250	.375	.375	.750	.808	.902	.625	.333	.864	.937

Transportation Studies, Inc. 2640 Walnut Avenue, Suite H Tustin, CA. 92780

City: OCEANSIDE N-S Direction: COLLEGE BOULEVARD E-W Direction: BARNARD DR / WARING RD File Name: H1204001

Site Code : 00005062 Start Date : 4/5/2012

Page No :1

Graune	Drintad-	Turning	Movements
Groups	Printen-	Lurming	Movements

		E BOULE\	/ARD	WAR	ING ROA		140 4 140 140 140 140	E BOULE	VARD		ARD DRIV	/E	
Start Time	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Int. Total
07:00 AM	31	350	9	9	2	27	23	121	85	39	4	8	708
07:15 AM	32	297	24	6	9	30	41	162	87	53	6	4	751
07:30 AM	40	333	19	19	10	27	48	167	134	50	6	5	858
07:45 AM	43	279	14	9	20	25	53	165	149	42	14	8	821
Total	146	1259	66	43	41	109	165	615	455	184	30	25	3138
08:00 AM	23	312	14	9	8	25	53	167	66	33	6	8	724
08:15 AM	17	263	21	12	11	26	43	142	71	49	4	9	668
08:30 AM	29	288	38	18	9	27	50	150	85	39	8	9	750
08:45 AM	28	247	24	14	13	33	37	161	102	48	7	14	728
Total	97	1110	97	53	41	111	183	620	324	169	25	40	2870
** BREAK ***													
04:00 PM	11	217	24	25	10	39	51	281	63	118	17	28	884
04:15 PM	9	272	21	25	7	20	41	322	73	63	12	16	881
04:30 PM	16	192	11	21	18	35	42	300	96	106	12	27	876
04:45 PM	29	206	15	20	10	29	37	322	106	85	16	29	904
Total	65	887	71	91	45	123	171	1225	338	372	57	100	3545
05:00 PM	18	206	17	39	18	43	52	294	92	125	16	34	954
05:15 PM	19	219	14	34	14	29	49	306	90	81	14	17	886
05:30 PM	12	234	22	23	9	28	26	344	88	95	8	23	912
05:45 PM	26	238	7	20	10	17	50	314	81	65	8	16	852
Total	75	897	60	116	51	117	177	1258	351	366	46	90	3604
Grand Total	383	4153	294	303	178	460	696	3718	1468	1091	158	255	13157
Apprch %	7.9	86	6.1	32.2	18.9	48.9	11.8	63.2	25	72.5	10.5	17	
Total %	2.9	31.6	2.2	2.3	1.4	3.5	5.3	28.3	11.2	8.3	1.2	1.9	

Transportation Studies, Inc. 2640 Walnut Avenue, Suite H Tustin, CA. 92780

City: OCEANSIDE

N-S Direction: COLLEGE BOULEVARD E-W Direction: BARNARD DR / WARING RD File Name: H1204001 Site Code: 00005062 Start Date: 4/5/2012

Page No : 2

	COL	LEGE E South	OULE bound			WARING	G ROA	.D	COL	LEGE E	OULE bound	4.1.44.246	В	ARNAF Easth	RD DRI	VE	
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
eak Hour Analy	ysis Fron	n 07:00	AM to (08:45 AM	Peak 1	of 1											
eak Hour for E	ntire Inte	ersection	Begins	s at 07:15	AM												
07:15 AM	32	297	24	353	6	9	30	45	41	162	87	290	53	6	4	63	751
07:30 AM	40	333	19	392	19	10	27	56	48	167	134	349	50	6	5	61	858
07:45 AM	43	279	14	336	9	20	25	54	53	165	149	367	42	14	8	64	821
08:00 AM	23	312	14	349	9	8	25	42	53	167	66	286	33	6	8	47	724
Total Volume	138	1221	71	1430	43	47	107	197	195	661	436	1292	178	32	25	235	3154
% App. Total	9.7	85.4	5		21.8	23.9	54.3		15.1	51.2	33.7		75.7	13.6	10.6		1
PHF	.802	.917	.740	.912	.566	.588	.892	.879	.920	.990	.732	.880	.840	.571	.781	.918	.919

Transportation Studies, Inc. 2640 Walnut Avenue, Suite H Tustin, CA. 92780

City: OCEANSIDE N-S Direction: COLLEGE BOULEVARD E-W Direction: BARNARD DR / WARING RD File Name: H1204001 Site Code : 00005062 Start Date : 4/5/2012

Page No : 3

	COL	LEGE B				WARING Westl	G ROA	.D	COL	LEGE E	OULE bound	VARD	В	ARNAF Eastl	RD DRI'	VE	
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Anal	ysis Fron	n 04:00	PM to 0	5:45 PM -	Peak 1	of 1											
Peak Hour for E	ntire Inte	rsection	Begins	s at 04:45	PM												
04:45 PM	29	206	15	250	20	10	29	59	37	322	106	465	85	16	29	130	904
05:00 PM	18	206	17	241	39	18	43	100	52	294	92	438	125	16	34	175	954
05:15 PM	19	219	14	252	34	14	29	77	49	306	90	445	81	14	17	112	886
05:30 PM	12	234	22	268	23	9	28	60	26	344	88	458	95	8	23	126	912
Total Volume	78	865	68	1011	116	51	129	296	164	1266	376	1806	386	54	103	543	3656
% App. Total	7.7	85.6	6.7		39.2	17.2	43.6	43.75	9.1	70.1	20.8		71.1	9.9	19		
PHF	.672	.924	.773	.943	.744	.708	.750	.740	.788	.920	.887	.971	.772	.844	.757	.776	.958

Page 1 of 1 Short Report

(-	M
II.	EX

					S	HOR	TR	REPO)R	T								
General Inf	ormation						S	ite In	for	mati								
Analyst Agency or 0 Date Perfor Time Period	med	U: 08/2	SAI SAI 22/12 PEAK				A Ji	nterse irea T urisdi inalys	ype ctio	e n		00	All of	WA her SID	Y are E-I	L@ VIS eas NT.#1 ROJEC		
Volume ar	nd Timing In	put																
				EB		-4.		WE	3		dies_		NB			16	SB	
			LT	TH	R	_	T	TH		RT	LT	1	TH	-	₹T	LT	TH	RT
Num. of Lar	nes		1	2	1		2	2		0	2	1	3	()	2	3	0
Lane group			L	T	R		L.	TR			L		TR			L	TR	
Volume (vp			22	45	65		94	107		68	106		811	27		77	1643	57
% Heavy v	eh		2	2	2	_	2	2		2	2		2	2		2	2	2
PHF	1/4.)		0.92	0.92	0.9		92	0.92	(0.92	0.92	- (0.92	0.9		0.92 A	0.92 A	0.92 A
Actuated (P Startup lost			A 3.0	A 3.0	3.0	_	0	3.0	+	Α	3.0	+	A 3.0	1	1	3.0	3.0	A
Ext. eff. gre			3.0	2.0	1.2		.0	2.0	+		1.2	_	5.0	1		0.8	5.8	
Arrival type		- 10	3	3	3		3	3	1		5	1	5			5	5	
Unit Extens	ion		3.0	3.0	3.0) 3	.0	3.0			3.0		3.0			3.0	3.0	
Ped/Bike/R	TOR Volume	9	5	10	0	E [3]	5	10		0	5		10	()	5	10	0
Lane Width			12.0	12.0	12.	0 12	2.0	12.0			12.0		12.0			12.0	12.0	
Parking/Gra	ade/Parking		N	0	N	1	V	0		Ν	N		0	٨	V	N	0	N
Parking/hr																		
Bus stops/h	ır		0	0	0)	0			0		0			0	0	
Unit Extens	ion		3.0	3.0	3.0) 3	.0	3.0			3.0		3.0			3.0	3.0	
Phasing	Excl. Left	WB	Only	Thru	& R1		04		Ex	cl. L	eft [Γhrι	ı&R			07	_	80
Timing	G = 10.3	G =		G =		G:				= 15		_	48.6	_	G=		G =	
	Y = 5.2	Y = ,		Y = 8	5.6	Υ =			Y =	= 5.2	_	_	6.3		Y =		Y =	
	Analysis (hr			10.1				0.0		· ·		_	e Len	gtn	C =	= 133.	6	
Lane Gro	up Capac	ity, C		ol Del	ay,	and			tei	rmir	atio		52				72.27	
			EB				V	VΒ	_	4		-	NB	_			SB	-
Adj. flow rat	te	24	49	71		428	1	90			115	+	177			84	1848	
Lane group	сар.	136	446	426	3	720	8	888			352	1.	840			342	1941	A)
v/c ratio		0.18	0.11	0.1	7	0.59	0.	.21		(0.33	0	.64			0.25	0.95	
Green ratio		0.08	0.13	0.28	3	0.21	0.	.27		(0.10	0	.38			0.10	0.38	
Unif. delay	d1	57.7	51.8	36.8	5 .	47.7	3	7.9		1	55.7	3	4.0			55.5	39.9	
Delay factor	rk	0.11	0.11	0.1	1	0.18	0.	.11			0.11	0	.22			0.11	0.46	
Increm. dela	ay d2	0.6	0.1	0.2		1.3	0).1			0.5	(0.8			0.4	11.2	
PF factor		1.000	1.000	1.00	00	1.000	1.	000		C	.924	0.	594			0.926	0.583	3
Control dela	ay	58.3	51.9	36.	7	49.0	3	8.0		į	52.0	2	1.0			51.8	34.5	
Lane group	LOS	Е	D	D		D	1	D			D		С			D	С	
Apprch. del	ау	4	5.5		1		15.6	3				23.7	7				35.2	7
Approach L	os	1113	D				D					С				144	D	
Intersec. de	elay	3	3.5					lr	ters	section	on LO	S					С	
HCS2000 TM				opyright (2000	Univer	sity of					_			-	ļ	,	Version -

					Sł	IOR	TR	REPO)F	₹T								
General Inf	ormation									rmati	on							
Analyst Agency or C Date Perfor		U	SAI SAI 22/12				A	nterse rea T	УF	ре	E		All of	W/ he	AY r are	as	TA	
Time Period			PEAK					urisdi .nalys		ion Year			CEAN STING				T	
Volume an	ıd Timing In	put		η									•			· · · · · · · · · · · · · · · · · · ·		
			1.7	EB		_ - ,		WE	_	I	1.	_	NB			ļ . . .	SB	Lot
Num. of Lar	168		LT 1	TH 2	RT 1	_	<u>.T</u> 2	TH 2		RT 0	+	.T ?	TH 3	Ľ	RT 0	LT 2	TH 3	RT 0
	100		Ĺ	T	R	_	<u>-</u>	TR		Ť		-	TR	┢		L	TR	
Lane group Volume (vpl	h)		177	308	354		<u>-</u> 14	205		131	42		1688	Ļ	22	164	1209	162
% Heavy v			2	2	2		2	200		2	72		2	_	2	2	2	2
PHF	O11		0.92	0.92	0.92			0.92	•	0.92	0.9		0.92		92	0.92	0.92	0.92
Actuated (P	/A)		Α	Α	Α	1		A		Α	1		Α	٠	A	Α	Α	Α
Startup lost	time		3.0	3.0	3.0			3.0			3.		3.0			3.0	3.0	
Ext. eff. gre	en		3.0	2.0	1.2	_		2.0			1.		5.0	L		0.8	5.8	<u> </u>
Arrival type	•		3	3	3		3	3					5	L		5	5	-
Unit Extensi	ion TOR Volume		3.0 5	3.0 10	3.0 0	3.		3.0 10	_	0	3.		3.0 10	\vdash	0	3.0 5	3.0 10	0
Lane Width	TOR VOIUME	;	12.0	12.0	12.0		2.0	12.0)	Ų.	12		12.0	┝	U	12.0	12.0	"
Parking/Gra	ide/Parking		N	0	N		V	0		N	1		0	H	N	N	0	N
Parking/hr																		
Bus stops/h	r		0	0	0	()	0			()	0	Г		0	0	
Unit Extensi	ion		3.0	3.0	3.0	3.	0	3.0			3.	.0	3.0	Γ		3.0	3.0	
Phasing	Excl. Left	Thru	& RT	0;	3		04		Ę	xcl. L	.eft	N	IB Only			u & RT		30
Timing	G = 16.0	G =		G =		G =				= 12			= 12.8			41.7	G =	
,	Y = 5.2 Analysis (hr	Y = (2		Y =		Y =	-		Y	= 5.2	2		= <i>6.3</i> cle Len	atk		6.3 = 133	Y =	
	up Capac			l Del:	av a	and	LO	S De	te	ermii	nati		JIC LOT	90	-	700.	<u> </u>	
Lanc Gro	ap oapao		EB	, DCI	, , , ,	alla		VB		<u> </u>	iidti	<u> </u>	NB				SB	
Adj. flow rat	 е	192	335	385	; ;	374		65	T		463		2402	Τ		178	1490	\top
Lane group	cap.	212	566	650	, ;	386	5	25	Ť		731		2290	Ť		257	1655	
v/c ratio	· · · · · · · · · · · · · · · · · · ·	0.91	0.59	0.59	9 ().97	0.	.70	T		0.63		1.05	Ť		0.69	0.90	
Green ratio		0.12	0.16	0.42	2 (0.11	0.	.16	Ť		0.21		0.47	T		0.07	0.33	
Unif. delay o	<u>1</u> 1	58.1	52.1	29.8	3 5	59.1	5.	3.1	Ť	1	47.9		35.4	T		60.3	42.4	
Delay factor	·k	0.43	0.18	0.18	3 ().48	0.	.26	Ť		0.21		0.50	T		0.26	0.42	
Increm. dela	ay d2	37.1	1.7	1.5	3	37.5	4	1.0	Ť		1.8		33.2	T	·	7.8	7.2	
PF factor		1.000	1.000	1.00	0 1	.000	1.	000	T	(0.82	0	0.409	T		0.946	0.667	•
Control dela	ay	95.2	53.8	31.3	3 9	96.6	5	7.1	Ţ		41.1		47.7	Ī		64.8	35.5	
Lane group	LOS	F	D	С		F		E	I		D		D			Ε	D	
Apprch. dela	ay	5	3.0			7	77.1					46	6.6				38.6	
Approach L	os		D				Ε					E)				D	
Intersec. de	lay	4	9.0					lr	ite	ersecti	on L	.os					D	
HCS2000 TM			Co	pyright ©	2000	Univers	sity of	f Florida	a. A	All Right	s Rese	erved						ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	EPO	ORT							
General Inf	ormation					S	ite Ir	form	atio	n		•			
Analyst Agency or C Date Perfort Time Period	med	US US 08/2 AM P	SAI 2/12			J	nterse rea T urisdi nalys	ype ction			CAMIN 78WE All oti OCEANS (ISTING	3 RAN her an SIDE-	1PS eas INT.#2	ı	
Volume an	ıd Timing Inp	out								r			,		
			LT	EB TH	RT	LT	WE TH		₹Т	LT	NB TH	RT	LT	SB TH	RT
Num. of Lar	nes		0	0	0	1	1		1	2	3	0	0	3	1
Lane group						L	LTF	? /	R	L	T			T	R
Volume (vpl	h)		<u> </u>	<u> </u>		337	0	39	96	125	748			1658	438
% Heavy v	eh					2	2	_	2	2	2			2	2
PHF					<u> </u>	0.92	0.92	-	92	0.92				0.92	0.92
Actuated (P				-		A	A		4	A 2.0	A 2.0		+	A 2.0	3.0
Startup lost Ext. eff. gree				-	1	3.0 2.0	3.0 2.0	_	.0	3.0 2.0	3.0 2.0		-	3.0 2.0	2.0
Arrival type	CII				 	3	3	_	3	5	5		+ -	5	5
Unit Extensi	ion			<u> </u>	 	3.0	3.0	_	3.0	3.0	3.0			3.0	3.0
Ped/Bike/R	TOR Volume		10	<u> </u>	†	10		7	' 5				10	5	250
Lane Width						12.0	12.0	12	2.0	12.0	12.0			12.0	12.0
Parking/Gra	de/Parking		N		N	Ν	0		N	Ν	0	Ν	N	0	N
Parking/hr															
Bus stops/h	r	·				0	0		0	0	0			0	0
Unit Extens	ion					3.0	3.0	3	3.0	3.0	3.0			3.0	3.0
Phasing	WB Only	0.	2	0:	3	04			Only	_	hru & R		07		08
Timing	G = 31.0	G =		G =		G =			13.7		39.0	G :		G =	
	Y = 5.1 Analysis (hrs	Y =	<u> </u>	Y =		Y =		Y =	4.2		' = 7 ycle Leng	Y :		Y =	
		 		LDal	27/ 01	2410	S D	torr	nin			Jui C	- 700	7.0	
Lane Gro	up Capaci	iy, Co		Dela	ay, aı I	WE		teri	Ш	atio	NB		г —	SB	
A 11 73 1		<u> </u>	EB	<u> </u>	050	-	_	1.1	40		r- 1				204
Adj. flow rat		ŀ			256	215	-	44	13		813			1802	204
Lane group v/c ratio	cap.				531 0.48	505 0.43	-	75 .51	0.3		2836 0.29		<u> </u>	1928 0.93	588 0.35
Green ratio					0.30	0.30		.30	0.1		0.56			0.38	0.38
Unif. delay		<u> </u>			28.6	28.1		9.0	39		11.6		\vdash	29.8	22.1
Delay factor	. , ,				0.11	0.11	-	.12	0.1		0.11			0.45	0.11
Increm. dela					0.7	0.6		1.0	0.		0.1			9.1	0.4
PF factor					1.000			000	0.9		0.155			0.591	0.591
Control dela	 ay				29.3	28.7		9.9	36	.2	1.9			26.8	13.5
Lane group	LOS			<u> </u>	С	С	\dashv	С	E)	Α			С	В
Apprch. dela	ay					29.3				6	.8			25. <i>4</i>	
Approach L	os			·		С					4			С	
Intersec. de	lay	2	21.4				Inte	ersec	tion	LOS				С	
HCS2000TM				م علم تــــــــــــــــــــــــــــــــــــ	3 2000 II	niversity o	f Elorid	. A 11 D	Sahta I	2 opportu	d				Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	ORT	Γ						
General Inf	ormation					S	ite I	nforr	natio	n					
Analyst Agency or C Date Perfor Time Period	med	US US 08/2 PM F	AI 2/12			م J	rea urisc	ectio Type lictior sis Y	า			3 RAM her are SIDE-I	IPS eas INT.#2		
Volume an	d Timing In	out													
			<u> </u>	EB	Loz	1	W		D.T.	<u> </u>	NB	Lot	 	SB	Lot
Num, of Lar	nes		LT O	TH 0	RT 0	LT 1	Th	+	RT 1	LT 2	TH 3	RT 0	<u>LT</u>	TH 3	RT 1
Lane group				 		1	LTI	7	R	L	T		<u> </u>	T	R
Volume (vpl	h)			 	 	430	10		08	162		<u> </u>	<u> </u>	1402	475
% Heavy v		·				2	2	_	2	2	2			2	2
PHF						0.92	0.9	2 0	.92	0.92	0.92			0.92	0.92
Actuated (P					<u> </u>	A	A		<u>A</u>	A	A			A	A
Startup lost				├	-	3.0	3.0	_	3.0	3.0	3.0	├		3.0	3.0
Ext. eff. gree Arrival type	en			╁───	 	2.0 3	2.0		2.0 3	2.0 5	2.0 5	┢	<u> </u>	2.0 5	2.0 5
Unit Extensi	ion					3.0	3.0	_	3.0	3.0		1	+	3.0	3.0
	ΓOR Volume		10		1	10	10.		0	10.0	0.0	<u> </u>	10	5	0.0
Lane Width			,,,			12.0	12.		2.0	12.0	12.0		1	12.0	12.0
Parking/Gra	de/Parking		N		Ν	Ν	0		Ν	Ν	0	Ν	Ν	0	N
Parking/hr	•											<u> </u>			
Bus stops/h	r					0	0		0	0	0			0	0
Unit Extensi	ion					3.0	3.0) ;	3.0	3.0	3.0	<u> </u>		3.0	3.0
Phasing	WB Only	02	2	0	3	04		_	3 Onl	,	Thru & R		07		08
Timing	G = 31.0	G =		G =		G =			13.		G = 39.0	G =		G =	
	Y = <i>5.1</i> Analysis (hrs	Y =	5	Y =		Y =		Υ =	4.2		/ = 7 Cycle Len	Y =		Y =	
	up Capaci			I Dal	0V 0	24 I O	<u>e n</u>	otor	min			gui C	- 100		:
Lane Gio	up Capaci	ly, Co	EB	i Dei	ay, ai	WE		etei	111111	auv	NB		Ι	SB	
Adj. flow rat	е				346	363		539	17	76	2043			1524	516
Lane group		<u> </u>			531	497	-	475	 -	36	2836		\vdash	1928	588
v/c ratio					0.65	0.73	1	1.13	0.4	40	0.72			0.79	0.88
Green ratio					0.30	0.30	7	0.30	0.	13	0.56			0.38	0.38
Unif. delay	<u> </u>				30.5	31.4	3	35.0	40).2	16.3			27.5	28.8
Delay factor	·k				0.23	0.29	(0.50	0.	11	0.28			0.34	0.40
Increm. dela	ay d2				2.8	5.4	8	33.7	0.	6	0.9			2.3	14.1
PF factor					1.000	1.000	0 1	.000	0.9	903	0.155			0.591	0.591
Control dela	ıy				33.3	36.8	1	18.7	36	3.9	3.4			18.6	31.2
Lane group	LOS	<u> </u>		<u></u>	С	D		F)	Α			В	С
Apprch. dela	ay	<u> </u>				71.2				6	5.1		<u> </u>	21.8	
Approach L	os					Ε					Α			Ç	
Intersec. de	lay	2	26.7				Int	erse	ction	LOS				C	
HC\$2000TM			C	onveicht (ግ ንስስስ TI	niversity o	f Floria	da A11	Rights	Recerv	ed.				Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

					SH	OR	TRI	EP()R	Γ								
General Inf	ormation									matic	n							
Analyst Agency or C Date Perfori Time Period	med	US US 08/2: AM P	AI 2/12				Ar Ju	erse ea T risdi nalys	ype ctio	!		c	78E All d CEAN	B i othe VSI	RAM er are DE-=			
Volume an	d Timing In	out																
				EB				W			L.		NB	_		1	SB	
N			LT	TH	RT	-	LT	TI	' +	RT	-	_ <u>T</u>	TH	+	RT	LT	TH	RT
Num. of Lar	ies		2	0	1	-	0	0	+	0	Ľ	0	3	+	1	2	3	0
Lane group			L	-	R	_					L		T	4	R	L 500	T 1150	
Volume (vpl % Heavy ve			337 2		134 2	-		-	\dashv		┝		563 2	+	317 2	503 2	1456 2	
PHF	JII		0.92		0.92	,		-	\dashv		┢		0.92	1).92	0.92	0.92	
Actuated (P	/A)		A		A	_		T	\dashv		T		A		A	A	A	
Startup lost			3.0		3.0				丁				3.0		3.0	3.0	3.0	
	en		2.0		-	\Box			\Box				2.0		2.0	2.0	2.0	
Arrival type						4			4		L		5	4	5	5	5	
						_		<u> </u>	_		<u> </u>		3.0	╀	3.0	3.0	3.0	
	FOR Volume			 		+	5	-	+		╀	5	10	+	0	40.0	40.0	<u> </u>
	1 /5 1			'	• • •		+		L		12.0	-	2.0	12.0	12.0	4.1		
	xt. eff. green 2.0 2.0 3									0	+	N	N	0	Ν			
	 	-	_	-		-	-		┞			+	^		0			
			<u> </u>	<u> </u>				-	\dashv		⊢		0	┿	0	0		
		1 00	<u> </u>		3.0	ᆛ	0.4		<u> </u>	2.0-1	<u> </u>	Ιτι	3.0		3.0	3.0	3.0	<u> </u>
Phasing						<u> </u>					_		ru & i = 50.		G =	07	G =	8
Timing						_							- 30. - 7		Y =		Y =	
Duration of) = 0.25	5									Су	cle Le	ngt	h C	= 125.	0	
Lane Gro	up Capaci	ty, Co	ntro	Dela	y, a	nd	LOS	De	ter	min	ati	on						
	<u> </u>		EB				W						NB				SB	
Adj. flow rat	e	366	1	146			1		•	十		61	2	34	5	547	1583	
Lane group	cap.	522	1	241						1		199	97	61	0	1017	3730	
v/c ratio		0.70		0.61				十	•	\top		0.3	31	0.5	7	0.54	0.42	
Green ratio		0.15	_	0.15	\top		+	+		\dagger		0.3		0.3		0.30	0.74	
Unif. delay o	 1 1	50.3	╅	49.5				_		\dagger		26.		29.		36.8	6. <i>4</i>	
Delay factor		0.27	1	0.19	\dashv							0.1	-	0.1		0.14	0.11	
Increm. dela		4.2	\top	4.3	+			十		+		0.		1.2		0.6	0.1	
PF factor	<u> </u>	1.000	1	1.000	, 			\top		\top		0.5		0.5		0.720	0.189	
Control dela		54.5	1	53.8				+		\top		14.		18.		27.1	1.3	
Lane group		D	\top	D	十			7				В	-	В		С	A	1
Apprch. dela		1 (54.3		十		-			1		16.0	_				7.9	1
Approach L		<u> </u>	D	<u>.</u>	十							В					Α	
Intersec. de		1	16.7	· · ·	十			lr	iters	ectio	n L	.os					В	
HCS2000 TM		1		pyright © :	2000 U	Jniver	sity of l										V	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

			· · · · · · · ·		SH	OF	RT RI	EPC	R									
General Inf	ormation						Si	te In	for	natio	on				•		**	
Analyst Agency or C Date Perfor Time Period	med	US US 08/2: PM P	AI 2/12				Ar Ju	erse ea T risdi alys	ype ctio	1		c	78E All d CEAN	B I othe VSI	RAM er are DE-=			
Volume an	ıd Timing İn	out					•											
			<u> </u>	EB	-	_		W		D.T.	 		NB	_	<u> </u>	 	SB	L p.
Num. of Lar	100		LT 2	TH 0	R1		<u>LT</u> 0	T -	1	RT 0	+	<u>_T</u> 0	TH 3	+	RT 1	LT 2	TH 3	RT 0
	100		L	╁	R	\dashv		۲	+		۲		T	╁	. R		T	H
Lane group Volume (vpl	h)		614	**	251	,			+		╀		1388	+	185	504	1330	
% Heavy v			2	Ì	201				\dashv		╁		2	+	2	2	2	
PHF	V11		0.92	-	0.9	2			_		t		0.92	0	0.92	0.92	0.92	
Actuated (P	/A)		Α		Α								Α		Α	Α	Α	
Startup lost			3.0		3.0								3.0		3.0	3.0	3.0	
Ext. eff. gre	en		2.0		2.0	<u>' </u>		<u> </u>	\perp		_		2.0	1	2.0	2.0	2.0	
Arrival type	•		3		3				+		╀		5	_	5	5	5	
Unit Extensi			3.0	-	3.0	_			+		╀	_	3.0		3.0	3.0	3.0	
Lane Width	TOR Volume		5 12.0		0 12.0	<u>, </u>	5		+		╁	5	10 12.0	_	80 2.0	12.0	12.0	
Parking/Gra	nde/Parking		N	0	12. N	\dashv	N		+	N	١,		0	_	N.	N	0	N
Parking/hr	artang			1	<u> </u>				-		+	-	Ľ	T		 		,
Bus stops/h	r		0		0				_		╁		0	\dagger	0	0	0	
Unit Extensi			3.0		3.0				\top	-	T		3.0	†	3.0	3.0	3.0	
Phasing	EB Only	02		03		Γ'	04	<u> </u>	SE	3 On	ly	Th	ıru & F		T	07	<u>.L</u>	8
Timing	G = 22.0	G =		G =		G				: 32.			= <i>54</i> .	2	G :		G =	
	Y = 5.1	Y =		Y =		Υ	=		Y =	4.7			= 7		Υ =		Y =	
	Analysis (hrs			15.		_	1.00	<u> </u>	-	м				ngt	h C	= 125.	0	·
Lane Gro	up Capaci	ty, Co			<u>y, a</u>	na			ter	min	atı		•					
		 	EB		_		W	3 T		+			NB		_	-	SB	
Adj. flow rat		667		273	_				····			150		44(548	1446	
Lane group	cap.	577	_	266	_			_		+		215	_	660		852	3649	
v/c ratio		1.16		1.03	-		_			\bot		0.7		0.6		0.64	0.40	
Green ratio		0.17		0.17								0.4		0.4		0.25	0.72	
Unif. delay o		52.0		52.0								29.		28.		42.1	6.9	
Delay factor	· k	0.50	<u> </u>	0.50	_					_		0.2		0.2		0.22	0.11	
Increm. dela	ay d2	88.5		62.1				4		┸		1.		2.6		1.7	0.1	
PF factor		1.000		1.000								0.5	06 (0.50	96	0.780	0.178	
Control dela	ıy	140.5		114.1	1							15.	.9	17.	1	34.5	1.3	
Lane group	LOS	F		F								В		В		С	Α	
Apprch. dela	ay	1	32.9									16.2	2				10.4	
Approach L	os		F									В					В	
Intersec. de	lay	3	36.3					ln	ters	ectio	n L	.os					D	
HCS2000 TM			Co	pyright © 1	 2000 T	Inire	reity of I	Horida	A 11	Diabte	Dece	arvad				!	17.	 ersion 4,11

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORTR										
General In	formation					S	ite In	for	natio							
Analyst Agency or 0 Date Perfor Time Perio	rmed	U: 06/0	SAI SAI 03/12 PEAK			A Ju	nterse rea T urisdi nalys	ype	n	VIS		WAY(OR All oth OCE. EXIST	O RL ner ai ANSi	eas DE	DEL	
Volume ar	nd Timing Ir	put														
				EB			W					NB			SB	
			LT	TH	RT	LT	TH	1	RT	L		TH	RT	LT	TH	RT
Num. of La	nes		1	2	0	1	2		0	1		1	0	1	1	1
Lane group			L	TR		L	TR			L		TR		L	TR	R
Volume (vp			194	135	29	61	163	3	148	13		2	10	309	23	334
% Heavy v	reh		2	2	2	2	2		2	2		2	2	2	2	2
PHF	2/4)		0.93 A	0.93 A	0.93 A	0.93 A	0.9.	3 (0.93 A	0.9 A	3	0.93 A	0.93 A	0.93 A	0.93 A	0.93 A
Actuated (F Startup lost		-	2.0	2.0	A	2.0	2.0		А	2.0	,	2.0	A	2.0	2.0	2.0
Ext. eff. gre			2.0	2.0		2.0	2.0	_		2.0	_	2.0		2.0	2.0	2.0
Arrival type			5	5		5	5	1		3	3.1	3		5	3	5
Unit Extens			3.0	3.0		3.0	3.0)		3.0)	3.0		3.0	3.0	3.0
Ped/Bike/R	TOR Volume	е	5	10	0	5	10		0	5		10	0	5	10	0
Lane Width			12.0	12.0		12.0	12.0	0		12.	0	12.0		12.0	12.0	12.0
Parking/Gra	arking/Grade/Parking			0	N	N	0	X I	N	N		0	N	N	0	N
Parking/hr												*				
Bus stops/h	nr		0	0		0	0			0	M	0	1	0	0	0
Unit Extens	sion		3.0	3.0		3.0	3.0			3.0)	3.0		3.0	3.0	3.0
Phasing	Excl. Left	Thru	& RT	0	3	04		Ex	cl. Le	eft	Thr	u & R	Т	07		80
Timing	G = 15.0	G =		G=		G =			= 25.			20.0	G		G =	
10.10	Y = 5	Y = .		Y =		Y =		Υ =	5		Y =		Υ		Y =	
	Analysis (hr			101	Sar Francis		0.0		a side	_	_	e Len	gtn C	= 100).0	
Lane Gro	oup Capac	ity, C		ol Del	ay, aı			etei	min	atic	9.00		-			
			EB			WE					N				SB	2
Adj. flow ra	te	209	176		66	334	4		14	1	13	3		332	194	190
Lane group	сар.	266	684		266	643	3		44	3	31	7		443	310	301
v/c ratio		0.79	0.26	1	0.25	0.5	2		0.0	3	0.0)4		0.75	0.63	0.63
Green ratio		0.15	0.20	T.	0.15	0.2	0		0.2	5	0.2	20	711	0.25	0.20	0.20
Unif. delay	d1	41.0	33.7		37.5	35.	7		28.	3	32	.3		34.6	36.6	36.6
Delay facto	rk	0.33	0.11	e Ti	0.11	0.1	3		0.1	1	0.1	1		0.30	0.21	0.21
Increm. del	ncrem. delay d2 14.4			/	0.5	0.8	3		0.0)	0.	1		7.0	3.9	4.2
PF factor		0.882	0.833	3	0.88	2 0.83	33		1.0	00	1.0	00		0.778	1.000	0.833
Control dela	ay	50.5	28.3	1	33.6	30.	5		28.	4	32	3		33.9	40.5	34.8
Lane group	ane group LOS D			-111	С	С			С		C			С	D	С
Apprch. del	lay	4	0.4			31.0				30	0.3				35.9	
Approach L	.os	11 5	D			С			ĪŦ		С				D	
Intersec. de	ntersec, delay				1		Inte	erse	ction	LOS	;				D	
HCS2000 TM			5.7	onvright @	2000 11	niversity o	_				_					Version 4

El Camino Real at Plaza Drive

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

Pk. Hr. Tir	ne Period :		South	a Appr	(NB)_	Nort	h Appr	(SB)	Wes	t Appr ((EB)	East	Appr (V	WB)
7:30 AM 8:30 AM	to	-	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane Config - urations	Inside (left) Outside Free-flow	1 2 3 4 5 6 7	1	1 1 1	1	1	1 1 1	1	1	1	1	1	1	1
Lane Setti			2	3	0	2	3	0	2	0	1 1 1 1 1 1 1 1	0	1 2000	1 1800
Capacity	J		3600	6000	0	3600	6000	0	3800	0	1800	U	2000	1000
Are the N	orth/South pha	ises	split (Y	7N)?	N									
Are the E	ast/West phase	s sp	lit (Y/N	1)?	\mathbf{Y}									
Hourly V	Hourly Volum n Factor	ıe	0.10 9 9 0.00 0.00	660 699 0.12	39 0 0.00	201 201 0.06	1021 1048 0.17 0.17	27 0 0.00	12 16 0.00 0.00	2 0 0.00	2 4 0.00	42 0 0.00	6 48 0.02	78 126 0.07 0.07

ICU Ratio = 0.34 LOS =

Turning Movements at Intersection of:

El Camino Real and Plaza Drive

South Approach

El Camino Real at Plaza Drive

Lane Configuration for Intersection Capacity Utilization

Page 3 of 3

Pk. Hr. Tir	ne Period :		Sout	h Appr	(NB)	Nort	h Appr	(SB)	Wes	t Appr	(EB)	East	Appr (WB)
4:45 PM 5:45 PM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane Config - urations	Inside (left) Outside	1 2 3 4 5 6 7	1	1 1 1	1	1	1 1 1	1	1 1	1	1	1	1	. 1
	Free-flow		<u> </u>			ļ								
Lane Setti	ngs		2	3	0	2	3	0	2	0	1	0	1	1
Capacity			3600	6000	0	3600	6000	0	3800	0	1800	0	2000	1800
Are the No	orth/South ph	ases	split (Y.	/N)?	N									
	ist/West phase	es sp	lit (Y/N)?	Y									
Efficiency	Lost Factor		0.10											
Hourly Vo Adjusted I Utilization Critical Fa	Hourly Volun Factor	ie	24 24 0.01	1305 1333 0.22 0.22	28 0 0.00	359 359 0.10 0.10	908 1056 0.18	148 0 0.00	302 353 0.09 0.09	24 0 0.00	27 51 0.03	53 0 0.00	13 66 0.03	186 252 0.14 0.14

ICU Ratio = 0.65

LOS = B

Turning Movements at Intersection of:

El Camino Real and Plaza Drive

South Approach

El Camino Real at Marron Road

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

Pk. Hr. Time Period	:	Sout	h Appr	(NB)	Nort	h Appr	(SB)	Wes	t Appr	(EB)	East	Appr (WB)
7:30 AM to 8:30 AM		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane Inside	. 1	1			1								
Config - (left)	2	. 1			1			1			1		
urations	3		1			1			1		İ	1	
	4		1			1			1	1		1	1
	5		1	1		1	1						
	6										ŀ		
Outsid	e 7												
Free-flo	w										<u> </u>		
Lane Settings		2	3	0	2	3	0	1	2	.0	1	2	0
Capacity		3600	6000	0	3600	6000	0	1800	4000	0	1800	4000	0
Are the North/South	phases	s split (Y	/N)?	N									
Are the East/West p	hases s	plit (Y/N	1)?	N							-		
Efficiency Lost Fac	or	0.10											
Hourly Volume		27	585	29	87	896	7.1	33	30	47	93	41	107
Adjusted Hourly Vo	lume	27	614	0	87	967	0	33	77	0	93	148	0
Utilization Factor		0.01	0.10	0.00	0.02	0.16	0.00	0.02	0.02	0.00	0.05	0.04	0.00
Critical Factors		0.01				0.16			0.02		0.05		

ICU Ratio = 0.34

LOS = A

Turning Movements at Intersection of:

El Camino Real and Marron Road

South Approach

El Camino Real at Marron Road

S-P Ex

Lane Configuration for Intersection Capacity Utilization

Page 3 of 3

Pk. Hr. Ti	ne Period :	_	Sout	h Appr	(NB)	Nort	h Appr	(SB)	Wes	t Appr	(EB)	East	Appr (WB)	
4:45 PM 5:45 PM	to		Left	Thru	Right	Left	Thru	Right	<u>Left</u>	Thru	Right	Left	Thru	Right	
Lane	Inside	1			ļ	1						,			
Config -	(left)	2	1			1			Ţ		,	Ţ	1		
urations		3		1			1			i.			1		
		4		1			1			1	1		1	1	
		5		1	1		1	1			!	i			
		6													
	Outside	7						'	1						
	Free-flow														
Lane Setti	ngs		2	3	0	2	3	0	1	2	0	. 1	2	0	
Capacity	_		3600	6000	0	3600	6000	0	1800	4000	0	1800	4000	0	
	orth/South pha	ises	split (Y	/N)?	N										
Are the Ea	ast/West phase	es sp	lit (Y/N	I)?	N										
	Lost Factor	-	0.10												
Hourly Vo			159	1072	93	241	662	132	160	139	92	137	106	174	
•	Hourly Volum	ıe	159	1165	0	241	794	0	160	231	0	137	280	0	
Utilization	•		0.04	0.19	0.00	0.07	0.13	0.00	0.09	0.06	0.00	0.08	0.07	0.00	
Critical Fa				0.19		0.07			0.09				0.07		

ICU Ratio = 0.52

LOS = A

Turning Movements at Intersection of:

El Camino Real and Marron Road

Sonth Approach

El Camino Real at Carlsbad Village Drive

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

Pk. Hr. Tin	ne Period :		Sout	h Appr	(NB)	Nort	h Appr	(SB)	Wes	t Appr ((EB)	East	Appr (WB)
7:30 AM 8:30 AM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1			1		
Config -	(left)	2		1			1			1		Ì	1	
urations	(/	3		1			1			1	1		1	1
		4		1	1		1	.1						
		5												
		6										1		
	Outside	7												
	Free-flow													
Lane Setti	ngs		1	3	0	1	3	0	1	2	0	1	2	0
Capacity	_		1800	6000	0	1800	6000	0	1800	4000	0	1800	4000	0
Are the No	orth/South pha	ises	split (Y	/N)?	Ŋ									
Are the Ea	st/West phase	es sp	olit (Y/N	J)?	N									
Efficiency	Lost Factor		0.10											100
Hourly Vo	lume		38	368	15	93	818	61	119	99	55	66	307	129
Adjusted I	Hourly Volum	<u>le</u>	38	383	0	93	879	0	119	154	0	66	436	0
Utilization	Factor		0.02	0.06	0.00	0.05	0.15	0.00	0.07	0.04	0.00	0.04	0.11	0.00
Critical Fa	ctors		0.02				0.15		0.07				0.11	

ICU Ratio = 0.45

LOS = A

Turning Movements at Intersection of:

El Camino Real and Carlsbad Village Drive

South Approach

El Camino Real at Carlsbad Village Drive

Lane Configuration for Intersection Capacity Utilization

Page 3 of 3

Pk. Hr. Tim	e Period :	_	Sout	h Appr	(NB)_	Nort	h Appr	(SB)	Wes	t Appr ((EB)	East	Appr (\	VB)
	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane Config - urations	Inside (left) Outside Free-flow	1 2 3 4 5 6 7	1	1 1 1	1	I	1 1 1	1	1	1 1	1	1	1 1	1
Lane Settin			1	3	0	1 1	3	0 0	1800	2 4000	0 0	1800	2 4000	0 0
Capacity			1800	6000	0 N	1800	6000	U	1000	4000	Ū	1000	(000	Ū
Are the Eas	rth/South ph st/West phas Lost Factor lume				N 57	179	585	120	143	257	60	37	202 332	130 0
	lourly Volun Factor	ne	105 0.06	1151 0.19 0.19	0.00	179 0.10 0.10	705 0.12	0 0.00	143 0.08 0.08	317 0.08	0 0.00	37 0.02	0.08	0.00

ICU Ratio = 0.55 LOS =

Turning Movements at Intersection of:

El Camino Real and Carlsbad Village Drive

South Approach

Page 1 of 1

					SHO	ORT R										
General Info	ormation					Si	ite In	orm	atio			·	- A A I	0110.5		
Analyst Agency or C Date Perfort Time Period	med	US 06/0	SAI SAI)3/12 PEAK			Aı Ju	terse rea T urisdio nalys	ype ction	I	VIS	All o	RÖ ther EAN	RD. are ISID	as E)EL	
Volume an	d Timing In	put														
				EB			WE				NB				SB	
			LΤ	TH	RT	LT	TH	_	RT	LT	TH	_	RT	LT	TH	RT
Num. of Lar	nes		1	2	0	1	2	_	0	1	1	┸	0	1	1	1
Lane group			L	TR		L	TR			L	TR	_		L	TR	R
Volume (vpl			194	135	29	61	163		48	13	2		10	309	23	334 2
% Heavy ve	eh		2	2 0.93	2 0.93	2 0.93	0.93		.93	2 0.93	2 0.93	_	<u>2</u> .93	2 0.93	2 0.93	0.93
PHF Actuated (P	//\		0.93 A	0.93 A	0.93 A	0.93 A	0.93 A		.93 A	0.9c	A		.93 A	A	A	A
Startup lost			2.0	2.0	 ^ 	2.0	2.0	_		2.0	2.0	_		2.0	2.0	2.0
Ext. eff. gre			2.0	2.0		2.0	2.0			2.0	2.0	Ţ		2.0	2.0	2.0
Arrival type			5	5		5	5			3	3	_		5	3	5
Unit Extens	ion		3.0	3.0		3.0	3.0			3.0		4		3.0	3.0	3.0
Ped/Bike/R	TOR Volume		5	10	0	5	10		0	5	10	_	0	5	10	0
Lane Width			12.0	12.0		12.0	12.0	1		12.0				12.0	12.0	12.0
Parking/Gra	ide/Parking		N	0	N	N	0		N	N	0	+	N_	N	0	N
Parking/hr						_		_		<u> </u>		_				
Bus stops/h			0	0	<u> </u>	0	0			0	0	-		0	0	0
Unit Extens			3.0	3.0		3.0	3.0			3.0		<u>_</u>		3.0	3.0	3.0
Phasing	Excl. Left		& RT	0	3	04			cl. Le		Thru & $G = 20$.		G =	07 -	G =	08
Timing	G = 15.0 Y = 5	G = Y =		G = Y =		G = Y =	_	Y =	= <u>25.</u> = 5		Y = 5	<u> </u>	Y =		Y =	
Duration of	Analysis (hrs					<u> </u>					ycle Le	ngt	h C	= 100.	0	
	up Capac			ol Del	av. a	nd LO	S De	eter	min	atio	n					
Lano Oro	ир очраз		EB		1	WI					NB				SB	
Adj. flow rat	te	209	176		66	334	4		14	1	13			332	194	190
Lane group		266	684	- 	266	64.	3		44	3	317			443	310	301
v/c ratio		0.79	0.26		0.25	0.5	52		0.0)3	0.04		(0.75	0.63	0.63
Green ratio		0.15	0.20	\top	0.15	5 0.2	20		0.2	25	0.20		(0.25	0.20	0.20
Unif. delay		41.0	33.7	-	37.5	35.	.7		28.	.3	32.3		,	34.6	36.6	36.6
Delay facto		0.33	0.11		0.11	0.1	3		0.1	11	0.11		(0.30	0.21	0.21
Increm. del		14.4	0.2		0.5	0.8	8		0.	0	0.1			7.0	3.9	4.2
PF factor		0.882	0.83	3	0.88	2 0.8	33		1.0	00	1.000		C	0.778	1.000	0.833
Control dela	ay	50.5	28.3		33.6	30.	.5		28	.4	32.3			33.9	40.5	34.8
Lane group	LOS	D	С		С	С	;		C)	С			С	D	С
Apprch. del	lay	4	10.4			31.0				3	0.3			•	35.9	
Approach L	.os		D			С					С				D	
Intersec. de	elay		35.7				Int	erse	ction	LOS	3				D	
HC52000TM				'onv ri ght	© 2000 I	Jniversity o	of Floric	la. All	Rights	Reser	ved					Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

7-84

					SH	ORT	-	_								
General Inf	formation					5	Site I	nfor	matio			3.7		60.00	S-1740	
Analyst Agency or (Date Perfor Time Period	med	U 06/0	SAI SAI 03/12 PEAK			4	nters Area Jurisd Analy	Гур ictic	е	VIS	TA WAY OF All ot OCE EXIST	RO I her AN	RD. area SID	as E	DEL	
Volume ar	nd Timing Ir	put				-										
				EB			W	B			NB				SB	
			LT	TH	RT	LT	T	$\overline{}$	RT	LT	TH	F	RT	LT	TH	RT
Num. of Lar	nes		1	2	0	1	2	٩.,	0	1	1	()	1	1	1
Lane group			L	TR		L	TF	?		L	TR			L	TR	R
Volume (vp	h)		452	427	9	11	29	_	254	26	31	8		216	8	288
% Heavy v	eh		2	2	2	2	2		2	2	2	_	2	2	2	2
PHF			0.96	0.96	0.96	0.96	0.9		0.96	0.96		0.9	_	0.96	0.96	0.96
Actuated (P			A 2.0	A 2.0	Α	2.0	2.0	_	Α	A 2.0	A 2.0	1	1	A 2.0	2.0	2.0
Startup lost Ext. eff. gre	TO SECURE A SECURE ASSESSMENT ASS		2.0	2.0	1	2.0	2.0			2.0	2.0	╁	-	2.0	2.0	2.0
Arrival type			5	5		5	5	_		3	3	+		5	3	5
Unit Extens			3.0	3.0		3.0	3.	_		3.0				3.0	3.0	3.0
No. of the last of	TOR Volume	9	5	10	0	5	10		0	5	10	1)	5	10	0
Lane Width			12.0	12.0		12.0	12.	_		12.0	_			12.0	12.0	12.0
Parking/Gra		N	0	N	N	-)	N	N	0	1	V	N	0	N	
Parking/hr																
Bus stops/h	ır		0	0		0	0	Gel		0	0			0	0	0
Unit Extens	ion		3.0	3.0		3.0	3.	0		3.0	3.0			3.0	3.0	3.0
Phasing	Excl. Left	Thru	& RT	0:	3	04	4	TE	xcl. Le	eft	Thru & R	ŤΙ		07		08
Timing	G = 30.0	G =	20.0	G =		G =		G	= 15.		3 = 15.0		G =		G =	
	Y = 5	Y =		Y =		Y =		Y	= 5		<i>f</i> = 5		Y =		Y =	
	Analysis (hr										ycle Ler	gth	C =	100	.0	
Lane Gro	up Capac	city, C	ontro	ol Dela	ay, a	nd LC	OS D	ete	rmin	atio	n					
			EB			W	/B				NB				SB	
Adj. flow rat	te	471	454		11	56	88		27		40		2	225	149	159
Lane group	сар.	531	707		531	64	14		26	6	269		2	266	226	223
v/c ratio		0.89	0.64		0.02	2 0.8	38		0.1	0	0.15		0	.85	0.66	0.71
Green ratio		0.30	0.20	_	0.30	_		H	0.1	_	0.15		-		0.15	0.15
Unif. delay		33.4	36.7		24.7	_			36.		36.9		-	1.4	40.1	40.5
Delay facto		0.41	0.22	_	0.11	_			0.1		0.11	E	_		0.23	0.28
Increm. del		16.5	2.0	+	0.0				0.2		0.3	T	2	1.5	6.9	10.3
PF factor	- 4	0.714		3	0.71		333		1.0	_	1.000		_		1.000	0.882
Control dela	ay	40.4	32.6	_	17.6				36.	_	37.2		-	8.0	47.0	46.0
Lane group		D	С		В	L			D	-	D			E	D	D
Apprch. del		3	86.6		Ì	45.4		_		37	.1				51.3	-
Approach L			D			D				L)		1		D	
	tersec. delay 42.8						In	ters	ection	LOS					D	
HCS2000 TM		-		onvright @	2000 I	Iniversity (-	Version -

					SH	ORT	REF	0	RT								0	
General Inf	ormation						Site	Inf	orm	atio	n							
Analyst Agency or 0 Date Perfor		U	SAI SAI 28/12				Inter Area Juris	Ту	ре		С			W/ the	4Υ er are		TA	
Time Period	4	AM	PEAK				Anal				E	_				v i # i i ROJEC	Т	
Volume an	d Timing I	nput								,								
				EB				٧B					NB				SB	
			LT	TH	RT	LT		ГН	+-	₹T	L٦		TH	_	RT	LT	TH	RT
Num. of Lar	nes		2	2	1	2	—	2	()	1		3	1	1	2	3	0
Lane group			L	Τ	R	L		R			L		T	_	R	L	TR	
Volume (vpl			44	121	400	430		50	22	_	151	1	592	_	93	46	1407	35
% Heavy v PHF	en		2 0.95	2 0.95	2 0.95	2 0.95		2 95	0.	2	2 0.9	_	2 0.95	_	2 .95	2 0.95	2 0.95	2 0.95
Actuated (P	/A)		0.95 A	0.95 A	0.95 A	0.90 A		95 4	<i>U.</i> ;		0.9. A)	0.95 A	-	.95 A	0.95 A	0.95 A	0.95 A
Startup lost			2.0	2.0	2.0	2.0		.0	 	•	2.0	,	2.0		2.0	2.0	2.0	
Ext. eff. gre			2.0	2.0	2.0	2.0	2.	.0			2.0		2.0		2.0	2.0	2.0	
Arrival type			5	5	5	5	o	5			5		5	-	5	5	5	
Unit Extens			3.0	3.0	3.0	3.0	_	1.0			3.0)	3.0	_	3.0	3.0	3.0	
Ped/Bike/R	TOR Volum	е	5	5	0	5		5	12	23	5	_	5	+	0	5	5	0
Lane Width			12.0	12.0	12.0	12.0		2.0	-	.,	12.0	9	12.0	+	2.0	12.0	12.0	
Parking/Gra	ide/Parking		N	0	Ν	N		0	+-	٧	N		0	╀	N	N	0	N
Parking/hr									+-			_		╀				├
Bus stops/h			0	0	0	0		0	+-		0	-	0	╀.	0	0	0	
Unit Extens		I M/D	3.0	3.0	3.0	3.0		.0	<u> </u>		3.0		3.0	<u> </u>	3.0	3.0	3.0	<u> </u>
Phasing	Excl. Left G = 4.0	G =	Only	Thru δ		G =)4	_		l. Le 9.5	_		ru & R = <i>42.0</i>		G =	07	G =	08
Timing	Y = 5.6	Y =		Y = 6		Y =		_	<u> </u>				6.3		Y =		Y =	
Duration of	Analysis (h					A						Сус	le Len	igtl	ո C =	: 100.	0	
Lane Gro	up Capa	city, C	ontro	l Dela	ıy, a	nd L	os I)et	ern	nina	atic	n						
			EB			,	WB						NB				SB	
Adj. flow rat	e	46	127	421	45.	3 2	266			15	9	6.	23	72	29	48	1518	
Lane group	сар.	137	248	349	60	5 (679			16	8	21	31	81	4	327	2122	
v/c ratio		0.34	0.51	1.21	0.7	5 ().39			0.9	5	0.	29	0.8	90	0.15	0.72	
Green ratio		0.04	0.07	0.23	0.1	8 (),21	_		0.0	9	0.	42	0.8	52	0.09	0.42	
Unif. delay	 d1	46.7	44.9	38.5	39.	1 3	34.3	Ť		45.	0	19	9.2	21	.4	41.5	24.0	
Delay factor	- k	0.11	0.12	0.50	0.3	0 0	0.11	Ť		0.4	6	0.	11	0.4	12	0.11	0.28	
Increm. dela	ay d2	1.5	1.8	116.8	5.2	2	0.4	Ť		53.	7	0	.1	12	.5	0.2	1.2	1
PF factor		0.972	0.950	0.802	0.8	58 0	.827	1		0.9	30	0.	517	0.2	269	0.930	0.517	,
Control dela	ay	46.9	44.4	147.7	38.	7 2	28.7	十		95.	6	10	0.0	18	.3	38.8	13.6	1
Lane group	LOS	D	D	F	D	- i	С	1	,	F		T	4	E	3	D	В	
Apprch. dela	ay	11	7.8	•		35.	0				2	3.0)				14.4	
Approach L	os	i	F			D						С					В	
Intersec. de	lay	34	4.7					Inte	erse	ction	ı LC	S					С	
HCS2000 TM			Co	pyright ©	2000 IJ	Iniversity	of Flor	rida.	All R	ights I	Reserv	zed.					V	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

		<u> </u>			SH	ORT	R	EPO)R	T								
General Inf	ormation						Si	ite In	for	matic								
Analyşt Agency or C	So.		SAI SAI					terse			С	OL		W	4 <i>Y</i>	@ VIS	TA	
Date Perfori Time Period			28/12 PEAK				Jυ	rea T urisdi nalvs	ctic		E	_	CEAN	SIL	DE-IN		T	
Volume an	d Timina I	nput																
				EB				WE	3				NB				SB	
			LT	TH	RT	Ĺ	\Box	TH		RT	L	-	TH		RT	LT	TH	RT
Num. of Lar	nes		2	2	1	2		2		0	1		3		1	2	3	0
Lane group	•		L	T	R	L		TR			L		Τ		R	L	TR	
Volume (vpl			118	201	377	43	0	341		343	291	_	1179	6	33	36	1147	92
% Heavy v	<u>eh</u>		2	2	2	2	_	2	_	2	2		2	Ļ	2	2	2	2
PHF	///		0.95	0.95	0.95	0.9	5	0.95)	0.95	0.9	5	0.95 A	-	95	0.95 A	0.95 A	0.95 A
Actuated (P Startup lost			2.0	A 2.0	2.0	2.0	, 	A 2.0	+	Α	2.0)	2.0	_	<u>A</u> 2.0	2.0	2.0	 ^
Ext. eff. gree			2.0	2.0	2.0	2.0	_	2.0	\dashv		2.0		2.0		2.0	2.0	2.0	
Arrival type			5	5	5	5		5			5		5		5	5	5	
Unit Extensi	on		3.0	3.0	3.0	3.0)	3.0			3.0)	3.0		3.0	3.0	3.0	
Ped/Bike/R ⁻	ΓOR Volum	е	5	5	10	5		5		65	5		5	+	0	5	5	0
Lane Width			12.0	12.0	12.0	12.	0	12.0			12.0	2	12.0	1.	2.0	12.0	12.0	
Parking/Gra	de/Parking		Ν	0	Ν	N		0		Ν	Ν		0	L	N	N	0	N
Parking/hr									_		_							
Bus stops/h	r		0	0	0	0		0			0		0	L	0	0	0	<u> </u>
Unit Extensi	ion		3.0	3.0	3.0	3.0)	3.0			3.0)	3.0		3.0	3.0	3.0	<u> </u>
Phasing	Excl. Left		Only	Thru			04		_	xcl. L	_		B Only			u & RT		38
Timing	G = 6.0 Y = 5.6	G = Y =	16.0		0.0	G = Y =			_	= 7.0 = 5.6			= 5.0 = 5.6			31.1 6.2	G = Y =	
Duration of				Y = 6	.3	Y =			Ĭ	- 5.0				atl		= 110.		
	up Capa			l Dal	av a	nd I	05	ב ה	ıtο	rmir			JIC LOI	gu		110.		
Latte GIO	up capa	l	EB	i Dek	, <u>a</u>	110 L	W		,,,,	<u> </u>	iatic	<u>/!!</u>	NB			<u> </u>	SB	
Adj. flow rat	e	124	212	386	45	3	65.			30	06	1:	241	66	66	38	1304	
Lane group		187	322	324	86	2	94	1		28	83	15	924	10	68	219	1416	
v/c ratio		0.66	0.66	1.19	0.5	3	0.6	i9		1.	08	0	.65	0.6	52	0.17	0.92	
Green ratio		0.05	0.09	0.21	0.2	25	0.2	9		0.	16	0	.38	0.6	39	0.06	0.28	
Unif. delay	11	51.0	48.3	43.3	35.	6	34.	9	Г	46	5.2	2	8.1	9.	5	48.8	38.3	
Delay factor	·k	0.24	0.23	0.50	0.1	3	0.2	6	Г	0.	50	0	.22	0.2	21	0.11	0.44	
Increm. dela	8.5	4.9	112.6	0.0	6	2.2	2		76	5.8	(0.8	1.	1	0.4	10.1		
PF factor		0.962	0.933	0.821	0.7	77	0.7	31		0.8	873	0.	593	0.1	59	0.955	0.737	7
Control dela	ay	57.6	50.0	148.2	28.	2	27.	7		11	7.2	1	7.4	2.	7	46.9	38.3	
Lane group	LOS	E	D	F	С		С			J	F	Ĺ	В	P	1	D	D	
Apprch. dela	ay	10	3.8			27	.9				2	6.8	3				38.6	
Approach L	os		F			C	;					С					D	
Intersec. de	lay	4(0.3					lr	iter	sectio	on LC	S					D	
HCS2000 TM			Co	pyright ©	2000 U	Jniversi	ty of	Florid	a, Al	ll Rights	Reser	ved					1	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright ${\mathbb C}$ 2000 University of Florida, All Rights Reserved

8/28/2012

					SH	OF	T RE	PC	DR'	T				<u> </u>	<u> </u>		
General Inf	ormation									mat	ion						
Analyst Agency or C Date Perfor Time Period	med	US US 08/28 AM P	AI 3/12				Are Jur	ea T isdi	ype ctio)		CC		OFF-R her are ANSIE	RAM eas DE	₹-	
Volume an	ıd Timing In	out	 T				-						·		,		
			LT	EB TH	T R	_	LT		/B H	R	_	LT	NB TH	RT	LT	SB TH	RT
Num. of Lar	nes		2	0	1	<u> </u>	0	0		0	+	0	4	0	0	5	0
Lane group	100		<u> </u>		R			l -		_	+		T	۰		T	
Volume (vpl	n)		506	 	23						\dashv		930	├	 	1788	├─
% Heavy v			2		2	_					\dashv		2			2	
PHF			0.95		0.9	5							0.95		1"	0.95	
Actuated (P	/A)		Α		Α								Α			Α	
Startup lost			2.0		2.0								2.0			2.0	
Ext. eff. gre	en		2.0		2.0)					\perp		2.0			2.0	
Arrival type			4		4			L					5	 		5	ļ. —
Unit Extensi	ion TOR Volume		3.0	 	3.0		5				-		3.0			3.0	
Lane Width	IOR Volume		5 12.0		0 12.	n	5				+		12.0			12.0	<u> </u>
Parking/Gra	de/Parking		N	0	N		N			N	\dashv	N	0	N	N	0	N
Parking/hr	<u> </u>										十					† <u> </u>	
Bus stops/h	r		0	1	0						\top		0			0	
Unit Extensi			3.0		3.0)					十		3.0			3.0	
Phasing	EB Only	02	2	03		Π	04		Th	ru C	nly		06	1	07		8
Timing	G = 26.0	G =		G =		G				= 64	4.0	G:		G =		G =	
Ů	Y = 5 Analysis (hrs	Y = 0.25		Y =		Υ	=		Υ =	= 5		Y =	le Leng	Y = Y		Y =	
	up Capaci			Dola	v 2	nd	LOS	De	to	mi	nat		Ne Len	jiii O -	100	.0	
Lane Oio	up Capaci	ly, CC	E		y, a T	nu	LOS W		tei		IIal	1011	NB		<u> </u>	SB	
Adj. flow rat	e	533	<u> </u>	249	,		T .		Ι			g	79			1882	T
Lane group		894	+	412	-		+		H				330			5412	\vdash
v/c ratio		0.60	+	0.60	-		+		H			-	.23			0.35	┢
Green ratio		0.26		0.26	-+		\dashv		┢			_	.64			0.64	
Unif. delay of		32.4		32.5			_						7.6			8.3	
Delay factor		0.19		0.19	-		-	_	\vdash				.11			0.11	\vdash
Increm. dela		1.1	1	2.5	-				Т			_	0.0			0.0	
PF factor	· · · · · · · · · · · · · · · · · · ·				0				\vdash			_	139			0.139	
Control dela	Control delay 33				,							1	1.1			1.2	
Lane group	ane group LOS C											十	Α	·		Α	
Apprch. dela	эу		34.0									1.	1			1.2	
Approach L	os		С	•		-						1	1			Α	
Intersec. de	lay		8.2		\neg			I	nte	rsec	tion	LOS	}			Α	
HC\$2000TM			Cor	ovright © :	2000 T	Initro	roity of E	المساط	. A 11	Dich	ta Don	o mura d				3.7	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	OF	RT RE	PC	R.	T							
General inf	ormation									mat	ion				·		
Analyst Agency or C Date Perfor Time Period	med	US US 08/2 PM P	AI 8/12				Are Jur	erse ea T isdie alys	ype ctio)		CC		OFF-R her are ANSIE	PAM Pas DE	₹-	
Volume an	d Timing In	put															
			LT	EB	T B	_	LT	W			_	LT	NB Tu	LDT	1	SB	I DT
Num, of Lar	nes		2	TH 0	R ⁻	<u>' </u>	0	T1 0		R1 0	+	0	TH 4	RT 0	LT 0	TH 5	RT 0
Lane group			<u> </u>		R					•	十		T	 	Ť	T	
Volume (vpl	h)		467		439						+		1636		-	1616	
% Heavy v			2	 	2	,					+		2			2	\vdash
PHF			0.95		0.9	5					\top		0.95			0.95	
Actuated (P	/A)		Α		Α						丁		Α			Α	
Startup lost			2.0		2.0)					╧		2.0			2.0	
Ext. eff. gree	en		2.0		2.0)							2.0			2.0	
Arrival type			4		4						4		5	<u> </u>		5	
Unit Extensi			3.0	ļ	3.0)					4		3.0	<u> </u>		3.0	
	TOR Volume		5		0	_	5				4			ļ	ļ		—
Lane Width	1-05-11-		12.0		12.0	_	A (A (12.0		1	12.0	
Parking/Gra	ide/Parking		N	0	N		N			Ν	+	N	0	N	N	0	N
Parking/hr				-	_						+			 	-		<u> </u>
Bus stops/h			0	 	0								0	├	-	0	
Unit Extensi			3.0		3.0		0.4	<u> </u>	<u></u>		<u> </u>		3.0	<u> </u>	07	3.0	<u> </u>
Phasing	EB Only G = 36.0	02 G =		03 G =		G	_04 _	\dashv		ru C = <i>5</i> 4		G:	06	G =	07	G =)8
Timing	Y = 5	Y =		Y =		Ÿ		_		= 5	, .U	Υ:		Y =		Y =	
Duration of	Analysis (hrs) = 0.28		•				l.		-	-	Сус	le Leng	gth C =	100	.0	
Lane Gro	up Capaci	ity, Co	ntrol	Dela	y, a	nd	LOS	De	te	rmi	nat	ion					·
		Ť	E		<u> </u>			/B		·			NB			SB	
Adj. flow rat	е	492		462	7							1	722			1701	
Lane group	сар.	1237		570	,							3	653			4567	
v/c ratio		0.40		0.81	1						·	0	.47			0.37	
Green ratio		0.36		0.36	3							0	.54			0.54	
Unif. delay o	11	23.9		28.9	9							1	4.2			13.2	
Delay factor	`k	0.11		0.35	5							0	.11			0.11	
Increm. dela	ay d2	0.2		8.6								ď	0.1			0.1	
PF factor		0.934	4	0.93	4							0	217			0.217	
Control dela	ıy	22.5		35.7	7							,	3.2	-		2.9	
Lane group	LOS	С		D									Α			Ā	
Apprch. dela	ay		28.9									3.	2			2.9	
Approach L	os		С									P	1			Α	
Intersec. de	lay		8.7					[nte	rsec	tion	LOS	;			Α	
HC\$2000TM	·	· ·	C	vright © 1	2000 []	Ymirro	witer of F	امساطم	4.13	Diah	n Dan	om od				37	ersion 4.1

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	OR	RT						
General Inf	ormation					9	ite l	nfo	rmati						
Analyst Agency or 0 Date Perfor		U	SAI SAI 28/12			A	nters Area	Тур	е	CC		DR. her ar	eas	ZA	
Time Period			PEAK				uriso \naly		on Year		OCE EXIST	EANSI TING 2			
Volume an	d Timing In	put													
				EΒ				/B			NB			SB	
			LT	TH	RT	LT	T		RT	LT	TH	RT	LT	TH	RT
Num, of Lar	nes		1	1	0	1	1		1	1	3	0	2	3	0
Lane group			L	TR		L	7	-	R	L	TR		L	TR	
Volume (vpl			11	12	8	101	14		219	27	706	224	750	1237	38
% Heavy v	eh		2	2	2	2	2		2	2	2	2	2	2	2
PHF	/A \		0.95	0.95	0.95	0.95	0.9		0.95	0.95	0.95	0.95	0.95	0.95	0.95
Actuated (P Startup lost			3.0	3.0	A	3.0	3.	$\overline{}$	<i>A</i> 3.0	3.0	3.0	Α	3.0	3.0	A
Ext. eff. gre			2.0	2.0	 	2.0	2.0	_	2.0	2.0	2.0	-	2.0	2.0	\vdash
Arrival type			4	4		4	4		4	5	5		5	5	
Unit Extens	ion		3.0	3.0		3.0	3.	0	3.0	3.0	3.0		3.0	3.0	
Ped/Bike/R	TOR Volume)	5	10	0	5	10)	0	5	10	0	5	10	0
Lane Width			12.0	12.0		12.0	12.	.0	12.0	12.0	12.0		12.0	12.0	
Parking/Gra	de/Parking		N	0	N	Ν	()	Ν	N	0	Ν	N	0	Ν
Parking/hr													·		
Bus stops/h	r		0	0		0	0)	0	0	0		0	0	
Unit Extens	ion	·	3.0	3.0		3.0	3.	0	3.0	3.0	3.0		3.0	3.0	
Phasing	EB Only	WB	Only	03	3	04	ı	E	xcl. L	eft	SB Only	Th	ru & RT		80
Timing	G = 12.0	G =		G =		G =			= 10		3 = 19.0		= 31.0	G =	
	Y = 4	Y =	•	Y =		Y =		Υ	= 4		′ = 4		= 4	Y =	
	Analysis (hr			I Dali			<u> </u>				ycle Len	gin C	= 100.	0	
Lane Gro	up Capac	ity, C		n Dei	ay, ai			ete	rmir	iatio	,		1	CD	
		40	EB		100		/B		_	00	NB	1	700	SB	
Adj. flow rat		12	21	_	106	-		23		28	979	-	789	1342	-
Lane group	cap.	192	190	_	122	_		67	-+	159	1459	+	1100	2675	
v/c ratio		0.06	0.11		0.87			0.3	-+	0.18	0.67	+	0.72	0.50	
Green ratio	1.4	0.11	0.11	<u> </u>	0.07			0.4		0.09	0.30	+	0.32	0.53	+
Unif. delay		39.9	40.1		46.0			18.		42.1	30.7	-	30.0	15.0	+
Delay factor		0.11	0.11		0.40			0.1		0.11	0.24		0.28	0.11	
Increm. dela	ay d2	0.1	0.3		44.4	_		0.3	-	0.5	1.2	┼	2.3	0.2	
PF factor		1.000	1.000	7	1.00			0.8		0.934	0.714	1	0.686	0.248	
Control dela		40.0	40.4		90.4			16.		39.8	23.1	╄	22.9	3.9	
Lane group	 	D	D		F	D		В		D	C		С	Α	
Apprch. dela	· · · · · · · · · · · · · · · · · · ·	4	0.2			39.6					23.6		 	10.9	
Approach L	os		D			D	·				С			В	
Intersec. de	lay	1	7.7				lı	nter	sectio	n LOS	;			В	
HCS2000 TM			Co	opyright C	2000 U	niversity o	f Flori	da. A	ll Rights	Reserve	·d	-	<u>-</u>		Tersion 4.1

 $HCS2\theta\theta\theta^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	OR	RT							
General Inf	ormation					S	ite l	nfo	rmati	on						
			0.4.1			İı	nters	ecti	on	C	OL	LEGE .		@ PLA	ZA	
Analyst Agency or C	`^		SAI SAI			- 1	rea '						DR. her are	200		
Date Perfor			28/12				urisc						ANSIL			
Time Period			PEAK			- 1			Year		İ	EXISTII	NG 201	11/NO		
							Пату	313	ı c aı			PR	OJEC	T		
Volume an	d Timing In	put					10/			1		NID		1	CD.	
			LT	EB TH	RT	LT	W I Ti		RT	 [-		NB TH	RT	LT	SB TH	RT
Num. of Lar	ıes		1	1	0	1	1	<u> </u>	1	1	•	3	0	2	3	0
Lane group			L	TR		L	T		R	L		TR		L	TR	
Volume (vpl	n)		40	27	19	152	12	?	446	17		1150	101	725	1294	36
% Heavy ve	eh		2	2	2	2	2		2	2		2	2	2	2	2
PHF			0.95	0.95	0.95	0.95	0.9	5	0.95	0.9	5	0.95	0.95	0.95	0.95	0.95
Actuated (P.			Α	Α	Α	Α	A	_	A	Α		Α	Α	A	Α	Α
Startup lost			3.0	3.0		3.0	3.0	_	3.0	3.0		3.0		3.0	3.0	
Ext. eff. gree	∍n		2.0	2.0		2.0	2.0	7	2.0	2.0)	2.0		2.0	2.0	<u> </u>
Arrival type			4	4		4	4	+	4	5		5		5	5	
Unit Extensi Ped/Bike/R			3.0	3.0		3.0	3.0		3.0	3.0)	3.0		3.0	3.0	
Lane Width	OR Volume	;	5 12.0	10 12.0	0	22 12.0	10 12.	_	0 12.0	9 12.		10 12.0	0	5 12.0	10 12.0	0
Parking/Gra	de/Parking		N N	0	N	N N	0	\rightarrow	N N	N N	_	0	N	N	0	N
Parking/hr								•		1						
Bus stops/h	r		0	0		0	10	寸	0	0		0		0	0	
Unit Extensi			3.0	3.0		3.0	3.0	-	3.0	3.0	,	3.0		3.0	3.0	
Phasing	EB Only	WB	Only	0:	3	04	<u> </u>	TĖ	xcl. L	eft	S	B Only	Thr	u & RT	.	08
Timing	G = 10.0		13.0	G =		G =		_	= 7.0	_		= 13.0		42.2	G =	
	Y = 4.2	Y = 3		Y =		Y =		Υ	= 4.2			= 5.2		5.6	Y =	
Duration of				<u> </u>			<u> </u>	4				cle Len	gtn C =	= 110.	0	
Lane Gro	up Capac	ity, C		o Dela	ay, ar			ете	rmir	natio	<u>n</u>	NID		1	- CD	
		l	EB	<u> </u>		W			_		_	NB	1		SB	<u> </u>
Adj. flow rat		42	48		160			469	-+	18	-	1317		763	1400	<u></u>
Lane group	сар.	134	140		191			558		97	_	1874	ļ	725	2726	
v/c ratio		0.31	0.34		0.84	0.0	6	0.8		0.19		0.70	<u> </u>	1.05	0.51	
Green ratio		0.08	0.08		0.11	0.1	1	0.3	8 (0.05	_	0.37		0.21	0.54	
Unif. delay o	11	47.6	47.7		48.0	44.	0	31.	1 4	49.7		29.2		43.4	16.1	
Delay factor	k	0.11	0.11		0.37	0.1	1	0.3	8 (0.11		0.27		0.50	0.12	
Increm. dela	y d2	1.3	1.5		26.6	0.1	·	11.	1	0.9		1.2		48.1	0.2	
PF factor	,	1.000	1.000	<u> </u>	1.00	0 1.00	00	0.91	15 (0.962	_	0.601		0.822	0.217	
Control dela	у	48.9	49.2		74.7	44.	1	39.	5	48.7		18.8		83.7	3.7	
Lane group	LOS	D	D		E	D		D		D		В		F	Α	
Apprch. dela				19	.2			31.9								
Approach Lo	os		D			D					E	3			С	
Intersec. de	ay	3	0.7				lr	iters	sectio	n LO	S				С	
HCS2000 TM			C.	anariaht @	a anno II-	niversity o	FELORIC	do Al	II Diahte	Dagar	امما				1	ersion 4.1:

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	OR'	T RI	EP(OR'	T								$\overline{}$
General Inf	ormation						Sit	te Ir	ıfor	ma	tior	1						
Date Perfor	med) 08	JSAI /28/12				Are Ju	ea T risdi	ype ictio	e on	r		MAI All o OC EXIST	RR oth E/ IN	ON Ri er area NSIDI G 201	D. as E 1/NO		
Volume an	d Timing	Input																
				EB		\perp											SB	
				† 		_			1		Γ.			4				_
	nes					+			_		\dashv			_				
	`					_			_		_			4				
						_								┥				
	۳II								2		2			. 				
	/A)		Α	Α	Α			Α		Α		Α	Α		Α	Α	Α	Α
			2.0	2.0	2.0						_	2.0	2.0	\Box	2.0	2.0	2.0	
	en				})			_	_	4				
	ion			} 	1—	_	_		<u>, </u>		\dashv			┥				$\vdash \vdash \vdash$
L		ne		3.0		_			_		\dashv			┪		1	3.0	
Lane Width	TOTY VOIGI	110		12.0		_		_			0			,		12.0	12.0	
Parking/Gra	de/Parkin	g	N	0	N				-			Ν	0	┪	N	N	0	N
Parking/hr									一					┪				
Bus stops/h	г		0	0	0	(0	0		0		0	0		0	0	0	
Unit Extensi	on		3.0	3.0	3.0	3	.0	3.0	5	3.0)	3.0	3.0		3.0	3.0	3.0	
Phasing			_				04											8
Site Information																		
				Y = 4		Υ =			Υ =	= 4				nai		-		
	~ ************			l Dela	v ai	nd I	OS	De	ate:	rmi	ina			9		,00.0	<u></u>	
Lano Cro	ар оар	10.0,		. 50.0	. <u>, ,</u>							-	•				SB	
Adi flow rat	e	125		109	438	Т			283		130	Q		T	253	213	_	\top
<u> </u>				-	 	_		+						┿				+
v/c ratio	· · · · · · · · · · · · · · · · · · ·	0.36	0.20	0.36	0.85	1	0.18	70). 4 8		0.8	1	0.61	0	.55	0.41	0.68	
Green ratio		0.10	0.10	0.19	0.29	7	0.29	0).38		0.0	5	0.30	0	.30	0.15	0.40	\top
Unif. delay o	1 1	42.0	41.3	35.2	33.5	1	26.6	12	3.5		47.	0	30.0	2	9.3	38.5	24.7	\top
Delay factor	·k	0.11	0.11	0.11	0.39	7	0.11	C).11		0.3	5	0.20	0	.15	0.11	0.25	
Increm. dela	ay d2	0.7	0.5	0.7	13.2		0.2	-	0.6		24.	1	1.1	ŀ	1.3	0.5	1.3	
PF factor		1.000	1.000	1.000	0.99	3 0	.993	0	.918	5	0.96	6 5	0.714	0.	714	0.882	0.556	
Control dela	y	42.7	41.8	36.0	46.5	2	26.5	2	2.2		69.	5	22.5	2	2.3	34.5	15.0	
Name Name																		
Intersection																		
Approach L	os	Į į)			D						-	0				В	
Intersec. de	lay	27	7.7					In	ters	ect	ion	LOS					С	
zzananaTM			C	ansocialst @	2000 11	nivere	ity of E	- Norld	- A11	Pint	sta D	-	4				V.	ercion 4 1f

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

						SH	OF	RT R	EP	OR	T								
General Inf	ormation					<u> </u>	<u> </u>			nfo		itioi	า				, ,		
Analyst Agency or C Date Perfor Time Perioc	Co. med		U: 08/2					In Ar Ju	ters ea iris	secti Typ dictio	on e on			All o OC EXIST	RR oth E/	ON R er area NSID G 201	D. as E 1/NO		
Volume an	d Timing	Inpu	t																
				17	EB	Грт	4	1 7			ГБ	٦	17		_	DT	LT	SB TH	RT
Num. of Lar	nes					1	+		1						┪		2	2	0
Lane group				L	T	R	\dagger	L	⊢		_		L	T	1	R	L	T	
Volume (vpl	h)			470	229	211	\dagger	176	14	45	16	4	204	797	┪	425	320	567	
% Heavy v				2	2	2		2	2	2			2	2		2	2	2	
PHF				0.95	0.95	0.95	(_		-						0.95	0.95	
							4		_						4		A	A	
							_								-	_	2.0	2.0	
	en						+		-						-		2.0 5	2.0 5	
Arrival type	·				_		+		-		_	_			\dashv			_	
							+		_						4		3.0	3.0	
	I OR Volui	me					4		_						_		5	100	
Lane Width					 		- -		-						_		12.0	12.0	
	ide/Parkin	g		N	0	N	4	N	L	0	^	/	N	0	4	N	N	0	N
Parking/hr					<u> </u>	<u> </u>	4		L						4			<u> </u>	
Bus stops/h	acy or Co. Performed Period Ime and Timing Inpu In of Lanes group Ine (vph) Eavy veh Index (P/A) I			0	0	0	\perp	0	Ľ)	C		0	0	_	0	0	0	
Unit Extensi	ion			3.0	3.0	3.0		3.0	3	.0	3.	0	3.0	3.0		3.0	3.0	3.0	
Phasing	Excl. Le	ft T	hru	& RT	03	}		04		E	xcl.	Lef	t -	Γhru & F	₹Т		07	00	3
Timing					G =										9	G =		G =	
					Y =		Y	=		Υ	= 5	5.3						Y =	
						,				· · · · · · · · ·			_		ngl	th C =	100.0)	
Lane Gro	up Capa	acity	, C	<u>ontro</u>	I Dela	ıy, aı	<u>nd</u>	LOS	S D	ete	rm	ina	<u>ıtio</u>	n					
				EB				WE	}					NB				SB	
Adj. flow rat	е	495		241	222	185		153		173	}	21	5	839	4	47	337	597	Ī
Lane group	сар.	653		298	516	336		298		516	}	41	9	1131	٤	78	419	1131	1
v/c ratio		0.76	6	0.81	0.43	0.55		0.51		0.34	1	0.5	1	0.74	0	.51	0.80	0.53	\top
Green ratio		0.19) (0.16	0.34	0.19		0.16		0.34	1	0.1	2	0.32	0	.57	0.12	0.32	
Unif. delay o	11	38.3		40.5	25.8	36.6		38.4		24.9)	41.	1	30.4	1	3.2	42.7	27.9	
Delay factor	·k	0.31	. (0.35	0.11	0.15		0.12		0.11	1	0.1	2	0.30	0	.12	0.35	0.13	
Increm. dela	ay d2	5.1	<u></u>	15.2	0.6	1.9		1.5		0.4		1.	1	2.7	().5	10.9	0.5	
PF factor		1.00	0 1	1.000	0.957	1.00	0	1.000)	0.95	7	0.9	07	0.688	0.	131	0.907	0.688	
Control dela	ıy	43.5	,	55.7	25.3	38.6		40.0		24.2	2	38.	4	23.6	Z	2.2	49.7	19.6	
Lane group	LOS	D		Е	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0											Α	D	В	
Apprch. dela	ау		42.	LT TH RT LT TH RT LT TH 2 1 1 1 1 1 2 2 L T R L T R L T 470 229 211 176 145 164 204 797 2 </td <td></td> <td></td> <td>30.5</td> <td></td>													30.5		
Approach Lo	Period PM PEAK Panalysis Period PROJECT											С							
Intersec. de	lay		29.	6					I	nter	sect	tion	LOS	3				С	
ricennonTM					11.0	2202 TT		•, 0		1 41	11 TS 1	L D		4					reion 4 1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	IORT	RI	EPO	R.	T								
General Inf	ormation						Sit	te Infe	orı	matic	n		**					
Analyst Agency or C Date Perfor Time Period	med	U: 08/2	SAI SAI 28/12 PEAK				Are Jui	ersec ea Ty risdic alysis	pe tio	e n	VI		A WAY(ON I All oth OCE, EXIST	RAMI ner ai ANSI	PS rea IDE	es E	FF-	
Volume an	d Timing In	put		•	•		<u>'—</u>											
				EB				WB					NB				SB	
·			LT	TH	RT			ŤΗ		RT	L	T_	TH	RT		LT	TH	RT
Num. of Lar	nes		1	2	1	2		2	┙	0	1		1	1	_	0	2	0
Lane group			L	T	R	L		TR			L	•	LT	R			LTR	
Volume (vpl			78	519	269		_	218		37	62		61	176		43	68	35
% Heavy vo	eh		2	2	2	2	_	2	4	2	2		2	2	_	2	2	2
PHF	/A\		0.95	_	0.95			0.95	- 1	0.95	0.9 A		0.95 A	0.95 A	4	0.95 A	0.95 A	0.95 A
Actuated (P Startup lost			<i>A</i> 3.0	A 3.0	A 3.0	3.0	-	A 3.0	+	Α	3.		3.0	3.0	\dashv	А	3.0	 ^
Ext. eff. gree			2.0	2.0	2.0	_	\rightarrow	2.0	+		2.		2.0	2.0	\dashv		2.0	
Arrival type			5	5	5	5		5	1		3		3	3			3	
Unit Extensi	ion		3.0	3.0	3.0	3.0	П	3.0			3.	0	3.0	3.0			3.0	
Ped/Bike/R	TOR Volume)	5	10	0	5		10		0	5		10	0		5	10	0
Lane Width			12.0	12.0	12.0) 12.0)	12.0			12	.0	12.0	12.0	<u> </u>		12.0	<u> </u>
Parking/Gra	ide/Parking		Ν	0	Ν	N		0		Ν	<u> </u>	<u> </u>	0	Ν		Ν	0	N
Parking/hr																		
Bus stops/h	r		0	0	0	0		0			()	0	0			0	
Unit Extensi	ion		3.0	3.0	3.0	3.0		3.0			3.	0	3.0	3.0			3.0	
Phasing	Excl. Left		& RT	03	})4			B On			B Only			07)8
Timing	G = 11.0	G =		G =		G =				= 9.0)		= 37.0		=		G =	
	Y = 4	Y = .	•	Υ =		Y =			Y =	= 4			= <i>4</i> de Leng	Y ath C		100	Y =	
	Analysis (hr			I Dala			<u> </u>	2 Dat	4				ie Len	Jui C	_	100.	0	
Lane Gro	up Capac	ity, C		Dela	ıy, a	ina L			te	rmir	iati	on	ND			1	CD	
			EB	1	4		W		_			_	NB		_	-	SB	<u>-</u>
Adj. flow rat		82	546	283	-+	218	26		Ĺ		364	-	362	185			154	_
Lane group	сар.	177	922	401	3	344	89	96		- 10	634	_	641	557			265	
v/c ratio		0.46	0.59	0.71	C	0.63	0.3	30).57		0.56	0.33	3	į	0.58	
Green ratio		0.10	0.26	0.26	C	.10	0.2	26			0.36		0.36	0.36	3		0.08	
Unif. delay	11	42.5	32.4	33.5	4	3.2	29).7		2	25.8	1	25.7	23.3	3		44.4	
Delay factor	k	0.11	0.18	0.27	C).21	0.1	11	Г	(0.17	T	0.16	0.11	1		0.17	
Increm. dela	ay d2	1.9	1.0	5.6	,	3.8	0.	.2			1.3		1.2	0.4			3.2	
PF factor		0.926	0.766	0.76	6 0	.926	0.7	766		1	.000)	1.000	1.00	0		1.000	
Control dela	ay	41.2	25.8	31.3	4	3.8	22	2.9			27.1		26.9	23.6	3		47.6	
Lane group	LOS	D	С	С		D)			С		С	С			D	
Apprch. dela	ay	2	8.9			32	2.3					26	.3				47.6	
Approach L	os		С			()					C	>				D	
Intersec. de	lay	2	9.8					Ir	ıte	rsect	ion l	OS	3				С	
recessosTM				. 1 . @	2000	University	01	مادنسه IZI	4.11	L Delia Las	D					-		ersion 4.1

 $HCS2000^{TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					S	НО	RTR	REPO)F	RT							
General Inf	ormation									rmati	on						
Analyst Agency or 0 Date Perfor Time Period	med	U. 08/2	SAI SAI 28/12 PEAK				A Ju	iterse rea Ty urisdio nalysi	yp etic	e on	VI	STA	ON I All otl	RAMP ner are ANSIL	eas DE)FF-	
Volume an	nd Timing In	put															,
:				EB	_	_		WE		БТ	 	т	NB	l of	1 7	SB	I DT
Num, of Lar	nes		LT 1	TH 2	R 1	_	LT 2	TH 2		RT 0	1	T	TH 1	RT 1	LT O	TH 2	RT 0
Lane group			L	 T	R	,		TR			+i		LT	R	+ -	LTR	
Volume (vp	h)		86	476	30		293	410		33	72		62	115	65	83	56
% Heavy v			2	2	2		2	2		2	1/2		2	2	2	2	2
PHF			0.95	0.95	0.9		0.95	0.95		0.95	0.8		0.95	0.95	0.95	0.95	0.95
Actuated (P	'/A)		Α	Α	Α		Α	Α		Α	1	_	Α	Α	Α	Α	Α
Startup lost			3.0	3.0	3.0		3.0	3.0			3.		3.0	3.0		3.0	
Ext. eff. gre	en		2.0	2.0	2.0		2.0	2.0			2.		2.0	2.0	-	2.0	
Arrival type	•		5	5	5	$\overline{}$	5	5			1.3		3	3	+	3	
Unit Extens	ion TOR Volume		3.0 5	3.0 10	3.0 0		3.0 5	3.0		0	3.		3.0 10	3.0 0	5	3.0 10	0
Lane Width	TOR VOIUTILE	;	12.0	12.0	12.		12.0	12.0		U	12		12.0	12.0	1 3	12.0	'
Parking/Gra	de/Parking		N	0	N		N	0		N	<u> </u>		0	N	N	0	N
Parking/hr																	
Bus stops/h	r		0	0	0		0	0			7)	0	0		0	
Unit Extens	ion		3.0	3.0	3.0	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Phasing	Excl. Left		Only	Thru 8		_	04			SB Or	_		B Only		07		08
Timing	G = 10.0	G =		G = 2) =		_	= 9.0)		= 40.0	G:		G =	
	Y = <i>4</i> Analysis (hr:	Y = 0.2		Y = 4		ĮΥ	′=		Υ.	= 4			= <i>4</i>	Y =	= = 110.	Y =	
	up Capac			l Dela	ıv	anc	110	S De	te	rmir	nati	_	JIC LCIT	guiro	110.	<u> </u>	
Lanc Oro	ир оприс	 	EB	<u>. Doile</u>	· <i>y</i> ,	unc		<u>0 20</u> VВ		T	iati	<u> </u>	NB		T	SB	
Adj. flow rat	e	91	501	319	寸	308		67	Τ	- 	421	Т	410	121	1	214	T
Lane group		145	677	843	-	687		281	t		628	7	634	549		239	
v/c ratio	<u>'</u> .	0.63	0.74	0.38	-	0.45		.43	t	<u> </u>	0.67	\dashv	0.65	0.22		0.90	-
Green ratio		0.08	0.19	0.55	_	0.20		.31	t	7	0.35	-	0.35	0.35		0.07	
Unif. delay	d1	48.9	41.9	14.3		38.7	30	0.3	t	7	30.1	┪	29.7	24.9		50.6	1
Delay factor	rk	0.21	0.30	0.11	一	0.11	0.	.11	T	7	0.24		0.22	0.11		0.42	
increm dela	ay d2	8.3	4.3	0.3		0.5	0	0.3	T	\dashv	2.8		2.3	0.2		32.1	
PF factor	· ·	0.941	0.843	0.20	0	0.83	<i>3 0</i> .	702	Ť	1	1.000	,	1.000	1.000	,	1.000	
Control dela	ay	54.3	39.7	3.1	_	32.7	2	1.5	T	;	32.8	ヿ	32.0	25.1		82.7	
Lane group	LOS	D	D	A		С		С	T		С		С	С		F	
Apprch. dela	ay	2	8.3	•	T		26.0)	_			31	.5			82.7	
Approach L	os		С				С					C	;		Ī	F	
Intersec. de	lay	3	2.8		\exists			I	nte	ersect	ion l	-05	;	•	\top	С	·
HCS2000 TM		· · · · · · · · · · · · · · · · · · ·	Co	pyright ©	2000	0 Univ	ersity of	f Florida	, A	ll Rights	Rese	ved			•	v	ersion 4.1.

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	OR	T		-							
General Inf	ormation					S	ite l	nfor	matic						****			
Analyst Agency or C Date Perfor Time Period	med	US 08/2	SAI SAI 24/12 PEAK			۵ J	nters area uriso analy	Type lictic	e on	1		OFF All o OCI EXISTI	the EAI	N RA r are NSIE 3 201	eas DE 11/NO	B.		
Volume an	d Timing Ir	ıput	''''						•									
				EΒ								NB				SB		
						 	+			┿			\bot	RT	LT	TH	RT	
Num. of Lar	nes				0	1	+-		0	1			╀	1	1	1	0	
Lane group			L			L		_		_			L	R	L	TR		
								3		_			╀	7	65	11	30	
	eh						_	, 							2	2 0.95	2	
	/A)							-		-	_		_	_	0.95 A	0.95 A	0.95 A	
						3.0	_	$\overline{}$				3.0	_		3.0	3.0	 ^`	
			2.0	2.0		2.0	_			-		2.0	_		2.0	2.0		
Arrival type			5	5		5	5			3		-3	I	3	3	3		
			3.0	3.0		3.0						3.0			3.0	3.0		
<u> </u>	ΓOR Volume	Э	5	10	0	5	_	_	0	ļ		10	- 		5	10	0	
							12.	0				-	-			1	Ļ	
 	ide/Parking		Ν	0	N	N	0	<u>' </u>	N	N		0	\perp	N	N	0	N	
Parking/hr								_		匚			_				Ļ	
Bus stops/h	<u>r</u>		0	0		0	0			0			┸	0	0	0	<u> </u>	
Unit Extensi	ion		3.0	3.0		3.0	3.0	<u>기</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.	0	3.0	<u> </u> ;	3.0	3.0	3.0		
Ext. eff. green											08							
Timing	L									12.0 12.0 12.0 12.0 12.0 N N 0 N N 0 0 0 0 0 0 3.0 3.0 3.0 3.0 3.0 B Only NB Only 07 9.0 G = 4.0 G = G = 4 Y = 4 Y = Y =								
				Y = 4		Υ =		Υ:	= 4				nath					
				l Dala		24 I O	ם פ	of o	rmin		Ť	JC LCI	igu	10-	100.	<u> </u>		
Laite Gio	up Capac	ity, C		ו שלו וי	iy, ai			CIC	<u> </u>	atin		MD	•			SB		
A all	_	70.4		- -	05				1,		_				00		$\overline{}$	
			+-		+				_		╌				68	44	+	
	сар.	<u> </u>									⊢	_			139	127		
v/c ratio		0.45	0.11		0.35	0.4	8		0.3	6	0.	35	0.1	7	0.49	0.35		
Green ratio		0.51	0.65		0.04	0.1	8		0.0	3	0.	03	0.0	3	0.08	0.08		
Unif. delay o	11	15.6	6.6		46.7	36.	8		47.	6	47	7.5	47.	3	44.0	43.5		
Delay factor	·k	0.11	0.11		0.11	0.1	1		0.1	1	0.	11	0.1	1	0.11	0.11		
Increm. dela	ay d2	0.2	0.0		3.0	0.6	3		4.4	4	4	.2	1.9	9	2.7	1.6		
PF factor		0.306	+	3	+				1.0	00	1.0	000			1.000	1.000	1	
% Heavy veh 2 <th< td=""><td>46.7</td><td>45.2</td><td></td></th<>											46.7	45.2						
Lane group	LOS	Α	Α		D	С			D		1	>	D		D	D	1	
Num. of Lanes															46,1	<u>L.</u>		
Approach Lo	os		Α			С			丁		D					D		
Intersec. de	lay	1	4.8				In	ters	ection	ı LO	S					В		
;							C'E1.		ID: 1.						•		Version 4.1	

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

					SH	ORT R	EP	ORT	•							
General Inf	ormation								natio	n						
Analyst Agency or C Date Perfor Time Period	med	U. 08/2	SAI SAI 28/12 PEAK			A Ji	nterse rea T urisd nalys	ype ictior	ו	P	<i>(</i>	OFF All of OCE	VD.@ -ON F her ar EANSI TING	eas DE	В	
Volume an	d Timing In	put														
	•			EB			W					ΝB			SB	
Num. of Lar			LT 2	TH 2	RT 0	LT 1	Th-	-	RT 0	LT 1	_	ΓΗ 1	RT 1	LT 1	TH 1	RT 0
	169				۳	+	-		-		_		1		<u> </u>	⊢∸⊢
Lane group	_\		L 704	TR	- F F	L	TR		<u> </u>	L		.T !4	R 54	123	<i>TR</i> 38	39
Volume (vpl % Heavy vo			791 2	319 2	55 2	96	352 2	+	59 2	145 2	_	2	2	123	2	2
PHF	311 		0.95	0.95	0.95	0.95	0.9	5 0	.95	0.95		<u>2</u> 95	0.95	0.95	0.95	0.95
Actuated (P	/A)		A	A	A	A	A		Ā	A		4	A	A	A	A
Startup lost			3.0	3.0		3.0	3.0			3.0		.0	3.0	3.0	3.0	
Ext. eff. gre	en		2.0	2.0		2.0	2.0			2.0		.0	2.0	2.0	2.0	
Arrival type			5	5		5	5			3		3	3	3	3	
Unit Extensi			3.0	3.0		3.0	3.0	_		3.0		.0	3.0	3.0	3.0	
Ped/Bike/R ⁻	FOR Volume)	15	10	0	5	10		0	17		0	0	15	10	0
Lane Width			12.0	12.0		12.0	12.0			12.0	_	2.0	12.0	12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0	_	N	N	()	N	N	0	N
Parking/hr																
Bus stops/h			0	0		0	0	_		0	_	0	0	0	0	
Unit Extensi			3.0	3.0	<u> </u>	3.0	3.0			3.0		3.0	3.0	3.0	3.0	<u> </u>
Phasing	Excl. Left		Only	Thru 8		04		_	Only	_	NB (_	07		08
Timing	G = 14.0 Y = 4	G = Y =		G = 2 Y = 4		G = Y =		G =	15.0		G = (= 4		G Y		G = Y =	
Duration of				1 - 4		1		1 -		_				= 110 <i>.</i>		
	up Capac			l Dela	av ar	rd I O	S D	ter	mina				9	7.07		
Lano Oro	ир очрио		EB	1 5010	<u> </u>	WE		,	T		NB			1	SB	
Adj. flow rat	<u></u> е	833	394		101	433			84		115	T	57	129	81	T
Lane group		1344	1629		209	691	,		166	;	174		146	218	212	
v/c ratio		0.62	0.24		0.48	0.6	3		0.51	1	0.66	7	0.39	0.59	0.38	
Green ratio		0.39	0.47		0.12	0.20	2		0.10	,	0.10	7	0.10	0.13	0.13	1
Unif. delay o	<u></u> <u>1</u> 1	26.9	17.3		45.4	40.	2		46.9	7	47.7		46.4	45.3	44.0	
Delay factor	k	0.20	0.11		0.11	0.2	1		0.11	1	0.24	7	0.11	0.18	0.11	
Increm. dela	ıy d2	0.9	0.1		1.8	1.8	}		2.5		9.0		1.7	4.2	1.2	
PF factor		0.572	0.402	?	0.91	1 0.83	33		1.00	0	1.000) 1	.000	1.000	1.000	
Control dela	У	16.3	7.0		43.1	35.	3		49.4	4	56.7		48.1	49.6	45.2	
Lane group	LOS	В	A		D	D			D		Ε		D	D	D	
Apprch. dela	ау	1	3.3			36.8				52	.4				47.9	
Approach L	os		В			D				I)				D	
Intersec. de	lay	2	6.7				ln	terse	ection	LOS	3				С	
HCS2000 TM	·	_	Co	opyright ©	2000 U	niversity of	Florid	a, All I	Rights R	- Reserv	ed				V	ersion 4.1

 $HCS2000^{\rm TM}$

					SH	ORT	REP	OR	Γ							
General Inf	ormation					5	ite In	forn	natio	_						
Analyst Agency or 0 Date Perfor Time Period	med	U. 08/2	SAI SAI 28/12 PEAK			A J	nterse Area T urisdi Analys	ype ctior	1		KE BLVI l All oth DCEANS EXIST	DR. ner a IDE	areas -INT.‡	‡ 19	R	
Volume an	d Timing In	put														
				EB		1	W	В			NB		1		SB	
			LT	TH	RT	LT	TH	1	RT	LT	TH	_		LT	TH	RT
Num. of Lar	nes		1	2	0	1	2		0	1	1	()	1	1	0
Lane group	71		L	TR		L	TF	2		L	TR			L	TR	
Volume (vpl	h)		137	246	2	2	500	3	84	1	2	2		53	2	191
% Heavy v	eh		2	2	2	2	2		2	2	2	2		2	2	2
PHF			0.92	0.92	0.92	0.92	0.9	2 (0.92	0.92	_	0.9		.92	0.92	0.92
Actuated (P			A	A	Α	A	A	_	Α	A	A	A		<u>A</u>	A	Α
Startup lost Ext. eff. gre			3.0 2.0	3.0 2.0		2.0	2.0			2.0	3.0 2.0	-		3.0 2.0	3.0 2.0	
Arrival type	en		3	3	-	3	3	+	-	3	3	-	_	3	3	-
Unit Extens	ion		3.0	3.0		3.0	3.0	+		3.0	_	-	_	3.0	3.0	
LIGHT COMMON VALUE	TOR Volume		5	10	0	5	10	_	0	5	0.0	0		5	0.0	0
Lane Width	TOR Volume		12.0	12.0	Ü	12.0	12.	_	0	12.0	12.0			2.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0	-	N	N	0	1	_	N	0	N
Parking/hr			7-1-7					7			1		- 1			
Bus stops/h	r		0	0	Ų.	0	0			0	0			0	0	
Unit Extens	ion		3.0	3.0	76	3.0	3.0)		3.0	3.0			3.0	3.0	
Phasing	Excl. Left	Thru	& RT	03	3	04	1	Ex	cl. Le	eft	Thru & R	TI	07	7		08
Timing	G = 13.0	G =	42.0	G =		G =			= 8.0		G = 19.1		G =		G =	
	Y = 4.2	Y = ,		Y =		Y =		Y =	4.2	_	l = 4.2		Y =		Y =	
	Analysis (hrs										ycle Len	gth	C =	100.	0	
Lane Gro	up Capac	ity, C	ontro	ol Dela	ay, a	nd LC	S D	eter	min	atio	n					
			EB			V	VB				NB				SB	
Adj. flow rat	е	149	269		2	6	41			1	4		5	8	210	
Lane group	сар.	212	145	2	21	2 14	116		1	42	312		12	24	287	4
v/c ratio		0.70	0.19)	0.0	0.1	45		0.	.01	0.01		0.	47	0.73	
Green ratio		0.12	0.41	07/12	0.1	2 0.	41		0.	.08	0.18		0.	07	0.18	1
Unif. delay	d1	42.3	18.8	3	38.	8 2	1.4		4.	2.3	33.6		44	1.7	38.7	
Delay factor		0.27	0.11		0.1		11		-	.11	0.11		_	11	0.29	
Increm. dela		10.0	0.1		0.0	0 0).2		0	0.0	0.0		2	.8	9.2	
PF factor		1.000		_	1.0		000		_	000	1.000			000	1.000	
Control dela	ay	52.3	18.9		38.		1.6		_	2.4	33.6		47	7.5	47.9	4
Lane group		D	В		D		С		-	D	С		_)	D	
Apprch. dela		V Series	30.8			21.7				3	5.4	_			47.8	
Approach L			С		1	С					D				D	
Intersec. de		3	29.8				Ir	ters	ectio	n LO					С	
HCS2000 TM		1		opyright ©	2000 1											ersion 4

01.1	
. 1	(P)
10	1
	0

					SH	ORT									
General Inf	ormation					S	ite In	forr	matio		KE DI W	D O T	##MDE		_
Analyst Agency or 0 Date Perfor Time Period	med	U: 08/2	SAI SAI 29/12 PEAK			A J	nterse krea T urisdi knalys	ype ctio	r n			DR. her are IDE-IN	as VT.#19	К	
Volume ar	nd Timing In	put													
				EB			W	3			NB			SB	V- 90
			LT	TH	RT	LT	TH	1	RT	LT	TH	RT	LT	TH	RT
Num. of Lar	nes		1	2	0	1	2		0	1	1	0	1	1	0
Lane group			L	TR		L	TR			L	TR		L	TR	
Volume (vp			252	534	5	5	288	}	99	1	2	6	124	3	133
% Heavy v	eh		2	2	2	2	2	_	2	2	2	2	2	2	2
PHF	/A \		0.92	0.92	0.92	0.92	0.9	2 1	0.92	0.92		0.92	0.92	0.92	0.92
Actuated (P Startup lost			A 3.0	A 3.0	Α	3.0	3.0	-	Α	3.0	3.0	A	3.0	3.0	A
Ext. eff. gre			2.0	2.0		2.0	2.0	_	_	2.0	2.0	-	2.0	2.0	+-
Arrival type	OII		3	3	1	3	3	1		3	3		3	3	1
Unit Extens	ion		3.0	3.0		3.0	3.0	,		3.0	_		3.0	3.0	
THE EAST PLANTS OF THE STATE OF	TOR Volume		5	10	0	5	10	_	0	5		0	5		0
Lane Width			12.0	12.0		12.0	12.0	_		12.0	12.0		12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0	5	N	N	0	N	N	0	N
Parking/hr							10	T			1				
Bus stops/h	r		0	0		0	0			0	0		0	0	
Unit Extens			3.0	3.0		3.0	3.0	,		3.0	3.0		3.0	3.0	
Phasing	Excl. Left	EW	Perm	Thru	& RT	04	1	E	xcl. Le	eft -	Γhru & R	T	07		08
Timing	G = 4.0	G =	15.0	G = 4	40.0	G =		G	= 13.	0 (3 = 14.8	G		G =	
	Y = 4.2	Y = .		Y = 8	5.3	Y =		Y	= 4.2		l = 4.2	Υ:		Y =	
	Analysis (hrs										ycle Len	gth C	= 110.	0	
Lane Gro	up Capac	ity, C			ay, a			ete	rmin	atio					
			EB			V	VB				NB			SB	
Adj. flow rat	e	274	585		5	4	21			1	9		135	148	
Lane group	сар.	357	1909	9	11	5 11	198		1	93	206		193	199	
v/c ratio		0.77	0.31		0.0	0.	.35		0.	01	0.04		0.70	0.74	
Green ratio		0.20	0.54	1	0.2	20 0.	35		0.	11	0.13		0.11	0.13	
Unif. delay	d1	41.5	14.0		35	.6 20	6.2		4.	3.7	42.3		47.3	46.4	317
Delay factor		0.32	0.11		0.1	1 0.	11		0.	11	0.11		0.27	0.30	
Increm. dela		9.7	0.1	_	0.		0.2			0.0	0.1		10.7	14.0	
PF factor		1.000	1.00	0	1.0	00 1.	000		1.	000	1.000		1.000	1.000	
Control dela	ay	51.2	14.1		35	.8 20	6.4		4.	3.7	42.4		57.9	60.4	
Lane group	LOS	D	В		D		С			D	D		E	E	
Apprch. del	ay	2	25.9			26.5				4	2.5			59.3	
Approach L	os		С			С					D		(1	E	
Intersec. de		- 3	32.1				In	ters	sectio	n LOS	3			С	
HCS2000 TM		1		opyright @	20001	Iniversity of								1	Version 4

					SH	ORTR	EPO	DR	T									
General Inf	ormation					S	ite In	for	matio	n								
Analyst US Agency or Co. US Date Performed 08/2 Time Period AM I					A J	Area Type Jurisdiction OC					WA All CEA	OLLEGE BLVD.@ WARING RD. All other areas EANSIDE-INT#20 TING/NO PROJECT						
Volume an	d Timing li	nput																
				EB L DT		+	WB			RT LT		NB		<u> </u>	+,-	SB LT TH		
Num, of Lar	nes		LT 0	TH 1	RT 1	LT 1	T⊦ 1	┪	RT 0	1	_ I 2	TH 2		RT_	LT 1	2	RT 1	
Lane group			+ -	LT	R	1	TR	┰┼		ī				R	1	T	R	
Volume (vpl	h)		25	32	178	107	47	ᆉ	43	43		661	+	195	71	1221	138	
% Heavy v		· · · · · · · · ·	2	2	2	2	2	┪	2	7		2	+'	2	2	2	2	
PHF	011		0.92	0.92	0.92	0.92	0.92	?	0.92	0.9		0.92	2 0	.92	0.92	0.92	0.92	
Actuated (P	² /A)		A	A	Α	Α	Α	╗	Α	1		Α	_	Α	Α	Α	Α	
Startup lost time				2.0	2.0	2.0		2.0		2.0				2.0	2.0	2.0	2.0	
Ext. eff. green				2.0	2.0	2.0	2.0			2.0		2.0		2.0	2.0	2.0	2.0	
Arrival type				4	4	4	4	4				5	_	5	5	5	5	
Unit Extension				3.0	3.0	3.0		3.0		3.0		3.0	١,	3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume			5	5	0	5	+	5		5		5	٠,	0	5	5	0	
Lane Width			1,,	12.0	12.0	12.0	12.0		A /	12.0				2.0	12.0	12.0	12.0	
Parking/Grade/Parking			N	0	N	N	0	+	N	<i>-</i>	٧	0	+	Ν	N	0	N	
Parking/hr					 _ _ _		\vdash	+		 	_	_	-	_	+	_	<u> </u>	
Bus stops/hr				0	0	0	0	4		-	0	0	_	0	0	0	0	
Unit Extens				3.0	3.0	3.0	3.0			<u> </u>	.0	3.0		3.0	3.0	3.0	3.0	
Phasing	EB Only		B Only	0.	3	04		_	xcl. Le		_	ru &		G	07	G =	08	
Timing	G = 14.0 Y = 4.6	G = 7.0 $Y = 4$		G = Y =	G = Y =	Y = 4		= 15. = 46							Y =			
Duration of																		
	up Capac			ol Dela	av. aı	nd LO	S De	ete	rmin	ati								
			EB		WB				NE					SB				
Adj. flow rat	:e		62	193 116		98			474		718		212		77	1327	150	
Lane group	сар.		254	449	121	118			519	156		1 676		6 267		1561	684	
v/c ratio			0.24	0.43	0.96	0.83			0.91	寸	0.46		0.31		0.29	0.85	0.22	
Green ratio			0.14	0.29	0.07	0.07			0.15		0.44		0.44		0.15	0.44	0.44	
Unif. delay	d1		38.3	28.7	46.4	45.9	45.9		41.8		19.7		18.2		37.7	25.0	17.4	
Delay factor	Delay factor k 0		0.11	0.11	0.47	0.37	37		0.43	0.43 0.		0.11			0.11	0.38	0.11	
Increm. delay d2		0.5	0.7	68.7	37.0	7.0		20.7		0.2		0.3		0.6	4.7	0.2		
PF factor 1.		1.000	0.993	1.000	1.000)		0.881		0.476		0.476		0.881	0.476	0.476		
Control delay 3		38.8	29.2	115.1	82.9			57.5	9.6			8.9		33.8	16.6	8.4		
Lane group LOS		D	С	C F				Ē	E A		Α			С	В	Α		
Apprch. delay 3		31.5		100.4					25.7					16.7				
Approach LOS		С			F	С								В				
Intersec. de	lay		26.7				Inte	rse	ction l	LOS	S					С		
HC\$2000 TM			-	onvright @	2000 II	níversity o	f Florid	a A1	1 Rights	Rese	erved						Version 4.1	

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SHO	ORT R	EPC	R	T										
General Inf	ormation					s	ite In	for	matio	n									
Analyst USAI Agency or Co. USAI Date Performed 08/28/12 Time Period PM PEAK					Intersection Area Type Jurisdiction Analysis Year						COLLEGE BLVD.@ WARING RD. All other areas OCEANSIDE-INT#20PM EXISTING/NO PROJECT								
Volume an	d Timing Ir	nput																	
				EB	T 5 - 1 - T			WB				NB			<u> </u>	SB	T BE		
Nives of Lan	LT O	TH 1	RT 1	LT 1	TH 1		RT 0	LT _2	+	TH 2	RT 1		LT 1	TH 2	RT 1				
Num. of Lanes			10			+ -	—	-	U		+	T	R			$\frac{1}{T}$	R		
Lane group			103	LT	R 386	129	<i>TR</i> 51	4	116			1 1266	16		68	865	78		
Volume (vpl % Heavy ve	<u> </u>		103	54 1	1	129	1	+	1	1	'	2	10		1	2	1		
PHF	511		0.92	0.92	0.92	0.92	0.92	?	0.92	0.92	2 (0.92	0.9		0.92	0.92	0.92		
Actuated (P.	/A)		A	A	A	A	A		A	A		A	A		Α	Α	Α		
Startup lost time				2.0	2.0	2.0	2.0					2.0	2.0		2.0	2.0	2.0		
Ext. eff. green				2.0	2.0	2.0	2.0			2.0				0	2.0	2.0	2.0		
Arrival type				4	4	4	4	+		5	+	5 3.0	5		5 3.0	5 3.0	3.0		
Unit Extension			5	3.0 5	3.0	3.0 5	3.0 5		0	3.0 5		5.0 5	3.0		5	5	0		
Ped/Bike/RTOR Volume Lane Width			1 5	12.0	12.0	12.0	12.0		<u> </u>			12.0 12			12.0	12.0	12.0		
Parking/Grade/Parking			N	0	N	N	0	\dashv	N	N		0	\\\\\		N	0	N		
Parking/hr			 		 	†	Ť			<u> </u>	7	<u> </u>	Ħ				†		
Bus stops/hr				0	0	0	0	7		0	十	0	C)	0	0	0		
Unit Extension				3.0	3.0	3.0	3.0	1		3.0	, †	3.0	3.	0	3.0	3.0	3.0		
Phasing	EB Only	WE	Only	0.	3	04	<u> </u>	E	xcl. Le	ft	NE	3 Only	' T	Thr	u & R1		08		
Timing	G = 12.0	G =	10.0	.0 G=		G =									= 42.0 G=				
	Y = 4.6	Y =		Y =	Y = Y = 4.6 Y = 5 Y = 5 Cycle Length 0										Y = 6.7 Y =				
Duration of				<u> </u>			<u> </u>					e Len	gtn	<u> </u>	110.	.0			
Lane Gro	up Capac	city, C		oi Dei	ay, ar I	•	2 DE	ete	rmin	atic				1		0.0			
			EB		W			1 1			NB			+	<u> T</u>	SB	Г <u>.</u> -		
Adj. flow rat	e	_	171	420	140	181	$-\!$		┼	409 137						940	85		
Lane group	сар.		197	532	160	149			811							1354	599		
v/c ratio).87	0.79	0.88	1.21			0.50	0	0.73		0.22		.46	0.69	0.14		
Green ratio		[0).11	0.34	0.09	0.09	0.09		0.23		0.53		0.53		.09	0.38	0.38		
Unif. delay	11	4	18.2	32.6	49.4	50.0			36.6	36.6 20.		0 13.8		.8 47.4		28.6	22.2		
Delay factor k 0).40	0.34	0.40				0.11	0	0.29		0.11		1.11	0.26	0.11			
		31.3	7.9	37.9	142.9	7	_	0.5	0.5 1.		0.	0.1		2.0	1.6	0.1			
PF factor 1.		.000	0.950	1.000	1.000	7		0.797	7 0	0.254		0.254		.933	0.588	0.588			
Control delay 7:		79.5	38.8	87.3	192.9	2.9		29.7	_	6.6		3.6		6.3	18.4	13.2			
		Е	D	F	F	$\neg \uparrow$		С	\top	A A		Α		D	В	В			
<u> </u>		0.6		146.8				11.2					19.9						
		D			F								十	В					
Intersec. de	lay	3	0.4				Inte	rse	ection I	Los				\top		С			
HC\$2000 TM				omaight (a 2000 II	niversity o	f Florid	a A1	II Rights	Reserv	red			-		,	Version 4.1		

 $HCS2000^{\mathrm{TM}}$

Соругіght © 2000 University of Florida, All Rights Reserved

					SH	ORT R												
General Inf	formation					Si	te In	format	ion				1.70					
Analyst USAI Agency or Co. USAI Date Performed 06/03/12 Time Period AM PEAK						Intersection MARRON RD CREEK Area Type All other Jurisdiction OCEAN Analysis Year EXIST								CTR. areas ISIDE				
Volume ar	nd Timing	Input																
			-	EB			WE				NB			V	SB			
			LT	TH	RT	LT	TH	RT		LT	TH	_	RT	LT	TH	RT		
Num. of Lanes			2	2	0	2	2	1		0	1	1		1	1	1		
Lane group	9		L	TR		L	T	T R			LTR	R		L	LT	R		
Volume (vp			0	15	0	160	16			0	5	74		135	5	0		
% Heavy v	eh		2	2	2	2	2 2			2	2		2	2	2	2		
PHF	V/A)		0.92	0.92	0.92	0.92	0.92			0.92	0.92	0.92		0.92	0.92	0.92		
Actuated (P			A 2.0	A 2.0	Α	2.0	A 2.0	A 2.0	+	Α	A 2.0	2.0		A 2.0	A 2.0	A 2.0		
Startup lost time Ext. eff. green			2.0	2.0	1	2.0	2.0				2.0	2.0		2.0	2.0	2.0		
Arrival type			3	3		3	3	3	1		3	3		3	3	3		
Unit Extension			3.0	3.0		3.0	3.0	3.0		1	3.0	3.0		3.0	3.0	3.0		
Ped/Bike/RTOR Volume			5	10	0	5	10	0	1	5	10	0		5	10	0		
Lane Width			12.0	12.0		12.0	12.0	12.0			12.0	12.0		12.0	12.0	12.0		
Parking/Grade/Parking			N	0	N	N	0	Ν		N	0	٨	1	N	0	N		
Parking/hr																		
Bus stops/hr			0	0		0	0	0			0	()	0	0	0		
Unit Extension		3.0	3.0		3.0	3.0	3.0			3.0	3.	0	3.0	3.0	3.0			
Phasing	Excl. Lef		& RT	0	3	04	-=.	NB O			B Only	_		07		08		
Timing	G = 10.0			G =		G =		G = 1	0.0						G =			
Marine De Company	Y = 5	Y =																
Duration of				I Dal		-1100	2.0-	4			le Len	gtn	C =	70.0)			
Lane Gro	up Capa	Telty, C		Dei	ay, ar			termi	na		ID.		1		CD			
A 11 G			EB	1		WB		_	-	_	IB	•	+		SB			
Adj. flow rat		0	16		174	17	_	157		5				18	34	0		
Lane group	cap.	491	1013		491	1013	-	53		266				248	251	218		
v/c ratio		0.00	0.02		0.35	0.02	-	0.24		0.02			0	.48	0.14	0.00		
Green ratio		0.14	0.29		0.14	0.29	0.4	43	0.1		0.	14 0		.14	0.14	0.14		
Unif. delay	d1	25.7	17.9		27.1	17.9	12	2.7		25.8	27.2		27.6		26.2	25.7		
Delay factor k 0.11		0.11		0.11	0.11	0.	11		0.11	0.11		0	.11	0.11	0.11			
Increm. delay d2 0.0		0.0		0.4	0.0	0.	2		0.0	1.	1	1	1.4	0.2	0.0			
PF factor 1.000		1.000		1.000	1.000	1.0	000	0		0 1.0	1.000		000	1.000	1.000			
Control delay 25.7		17.9		27.5	17.9	12	2.9		25.8	28	28.3		9.0	26.5	25.7			
Lane group LOS C		В		С	В	E	3		С	С			С	С	С			
		7.9			20.5				28.2			T	28.5					
		В			С	C						С						
Intersec. de			3.5				Inter	rsection	110				+		С			
intersee. de	ndy.	1 2					micel	30000	,				_		-			

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SHO	ORT R	EP	OR	T							
General Inf	ormation					S	ite Ir	ıfor	matio	n						
Analyst Agency or 0 Date Perfor Time Period	med	U 06/	ISAI ISAI 103/12 PEAK			A Ju	iterse rea T urisd nalys	ype ictio	e in	J	MAF	RRON CRE All ot OCE EXIST	EK C her a ANS	TR. reas IDE	RRY	
Volume an	d Timing I	nput														
	4 (EB		1.4	W	В				NB			SB	
			LT	TH	RT	LT	Th	1	RT	-	T.	TH	RT	-	TH	RT
Num. of Lar	nes		2	2	0	2	2		1	()	1	1	1	1	1
Lane group			L	TR		L	T		R			LTR	R	L	LT	R
Volume (vpl			0	55	0	338	33	A	306	0	-	5	275			0
% Heavy v	eh		2	2	2	2	2		2	2		2	2	2	2	2
PHF	75.		0.92	0.92	0.92	0.92	0.9	2	0.92	0.9	_	0.92	0.92	_		0.92
			A	A	Α	A	A	4	A	1	1	A	A	A	A	A
			2.0	2.0		2.0	2.0	_	2.0	-		2.0	2.0	2.0		2.0
	en		2.0	2.0		2.0	2.0		2.0	-	00-3	2.0	2.0	2.0		2.0
	ibac	_	3	3	-	3	3	+	3	\vdash	-	3	3	3	3	3
	****		3.0 5	3.0	0	3.0	3.0	_	3.0 0	5		3.0 10	3.0 25	3.0	3.0	3.0
Lane Width	e group Ime (vph) Heavy veh Itated (P/A) Itup lost time eff. green Val type Extension /Bike/RTOR Volume e Width King/Grade/Parking King/hr stops/hr Extension sing Excl. Left 1 1 1 1 1 1 1 1 1			12.0	10	12.0	12.0	_	12.0			12.0	12.0			12.0
Personal Property of the	val type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing			0	N	N	0	-	N	1	j	0	N	N	0	N N
Parking/hr	don dining		N	-			-			-		0				+ **
Bus stops/h	r		0	0		0	0	1	0			0	0	0	0	0
	king/Grade/Parking king/hr stops/hr Extension sing Excl. Left T			3.0		3.0	3.0	1	3.0			3.0	3.0			3.0
Phasing		Thru	3.0 & RT	0	3	04	-	_	B Onl	V	S	B Only		07	1	08
		_	15.0	G=	_	G =			= 18.			= 32.0		=	G =	
Timing		Y =		Y =		Y =	1		= 5			= 5	_	=	Υ =	
Duration of	Analysis (h	rs) = 0.2	25							1	Cyc	le Len	gth C	= 10	0.0	
Lane Gro	up Capa	city, C	ontro	l Del	ay, ar	nd LO	S De	ete	rmin	ati	on					
			EB			WB						1B			SB	
Adj. flow rat	е	0	60		367	36	3	33		T	138	13	39	320	219	0
Lane group	сар.	516	532		516	532	7	25			272	27	0	563	565	495
v/c ratio		0.00	0.11		0.71	0.07	0.	46			0.51	0.8	51	0.57	0.39	0.00
Green ratio		0.15	0.15		0.15	0.15	0.	47		1	0.18	0.1	18	0.32	0.32	0.32
Unif. delay o	d1	36.1	36.7		40.4	36.5	1	7.9			37.0	37	.1	28.3	26.4	23.1
Delay factor	·k	0.11	0.11		0.27	0.11	0.	11		1	0.12	0.1	12	0.16	0.11	0.11
Increm. dela		0.0	0.1		4.6	0.1		0.5		1	1.6			1.4	0.4	0.0
PF factor		1.000	1.000		1.000	1.000) 1.	000		1	1.00	0 1.0	000	1.000	1.000	1.000
Control dela	ıy	36.1	36.8		45.0	36.5	_	8.4			38.6	38	.8	29.6	26.8	23.1
Lane group	LOS	D	D	100	D	D		В		1	D	L)	С	С	С
Apprch. dela		30	5.8			32.5					38.7				28.5	1
Approach L	os	12	D			С					D				С	
Intersec. de	lay	32	2.4		-		Inte	rse	ction I	LOS	3				С	
HCS2000 TM			C	opyright (© 2000 Ur	niversity of	Florid	a, All	Rights	Rese	rved					Version 4

TABLE 3-3
Existing Intersection Levels of Service

NI	rivina i su da	Cit	AM Peal	k Hour	PM Pea	k Hour
Number	Intersection	City	ICU/ Delay (1)	LOS	ICU/ Delay (1)	LOS
				Maria Cara Maria Cara Cara Cara Cara Cara Cara Cara		10
1	El Camino Real / Vista Way	OS	33.5	C	49.0	D
2	El Camino Real / SR-78 WB Ramps	OS	21.4	C	26.7	
3	El Camino Real / SR-78 EB Ramps	OS	167	В	36.3	C
4	El Camino Real / Plaza Dr.	CB	0.34(1)	A	0.65(1)	A
5	El Camino Real / Marron Rd.	CB	0.34(1)	A	0.52(1)	A
6	El Camino Real / Carlsbad Village Dr.	CB	0.45 (1)	A	0.55(1)	A
7	Vista Way / Rancho Del Oro Rd.	OS	35.7	D	42.8	D
8	Rancho Del Oro Rd. / SR-78 WB Ramps	OS	N/A	N/A	N/A	N/A
9	Rancho Del Oro Rd. / SR-78 EB Ramps	OS	N/A	N/A	N/A	N/A
10	Marron Rd. / Rancho Del Oro Rd.	OS	N/A	N/A	N/A	N/A
11	College Blvd. / Vista Way	OS	34.7	C	40.3	D
12	College Blvd. / SR-78 EB Off Ramp	OS	8,2	Α	8.7	A
13	College Blvd. / Plaza Dr.	OS	17.7	B	30.7	C
14	College Blvd. / Marron Rd. / Lake Blvd.	OS	2707	CX	29,6	CX
15	College Blvd. / Carlsbad Village Dr.	CB	0.69(1)	В	0.48(1)	A
16	College Blvd. / Cannon Rd.	CB	N/A	N/A	N/A	N/A
17	Vista Way / SR-78 WB Ramps	OS	29.8	C	32.0	C
18	Plaza Dr. / SR-78 EB Ramps	OS	1418	BC	26:7	C
19	Lake Blvd. / Thunder Dr.	OS	29.8		3201	C
20	College Blvd. / Waring Rd.	OS	2617	С	3004	CA
21	Marron Rd. / Quarry Creek Ctr.	OS -	23.5	C	32.4	C

Notes:

(1) ICU used in Carlsbad for existing conditions only.

N/A = Not Built

City:

OS = Oceanside

CB = Carlsbad

LOS	ICU	Seconds Delay
A	0.00 - 0.60	0.00 - 10.0
В	0.61 - 0.70	10.1 - 20.0
С	0.71 - 0.80	20.1 - 35.0
D	0.81 - 0.90	35.1 - 55.0
Е	0.91 - 1.00	55.1 - 80.0
F	Over 1.00	Over 80.0

					SH	IORT	RE	EPO	RT	-	•					<u> </u>
General Inf	ormation								ormat	tion						
Analyst Agency or C Date Perfor Time Period	med	U. 08/2	SAI SAI 22/12 PEAK				Are Jur	ersec ea Ty risdict	ре	•	0	All oti CEAN	<i>N</i> AY her are SIDE-II			
Volume an	d Timing In	nut					P	alysis	1 6 21		LXIO	TING/V	VI [I I I	NOOL		
Volume an	u mining in	put		ЕВ		\exists		WB		Т		NB		<u></u>	SB	
			LT	TH	RT	· Lт	- T	TH	RT	-	LT	TH	RT	LT	TH	RT
Num. of Lar	nes		1	2	1	2	一	2	0		2	3	0	2	3	0
Lane group			L	Т	R	L	十	TR			L	TR		L	TR	
Volume (vpl	ר)		22	46	65	396	; †	110	71	十	106	814	273	78	1644	57
% Heavy ve			2	2	2	2		2	2		2	2	2	2	2	2
PHF			0.92	0.92	0.92		2	0.92	0.92	2 (0.92	0.92	0.92	0.92	0.92	0.92
Actuated (P.			<i>A</i>	<i>A</i>	A	A	\dashv	<u>A</u>	Α	4	A	A	Α	A	A	Α
Startup lost Ext. eff. gree			3.0 3.0	3.0 2.0	3.0 1.2		_	3.0 2.0	+	_	3.0 1.2	3.0 5.0		3.0 0.8	3.0 5.8	
⊏xt. en. gree Arrival type	en		3.0	3	3	3	' 	3		\dashv	1.2 5	5.0		5	5	
Unit Extensi	on		3.0	3.0	3.0	_	,	3.0		十	3.0	3.0		3.0	3.0	
Ped/Bike/R)	5	10	0	5	十	10	0	十	5	10	0	5	10	0
Lane Width			12.0	12.0	12.0		0	12.0		1	12.0	12.0		12.0	12.0	
Parking/Gra	de/Parking		N	0	Ν	N		0	N	寸	N	0	Ν	N	0	N
Parking/hr										ヿ						
Bus stops/h	r		0	0	0	0		0		丁	0	0		0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0	一	3.0		丁	3.0	3.0		3.0	3.0	
Phasing	Excl. Left	WB	Only	Thru &	RT	1 ()4		Excl.	Lef	t Th	ru & R	T	07	()8
Timing	G = 10.3	G =		G = 1		G =			3 = <i>1</i>			= <i>48.6</i>			G =	
	Y = 5.2	Y =		Y = 5	.6	Y =			r' = 5	.2		= 6.3	Y =		Υ=	
Duration of						···						de Len	gth C =	= 133.	6	
Lane Gro	up Capac	ity, C		l Dela	ay, a	and L			erm	ina	tion			,		
			EB				W		,	_		NB			SB	
Adj. flow rat	е	24	50	71	4	130	19	7		11	5	1182		85	1849	
Lane group	сар.	136	446	426	7	720	88	8		35	2	1839		342	1941	
v/c ratio		0.18	0.11	0.17	, C	0.60	0.2	22		0.3	33	0.64		0.25	0.95	
Green ratio		0.08	0.13	0.28	C).21	0.2	27		0.1	10	0.38		0.10	0.38	
Unif. delay o	11	57.7	51.8	36.5	i 4	7.7	38.	.0		55	.7	34.1	1	55.5	39.9	
Delay factor	k	0.11	0.11	0.11	C	0.19	0.1	1		0.1	11	0.22		0.11	0.46	
Increm. dela	y d2	0.6	0.1	0.2		1.4	0.	1		0.	5	0.8		0.4	11.3	
PF factor		1.000	1.000	1.00	0 1	.000	1.0	00	·	0.9	24	0.594		0.926	0.583	
Control dela	У	58.3	51.9	36.7	4	9.1	38.	.1		52	.0	21.0		51.8	34.6	
Lane group	LOS	E	D	D		D	D)		L		С		D	С	
Apprch. dela	ау	4	5.5			45	5.6				23	.7			35.3	
Approach Lo	os		D			L)				C	;			D	
Intersec. de	lay	3	3.6					Int	ersec	tion	LOS				С	
ucsanaTM		-			2000	University	r of D	71 4 -	All Diel	sta D	200224			-	τ,	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					S	HORT	R	EPC	R	RT								
General Inf	ormation						Si	ite Inf	fol	rmati	on							
Analyst Agency or C	°o.		SAI SAI				1	terse			El	. C	V	VAY	L@ VIS	STA		
Date Perfori Time Period	med	08/	15/12 PEAK				Jυ	rea Ty urisdio nalysi	ctic	on	E	_	All oth CEANS TINGN	SIDE-		CT		
Volume an	d Timing In	nut					<u> </u>	ilalysi	3	i eai		(/0	11110/1	VIIII	, NOSE	-		
Volume an	a mining m	put		EB				WB			1		NB			S	SB	
			LT	TH	R.	T L	Т	TH		RT	L	Γ	TH	RT	LT	T		RT
Num. of Lar	nes		1	2	1	2		2		0	2		3	0	2	3	}	0
Lane group			L	Т	R	L		TR			L		TR		L	TI	R	
Volume (vpl	n)		177	312	35	4 34	5	207		133	42	6	1690	524	168	12	13	162
% Heavy ve	eh		2	2	2	. 2	_	2		2	2		2	2	2	2		2
PHF	/A >		0.92	0.92	0.9			0.92	_	0.92	0.9	2	0.92	0.92		0.9		0.92
Actuated (P. Startup lost			<i>A</i> 3.0	<i>A</i> 3.0	3.0) 3.0		3.0	4	Α	3.0	<u> </u>	A 3.0	Α	3.0	3.	_	Α
Ext. eff. gree			3.0	2.0	1.2			2.0	\dashv		1.2		5.0		0.8	5. 5.		
Arrival type	VII		3	3	3	3		3	7		5		5		5	5		
Unit Extensi	on		3.0	3.0	3.0	3.0)	3.0	T		3.0)	3.0		3.0	3.	.0	
Ped/Bike/R7	ΓOR Volume)	5	10	0	5		10	j	0	5		10	0	5	10	0	0
Lane Width			12.0	12.0	12.	0 12.	0	12.0			12.	0	12.0		12.0	12	.0	
Parking/Gra	de/Parking	·	Ν	0	Ν	N		0		N	Ν		0	Ν	Ν	C)	Ν
Parking/hr																		
Bus stops/h	r	·	0	0	0	0		0	ļ		0		0		0	()	
Unit Extensi	on		3.0	3.0	3.0	3.0)	3.0			3.0)	3.0		3.0	3.	.0	
Phasing	Excl. Left		& RT	00	3		04			xcl. L			IB Only		ıru & R	_	0	8
Timing	G = 16.0	G =		G =		G =				= 12			= 12.8		= 41.7	_	} =	
Duration of	Y = 5.2	Y = 0.3		Υ=		Y =			Y	= 5.2			= <i>6.3</i>		= 6.3 = 133	_	′ =	
	up Capac			l Dol	3V	and I	7	S Do	to	rmii		_	CIC LCIT	guio	- 700			
Lane Gio	up Capac	lty, C	EB	i Dei	<u>ау,</u>	and L		VB	···	<u> </u>	Iaur)	NB				 В	
Adj. flow rat	^	192	339	385	:	375	_	70	Т		463		2407	Т	183		194	T
		212	566	650	-+	386	+-	25	╁	 +	731	_	2290		257	-	556	╁─┈
Lane group v/c ratio	сар.	0.91	0.60	0.59	-+	0.97	+-	.70	╀	-	0.63		1.05	 	0.71		90	+
		0.12	0.16	0.38		0.97	+	.16	╀	-	0.03		0.47	 	0.07	+	33	+
Green ratio Unif. delay o	14	58.1	52.2	29.8	-+	59.1	+-	3.2	╀		47.9		35.4	╁	60.4		2.5	
		0.43	0.19	0.18	-+	0.48	+-	.27	╀		0.21		0.50		0.28	-	42	+
Delay factor		37.1	1.8	1.5	-	0.40 38.2	┿	1.3	╁	\dashv	1.8	\dashv	33.9	-	8.9	-	42 7.3	
Increm. dela PF factor	ay uz	1.000	1.000			30.2 1.000	+	000	+		7.820 0.820	\dashv	0.409		0.946	-	.3 667	+
Control dela		95.2	53.9	31.3	-	97.3	+	7. <i>4</i>	+	+	41.1	\dashv	48.4		66.1		5.6	
Lane group		95.2 F	D D	C 31.3	\dashv	97.3 F	+	r.4 E	+		D D	\dashv	D	-	E		D.U	
Apprch. dela		ļ <u> </u>	3.0		\dashv		<u>l </u>		1	\dashv			7.2	<u> </u>	 -	<u> </u>		
Approach Lo			D.0		\dashv		<u>г.</u> Е			\dashv			<u>. </u>		-			
Intersec. de		<u> </u>	9.5		_	<u></u>	_	In	fe	rsecti	on Li				 			
HCS2000 TM	ıay	L 4			<u> </u>) Universi												rsion 4.

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	OR	T						
General Inf	ormation					S	ite l	nfori	matio	n		•			
Analyst Agency or C Date Perfor Time Perioc	med	US	2/12			۵ J	rea urisc	ectio Type dictio sis Y)		L CAMIN 78WE All otl OCEANS ISTING F	RAM her ard SIDE-i	IPS eas INT.#2		
Volume an	ıd Timing In	out													
			<u> </u>	EB	1 5=	 	W			<u> </u>	NB TIL	I 57	 	SB	I DT
Num. of Lar	nes		LT 0	1 TH	RT 0	LT 1	Th	1	RT 1	LT 2	TH 3	RT 0	0 LT	TH 3	RT 1
Lane group				<u> </u>		L	LTI	R	R	T	Т		1	T	l R
Volume (vpl	h)			<u> </u>	1	344	0		399	125	751		 	1659	438
% Heavy ve						2	2		2	2	2			2	2
PHF						0.92	0.9	2 (0.92	0.92				0.92	0.92
Actuated (P						A	A	_	<u>A</u>	A	A 2.0		-	A 2.0	A 2.0
Startup lost Ext. eff. gre				 		3.0 2.0	3.0 2.0		3.0 2.0	3.0 2.0	3.0 2.0		 	3.0 2.0	3.0 2.0
Arrival type	GH		 		1	3	3		3	5	5			5	5
Unit Extensi	ion	- "				3.0	3.0		3.0	3.0			1	3.0	3.0
	TOR Volume		10			10			75				10	5	250
Lane Width						12.0	12.	0 1	12.0	12.0	12.0			12.0	12.0
Parking/Gra	de/Parking		Ν		N	N	C)	Ν	Ν	0	Ν	N	0	Ν
Parking/hr															
Bus stops/h	r					0	0		0	0	0			0	0
Unit Extensi	ion					3.0	3.0	0	3.0	3.0	3.0			3.0	3.0
Phasing	WB Only	0:	2	0	3	04			B Onl	_	Thru & R		07		08
Timing	G = 31.0	G =		G =		G =		_	= 13.		39.0	G :		G =	
	Y = 5.1 Analysis (hrs	Y =	5	Υ =		Y =		Υ =	4.2		/ = 7 ycle Leng	Y =		Y =	
	up Capaci			LDal	2)/ 2	2410	<u>e n</u>	otor	min			Jui C	- 100	7.0	
Lane Gio	up Capaci	iy, Ci	EB	Dei	ay, aı	WE		eter		auo	NB		i	SB	· · · · · ·
A al: 61 a				T	000			246	10			-			204
Adj. flow rat	•				262	218	-	246	13		816		 	1803	204
Lane group v/c ratio	cap.				531 0.49	505 0.43	-	475 0.52	<i>43</i>		2836 0.29			1928 0.94	588 0.35
Green ratio					0.30	0.30		0.30	0.1		0.56			0.38	0.38
Unif. delay	 d1				28.8	28.1	-	29.0	39	-	11.6			29.8	22.1
Delay factor					0.11	0.11	-	0.12	0.1		0.11			0.45	0.11
Increm. dela					0.7	0.6		1.0	0.		0.1			9.2	0.4
PF factor					1.000	1.000	0 1	.000	0.9	03	0.155			0.591	0.591
Control dela	ıy				29.5	28.7		30.0	36	.2	1.9			26.8	13.5
Lane group	LOS				С	С		С	L		Α			С	В
Apprch. dela	ay					29.4				6	5.8			25.5	
Approach L	os					С					A			С	
Intersec. de	lay	2	21.4				Int	terse	ction	LOS				С	
HC52000 TM				arreight 6	2000 TI	niversity o	f Eloria	dn A11	Diahte l	Popomio					Version 4.1

 $HCS2000^{\mathrm{TM}}$

		<u>.</u>			SH	ORT R	EP(OR'	Τ						
General Inf	ormation								matio	n					
Analyst Agency or C Date Perfori Time Period	med	US US 08/2 PM F	2/12			J.	nterse rea T urisd inalys	Гуре ictio)			3 RAM her are SIDE-I	PS eas NT.#2		
Volume an	d Timing In	out													
				EB			W				NB			SB	т = =
			LT	TH	RT	LT	TH	<u> </u>	RT	LT		RT	LT	TH	RT
Num. of Lar	nes		0	0	0	1	1	_	1	2	3	0	0	3	1
Lane group						L	LTF		R	L	T			T	R
Volume (vpl				_	<u> </u>	434	10		710	162		<u> </u>		1406	475
% Heavy ve	∍n		ļ			2 0.92	2 0.92	5 /	2).92	0.92	2 0.92	 		2 0.92	2 0.92
Actuated (P.	/A)			 		0.92 A	0.9 ₂	- -	7.92 A	0.9 ₂	2 0.92 A	 	+-	0.92 A	0.92 A
Startup lost				 	<u> </u>	3.0	3.0	+	3.0	3.0		1		3.0	3.0
Ext. eff. gree				<u> </u>		2.0	2.0		2.0	2.0		<u> </u>		2.0	2.0
Arrival type						3	3		3	5	5			5	5
Unit Extensi						3.0	3.0		3.0	3.0	3.0			3.0	3.0
	ΓOR Volume		10			10			0			<u> </u>	10	5	0
Lane Width						12.0	12.0) 1	12.0	12.0		<u> </u>	ļ	12.0	12.0
Parking/Gra	de/Parking		N		N	N	0		Ν	N	0	N	Ν	0	N
Parking/hr							<u> </u>	\perp							
Bus stops/h	r .					0	0	\perp	0	0	0	<u> </u>	ļ	0	0
Unit Extensi	on				<u> </u>	3.0	3.0		3.0	3.0	3.0			3.0	3.0
Phasing	WB Only	0:	2	0:	3	04			B Onl	·	Thru & R		07		08
Timing	G = 31.0 Y = 5.1	G = Y =		G =		G = Y =			= 13. = 4.2		G = 39.0 $Y = 7$	G = Y =		G = Y =	
Duration of	T = 5.7 Analysis (hrs		5	Y =		Υ –		<u> </u>	4.2		ycle Len	<u>,</u>			,
	up Capaci			l Dal	2V 2I	nd I O	9 D	ataı	rmin			gui	100	.0	
Lane Gio	up Capaci	iy, ot	EB	n Den	ay, a	WE		·	1 1 1 1 1 1 1 1	atio	NB			SB	
Adj. flow rat				1	349	366		40	17	76	2048		·	1528	516
Lane group					531	497		75	43		2836			1928	588
v/c ratio	-wp.	-			0.66	0.74	-	.14	0.4		0.72			0.79	0.88
Green ratio					0.30	0.30	-	.30	0.		0.56			0.38	0.38
Unif. delay of	11				30.5	31.4		5.0	40		16.3			27.5	28.8
Delay factor					0.23	0.29		.50	0.		0.28		\vdash	0.34	0.40
Increm. dela		1			3.0	5.7	-	4.5	0.		0.9			2.4	14.1
PF factor					1.000			.000	-	003	0.155			0.591	0.591
Control dela	ıy				33.5	37.1	1	19.5	36	.9	3.5			18.6	31.2
Lane group	LOS				С	D		F)	Α			В	С
Apprch. dela	ау		*			71.6	•			(5.1		•	21.8	
Approach Lo	OS		-			E		٠			Α			С	
Intersec. de	lay	2	26.8				Int	erse	ction	LOS				С	
rrasanaaTM		-	-	م داد استعمار	• ann 11	niversity o	e Tilowid	_ A 11	Dialus	Dogosai	o.d.		_	,	Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

					SH	OF	RT RE	EPC)R1									
General Inf	ormation					, .,	Sit	e In	fori	natio								
Analyst Agency or C Date Perfor Time Period	med	US US 08/2 AM P	AI 2/12				Are Jui		ype ctio			00	78E All o CEAN	B F othe ISH	RAM er are DE-=			
Volume an	id Timing Inp	out		•														
·		,		EB				W					NB				SB	
			LT	TH	R	Γ	LT	Th	4	RT	L7	4	TH	+	RT	LT	TH	RT
Num, of Lar	nes		2	0	1		0	0	_	0	0	4	3	╀	1	2	3	0
Lane group	.,		L	<u> </u>	R							_	T		R	L	T	
Volume (vpl			337	_	13	4			4			4	563	3	20	504	1463	
% Heavy von	en		2 0.92		0.9	_			+	-	┝	4	2 0.92	+	2 .92	0.92	2 0.92	
Actuated (P	/Δ)	-	0.92 A		0.9 A	_	• •					┪	0.92 A	_	.92 A	0.92 A	0.92 A	
Startup lost			3.0	†	3.0	\exists			\dashv		 	+	3.0		3.0	3.0	3.0	
Ext. eff. gre			2.0		2.0								2.0		2.0	2.0	2.0	
Arrival type			3		3								5		5	5	5	
Unit Extensi	ion		3.0		3.0)							3.0		3.0	3.0	3.0	
	TOR Volume		5		0		5		_		5	_	10	+	0			
Lane Width		,	12.0		12.	_		<u> </u>	4			_	12.0	-	2.0	12.0	12.0	
Parking/Gra	ide/Parking		Ν	0	Ν		N		_	Ν	Ν	_	0	\perp	N	N	0	N
Parking/hr				ļ,								_		\perp				
Bus stops/h			0		0								0	\perp	0	0	0	
Unit Extens	ion		3.0		3.0)							3.0	<u> </u>	3.0	3.0	3.0	
Phasing	EB Only	02	2	03			04			3 Onl	_		u & F			07		8
Timing	G = 20.0 Y = 5.1	G = Y =		G =		G				38.			= 50.2 = 7	2	G =		G = Y =	
Duration of	TY = 5.7 Analysis (hrs			Y =		Υ	=		Υ =	4.7		-		nat		= 125.		
	up Capaci	· · · · · · · · · · · · · · · · · · ·		l Dola	V 2	nd	IOS	De	tor	min			IC LC	ngu		- 120.		
Lane GIO	up Capaci	ly, CC	EE		<u>y, a</u>	IIIu	WE		LCI	1	auc		NB				SB	
Adj. flow rat		366	<u> </u>	146	+		771	<u>, </u>			Τ,	312		348	~	548	1590	
Lane group		522		241	-		+	+		+		99		610		1017	3730	
`	сар.	0.70	+	+	+		-	+		-	-).3:	-	0.5		0.54	0.43	-
v/c ratio				0.61				+			-							
Green ratio	1.2	0.15	+	0.15	-			_		_	_	39		0.39		0.30	0.74	
Unif. delay o		50.3	+	49.5	-		_	_		_	-	?6.		29.6		36.9	6.4	-
Delay factor	· k	0.27		0.19	_			\perp		_	-). 11		0.10		0.14	0.11	
increm, dela	ay d2	4.2		4.3				$oldsymbol{\perp}$				0.1		1.3	?	0.6	0.1	
PF factor		1.000		1.000)						0	.56	7 0).56	37	0.720	0.189	
Control dela	<u></u>	54.5		53.8							7	4.9) T	18.	1	27.1	1.3	
Lane group	LOS	D		D	\neg						_	В		В		С	Α	
Apprch. dela	ay		54.3		_		•			\top	1	6.1	1				7.9	•
Approach L	 	1	D		\dashv		•					B					Α	•
Intersec. de		1	 16.7		十			Ir	ters	ectio							В	
HCS2000 TM	·~J	j '		pyright © :	2000 ፤	Inive	ersity of F											ersion 4.1
1002000									.,									~~~~

	.				SH	O	RT RI	EPC	DR'	Γ								
General Inf	ormation						Si	te In	for	mati	on			-:				
Analyst Agency or 0 Date Perfor Time Period	med	US US 08/2: PM P	Ai 2/12				Ar Ju	erse ea T risdi alys	ype ctio)	I	C	78E All (CEAI)	EB oth VSI	RAM er ard IDE-=			
Volume an	ıd Timing In	out									_							
			LT	EB TH	R		LT	WI TH		RT	+	LT	NB TH	_	RT	LT	SB TH	RT
Num. of Lar	nes		2	0	1	1	0	0	<u>'</u>	0	-	0	3	十	1	2	3	0
Lane group			L		R				寸		t		7	\dagger	R	1 7	T	
Volume (vpl	h)		614		25						t		1388	+	492	508	1334	
% Heavy v			2		2				寸		╈	-	2	+	2	2	2	
PHF			0.92		0.9	2							0.92	(0.92	0.92	0.92	
Actuated (P			Α		Α				Ţ		Ţ		Α	Ţ	Α	Α	Α	
			3.0		3.0				4		\downarrow		3.0		3.0	3.0	3.0	
	en		2.0 3		2.0				\dashv		╀		2.0 5	+	2.0 5	2.0 5	2.0	_
	ion		3.0		3.0)			+		╫		3.0	╁	3.0	3.0	3.0	
			5	- -	0		5		\dashv		╁	5	10	l	80	0.0	0.0	-
Lane Width	1011 Volumo		12.0		12.	0			7		\dagger		12.0	-	12.0	12.0	12.0	
Parking/Gra	tup lost time eff. green val type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing EB Only ing G = 22.0 G Y = 5.1 Y ation of Analysis (hrs) = he Group Capacity, flow rate			0	Ν		N		1	N	1	N	0	T	Ν	N	0	N
Parking/hr									T		T			T				
Bus stops/h	r		0		0				T		T		0	T	0	0	0	
Unit Extens	ion		3.0		3.0)			T		Τ		3.0	T	3.0	3.0	3.0	
Phasing	EB Only	02	2	03			04		S	B Or	ıly	Th	ıru & l	RT		07	0	8
Timing		G =		G =			=			= 32			= 54.	2	G :		G =	
	<u> </u>	Y =		Y =		ĮΥ	=		Υ =	4.7			= 7	nai	Y =	= = 125.	Y =	
		<u> </u>		Dola	V 3	nd	109	Do	fai	mir	n a f			ngi	iii C	- 120.	U	
Lane Gio	up Capaci	ly, cc	EB		<u>у, а</u> Т	Hu	W		LCI	1	ıaı		NB				SB	
Adi flow rat	е	667	T	273	+		771	T		╁		150		44	8	552	1450	
		577		266	\dashv							215		66		852	3649	
v/c ratio	<u> </u>	1.16	+	1.03	十			\dashv		十		0.7		0.6		0.65	0.40	
Green ratio		0.17	+	0.17	-		+	+		+		0.4	-	0.4		0.25	0.72	
Unif. delay o	d1	52.0		52.0						十		29.		29.		42.1	6.9	
Delay factor		0.50		0.50	\top					+		0.2		0.2	5	0.23	0.11	
Increm. dela	ay d2	88.5	1	62.1	\top					\top		1.0	2	2.8	3	1.7	0.1	
PF factor	<u> </u>	1.000		1.000	,					╅		0.5	06	0.5	06	0.780	0.178	
Control dela	ıy	140.5		114.1	1					1		15.	9	17.	5	34.6	1.3	
Lane group	LOS	F		F	1							В		В		С	Α	1
Apprch. dela	ay	1.	32.9	-								16.2	2				10.5	
Approach L	os		F									В					В	
Intersec. de	lay	3	36.3					In	ters	secti	on l	_OS					D	
FICS2000TM			Cox	pyright © :	2000 T	Inixa	areity of I	Ilorida	A 11	Rights	Pac	erved			_		V.	ersion 4.1:

 $HCS2000^{\mathrm{TM}}$

El Camino Real at Plaza Drive

A-A EX P-A

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

	me Period :		Sou	th Appr	(NB)	Nor	th Appr	(SB)	Wes	st Appr	(EB)	Eas	t Appr	(WB)
7:30 AM 8:30 AM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1					
Config -	(left)	2	1			1			1	1		1	1	
urations		3		1			1				1			1
		4		1			1		l					
		5		1	1		1	1	1			!		
		6							1					
	Outside	7							l					
	Free-flow													
Lane Setti	ngs		2	3	0	2	3	0	2	0	1	0	1	1
Capacity			3600	6000	0	3600	6000	0	3800	0	1800	0	2000	1800
Are the No	orth/South pha	ses	split (Y	/N)?	N									
Are the Ea	st/West phase	s sp	lit (Y/N	1)?	Y									
Efficiency	Lost Factor		0.10	(+2)		(43)	(+3)	(+1)	(+1)				(+1)
Hourly Vo		4	9	660	39	201	1021	27	12	2	2	42	6	78
Adjusted I	Hourly Volum	e	9	699	0	201	1048	0	16	0	4	0	48	126
Utilization	Factor		0.00	0.12	0.00	0.06	0.17	0.00	0.00	0.00	0.00	0.00	0.02	0.07
Critical Fa	actors		0.00	/			0.17		0.00					0.07
							(0.13))						
	ICU Rati		0.34	() (LOS =	1.1								

Turning Movements at Intersection of:

El Camino Real and Plaza Drive

South Approach

Note: Left-turn volumes include U-turns. U-turns in bold.

El Camino Real at Plaza Drive

Lane Configuration for Intersection Capacity Utilization

Page 3 of 3

Pk. Hr. Ti			Sout	h Appr	(NB)	Nort	h Appr	(SB)	Wes	t Appr	(EB)	East	Appr (WB)
4:45 PM 5:45 PM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1					
Config -	(left)	2	1			1			1	1		1	1	
urations		3		1			1				1			1
		4		1			1							
		5		1	1		1	1						
		6				6								
	Outside	7										i		
	Free-flow													
Lane Setti	ngs		2	3	0	2	3	0	2	0	1	0	1	1
Capacity			3600	6000	0	3600	6000	0	3800	0	1800	0	2000	1800
Are the No	orth/South ph	ases :	split (Y	/N)?	N									
Are the Ea	st/West phase	es spi	lit (Y/N)?	Y									
	Lost Factor		0.10	(+4)		(4)	(12)	(x1)	(+2)					(1)
Hourly Vo	lume		124	1305	1 28	359	908	148	302	24	27	53	13	186
Adjusted I	Hourly Volum	ne -	24	1333	0	359	1056	0	353	0	51	0	66	252
Utilization	Factor		0.01	0.22	0.00	0.10	0.18	0.00	0.09	0.00	0.03	0.00	0.03	0.14
Critical Fa	ctors			0.22	/	0.10	/		0.09 0					0.14

ICU Ratio =
$$0.65$$
 LOS = B (0.65) $(LOS = B)$

Turning Movements at Intersection of:

El Camino Real and Plaza Drive

South Approach

Note: Left-turn volumes include U-turns. U-turns in bold.

A-PX PX

El Camino Real at Marron Road

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

Pk. Hr. Tin			Sout	h Appr	(NB)	Nor	th Appr	(SB)	Wes	st Appr	(EB)	East	Appr (WB)
7:30 AM 8:30 AM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	_Left_	Thru	Right
Lane	Inside	1	1			1								
Config -	(left)	2	1			1			1			1		
urations		3		1			1			1			1	
		4		1			1			1	1		1	1
		5		1	1		1	1						
		6										1		
	Outside	7												
	Free-flow													
Lane Settir	ngs		2	3	0	2	3	0	1	2	0	1	2	0
Capacity			3600	6000	0	3600	6000	0	1800	4000	0	1800	4000	0
Are the No	orth/South ph	ases	split (Y	/N)?	N									
Are the Ea	st/West phase	es sp	lit (Y/N	1)?	N									
	Lost Factor		0.10		(+i)	(*1	(41)	(14)	127			(+1)		(+1)
Hourly Vo		61	27	585	29	87	896	71	33	30	- 47	93	41	107
Adjusted F	Hourly Volum	ie"	27	614	0	87	967	0	33	77	0	93	148	0
Utilization	Factor		0.01	0.10	0.00	0.02	0.16	0.00	0.02	0.02	0.00	0.05	0.04	0.00
Critical Fa	ctors		0.01				0.16	/		0.02	1	0.05	/	

ICU Ratio =
$$0.34$$
 LOS = A (0.34) (LOS = A)

Turning Movements at Intersection of:

El Camino Real and Marron Road

South Approach

Note: Left-turn volumes include U-turns. U-turns in bold.

上十 PA

El Camino Real at Marron Road

Lane Configuration for Intersection Capacity Utilization

Page 3 of 3

	me Period :	-	Sout	h Appr	(NB)	Nort	h Appr	(SB)	Wes	t Appr	(EB)	East	Appr (WB)
4:45 PM 5:45 PM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1								
Config -	(left)	2	1			1			. 1			1		
urations		3		1			1			1			1	
		4		1			1			1	1		1	1
		5		1	1		1	1						
		6							1					
	Outside	7							1					
	Free-flow													
Lane Setti	ngs		2	3	0	2	3	0	1	2	0	1	2	0
Capacity			3600	6000	0	3600	6000	0	1800	4000	0	1800	4000	0
Are the No	orth/South pha	ases	split (Y	/N)?	N									
Are the Ea	ast/West phase	es sp	lit (Y/N	1)?	N		10 14							
	Lost Factor		0.10		(41)	(x1)	(4)	(4)	+2)			1.0		(12)
Hourly Vo	olume	1.	159	1072	1 93	241	662	132	160	139	92	137	106	174
Adjusted I	Hourly Volum	id.	159	1165	0	241	794	0	160	231	0	137	280	0
Utilization	Factor		0.04	0.19	0.00	0.07	0.13	0.00	0.09	0.06	0.00	0.08	0.07	0.00
Critical Fa	ectors			0.19	/	0.07	-		0.09	/			0.07	

ICU Ratio = 0.52° LOS = A (0.52) (LoS = A)

Turning Movements at Intersection of:

El Camino Real and Marron Road

South Approach

Note: Left-turn volumes include U-turns. U-turns in bold.

らよく

El Camino Real at Carlsbad Village Drive

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

	me Period :)-	Sout	h Appr	(NB)	Nor	th Appr	(SB)	We	st Appr	(EB)	East	Appr (WB)
7:30 AM 8:30 AM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1			1		
Config -	(left)	2		1			1			1			1	
urations		3		1		Ī	1			1	1		1	1
		4		1	1		1	1						
		5												
		6				1								
	Outside	7												
	Free-flow													
Lane Settin	ngs		1	3	0	- 1	3	0	1	2	0	1	2	0
Capacity			1800	6000	0	1800	6000	0	1800	4000	0	1800	4000	0
Are the No	orth/South pha	ases	split (Y	/N)?	N									
Are the Ea	st/West phase	es sp	lit (Y/N	1)?	N									
	Lost Factor		0.10		(4)	(42)				((11)		(+2)
Hourly Vo	lume		38	368	15	93	818	- 61	119	99	55	66	307	129
Adjusted I	Hourly Volum	ie	38	383	0	93	879	0	119	154	0	66	436	0
Utilization	Factor		0.02	0.06	0.00	0.05	0.15	0.00	0.07	0.04	0.00	0.04	0.11	0.00
Critical Fa	ctors		0.02	/			0.15	/	0.07=				0.11	

ICU Ratio =
$$0.45$$
 LOS = A (0.45) (LoS = A)

Turning Movements at Intersection of:

El Camino Real and Carlsbad Village Drive

South Approach

Note: Left-turn volumes include U-turns. U-turns in bold.

EX

El Camino Real at Carlsbad Village Drive

Page 3 of 3

Lane Configuration for Intersection Capacity Utilization

	me Period:		Sout	h Appr	(NB)	Nor	th Appr	(SB)	Wes	st Appr	(EB)	East	Appr (WB)
4:45 PM 5:45 PM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1			1		
Config -	(left)	2		1.	9		1			1			1	
urations		3		1			1			1	1		1	1
		4		1	1		1	1						
		5							1					
		6				Č.			1					
	Outside	7												
	Free-flow					4-5								
Lane Setti	ngs		1	3	0	1	3	0	1	2	0	1	2	0
Capacity			1800	6000	0	1800	6000	0	1800	4000	0	1800	4000	0
Are the No	orth/South pha	ases	split (Y	/N)?	N									
Are the Ea	ast/West phase	es sp	lit (Y/N	1)?	N									1
Efficiency	Lost Factor		0.10		(11)	1-42)					(41)		(+21
Hourly Vo	olume		105	1094	57	179	585	120	143	257	60	37	202	130
Adjusted I	Hourly Volum	e	105	1151	0	179	705	0	143	317	0	37	332	0
Utilization	Factor		0.06	0.19	0.00	0.10	0.12	0.00	0.08	0.08	0.00	0.02	0.08	0.00
Critical Fa	actors			0.19		0.10			0.08-				0.08 -	

ICU Ratio = 0.55 LOS = A (0.55) (LoS = A)

Turning Movements at Intersection of:

El Camino Real and Carlsbad Village Drive

South Approach

Short Report

Page 1 of 1

General Information Analyst Agency or Co. Date Performed Time Period Volume and Timing In	06/0 AM I	SAI SAI 03/12 PEAK			In	ite In	0.7			A WAY			СНО [DEL	
Agency or Co. Date Performed Time Period	06/0 AM I	SAI 03/12			-		ction	1	VIST				CHO L	DEL	
Volume and Timing In	put	_			Ji	rea T urisdio nalys	ction		E	All ot OCE XISTIN	hei AN G 2	VSID	E PLUS		
Volume and Timing in	Jut			_				_		1.10	00	LUI		_	
			EB			WE	3			NB		-		SB	
		LT	TH	RT	LT	TH	_	RT	LT	TH		RT	LT	TH	RT
Num. of Lanes		1	2	0	1	2		0	1	1		0	1	1	1
Lane group		L	TR		L	TR			L	TR	T		L	TR	R
Volume (vph)		194	138	29	61	172	1	52	13	2	1	10	310	23	334
% Heavy veh		2	2	2	2	2		2	2	2		2	2	2	2
PHF		0.93	0.93	0.93	0.93	0.93	3 0.	.93	0.93	0.93	0.	.93	0.93	0.93	0.93
Actuated (P/A)		Α	Α	Α	Α	Α	116	Α	A	Α		Α	Α	Α	Α
Startup lost time		2.0	2.0		2.0	2.0	_		2.0	2.0			2.0	2.0	2.0
Ext. eff. green		2.0	2.0		2.0	2.0			2.0	2.0	L		2.0	2.0	2.0
Arrival type		5	5		5	5			3	3	╀		5	3	5
Unit Extension		3.0	3.0		3.0	3.0	_	0	3.0	3.0	╀	^	3.0	3.0	3.0
Ped/Bike/RTOR Volume		5	10	0	5	10	_	0	5	10	H	0	5	10	0
Lane Width Parking/Grade/Parking	-	12.0 N	12.0	N	12.0 N	12.0	_	N	12.0 N	12.0	╁	N	12.0 N	12.0	12.0 N
Parking/hr	-	IV	, , , , , , , , , , , , , , , , , , ,	14	14	10	+	/V	10	U	t	11	/V	U	170
Bus stops/hr	-	0	0	+	0	0	+	-	0	0	╁	-	0	0	0
Unit Extension		3.0	3.0		3.0	3.0			3.0	3.0	t		3.0	3.0	3.0
Phasing Excl. Left	Thru	& RT	0.0	3 1	04			d. Le		hru & R	÷		07		08
G = 15.0	G =		G =		G =			25.	1111	= 20.0		G =		G=	00
Timing $Y = 5$	Y = .		Y =		Y =		Y =			= 5		Y =		Y =	
Duration of Analysis (hrs	() = 0.2	25							C	/cle Len	gth	1 C =	100	.0	
Lane Group Capaci	ity, C	ontro	ol Dela	ay, ar	nd LO	S De	eteri	min	atior	1					
		EB			WE	3				NB				SB	
Adj. flow rate	209	179		66	348	8		14		13		3	333	194	190
Lane group cap.	266	685		266	644	4		443	3 .	317		4	143	310	301
v/c ratio	0.79	0.26		0.25	0.5	4		0.0	3 (0.04		0	.75	0.63	0.63
Green ratio	0.15	0.20		0.15	0.2	0		0.2	5 (0.20		0	.25	0.20	0.20
Unif. delay d1	41.0	33.8	1	37.5	35.	9		28.	3 3	32.3		3	4.6	36.6	36.6
Delay factor k	0.33	0.11		0.11	0.1	4		0.1	1 (0.11		0	.31	0.21	0.21
Increm. delay d2	14.4	0.2		0.5	0.9			0.0)	0.1	ī	7	7.1	3.9	4.2
PF factor	0.882	0.833	3	0.882	2 0.83	33		1.00	00 1	.000		0.	778	1.000	0.833
Control delay	50.5	28.3		33.6	30.	8		28.	4	32.3		3	4.0	40.5	34.8
Lane group LOS	D	С		С	С			С		С			С	D	С
Apprch. delay	4	0.3		115	31.3				30.	3			3	36.0	
Approach LOS D					С				С					D	
Intersec. delay	3	5.7				Inte	ersec	ction	LOS			1		D	

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

1-PM

					SHO	ORTE	REP	ORT								
General Inf	ormation					S	ite Ir	forn	natio	n						
Analyst Agency or 0 Date Perfor Time Period	med	U. 06/0	SAI SAI 03/12 PEAK			A Ji	nterse rea T urisdi nalys	ype ctior	1		All oti OCE XISTIN	e ANS	PD. areas SIDE 011 PLU			
Volume an	d Timing In	put														
				EB			W				NB			SB	-	
	2.555		LT	TH	RT	LT	TH	+	RT	LT	TH	R			RT	
Num. of Lar	nes		1	2	0	1	2	-	0	1	1	0	_	1	1	
Lane group			L	TR		L	TR			L	TR		L	TR	R	
Volume (vpl			452	436	9	11	296	3 2	256	26	31	8	220		288	
% Heavy vo	eh		2	2	2	2	2	0 0	2	2	2	2	2	2	2	
Actuated (P	/Δ)	-	0.96 A	0.96 A	0.96 A	0.96 A	0.9	_	96.96 A	0.96 A	0.96 A	0.9 A	6 0.90 A	6 0.96 A	0.96 A	
Startup lost			2.0	2.0	Α	2.0	2.0	_	Л	2.0	2.0	-	2.0		2.0	
Ext. eff. gre			2.0	2.0		2.0	2.0	_		2.0	2.0		2.0		2.0	
Arrival type			5	5		5	5			3	3		5	3	5	
Unit Extens	ion		3.0	3.0		3.0	3.0			3.0	3.0		3.0	3.0	3.0	
Ped/Bike/R	TOR Volume	9	5	10	0	5	10	Ø.1	0	5	10	0	5	10	0	
Lane Width			12.0	12.0		12.0	12.0)		12.0	12.0		12.	0 12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0	: 1	N	N	0	N				
Parking/hr							13							N 0 0 0 0		
Bus stops/h	r		0	0		0	0			0	0		0	0	0	
Unit Extens	ion		3.0	3.0		3.0	3.0			3.0	3.0		3.0	3.0	3.0	
Phasing	Excl. Left	Thru	& RT	0	3	04		Ex	cl. Le	eft 7	hru & R	T	07		08	
Timing	G = 30.0	G =		G=		G =			15.		6 = 15.0		3 =	G =		
	Y = 5	Y = :		Y =		Y =		Y =	5		= 5		/ =	Y =		
	Analysis (hr			10-1		-110	C D	. 4	are free		ycle Len	gtn	J = 70	0.0		
Lane Gro	up Capac	ity, C		ol Dela	ay, ar			eter	min	atio				0.0		
			EB	-		WE			-		NB			SB		
Adj. flow rat	е	471	463		11	578	5		27	9 1	40		229	149	159	
Lane group	сар.	531	707		531	644	4		260	6	269		266	226	223	
v/c ratio		0.89	0.65		0.02	0.8	9		0.1	0	0.15		0.86	0.66	0.71	
Green ratio		0.30	0.20		0.30	0.2	0		0.1	5	0.15		0.15	0.15	0.15	
Unif. delay	d1	33.4	36.8		24.7	39.	0		36.	7	36.9		41.5	40.1	40.5	
Delay factor	k	0.41	0.23	7	0.11	0.4	2		0.1	1	0.11		0.39	0.23	0.28	
Increm. dela	ay d2	16.5	2.2		0.0	14.	8		0.2	2	0.3		23.8	6.9	10.3	
PF factor		0.714	0.833	3	0.714	4 0.83	33		1.00	00	.000		0.882	1.000	0.882	
Control dela	ay	40.4	32.9		17.6	47.	3		36.	9	37.2		60.4	47.0	46.0	
Lane group	LOS	D	С		В	D	T.		D	_	D		E	D	D	
A	av	3	6.7			46.7		7		37.	1			52.4		
Appron. dela	~ j															
Apprch. dela Approach L	*	_	D		Ta -	D				D				D		

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

					SH	OR	TR	EP	OR.	T									
General Inf	ormation					•	Si	ite In	for	mat	tion								
Analyst Agency or C Date Perfort Time Period	med	U 08/	SAI SAI 28/12 PEAK	-			Aı Ju	terse rea T urisdi nalys	ype ctic	e on	r .	(A OCE	ll ot AN:	W/ he. SIL	\Y r are: DE-IN	@ VIST as IT#11 PROJE(
Volume an	d Timina I	nput																	
				EB				W	3				.	NB				SB	
			LT	.TH	RT	L	Τ	Th		RT		LT		ГΗ		RT	LT	TH	RT
Num. of Lar	nes		2	2	1	2	2	2		0		1		3		1	2	3	0
Lane group			L	T	R	L	-	TR				L		Т		R	L	TR	
Volume (vpl			44	121	405	45		150)	226	<u>; </u>	166		39	6	93	46	1424	35
% Heavy ve	eh		2	2	2	2		2	_	2	_	2		2	Ļ	2	2	2	2
PHF	///		0.95	0.95	0.95	0.8		0.98	5	0.98	2 (0.95	_	95 4	+-	.95	0.95	0.95	0.95
Actuated (P. Startup lost			A 2.0	A 2.0	A 2.0	2.		2.0	\dashv	Α	+	A 2.0		<u>4</u> 2.0	_	<u>A</u> 2.0	2.0	2.0	Α
Ext. eff. gree			2.0	2.0	2.0	2.		2.0	_	-	_	2.0	_	0	_	2.0	2.0	2.0	
Arrival type			5	5	5	. 5	5	5				5		5		5	5	5	
Unit Extensi	on		3.0	3.0	3.0	3.	0	3.0)			3.0	3	3.0	`;	3.0	3.0	3.0	
Ped/Bike/R	ΓOR Volum	е	5	5	0	Ę		5		123	~	5	_	5		0	5	5	0
Lane Width			12.0	12.0	12.0	12	.0	12.0)			12.0	1:	2.0	1	2.0	12.0	12.0	<u> </u>
Parking/Gra	de/Parking		N	0	Ν	٨	V	0		Ν		Ν	()		N	N	0	N
Parking/hr		••••							_		\perp								
Bus stops/h			0	0	0	C		0				0	- -	0	L	0	0	0	ļ
Unit Extensi	on		3.0	3.0	3.0	3.	0	3.0)			3.0	3	3.0] (3.0	3.0	3.0	
Phasing	Excl. Left		Only	Thru 8		ļ. <u>.</u>	04		_	xcl.		_	hru				07		08
Timing	G = 4.0 Y = 5.6	G = Y =	8.0	G = 7 Y = 6	7.0	G = Y =				= 9 = 5		_) = ' = ()	G = Y =		G = Y =	
Duration of				1 - 0	.4	<u> </u>	1		ľ	<u> </u>	.0	_			ath		= 100.		
Lane Gro				l Dela	av a	nd I	O	S D	of o	rm	ina			<u>LÇ.</u>	gu		700.	<u> </u>	
Lanc Oio	up Oapa	 	EB	1 DCIC	1	iiu i	W		. [C	Т			NE	3			Π	SB	
Adj. flow rat	<u> </u>	46	127	426	47	6	26	-		\dashv	175	5	673		72	29	48	1536	
Lane group		137	248	349	60		67		Н	十	168	}	213 ⁻	- 	81		327	2123	_
v/c ratio		0.34	0.51	1.22	0.7	' 9	0.3	39	Г	寸.	1.04	1	0.32	<u>.</u>	0.8	90	0.15	0.72	
Green ratio		0.04	0.07	0.23	0.1	8	0.2	?1		7	0.09	,	0.42	?	0.8	52	0.09	0.42	
Unif. delay o		46.7	44.9	38.5	39	4	34.	3			45.3	3	19.4		21	.4	41.5	24.2	
Delay factor	k	0.11	0.12	0.50	0.3	33	0.1	1		7	0.50	7	0.11	·	0.4	12	0.11	0.28	
Increm. dela	ay d2	1.5	1.8	122.4	6.	8	0.4	4	Γ	T _i	80.9	,	0.1		12	.5	0.2	1.2	
ncrem. delay d2 1.5 PF factor 0.972			0.950	0.802	0.8	58	0.8	27			0.93	80 .	0.51	7	0.2	69	0.930	0.51	7
Control delay 46.9			44.4	153.3	40	.6	28.	7		1	122.	.9	10.1		18	.3	38.8	13.7	
Lane group	D	D	F	L)	С				F		В		E	3	D	В		
Apprch. dela	ау	2.1			36	3. <i>4</i>					26	.4					14.5		
Approach L	os			I	D					C)					В			
Intersec. de	lay	36	5.6					lr	iter	sec	tìon	LOS	3					D	
HCS2000 TM			Co	pyright ©	2000 U	Jnivers	ity of	Florid	a. Al	ll Rigl	hts R	eserve	d					-	Jersion 4.

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT I	REP)R	T		<u>.</u>					
General Inf	ormation						Site In			n						
Analyst Agency or C Date Perfor Time Perioc	med	U 08/.	SAI SAI 28/12 PEAK			4	nterse Area T Jurisdi Analys	ype ctio	e n		Ali OCEA	V oth NS	VAY ner are SIDE-IN			
Volume an	d Timing I	nput														
				EB			WE	3			N				SB	
			LT	TH	RT	LT	_ T⊢	4	RT	LT	TI	_	RT	LT	TH	RT
Num. of Lar	nes		2	2	1	2	2	4	0	1	3		1	2	3	0
Lane group			L	T	R	L	TR	_		L	T		R	L	TR	
Volume (vpl			118	201	<i>394</i> 2	452	341	+	343	299	_	5	680	36 2	1200 2	92
% Heavy vo PHF	en		2 0.95	2 0.95	<u>∠</u> 0.95	2 0.95	0.95	-	2 2.95	2 0.98	0.9	5	2 0.95	0.95	_∠ 0.95	0.95
Actuated (P	/A)		A.	A	A	A	A		A	A	, 0.3 A	-	A	A	A	A
Startup lost			2.0	2.0	2.0	2.0	2.0			2.0	2.0		2.0	2.0	2.0	
Ext. eff. gre	en		2.0	2.0	2.0	2.0	2.0			2.0	2.0		2.0	2.0	2.0	
Arrival type			5	5	5	5	5	4		5	5		5	5	5	
Unit Extens		_	3.0	3.0 5	3.0 10	3.0	3.0	_	e e	3.0 5	3.0 5	7	3.0 0	3.0 5	3.0 5	<u> </u>
Ped/Bike/R ⁻ Lane Width	TOR Volum	e	5 12.0	5 12.0	10 12.0	12.0	5 12.0	+	65	12.0			12.0	12.0	12.0	0
Parking/Gra	de/Parking		N	0	N	N	0	+	N	N	0		12.0 N	N	0	N
Parking/br	don aning					1	╁	+		 ``	+	-	,,	- ''	Ŭ	-
Bus stops/h	r		0	0	0	0	10			0	0		0	0	0	
Unit Extens			3.0	3.0	3.0	3.0	3.0	\top		3.0	3.0	5	3.0	3.0	3.0	
Phasing	Excl. Left	: WB	Only	Thru 8	RT :	04	1	E	xcl. Le	eft	NB C	nly	Thr	u & RT		08
Timing	G = 6.0	G =		G = 1		G =	-		= 7.0		G = 5	_		31.1	G =	
	Y = 5.6		5.6	Y = 6	3	Y =		Υ:	= 5.6		Y = 5.			6.2	Y =	
Duration of				1 D - I -				4 -				.en	gtn C =	= 110.	0	
Lane Gro	up Capa	city, C	<u>Ontro</u> EB	Dela	ıy, aı		VB	te	rimin	auc	n NB			T T	SB	
A al: El a 4		404		101	17				24	-			746	20	1360	1
Adj. flow rat		124	212	404	470	_	52		31		1268		716	38	+-	-
Lane group	сар.	187	322	324	86		41		28		1924	-	068	219	1417	
v/c ratio		0.66	0.66	1.25	0.5		69		1.1		0.66	-	0.67	0.17	0.96	
Green ratio		0.05	0.09	0.21	0.2	5 0.	29		0.1	16	0.38	4	2.69	0.06	0.28	
Unif. delay	d1	51.0	48.3	43.3	35.	8 34	4.9		46	.2	28.3		10.0	48.8	38.8	
Delay factor	· k	0.24	0.23	0.50	0.1	5 0.	26		0.5	50	0.23	- (0.24	0.11	0.47	
Increm. dela	ay d2	8.5	4.9	134.3	0.8	3 2	2.2		87	.4	0.8		1.6	0.4	15.4	
PF factor		0.962	0.933	0.821	0.7	77 0.	731		0.8	73	0.593	C	0.159	0.955	0.737	7
Control dela	ay	57.6	50.0	169.9	28.	6 2	7.7		12	7.7	17.6	丅	3.2	46.9	44.0	
ane group LOS E		E	D	F	C	**************************************	С		F	-	В	十	Α	D	D	
Apprch. dela	ay	11	6.7	•		28.1			\top	2	8.2		-		44.1	
Approach L	os		F	,		С			1		С				D	
Intersec. de	•	43	3.9		\top		Ir	ters	sectio	n LC	s				D	
HCS2000 TM		1		pyright ©	2000 U	niversity (.L		ersion 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

					SH	OF	RT RE	PC	R	T							
General Inf	ormation									mati	on	-					
Analyst Agency or C Date Perfort Time Period	med	US US 08/28 AM P	AI 3/12				Are Jur	erse ea T isdi alys	ype ctio)			All otl OCE CISTING	OFF-R her are 'ANSID	AM as E WITH		
Volume an	d Timing In	put															
	-			EB				W	В		\Box		NB			SB	
	· · · · · · · · · · · · · · · · · · ·		LT	TH	R	Τ	L	TI	\pm	RT		LT	TH	RT	LT	TH	RT
Num. of Lar	nes		2	0	1		0	0		0		0	4	0	0	5	0
Lane group			L		R								Τ			Τ	
Volume (vpl	ornine a		506		26	2							1080			1832	
% Heavy ve	eh		2		2		<u> </u>	ļ			4		2	<u> </u>		2	
PHF			0.95		0.9	5		-			+		0.95	ļ		0.95	
Actuated (P.			A 2.0	-	A	`	<u> </u>	 			+		A 2.0	ļ		A 2.0	
Startup lost			2.0	_	2.0		\vdash				+		2.0	-	1	2.0	
Ext. eff. gree Arrival type	en		4	 	4		-	-			╁		5	-		5	
Unit Extensi	ion		3.0	+	3.0	_		\vdash	_		+		3.0		 	3.0	
	ΓOR Volume		5		0	_	5	-			+		5.0	 	<u> </u>	0.0	
Lane Width	I OIX Volume		12.0		12.	n					+		12.0			12.0	\vdash
Parking/Gra	de/Parking		N N	0	N N		N			N	┰	N	0	N	N	0	N
Parking/bra	ide/i arking		 '`	+	 ``						+	,,,	<u> </u>	 '`	 	Ť	
Bus stops/h	r		0	+	0		-				十		0			0	\vdash
Unit Extensi			3.0		3.0)		┢	_		┪		3.0	╂		3.0	\vdash
Phasing	EB Only	02	<u> </u>	0;		Ť	04	╁	Th	ru O	nly	<u> </u>	06	<u></u>	07	ــــــــــــــــــــــــــــــــــــــ	<u>. </u>
	G = 26.0	G =	•	G =	,	G				= 64	_	G:		G =	07	G =	,,,,
Timing	Y = 5	Y =		Y =		Ÿ				= 5		Y		Y =		Y =	
Duration of	Analysis (hrs	(0.25)	5									Сус	le Lenç	gth C =	100.	.0	
Lane Gro	ир Сарас	ity, Co	ntro	l Dela	ay, a	nd	LOS	De	te	rmir	nat	ion					
				В				/B					NB			SB	
Adj. flow rat	e	533		27	6							1	137			1928	Т
Lane group		894		41						_		4	330			5412	1
v/c ratio	- Сир.	0.60	_	0.6						\dashv		_	.26			0.36	1
Green ratio		0.26		0.2	26					\neg		C	.64			0.64	1
Unif. delay	d1	32.4		33	2		\top			_			7.8			8.4	
Delay factor	·k	0.19		0.2	24							C	.11			0.11	
Increm. dela	ay d2	1.1		4.	2							-	0.0			0.0	
PF factor		1.000	2	1.0	00							o	.139			0.139	
Control dela	ontrol delay 3			37	3								1.1			1.2	
Lane group	ane group LOS			E									Α			Α	
Apprch. dela	ay		34.8									1.	.1			1.2	
Approach L	os		С									ļ	1			Α	
Intersec. de	lay		8.2					ı	nte	rsec	tion	LOS	3			Α	
HCS2000 TM		.	Co	pyright ©	2000 T	Jnive	rsity of F	lorida	ı, Al1	Right	s Res	served				V	ersion 4.1

						SH	OF	RT RE	PC)R	Т							
General Inf	ormation							Sit	e In	for	mat	ion						
Analyst Agency or C Date Perfor Time Period	med	US US 08/28 PM P	AI 8/12					Are Jur	erse ea T isdi alys	ype ctio)			All oth OCE (ISTING	OFF-R. her are ANSID	AM as E WITH		
Volume an	d Timing In	out																
•					EB				W			4		NB		4 774	SB	1 5
Num. of Lar	200		LT 2	+	TH <i>0</i>	R 1		LT O	Т 0		R1 0	-	LT 0	TH 4	RT 0	LT O	TH 5	RT 0
	109		L	+	<u> </u>	R		<u> </u>	L U		$\overline{}$	+		T	-	اٽ	T	├
Lane group	h)		467	+		518		<u> </u>	_			+		1717			1755	
Volume (vpl % Heavy ve			2	+		2)	<u> </u>	 			\dashv		2			2	
PHF	<u> </u>		0.95	\dagger		0.9	5		-			_		0.95		1	0.95	
Actuated (P.	/A)		Α			Α								Α			Α	
Startup lost			2.0	Ţ		2.0								2.0			2.0	
Ext. eff. gree	en		2.0	4		2.0)					4		2.0			2.0	_
Arrival type Unit Extensi	ion		<i>4</i> <i>3.0</i>	+		3.0						+		5 3.0	 		5 3.0	₩
	ion TOR Volume		<i>5.0</i>	+		0	,	5				-		3.0	1		3.0	
Lane Width	TON Volume		12.0	╁		12.	n	-				\dashv		12.0			12.0	1
Parking/Gra	de/Parking		N	$^{+}$	0	N	_	N			N	\dashv	N	0	N	N	0	N
Parking/hr	<u> </u>			╁								1						
Bus stops/h	r		0	1		0						寸		0			0	
Unit Extensi		·	3.0	T		3.0)					1		3.0			3.0	
Phasing	EB Only	02	2	-	03		П	04		Th	ru C	nly	П	06		07)8
Timing	G = 36.0 Y = 5	G =		G			G				= 5 ₄ = 5	4.0	G:		G =		G = Y =	
	Y = 5 Analysis (hrs	Y =		Υ	=		Υ			Υ	= 5		Y =	le Leng	Y =	100		
	up Capaci)alay		nd	LOS	n	ta	rmi	na:		ie Lenç	<u> </u>	100.		
Lane Old	up Capaci	ly, cc		В	/CIA	y, a 	Hu		/B	· LC	7111	IIa	LIOII	NB	-		SB	·
Adj. flow rat		492	Т	ر.	545	+							1.	807			1847	Τ
Lane group	· · · · · · · · · · · · · · · · · · ·	1237	-		570	-		\dashv		\vdash			- 	653			4567	
v/c ratio		0.40			0.96			_						.49			0.40	
Green ratio		0.36			0.36	;							0	.54			0.54	\vdash
Unif. delay o	<u></u> 11	23.9	\top		31.2	<u>.</u>				Г			1	4.4			13.5	
Delay factor	· k	0.11	\top		0.47	, 							0	.11			0.11	
Increm. dela	ay d2	0.2			27.1	7							(0.1			0.1	1
PF factor	factor 0.				0.93	4							0.	217			0.217	
Control dela	ontrol delay 22				56.2	2								3.2			3.0	
Lane group	ane group LOS				Ε									Α			Α	
Apprch. dela	ay		40.2										3.	2			3.0	
Approach Lo	os		D										P	l			Α	
Intersec. de	lay		11.3						I	nte	rsec	tior	LOS				В	
HCS2000TM			Co	myri	inht @ 3	2000 T.	Inive	ersity of F	lorida	A 11	Right	te De	cersied				V	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SHO	ORT R	EP	OF	₹T								$\overline{}$
General Info	ormation					S	ite l	nfo	rmat								
Analyst Agency or C Date Perforr Time Period	med	U- 08/2	SAI SAI 28/12 PEAK			A Ji	nters irea urisc inaly	Typ dicti	е			All ot OCE XISTIN	DR her AN	are SIE 011	DE 1/WITH		
Volume an	d Timing In	put	::::::::-				***					771					
				EB			W	B				NB				SB	
			LT	TH	RT	LT	T	<u> </u>	RT	_	LT	TH	R		LT	TH	RT
Num. of Lan	es		1	1	0	1	1		1		1	3	0		2	3	0
Lane group			L	TR		L	T		R		L	TR			L	TR	
Volume (vpl			82	43	58	104	17	_	219		‡5 -	785	25		750	1273	71
% Heavy ve	eh		2 0.95	2 0.95	2 0.95	2 0.95	0.9		2		2 95	2 0.95	0.9		2 0.95	2 0.95	2 0.95
Actuated (P	/Δ)		0.95 A	0.95 A	0.95 A	0.95 A	0.9 A		0.95 A	_	95 A	0.95 A	0.9 A		0.95 A	0.95 A	0.95 A
Startup lost			3.0	3.0		3.0	3.0		3.0		3.0	3.0			3.0	3.0	
Ext. eff. gree			2.0	2.0		2.0	2.0)	2.0	2	2.0	2.0			2.0	2.0	
Arrival type			4	4		4	4	_	4	_	5	5			5	5	
Unit Extensi			3.0	3.0		3.0	3.0		3.0		3.0	3.0			3.0	3.0	
Ped/Bike/RT	OR Volume)	5	10	0	5	10		0	_	5	10	0	1	5	10	0
Lane Width	al a /D a ul dia au		12.0	12.0	A.	12.0	12.		12.0	—	2.0	12.0		,	12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	<u> </u>	<u>'</u>	N	'	N	0	Ν	1	N	0	N
Parking/hr			0	0			<u> </u>		0	+	0	0			0	0	
Bus stops/hi			3.0	3.0	<u> </u>	3.0	3.0		3.0	-	<u>0</u> 3.0	3.0			3.0	3.0	+-
Unit Extensi		LAMD	<u> </u>	3.0	<u> </u>	04	<u> </u>						<u> </u>	The	u & RT	<u> </u>	<u>1</u> 08
Phasing	EB Only G = 12.0	G =	Only	G =	3	G =		_	= 10			B Only = 19.0			31.0	G =	00
Timing	Y = 4	Y =		Y =		Y =			= 4		_	= 4		<u>Y</u> =		Y =	
Duration of A	Analysis (hr	s) = 0.2	25		•						Сус	le Len	gth	<u>C</u> =	= 100.	0	
Lane Gro	up Capac	ity, C	ontro	l Dela	ay, ar	nd LO	S D	ete	∍rmi	nat	ion						
			EB			W	В					NB				SB	
Adj. flow rate	е	86	106		109	18		23	1	47		1099			789	1415	
Lane group	сар.	192	182		122	130)	67	2	159)	1457			1100	2663	
v/c ratio		0.45	0.58		0.89	0.14	4	0.3	34	0.30)	0.75			0.72	0.53	
Green ratio		0.11	0.11		0.07	0.0	7	0.4	14	0.09	9	0.30			0.32	0.53	
Unif. delay o	11	41.7	42.3		46.1	43.	7	18.	.5	42.	5	31.7			30.0	15.4	
Delay factor	k	0.11	0.17		0.42	0.1	1	0.1	11	0.1	1	0.31	L		0.28	0.13	
Increm. dela	Delay factor k 0.1 ncrem. delay d2 1.3				50.3	0.5	<u> </u>	0.3	3	1.0		2.3	┖		2.3	0.2	
PF factor	PF factor 1.00)	1.000	0 1.00	00	0.8	49	0.93	34	0.714			0.686	0.248	
Control delay 43.3			47.0		96.5	44.	2	16.	.0	40.8	3	24.9	L		22.9	4.0	
Lane group LOS D			D		F	D		В		D		С			С	Α	
Apprch. dela		5.4			41.9					25					10.8		
Approach L				D					(;				В			
Intersec. del	lay						section		-					В			
μ_{C} conoc TM			C	anariaht (ን ኃስለስስ ተሙ	niversity of	f Flori	do A	II Diah	to Dan	erved					3.	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT I	REP	OF	₹T								
General Info	ormation						Site I	nfc	ormat	ior							
Analyst Agency or C Date Perfort Time Period	med	U 08/2	SAI SAI 28/12 PEAK			,	nters Area Iuriso Analy	Typ dicti	pe			All ot OCE XISTIN	DR. her a ANS	IDE 11/WIT			
Volume an	d Timina In	put										, , , ,	OUL	<i>.</i>			
		1		EB			W	/B	•	ŀ		NB				SB	
l			LT	TH	RT	LT	TI	Н	RT		LT	TH	RT	LT	7	ſΗ	RT
Num. of Lan	es		1	1	0	1	1		1		1	3	0	2		3	0
Lane group			L	TR		L	T	•	R		L	TR		L	7	R	
Volume (vph			78	44	45	164	33		446	1	72	1193	120	725		80	140
% Heavy ve	eh .		2	2	2	2	2	_	2	1	2	2	2	2		2	2
PHF	(4.)		0.95	0.95	0.95	0.95	0.9	_	0.95	(0.95	0.95	0.95			95	0.95
Actuated (P			A	A	A	A	A		A	4	<u>A</u>	A	A	A		4	<u> </u>
Startup lost			3.0	3.0	<u> </u>	3.0	3.0		3.0	_	3.0	3.0		3.0		.0	
Ext. eff. gree Arrival type	en		2.0 4	2.0	 	2.0	2.0 4		2.0	+	2.0 5	2.0 5		2.0		.0 5	
Unit Extensi	On.		3.0	3.0		3.0	3.0	_	3.0	+	3.0	3.0		3.0	_	3.0	
Ped/Bike/RT			5	10	0	22	10		0	+	9	10	0	5		0	o
Lane Width	O. C. Toldini		12.0	12.0	<u> </u>	12.0	12.		12.0	1	12.0	12.0		12.0	_	2.0	
Parking/Gra	de/Parking		N	0	N	N)	N	1	Ν	0	Ν	N	,	0	N
Parking/hr										1							
Bus stops/hi	r		0	0		0	0		0		0	0		0		0	
Unit Extensi	on		3.0	3.0		3.0	3.	0	3.0		3.0	3.0		3.0	3	3.0	
Phasing	EB Only		Only	0	3	04		_	Excl. I		t S	B Only	T	ıru & R			8
Timing	G = 10.0 Y = 4.2	G = Y =		G = Y =		G = Y =			$\hat{s} = 7.$ $\hat{s} = 4.$			= 13.0 = 5.2		= 42.2 = 5.6		G = Y =	
Duration of A	Analysis (hr	s) = 0.2	25				•			"	Су	cle Len	gth C	= 110	0.0		
Lane Gro	ир Сарас	ity, C	ontro	l Del	ay, aı	nd LC	SD	eto	ermi	na	ition						
			EB			٧	/B					NB			Ş	SB	~
Adj. flow rate	е	82	93		173	38	2	46	5 <i>9</i>	70	6	1382		763	1	629	
Lane group	сар.	135	137		191	20	3	55	58	9	7	1870		725	2	695	
v/c ratio		0.61	0.68		0.91	0.1	7	0.8	84	0.7	78	0.74		1.05	O	.60	
Green ratio		0.08	0.08		0.11	0.1	1	0.3	38	0.0	05	0.37		0.21	0	.54	
Unif. delay o	l1	4 8.8	49.1		48.4	44.	5	31	.1	51	.4	29.8		43.4	1	7.3	
Delay factor	k	0.19	0.25		0.43	0.1	1	0.3	38	0.3	33	0.30		0.50	C	.19	
Increm. dela	y d2	7.7	12.7		39.8	0.	4	11	.1	33	3.2	1.6		48.1	- [0.4	
PF factor		1.000	1.000)	1.00	0 1.0	00	0.9	915	0.9	962	0.601		0.822	2 0	.217	
Control dela	Control delay 56.				88.3	44.	9	39).5	82	2.6	19.5		83.7		4.1	
Lane group	E	E		F	D		L		F		В		F		Α		
Apprch, dela	<u> </u>	9.3			52.2					22	2.8				9.5		
Approach Lo		D					(2					
Intersec. del	ay				lr	nter	rsection	on	LOS				(2			
LLCG2000TM			- 0	1	a accent	niversity o	£ 171	J. /	A II Diah	. (1 مه	annuad					37	ersion 4.1f

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	EP	OR	T								
General InformationSite InformationAnalystUSAIIntersectionCOLLEGE BLVD.@ MARRON RD.Agency or Co.USAIArea TypeAll other areasDate Performed08/28/12JurisdictionOCEANSIDE																	
Agency or C	med		USAI			A Ji	rea urisc	Туре	e on	r		MAF All o OC: EXISTIF	RR the EA VG	ON R er area NSID	D. as E /WITH		
Volume an	d Timing	Input									-					÷	
		-		EB	*		V	VΒ				NB				SB	
			LT	TH	RT	LT		Ή	R	Γ	LT		_	RT	LT	TH	RT
Num. of Lan	ies		2	1	1	1	1	1	1		2	2	_	1	2	2	0
Lane group			L	T	R	L	7	r	R		L	T		R	L	Τ	
Volume (vpl		,	231	43	146	403	9		262	2	144		ightharpoonup	233	203	927	
% Heavy ve	eh		2	2	2	2	2		2		2	2	4	2	2	2	
PHF	/A \		0.92	0.92 A	0.92 A	0.92 A	0.9	_	0.9: A	2	0.92 A	0.92 A	4	0.92 A	0.92 A	0.92 A	A
Actuated (Pa Startup lost			2.0	2.0	2.0	2.0	2.	_	2.0	_	2.0	2.0	+	2.0	2.0	2.0	A
Ext. eff. gree			2.0	2.0	2.0	2.0	2.		2.0		2.0	2.0	+	2.0	2.0	2.0	
Arrival type			4	4	4	4	4		4		5	5	†	5	5	5	
Unit Extensi	on		3.0	3.0	3.0	3.0	3.	.0	3.0)	3.0	3.0	寸	3.0	3.0	3.0	
Ped/Bike/R1	ΓOR Volur	ne	5		0	5	1	0	0		5	10	†	0	5		
Lane Width			12.0	12.0	12.0	12.0	12	.0	12.0	0	12.0	12.0	7	12.0	12.0	12.0	
Parking/Gra	de/Parkin	g	N	0	Ν	N	1	0	N		N	0		Ν	Ν	0	Ν
Parking/hr													T				
Bus stops/h	r		0	0	0	0	7)	0		0	0	T	0	0	0	
Unit Extensi	on	····	3.0	3.0	3.0	3.0	3.	.0	3.0)	3.0	3.0		3.0	3.0	3.0	
Phasing	Excl. Le	ft V	/B Only	Thru 8	RT	04		E	xcl.	Lef	t T	SB Only	/	Thru	ı & RT	0.	8
Timing	G = 10.0		= 15.0	G = 1		G =			= 5			= 6.0			30.0	G =	
	Y = 4		= 4	Y = 4		Y =		Υ:	= 4			′ = 4		Y =		Y =	
Duration of A				<u> </u>	····	110						ycle Ler	ngt	n C =	100.0		
Lane Gro	up Capa	acity,		ol Dela	ıy, aı			ete	rmı	ına	itioi				1		
		<u> </u>	EB		<u> </u>	WI						NB				SB	
Adj. flow rate	е	251	47	159	4 38	98		285		15	7	670	2	53	221	1008	
Lane group	сар.	344	186	301	513	540		585		17	2	1064	4	64	516	1419	
v/c ratio		0.73	0.25	0.53	0.85	0.18		0.49	,	0.9	1	0.63	0.	.55	0.43	0.71	T
Green ratio		0.10	0.10	0.19	0.29	0.29		0.38		0.0	5	0.30	0.	.30	0.15	0.40	T
Unif. delay d	11	43.7	41.5	36.5	33.5	26.6		23.6		47.	3	30.2	2	9.3	38.6	25.1	
Delay factor	k	0.29	0.11	0.13	0.39	0.11		0.11		0.4	3	0.21	0.	.15	0.11	0.27	1
Increm. dela	ıy d2	7.7	0.7	1.8	13.2	0.2		0.6		44.	4	1.2	1	'.3	0.6	1.7	1
PF factor		1.000	1.000	1.000	0.993	3 0.99	3 (0.91	5 (0.9	65	0.714	0.	714	0.882	0.556	†
Control dela	у	42.3	38.2	46.5	26.6		22.2		90.	0	22.8	2	2.3	34.6	15.7		
Lane group	LOS	D	D	D	D	С		С	<u> </u>	F		С	T	С	С	В	
Apprch. dela	ay		5.9			35.7	_				3.	2.4				19.1	
Approach L(os Os	1			D			7		*	С				В		
Intersec. del	lay	- 3	30.3	• •			lı	nters	ecti	ion	LOS					С	
TICGO O O O TM	-	1		11.5		niversity of											reion 4.1f

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

						SH	OR	TRE	ΕP	OR	T								
General Inf	ormation				•			Sit	te Ir	nfor	mat	ior)				•	·	
Analyst Agency or C Date Perfort Time Period	med		U: 08/2	SAI 28/12				Are Ju	erse ea T risd alys	Гуре ictic	е		E	All o OC: XISTIN	RRO the EA IG	ON Ri er area NSID:	D. as E WITH		
Volume an	d Timing	Inp	ut																
					EB		\perp		W			\Box		NB	_			ŞB	
				LT	TH	RT	+	LT	TI	_	RT	\dashv	LT	TH	+	RT	LT	TH	RT
	es			2	1	1	_	1	1	_	1	\dashv	2	2	_	1	2	2	0
Lane group				L	T	R	4	L	T	_	R	_	L 050	T	4	R	L	T	
				532 2	234 2	236 2	+	176 2	15: 2	_	173 2	\vdash	256 2	843 2	+	424 2	324 2	589 2	
PHF				0.95	0.95	0.95	10	0.95	0.9	_	0.95	,	0.95		+	0.95	0.95	0.95	
Actuated (P	/A)			A	A	A	Ť	A	A		Α		Α	A		Α	Α	Α	
Startup lost	time			2.0	2.0	2.0	_	2.0	2.0	_	2.0	_	2.0	2.0	_	2.0	2.0	2.0	
Ext. eff. gree	∍n			2.0 4	2.0 4	2.0	4	2.0	2.0	_	2.0	4	2.0	2.0	4	2.0	2.0	2.0	
Arrival type	No. of Lanes Period Peri					3.0	+	<i>4</i> 3.0	3.0	_	<i>4</i> <i>3.0</i>	\dashv	5 3.0	5 3.0	+	5 3.0	5 3.0	5 3.0	
		ne		3.0 5	3.0 10	0	+`	5.0 5	10	_	0	\dashv	5	10	+	0	5.0	3.0	
Lane Width	OIX VOIGI	110		12.0	12.0	12.0	1	2.0	12.		12.0	5	12.0		+	12.0	12.0	12.0	
	de/Parkin			N	0	N	+	N	0	_	N	\exists	N	0	T	N	N	0	N
Parking/hr							\top					┪			T				
Bus stops/hi	r			0	0	0	╅	0	0		0		0	0	T	0	0	0	
Unit Extensi				3.0	3.0	3.0	1	3.0	3.0	0	3.0	ı	3.0	3.0	T	3.0	3.0	3.0	
Phasing	Excl. Le	ft	Thru	& RT	03			04		E	xcl. L	_ef	tΤ	hru & F	T.		07	08	3
Timing)			G =		G			_	= 12			= 31.9)	G =		G =	
		250)			Υ =		Υ	=		Υ	= 5.	3		= <i>5.7</i> /cle Ler	odi	Y =	100.0	Y =	
					l Dala		م حا	100		240	vva i				ıyı	10-	100.0	<i></i>	
Lane Gro	up Capa	ICII	ty, C		Dela	ıy, aı	nu			ete	<u> </u>	Па	uoi	NB			1	SB	
A 11 O 1		-	<u> </u>	EB	0.40	105		WB	_	400		0.07	<u>. </u>			40	0.44	1	
<u> </u>		⊢	- +	246	248	185		163	-	182		269		887	┢	46	341	620	
	сар.	├		298	516	336	-	298	+	516	-	419	-	1131	-	78	419	1131	╄
v/c ratio		0.8	36 (0.83	0.48	0.55	-	0.55	().35	-	0.6	-	0.78	-	51	0.81	0.55	—
Green ratio		0.1	19 (0.16	0.34	0.19		0.16	().34	(0.1.	2	0.32	0.	57	0.12	0.32	
Unif. delay o	11	39	.2	40.6	26.4	36.6		38.7	2	25.1	<u>'</u>	41.	8	30.9	13	3.2	42.8	28.1	
Delay factor	k	0.3	39 (0.36	0.11	0.15		0.15	().11		0.2	2	0.33	0.	12	0.35	0.15	
Increm. dela	y d2	11	.0	17.1	0.7	1.9	\neg	2.1		0.4		3.3	3	3.7	0	.5	11.7	0.6	
PF factor		1.0	00	1.000	0.957	1.00	0	1.000	0	.95	7 (0.90	07	0.688	0.	131	0.907	0.688	
Control dela	<u>у</u>	50	.2	57. <i>7</i>	25.9	38.6		40.8	1	24.4	1 /	41.	3	25.0	2	.2	50.5	19.9	1
	<u>-</u>	-+	E	С	D		D	十	С	\dashv	D		С	\vdash	4	D	В	1	
Apprch. dela							34	1.4	L		\dashv			1.4	_			30.8	<u> —</u>
Approach L	 	\vdash									\dashv)				С	
		 								ters	section	on	LOS					C	
HC52000 TM	J	L			pyright ©	2000 11	nivro	reity of I									<u> </u>		rsion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

College Boulevard at Carlsbad Village Drive/Peninsula Drive

Lane Configuration for Intersection Capacity Utilization

Page 2 of 3

	ne Period :	-	Sout	h Appr	(NB)	Nor	th Appr	(SB)	Wes	st Appr	(EB)	East	Appr (WB)
7:15 AM 8:15 AM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1			1		
Config - urations	(left)	2 3 4 5		1	1		1	1.	1	1	1		1	.1
	Outside Free-flow	6 7												
Lane Setti	ngs		1	2	0	1	2	0	2	0	1	1	1	0
Capacity			1800	4000	0	1800	4000	0	3800	0	1800	1800	2000	0
Are the Ea	orth/South ph st/West phas Lost Factor		70		N Y		(LAG)	251	(49)				
Hourly Vo			55	386	1	4	1502	363	317	3	69	1	9	11
The second of th	Iourly Volun	ne	55	387	0	4	1865	0	320	0	69	1	20	0
Utilization Critical Fa	Factor		0.03 0.03	0.10	0.00	0.00	0.47 0.47 (0.48	0.00	80.0 80.0 (Po.0)	0.00	0.04	0.00	0.01 0.01	0.00
	ICU Rati	0 =	0.69) (LOS=	В)							

Turning Movements at Intersection of :

College Boulevard and Carlsbad Village Drive/Peninsula Drive

South Approach

Note: Left-turn volumes include U-turns. U-turns in bold.

15-8

College Boulevard at Carlsbad Village Drive/Peninsula Drive

Lane Configuration for Intersection Capacity Utilization

Page 3 of 3

	me Period :	-	Sou	th Appr	(NB)	Nort	h Appr	(SB)	Wes	st Appr	(EB)	East	Appr (WB)
4:45 PM 5:45 PM	to		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Lane	Inside	1	1			1			1			1		
Config -	(left)	2		1		-	1		1	1			1	1
urations		2		1	1		1	1			1			
		4												
		5							1					
		. 6							1					
	Outside	7												
	Free-flow													
Lane Setti	ngs		1	2	0	1	2	0	2	0	1	1	1	0
Capacity			1800	4000	0	1800	4000	0	3800	0	1800	1800	2000	0
Are the N	orth/South ph	ases	split (\	(/N)?	N		-							
Are the Ea	ast/West phase	es sp	lit (Y/I	1)?	Y		(32+1	7)	1-1					
Efficiency	Lost Factor		0.10	(+59)	(41)	()27		(+31)					
Hourly Vo	olume		101	1171	1	13	464	312	305	10	53	1	3	3
Adjusted 1	Hourly Volun	1e	101	1172	0	13	776	0	315	0	53	1	6	0
Utilization	n Factor		0.06	0.29	0.00	0.01	0.19	0.00	0.08	0.00	0.03	0.00	0.00	0.00
Critical Fa	actors			0.29	1	0.01	(0.21)		0.08	~ _			0.00 -	-
				(0.31)				(0.09)-				
	ICU Rati	0 7	0.48)	LOS =	A (A)								

Turning Movements at Intersection of:

College Boulevard and Carlsbad Village Drive/Peninsula Drive

South Approach

Note: Left-turn volumes include U-turns. U-turns in bold.

					Sŀ	IORT	RE	РО	RT							
General Inf	ormation			•			Site	Info	ormat	ior	1					
Analyst Agency or C Date Perfor Time Period	med	U: 08/2	SAI SAI 28/12 PEAK				Area Juris	sdict	ре			ON . All otl OCE (ISTIN	@SR78 RAMPS her are ANSID G 2011 OJECT	as E /WITH	FF-	
Volume an	d Timing In	put	······································										,			
				EB				WB		\Box		NB			SB	
			LT	TH	RT	LT	4	TH	RT		LT	TH	RT	LT	TH	RT
Num. of Lar			1	2	1	2	+.	2	0	4	1	1	1	0	2	0
Lane group			<u></u>	T	R	L		TR	 	4	L	LT	R		LTR	<u> </u>
Volume (vpl			85 2	529 2	240 2	207		222 2	37 2	ᅱ	645 2	61 2	176 2	<i>43</i>	68 2	37 2
% Heavy vo	en		_ <u>∠</u> 0.95	0.95	0.95	_	_).95	0.95	╗	0.95	0.95	0.95	0.95	0.95	0.95
Actuated (P	² /A)		A	A	A	A	_	A	Ā	\dashv	A	A	A	A	A	A
Startup lost			3.0	3.0	3.0	3.0	_	3.0		╛	3.0	3.0	3.0		3.0	
Ext. eff. gre	en		2.0	2.0	2.0	2.0	_	2.0			2.0	2.0	2.0		2.0	
Arrival type			5	5	5	5		5	_	_	3	3	3		3	<u> </u>
Unit Extensi			3.0	3.0	3.0	3.0	_	3.0	_	4	3.0	3.0	3.0	<u></u> _	3.0	 _ _
	TOR Volume)	5	10	0	5	_	10	0	_	5	10	0	5	10	0
Lane Width	and a VID and Carra		12.0	12.0	12.0) 12.0 N) 7	2.0	N	\dashv	12.0 N	12.0	12.0	A.	12.0 0	N
Parking/Gra	ide/Parking		N	0	Ν	/N	+	0	/V	-	/V	0	N	N	0	<u> </u>
Parking/hr			_	_	_	 	+				0	0	0		0	├──
Bus stops/h			0	0	0	0	+	0		\dashv					3.0	\vdash
Unit Extens		"T -i	3.0	3.0	3.0	3.0		3.0		1	3.0	3.0	3.0	07		<u></u>
Phasing	Excl. Left G = 11.0	G =	& RT	03 G =	3	G=)4	+,	SB 0 G = 9			B Only = <i>37.0</i>		07	G =	80
Timing	Y = 4	Y = .		Y =		Y =		_	Y = 4			= <u>37.0</u> = 4	Y =		Y =	
Duration of	Analysis (hr		_	-							Сус	le Len	gth C =	100.		
Lane Gro	ир Сарас	ity, C	ontro	l Dela	ay, a	and L	os	Det	termi	ina	ation					
			EB				WB					NB			SB	
Adj. flow rat	:e	89	557	253	2	218	273	3		37	73	370	185		156	\top
Lane group		177	922	401	-	344	897	-		63	34	641	557	1	265	
v/c ratio	·	0.50	0.60	0.63	0	.63	0.30	,		0.	59	0.58	0.33		0.59	
Green ratio		0.10	0.26	0.26	0	.10	0.26	3		0	36	0.36	0.36		0.08	
Unif. delay	d1	42.6	32.5	32.8	4	3.2	29.7	7		26	5.0	25.9	23.3		44.4	
Delay factor	r k	0.11	0.19	0.21	0	.21	0.11	1		0.	18	0.17	0.11		0.18	
Increm. dela	ay d2	2.3	1.1	3.2	,	3.8	0.2	·		1.	.4	1.3	0.4		3.4	
PF factor		0.926	0.766	0.76	6 0.	.926	0.76	36		1.0	000	1.000	1.000		1.000	
Control dela	ay	41.8	26.0	28.3	3 4	3.8	23.0)		27	7.4	27.1	23.6		47.8	
Lane group	LOS	D	С	С		D	С			(9	С	С		D	
Apprch. dela	ay	2	8.2			32	.2				26	.6			47.8	
Approach L	os		С			()				C	>			D	
Intersec. de	lay	2	9.6					ln	terse	ctic	n LOS	3			С	
HCS2000 TM			C	nvright ©	2000	University	of Flo	orida	All Riol	ıts R	eserved				v	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					S	HOR	ΓR	EPC	R	T						•		
General Inf	ormation						Si	te Inf	or	mati								
Analyst Agency or C Date Perfort Time Period	med	U 08/2	SAI SAI 28/12 PEAK				Aı Ju	tersec rea Ty urisdic nalysi	/pe tio	e n	V		All otl OCE (ISTIN)	RAMI her ar ANSI	PS eas DE 11/W		FF-	
Volume an	d Timing In	put		.											•			
				EB				WB					NB				SB	
			LT	TH	R		T	TH	4	RT	_	<u>T</u>	TH	RT	+	<u>LT</u>	TH	RT
Num. of Lar	ies		1	2	1	_		2	4	0		1	1	1	_	0	2	0
Lane group			L	T	R			TR	4			L	LT	R			LTR	
Volume (vpl			90	482	34			421	+	33 2		79 2	62 2	115 2	_	65 2	83 2	63 2
% Heavy ve	en		2 0.95	2 0.95	2 0.9			2 0.95	+	<u>2</u> 0.95	_	2 95	0.95	0.95		<u>2</u> .95	0.95	0.95
Actuated (P.	/A)		0.90 A	0.90 A	0.9 A			0.93 A	+	0.95 A		90 4	0.95 A	0.95 A		.90 A	0.95 A	0.95 A
Startup lost			3.0	3.0	3.0	_		3.0	T			.0	3.0	3.0	+	-	3.0	<u> </u>
Ext. eff. gre	en		2.0	2.0	2.0	2.	0	2.0			2	.0	2.0	2.0			2.0	
Arrival type			5	5	5		-	5	Ţ		_	3	3	3			_3	
Unit Extensi			3.0	3.0	3.0			3.0	$oldsymbol{\perp}$		_	.0	3.0	3.0			3.0	<u> </u>
***************************************	ror Volume	•	5	10	0			10	4	0		5	10	0	_	5	10	0
Lane Width		i	12.0	12.0	12.	_		12.0	_		_	2.0	12.0	12.0	_		12.0	
Parking/Gra	de/Parking		N	0	Ν	^	<u> </u>	0	4	Ν	+′	V	0	N		N	0	N
Parking/hr				_	_				4		_				+		_	<u> </u>
Bus stops/h			0	0	0	_		0	4			0	0	0	+		0	├─
Unit Extensi		T	3.0	3.0	3.0			3.0	_Ļ			.0	3.0	3.0			3.0	
Phasing	Excl. Left		Only	Thru &			04			B Or	_	_	B Only		_ 07	7	G =	08
Timing	G = 10.0 Y = 4	G =		G = 2 Y = 4		G = Y =				= 9.0 = 4	<i>y</i> .		= 40.0 = 4	G Y			Y =	
Duration of	Analysis (hr					! <u>'</u>			<u> </u>			-	de Len			110.		
	up Capac			l Dela	av.	and L	.0:	S De	te	rmir	nati	on	<u></u>	<u> </u>				
		<u> </u>	EB		Ť			VB					NB				SB	
Adj. flow rat	e	95	507	358		308	4	78	Π		451		434	121			221	T^{-}
Lane group		145	677	843	-+	687	+	81	T	-	628		634	549	\neg		238	1
v/c ratio		0.66	0.75	0.42	?	0.45	0.	44	Τ	7	0.72		0.68	0.22			0.93	\top
Green ratio		0.08	0.19	0.55	5	0.20	0.	31	T	7 (0.35		0.35	0.35			0.07	
Unif. delay o	<u></u> <u>1</u> 1	49.0	42.0	14.8	}	38.7	30).4	Γ	 	30.7	-	30.3	24.9	,		50.7	
Delay factor	k	0.23	0.30	0.11	1	0.11	0.	11	Γ	1	0.28		0.25	0.11			0.44	
Increm. dela	ay d2	10.2	4.6	0.3		0.5	0	.3			4.0		3.1	0.2			39.3	
PF factor				0.20	0	0.833	0.1	702	Γ	1	1.00	0	1.000	1.00	0		1.000	
Control dela	ontrol delay 56.3			3.3		32.7	2:	1.6			34.7		33.3	25.1			90.0	
Lane group	ane group LOS E			Α		С	(С			С		С	С			F	
Apprch. dela	ау	2	7.9			2	6.0					32	.9				90.0	
Approach L	os		С				С					(F	
Intersec. de	lay	3	3.7					lı	nte	rsect	lion	LOS	3				С	
r rannanaTM		•		nvright ©				in in		1 72 1 7 1								ereion / 1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

					SHO	ORT R	EPC	RT						-			
General Inf	ormation					S	ite In	forn	natio			·					
Analyst Agency or C Date Perfor Time Period	med	U: 08/2	SAI SAI 24/12 PEAK			A Ji	iterse rea T urisdi nalys	ype ctior	ו	F		OFF All o OCL XISTIN	-Ol thei EAI IG	V RA r are VSID	as E I/WITH		
Volume an	d Timing In	put				<u> </u>											
				EB		"	WE	3				NB				SB	
				TH	RT	LT	TH	\perp	RT	Ľ	T	TH		RT	LT	TH	RT
Num. of Lar	nes		2	2	0	1	2		0	1		1	┸	1	1	1	0
Lane group		•	L	TR		L	TR			L		LT		R	L	TR	
Volume (vpl			800	213	33	24	251		36	34		3		7	65	11	30
% Heavy vo	<u>eh</u>		2	2	2	2	2		2	2		2	_	2	2	2	2
PHF Actuated (P	/Δ)		0.95 A	0.95 A	0.95 A	0.95 A	0.95 A		.95 A	0.9 A		0.95 A		95 A	0.95 A	0.95 A	0.95 A
Startup lost			3.0	3.0		3.0	3.0	\dashv		3.0		3.0	_	3.0	3.0	3.0	
Ext. eff. gre			2.0	2.0		2.0	2.0			2.0		2.0	_	2.0	2.0	2.0	
Arrival type			5	5		5	5			3		3	-	3	3	3	
Unit Extensi			3.0	3.0		3.0	3.0			3.		3.0	—	3.0	3.0	3.0	
	TOR Volume	;	5	10	0	5	10	_	0	5		10	+-	0	5	10	0
Lane Width			12.0	12.0		12.0	12.0	_		12.		12.0	-	2.0	12.0	12.0	
Parking/Gra	ide/Parking		Ν	0	N	N	0	_	Ν	Ν		0	1	N	N	0	Ν
Parking/hr							<u> </u>	4				_	_				
Bus stops/h			0	0		0	0	_		0		0	+-	0	0	0	ļ
Unit Extensi			3.0	3.0		3.0	3.0			3.0		3.0	<u> </u>	3.0	3.0	3.0	<u> </u>
Phasing	Excl. Left		Only	Thru &		04 G =			3 Onl			B Only	Ϥ	G =	07	G =	38
Timing	G = 5.0 $Y = 4$	G = Y =		G = 1 Y = 4		G = Y =		<u>G =</u> Υ =	9.0 4			= 4.0 = 4	\dashv	Y=		Y =	
Duration of	Analysis (hrs			<u> </u>		'	J.	<u>'</u>				le Ler	ngth		100.0		
	up Capac			l Dela	ıy, ar	nd LO	S De	ter	min	atio	on.	·					
		<u> </u>	EB		T	WE						NB				SB	
Adj. flow rat	e	842	259		25	302	?		20)	1	9	7		68	44	
Lane group	cap.	1753	2250		71	624	1		50)	5	1	42		139	127	\top
v/c ratio		0.48	0.12		0.35	0.48	3		0.4	0	0.	37	0.1	7	0.49	0.35	1
Green ratio		0.51	0.65		0.04	0.18	3		0.0	3	0.	03	0.0	3	0.08	0.08	
Unif. delay	<u></u> d1	15.9	6.6		46.7	36.8	3		47.	6	47	7.6	47.	3	44.0	43.5	\top
Delay factor		0.11	0.11		0.11	0.1	1		0.1	1	0.	11	0.1	1	0.11	0.11	
Increm. dela	ay d2	0.2	0.0		3.0	0.6	;		5.2	2	4.	.5	1.9)	2.7	1.6	\top
PF factor		0.306	0.143	3	0.972	2 0.85	54		1.00	00	1.0	000	1.00	20	1.000	1.000	
Control dela	ay	5.1	1.0		48.4	32.0	2		52.	8	52	2.1	49.	2	46.7	45.2	
Lane group	LOS	Α		D	С			D		L)	D		D	D		
Apprch. dela	ay			33.3				5	2.0					46.1			
Approach L	os			С					D					D			
Intersec. de	lay	1	4.5				Int	erse	ection	LO	S					В	
HCS2000 TM		_	Co	opyright ©	2000 Uı	niversity of	Florida	., All l	Rights :	Reser	ved					V	ersion 4.1f

					SH	ORT F	REP	OR1	<u> </u>				,		<u> </u>		
General Inf	ormation					S	ite l	nfori	matic	n							
Analyst Agency or C Date Perfor Time Period	med	U. 08/2	SAI SAI 28/12 PEAK			J	nters area urisd analy	Type ictio	n	ŀ		OFF All o OCI XISTIN	i-O the EA IG	N RA er are NSID	eas DE 1/WITH		
Volume an	d Timing Ir	put				<u> </u>											
				ΕB			W					NB				SB	
			LT	TH	RT	LT	T)	1	RT	L.	T	TH	╀	RT	LT	TH	RT
Num. of Lar	nes		2	2	0	1	2		0	1		1	1	1	1	1	0
Lane group			L	TR		L	TF			L		LT		R	L	TR	<u> </u>
Volume (vp			817	324	60	96	360	3	59	15	6	44	L	54	123	38	39
% Heavy v	eh		2	2	2	2	2	- 7	2	2	-	2	╁	2	2	2	2
Actuated (P	/Δ)		0.95 A	0.95 A	0.95 A	0.95 A	0.9 A	2 1).95 A	0.9 A	5	0.95 A		.95 A	0.95 A	0.95 A	0.95 A
Startup lost			3.0	3.0	<u> </u>	3.0	3.0)		3.0)	3.0	_	3.0	3.0	3.0	╁ᢚ᠆
Ext. eff. gre			2.0	2.0		2.0	2.0			2.0		2.0	_	2.0	2.0	2.0	†
Arrival type			5	5		5	5			3		3		3	3	3	
Unit Extens			3.0	3.0		3.0	3.0			3.		3.0	Ŀ	3.0	3.0	3.0	
	TOR Volume)	15	10	0	5	10		0	17		10	╀	0	15	10	0
Lane Width			12.0	12.0		12.0	12.	-		12.		12.0	-	2.0	12.0	12.0	┞
Parking/Gra	de/Parking		N	0	N	N	0		Ν	N		0	╀	N	N	0	N
Parking/hr										ļ			╀				ــــــ
Bus stops/h			0	0		0	0	_		0		0	╀	0	0	0	—
Unit Extens			3.0	3.0	<u> </u>	3.0	3.0			3.		3.0	_	3.0	3.0	3.0	<u> </u>
Phasing	Excl. Left		Only	Thru a		04			B Onl	_		B Only	_	<u> </u>	07		08
Timing	G = 14.0 Y = 4	G = Y = .		G = 2 Y = 4		G = Y =		G =	= 15. - 1			= 12.0 = 4		G = Y =		G = Y =	
Duration of	<u>T 1 − 4</u> Analysis (hr:			1 - 4		<u> </u>			- 4				at	_	= 110.		
	up Capac			l Dela	av aı	nd I O	S D	eter	min		_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9.		770.		
Lanc Oio	up oupue	ity, O	EB	n Don	1y, a.	W			1	ши		NB				SB	
Adj. flow rat	·0	860	404	· T	101				90)	_	20	57	7	129	81	$\overline{}$
<u> </u>				+-	4				+		╫					212	-
Lane group v/c ratio	cap.	1344 0.64	1627 0.25		209 0.48	- 1			0.5		⊢	7 <i>4</i> 69	14 0.3		218 0.59	0.38	_
Green ratio		0.39	0.47	-1	0.12				0.0		┼-		0.1		0.13	0.13	+-
Unif. delay		27.2	17.3		45.4				47.		╄		46		45.3	44.0	+
Delay factor		0.22	0.11	+	0.11				0.1		╄		0.1		0.18	0.11	+
Increm. dela		1.0	0.11	-	1.8	2.0	-		3.6		⊢	1.0	1.		4.2	1.2	-
PF factor	ay uz	0.572	0.402	,	0.91	_			1.00		⊢			00	1.000	1.000	_
Control dela	av.	7.1	-	43.1				50.		╌	_	48		49.6	45.2	+	
Lane group		A	+	D D	D D			D		┼	=	L.		D	D	+	
	oprch. delay 13.6								+~		3.8					47.9	
Approach L			T	37.0 D			+		D. D					D			
Intersec. de			7.0	,			In	terse	ection		-					c	
исалолем		J			2000 11	niversity o									I		Version 4.1

 $HCS2000^{\mathrm{TM}}$

l of 1

					SHO	ORT F	REPC	RT						
General Inf	formation					S	ite Inf	ormati	on					
Analyst Agency or 0 Date Perfor Time Period	med	U3 08/2	SAI SAI 28/12 PEAK			A Ju	ntersed rea Ty urisdic nalysi	/ре			DR. her are SIDE-IN	as VT.#19		
Volume an	nd Timing In	put						7.77.674				23232		
				EB			WE	3		NB			SB	0
			LT	TH	RT	LT	TH	RT	LI	TH	RT	LT	TH	RT
Num. of Lar	nes		1	2	0	1	2	0	1	1	0	1	1	0
Lane group			L	TR		L	TR		L	TR		L	TR	
Volume (vp			141	262	2	2	510	84	1	2	2	53	2	192
% Heavy v	eh		2	2	2	2	2	2	2	2	2	2	2	2
PHF	///		0.92	0.92	0.92	0.92	0.92				0.92	0.92	0.92	0.92
Actuated (P Startup lost			A 3.0	A 3.0	A	3.0	3.0	A	2.0	3.0	Α_	3.0	3.0	A
Ext. eff. gre			2.0	2.0		2.0	2.0		2.0			2.0	2.0	1
Arrival type			3	3		3	3		3	3		3	3	
Unit Extens	ion		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	1
Ped/Bike/R	TOR Volume		5	10	0	5	10	0	5		0	5		0
Lane Width	king/Grade/Parking		12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Parking/Gra	king/Grade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/hr	rking/hr													
Bus stops/h	s stops/hr			0		0	0		0	0		0	0	1
Unit Extens	ion		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	16.0
Phasing	Excl. Left	Thru		0	3	04	_	Excl. l		Thru & R		07		80
Timing	G = 13.0	G =		G =		G =		G = 8		G = 19.1			G =	
	Y = 4.2	Y = 3		Y =		Y =		Y = 4.		Y = 4.2	Y =		Y =	
	Analysis (hrs			I Dal		410	C Da	A a was l		Cycle Ler	igin C	- 100.	U	
Lane Gro	up Capac	ity, C		Dela	ay, ar			termi	natio			_	0.00	_
E Veril er en			EB				VB		1100	NB	_		SB	1
Adj. flow rat		153	287		2		45		1	4		58	211	
Lane group	сар.	212	1452	2	212	2 14	17		142	312		124	287	
v/c ratio		0.72	0.20)	0.0	1 0.	46		0.01	0.01		0.47	0.74	
Green ratio		0.12	0.41		0.12	2 0.	41		0.08	0.18		0.07	0.18	
Unif. delay	d1	42.4	18.9)	38.8	8 21	.4		42.3	33.6		44.7	38.7	1
Delay factor	k	0.28	0.11		0.1	1 0.	11		0.11	0.11		0.11	0.29	
Increm. dela	ay d2	11.4	0.1	_	0.0	0.	.2		0.0	0.0		2.8	9.5	
PF factor		1.000	1.00	0	1.00	00 1.0	000		1.000	1.000		1.000	1.000	
Control dela	ay	53.8	19.0)	38.8	8 21	.6		42.4	33.6		47.5	48.2	
Lane group	LOS	D	В		D	(2		D	С		D	D	
Apprch. delay 3			31.1			21.7				35.4	0		48.0	
Approach L	proach LOS C								-	D		1	D	
Intersec. de	lay			Int	ersecti	on LO	S			С				
HCS2000 TM	4			opyright @	2000 Ur	niversity o				-				ersion -

					SH	ORT F	REPC	RT						
General Int	formation							ormat	ion					
Analyst Agency or (Date Perfor Time Period	med	U. 08/2	SAI SAI 29/12 PEAK			Ai Ju	tersec rea Ty urisdic nalysi	/ре			DR. her are SIDE-IN	as IT.#19		
Volume ar	nd Timing In	put												
				EB	1 ==	1.7	WB			NB	Loz		SB	Loz
Num. of La	23.		LT	TH	RT	LT	TH 2	RT 0		TH 1	RT 0	LT 1	TH 1	RT
			1	2	0	1	-	10	_		10		-	10
Lane group			L 05.4	TR	-	L	TR	- 00	L	TR		L	TR	407
Volume (vp % Heavy v			254 2	543 2	5	5	303	99	2	2	6	124	2	137
76 Heavy v	en		0.92	0.92	0.92	0.92	0.92				0.92	0.92	0.92	0.92
Actuated (P	P/A)		A	A	A	A	A	A	A	A	A	A	A	A
Startup lost			3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Ext. eff. gre	en		2.0	2.0		2.0	2.0	<i>.</i>	2.0			2.0	2.0	-
Arrival type			3	3		3	3		3	3		3	3	
Unit Extens			3.0 5	3.0		3.0	3.0		3.0	3.0		3.0	3.0	-
	ed/Bike/RTOR Volume ne Width arking/Grade/Parking			10	0	5	10	0	5	100	0	5	10.0	0
TO THE PARTY OF TH	rking/Grade/Parking			12.0	N	12.0 N	12.0	N	12.	0 12.0	N	12.0 N	12.0	N
	rking/Grade/Parking rking/hr			0	10	111	0	1/4	10	0	14	10	0	10
	rking/hr s stops/hr			0	-	0	0	+	0	0	+	0	0	-
	rking/hr s stops/hr it Extension		3.0	3.0		3.0	3.0	_	3.0		-	3.0	3.0	+
Phasing	Excl. Left	ΕW	Perm	Thru	& PT	0.0	-	Excl.		Thru & F	T I	07		08
J. M. J. M. J.	G = 4.0	G=		G = 4		G =		G = 1		G = 14.8			G =	00
Timing	Y = 4.2	Y =		Y = 5		Y =		Y = 4		Y = 4.2	Y =		Y =	
Duration of	Analysis (hrs	s) = 0.2	25	-					(Cycle Ler	ngth C	= 110.	0	
Lane Gro	up Capac	ity, C	ontro	ol Dela	ay, a	nd LO	S De	term	inatic	n				
1 1			EB			M	/B			NB			SB	
Adj. flow rat	te	276	595		5	43	37		1	9		135	152	
Lane group	сар.	357	190	9	11.	5 12	00		193	206		193	199	
v/c ratio		0.77	0.31	1	0.0	4 0.	36		0.01	0.04		0.70	0.76	
Green ratio		0.20	0.54	1	0.2	0 0.	35		0.11	0.13		0.11	0.13	1
Unif. delay		41.5	14.0	_	35.		6.3		43.7	42.3		47.3	46.5	1
Delay facto	r k	0.32	0.11	1	0.1	1 0.	11		0.11	0.11		0.27	0.32	1
Increm. dela		10.1	0.1	_	0.2		2		0.0	0.1		10.7	16.1	
PF factor		1.000		_	1.0	_	000		1.000	1.000		1.000	1.000	
Control dela	ау	51.6	14.1		35.		5.5		43.7	42.4		57.9	62.6	
		D	В		D)		D	D		E	E	
	pprch. delay					26.6				12.5			60.4	
	pproach LOS					С				D			E	
	tersec. delay						Int	ersect	ion LO				С	
ranta an aTM		L	32.4	C		Va. Nation V		All Dial						776.5

 $HCS2000^{\text{TM}}$

					SH	ORT R	EPO)R	T								
General Inf	ormation					S	ite In	for	matio	n							
Analyst Agency or (Date Perfor Time Period	med	08	USAI USAI 8/28/12 1/ PEAK			A Ju	iterse rea T urisdi nalys	ype ctic	e on	E.	00	WA All c CEAN	RIN the ISIE	IG R r are DE-II		СТ	
Volume ar	nd Timing Ir	nput											•				
			<u> </u>	EB	T ==	1	WE	_		Ļ		NB			 	SB	LDT
Num. of Lar			LT O	TH 1	RT 1	LT 1		+	RT 0	_ 	.T	TH 2	+	RT 1	LT 1	TH 2	RT_
		···	-			+ -	 	-	-	1		T	+	<u>, </u>	 	T	R
Lane group			05	LT	R	L 107	TR 47	4	10			698		<u>к</u> 95	71	1234	138
Volume (vp % Heavy v			25 2	32 2	182 2	107	2	\dashv	43 2	44		2	_	95 2	2	2	2
PHF	GH		0.92	0.92	0.92	0.92	0.92	2	0.92	0.9		0.92		.92	0.92	0.92	0.92
Actuated (P	P/A)		A	A	A	A	A		A	1		A		A	A	Α	A
Startup lost				2.0	2.0	2.0	2.0	_		2.		2.0		2.0	2.0	2.0	2.0
Ext. eff. gre	en			2.0	2.0	2.0	2.0	_		2.		2.0		2.0	2.0	2.0	2.0
Arrival type				4	4	4	4	\dashv				5	_	5	5	5	5
Unit Extens				3.0	3.0	3.0	3.0	_		3.		3.0	_	3.0	3.0	3.0	3.0
Ped/Bike/R	• • • • • • • • • • • • • • • • • • • •	e	5	5 12.0	0 12.0	5 12.0	5 12.0	\dashv	0	12		5 12,0		0 2.0	5 12.0	5 12.0	12.0
Lane Width			$\frac{1}{N}$	0	12.0 N	12.0 N	12.0	\rightarrow	N	\ <u>\</u>	_	0	_	2.0 N	N	0	N N
Parking/Gra	aue/Farking		- '\	+ -	 /\	17	"		/ V	-	v	U	+	14	174		'\
Parking/hr Bus stops/h	<u> </u>		-	0	0	0	0	╅		-	·	0	╫	0	0	0	0
Unit Extens				3.0	3.0	3.0	3.0	\dashv			.0	3.0	+-	3.0	3.0	3.0	3.0
Phasing	EB Only	1//	B Only	1 0		0.0	_		xcl. Le			ru & 1). U	07		08
<u> </u>	G = 14.0		= 7.0	G =		G =			= 15.		-	= 44.		G		G =	00
Timing	Y = 4.6		= 4	Y =		Y =			= 4.6		Υ =	6.7		Υ =		Y =	
Duration of	Analysis (hr	's) = (0.25	<u> </u>	•						Сус	le Le	ngtl	n C	= 100	.0	
Lane Gro	up Capac	city,	Contr	ol Del	ay, aı	nd LO	S De	ete	rmin	ati	on						
	·		EB			WB					NI	В				SB	
Adj. flow rat	te		62	198	116	98			485	\neg	759		212		77	1341	150
Lane group	сар.		254	449	121	118			519	ヿ	156	1 (676		267	1561	684
v/c ratio			0.24	0.44	0.96	0.83			0.93	T	0.49	, ().31	7	0.29	0.86	0.22
Green ratio			0.14	0.29	0.07	0.07			0.15	1	0.44	1 ().44		0.15	0.44	0.44
Unif. delay	d1		38.3	28.8	46.4	45.9			42.0		19.9) 1	18.2		37.7	25.2	17.4
Delay facto	r k		0.11	0.11	0.47	0.37			0.45		0.11	1 0).11		0.11	0.39	0.11
Increm. del	ay d2		0.5	0.7	68.7	37.0	\top		24.3	寸	0.2		0.3	寸	0.6	5.1	0.2
PF factor			1.000	0.993	1.000	1.000)		0.881	7	0.47	6 0	.47	6 (0.881	0.476	0.476
Control dela	ontrol delay 38				115.1	82.9			61.3		9.7		8.9		33.8	17.1	8. 4
Lane group	ane group LOS D					F			E		Α		Α		С	В	Α
Apprch. del	ay			100.4				26	3.8					17.1			
Approach L	os		С			F				()					В	
Intersec. de	elay		27.3				Inte	rse	ection	LO	S					С	
HC52000TM				Conveight (2000 II	niversity o	f Florid	 в А1	11 Rights	Rese	rved						Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	EPC	R	Т								
General Inf	ormation					s	ite In	for	matio	n							
Analyst Agency or C Date Perfor Time Perioc	med I	08. PM	JSAI JSAI /28/12 PEAK			A Ji	iterse rea T urisdio nalysi	ype ctio	e on		OCE	OLLE WAR All oti ANSI ING/V	ING her a DE-I	RE area NT	D. as #20PM		:
Volume an	d Timing I	nput	<u> </u>			1	1475			_		ND				0.0	
			LT	EB TH	RT	LT	WE TH	_	RT	L.	т Т	NB TH	R		LT LT	SB TH	RT
Num. of Lar	nes		0	1	1	1	1	1	0	2	'	2	1	•	1	2	1
Lane group				LT	R	L	TR	1		L		T	R		L	Т	R
Volume (vpl	n)	•	103	54	397	129	51	1	116	38.	2	1286	164	4	68	907	78
% Heavy v	eh		1	1	1	1	1		1	1		2	1		1	2	1
PHF			0.92	0.92	0.92	0.92	0.92	<u> </u>	0.92	0.9	2	0.92	0.9	2_	0.92	0.92	0.92
Actuated (P			A	A 2.0	A 2.0	A 2.0	A 2.0	+	Α	2.0	$\frac{1}{2}$	2.0	2.0	1	A 2.0	2.0	2.0
Startup lost Ext. eff. gre			1	2.0	2.0	2.0 2.0	2.0	+		2.0	_	2.0	2.0	_	2.0	2.0	2.0
Arrival type	011			4	4	4	4	_		5	\dashv	5	5	_	5	5	5
Unit Extens	ion	-		3.0	3.0	3.0	3.0	T		3.	0	3.0	3.0)	3.0	3.0	3.0
Ped/Bike/R	FOR Volum	е	5	5	0	5	5	1	0	5		5	0		5	5	0
Lane Width				12.0	12.0	12.0	12.0	7		12.	0	12.0	12.	0	12.0	12.0	12.0
Parking/Gra	de/Parking		N	0	Ν	Ν	0		N	Ν		0	Ν		Ν	0	N
Parking/hr																	
Bus stops/h	r			0	0	0	0			0		0	0		0	0	0
Unit Extens	ion			3.0	3.0	3.0	3.0			3.	0	3.0	3.0)	3.0	3.0	3.0
Phasing	EB Only		3 Only	0.	3	04			xcl. Le			3 Only	_		u & R		08
Timing	G = 12.0 Y = 4.6	G ≃ Y =	10.0	G = Y =		G = Y =			= 10. = 4.6		G = Y =	= 11.1			42.0 6.7	G = Y =	
Duration of				Υ -		T -		<u> </u>	- 4.0			le Len					
	up Capac			ol Dela	av. aı	nd I O	S De	te	rmin				3				
	ар очра	Jiey, (EB	<u> </u>	 	WB			T	~~~	NE	3		Τ		SB	
Adj. fl <i>o</i> w rat	е		171	432	140	181			415	1	398	3 17	78	†	74	986	85
Lane group	cap.		197	532	160	149			811	7	873	82	21	1	62	1354	599
v/c ratio		().87	0.81	0.88	1.21			0.51	1	0.75	O.:	22	0.	.46	0.73	0.14
Green ratio		().11	0.34	0.09	0.09			0.23	7	0.53	0.	53	0.	.09	0.38	0.38
Unif. delay	11	4	18.2	32.9	49.4	50.0			36.7	7	20.2	13	.8	4	7.4	29.1	22.2
Delay factor	·k	C	0.40	0.35	0.40	0.50			0.12	(0.30	0.	11	0.	.11	0.29	0.11
Increm. dela	ay d2	(31.3	9.3	37.9	142.9	9		0.6		1.7	0.	1	2	2.0	2.0	0.1
PF factor		1	.000	0.950	1.000	1.000)		0.797	7 ().25	4 0.2	254	0.	933	0.588	0.588
Control dela	ay	7	79.5	40.6	87.3	192.9	9		29.8		6.8	3.	6	4	6.3	19.1	13.2
Lane group	LOS	E	D	F	F			С		Α		1		D	В	В	
Apprch. dela	ay	5	1.6			146.8				11.	3					20.5	
Approach L	os		D			F				В				$oldsymbol{\perp}$		С	
Intersec. de	lay	3	0.6		<u> </u>		Inte	rse	ection I	LOS	}					С	
HCS2000 TM			(onvright @	3 2000 TJ	niversity o	f Flo r ida	a. A1	ll Rights	Reser	ved					•	Version 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

ZIAM

	A				SH	ORT R			2.2						
General Inf Analyst Agency or (Co.	U	ISAI ISAI			In		formati ection	on	MAF	CRE	RD.@ EK CT her are		RY	
Date Perfor Time Period			03/12 PEAK			Ji	urisdi	ction is Year	E	EXIS	OCE	ANSI		CT	
Volume ar	nd Timing I	nput													
				EB			W				NB	T	1 =	SB	1
			LT	TH	RT	LT	TH	_	- 6	LT	TH	RT	LT	TH	RT
Num. of Lar	nes		2	2	0	2	2	1		0	1	1	1	1	1
Lane group			L	TR		L	T	R			LTR	R	L	LT	R
Volume (vp			10	186	7	160	75	144		2	5	74	135	5	4
% Heavy v	eh		2	2	2	2	2	2		2	2	2	2	2	2
PHF	1/4.)	-	0.92 A	0.92 A	0.92 A	0.92 A	0.92 A	2 0.92 A		.92 A	0.92 A	0.92 A	0.92 A	0.92 A	0.92 A
Actuated (P Startup lost			2.0	2.0	A	2.0	2.0		-	А	2.0	2.0	2.0	2.0	2.0
Ext. eff. gre			2.0	2.0		2.0	2.0		+		2.0	2.0	2.0	2.0	2.0
Arrival type			3	3		3	3	3			3	3	3	3	3
Unit Extens			3.0	3.0		3.0	3.0				3.0	3.0	3.0	3.0	3.0
Ped/Bike/R	1200	ne	5	10	0	5	10			5	10	0	5	10	0
Lane Width			12.0	12.0		12.0	12.0	12.0			12.0	12.0	12.0	12.0	12.0
Parking/Gra	ade/Parking		N	0	N	N	0	N		N	0	N	N	0	N
Parking/hr															
Bus stops/h	ir		0	0		0	0	0			0	0	0	0	0
Unit Extens	ion		3.0	3.0		3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0
Phasing	Excl. Lef	t Thru	& RT	0	3	04		NB O	nly	S	B Only		07		08
Timing	G = 10.0		20.0	G =		G =		G = 10	0.0	-	= 10.0	_		G =	
	Y = 5	Y =		Y =		Y =		Y = 5			= 5	Υ:		Y =	
Duration of								3"			le Len	gth C	= 70.0	0	
Lane Gro	up Capa	city, C	ontro	ol Del	ay, ar	nd LO	S De	etermi	nat						
			EB			WE					VB			SB	
Adj. flow rat	te	11	210		174	82	1	57		7	8	0	118	34	4
Lane group	сар.	491	1007		491	1013	6	63		262	21	2	248	251	218
v/c ratio		0.02	0.21		0.35	0.08	0.	24		0.03	0	38	0.48	0.14	0.02
Green ratio		0.14	0.29		0.14	0.29	0.	43		0.14	0.	14	0.14	0.14	0.14
Unif. delay	d1	25.8	19.0		27.1	18.3	1.	2.7		25.8	3 27	.2	27.6	26.2	25.8
Delay facto	r k	0.11	0.11	9	0.11	0.11	0.	.11		0.11	0.	11	0.11	0.11	0.11
Increm. dela	ay d2	0.0	0.1		0.4	0.0	0	0.2		0.0	1.	1	1.4	0.2	0.0
PF factor		1.000	1.000	1	1.000	1.000) 1.	000		1.00	0 1.0	000	1.000	1.000	1.000
Control dela	ау	25.8	19.1		27.5	18.3	1.	2.9		25.9	28	.3	29.0	26.5	25.8
Lane group		С	В		С	В		В		С	()	С	С	С
Apprch. delay 19			9.4			20.1				28.1				28.4	
	pproach LOS				-	С				С				С	
Intersec. de					Inte	rsection	LC	S				С			
HCS2000 TM	108	1	2.2	onvright (© 2000 U	niversity o		a, All Righ	_	-					Version

21-PM

			-		SH	ORT R	EPO	RT							
General Inf	formation							ormati	on						
Analyst <i>U</i> Agency or Co. <i>U</i> Date Performed <i>06/</i>			ISAI ISAI 103/12 PEAK				Intersection Area Type Jurisdiction Analysis Year			MARRON RD.@QUARRY CREEK CTR. All other areas OCEANSIDE EXISTING PLUS PROJECT					
Volume ar	nd Timing	Input													
			EB			WB			\perp	NB			SB		
NEWS SEE	. 1-00-0		LT	TH	RT	LT	TH	RT	_	LT	TH	RT		TH	RT
Num. of Lanes			2	2	0	2	2	1		0	1	1	1	1	1
Lane group			L	TR		L	T	R	+		LTR	R	L	LT	R
Volume (vph)			6	146 2	2	338	221	306	_	8 2	5	275	491	5	11
% Heavy veh PHF			0.92	0.92	0.92	0.92	2 0.92	0.92			0.92	2 0.92		_	0.92
Actuated (P/A)			A	A	A	A	A	A	-	A	A	A	A	A	A
Startup lost time			2.0	2.0		2.0	2.0	2.0	Ť		2.0	2.0	_	2.0	2.0
Ext. eff. green			2.0	2.0		2.0	2.0	2.0	I		2.0	2.0	2.0	2.0	2.0
Arrival type			3	3		3	3	3	1		3	3	3	3	3
Unit Extension			3.0	3.0		3.0	3.0	3.0			3.0	3.0	_	3.0	3.0
Ped/Bike/RTOR Volume			5	10	0	5	10	0		5	10	25	5	10	0
Lane Width		12.0	12.0	N/	12.0	12.0	12.0	+	N /	12.0	12.0		12.0	12.0	
Parking/Grade/Parking		N	0	N	N	0	N	+'	N	0	.N	N	0	N	
Parking/hr			_	-		_		+	-	0	0	- 0	-		
Bus stops/hr			0	0	-	0	0	0	+	-1	0	0	0	0	0
Unit Extension		3.0	3.0		3.0	3.0	3.0		1 0	3.0	3.0		3.0	3.0	
Phasing	Excl. Let G = 15.0		& RT 15.0			04 G =		NB Or G = 18					07 08 i = G =		
Timing	Y = 5	Y =		Y =		Y =		Y = 5							
Duration of										_		_	= 10		
Lane Gro	up Capa	city, C	ontro	l Del	ay, aı	nd LOS	S De	termi	nati	ion					
		EB			WB			NB		IB			SB		
Adj. flow rate		7	163		367	240	33	3		147	13	9	320	219	12
Lane group cap.		516	530		516	532	72	5		275 270		0	563	565	495
v/c ratio		0.01	0.31		0.71	0.45	0.4	16		0.53		0.51		0.39	0.02
Green ratio		0.15	0.15		0.15	0.15	0.4		-	0.18		0.18		0.32	0.32
Unif. delay d1		36.2	37.9	1	40.4	38.7	17.	.9		37.2	37	37.1		26.4	23.3
Delay factor k		0.11	0.11		0.27	0.11	0.1	11		0.14	0.1	2	0.16	0.11	0.11
Increm. delay d2		0.0	0.3		4.6	0.6	0.	5		2.0	1.	7	1.4	0.4	0.0
PF factor		1.000	1.000		1.000	1.000	1.0	00		1.000	0 1.0	00	1.000	1.000	1.000
Control delay		36.2	38.2		45.0	39.4	18.	.4		39.2	38	.8	29.6	26.8	23.3
Lane group LOS		D D			D	D	D B			D)	С	С	С
Apprch. delay		38	38.1		34.1					39.0			28.4		
Approach LOS		0 - 3	D			С				D			С		
Intersec. delay 33		3.6					Intersection LOS						С		
HCS2000 TM			Co	onvright (© 2000 II	niversity of	Florida	All Right	s Rese	erved			-		Version 4.

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

General Inf	ormation		Site Informat	tion	
Analyst Agency/Co. Date Performe Time Period	USAI USAI d 6/7/2012 AM PEAK HOU	IR	Intersection Jurisdiction Analysis Year	MARRON RD./STI CARLSBAL EXISTING PLUS PI)
Project Descri	otion QC				
Volume Ad	justments				
		EB	WB	NB	SB
	Volume, veh/h	30	0	0	149
LT Traffic	PHF	0.90	0.90	0.90	0.90
	Flow rate, veh/h	33	0	0	165
Fig. Co.	Volume, veh/h	36	12	0	0
TH Traffic	PHF	0.90	0.90	0.90	0.90
	Flow rate, veh/h	40	13	0	0
	Volume, veh/h	0	52	0	10
RT Traffic	PHF	0.90	0.90	0.90	0.90
	Flow rate, veh/h	0	57	0	11
Approach F	low Computation				
Ap	proach Flow (veh/h)			Va (veh/h)	
	Vae			73	
	Vaw			70	
	Van			0	
20	Vas			176	
	Flow Computation			7 V 2 7 7 W 2	
Ap	proach Flow (veh/h)			Vc (veh/h)	
	Vce			165	
	Vcw Vcn			33	
	Vcn Vcs			238 13	
Capacity Co			4	10	
capacity Co		EB	l wb	NB	SB
	Upper bound	1217	1349	1149	1370
Capacity	Lower bound	1008	1129	947	1148
v/c Ratio	Upper bound	0.06	0.05	0.00	0.13
V 200 0 000 0 0 0	Lower bound	0.07	0.06	0.00	0.15

HCS2000TM

Copyright © 2003 University of Florida, All Rights Reserved

Version 4.1f

12 PM

General Info	ormation		Site Informat	tion		
Analyst Agency/Co. Date Performe Time Period	USAI USAI d 6/7/2012 PM PEAK HOU	R	Intersection Jurisdiction Analysis Year	MARRON RD./ST CARLSBAL EXISTING PLUS P)	
Project Descrip						
Volume Adj	ustments					
		EB	WB	NB	SB	
3	Volume, veh/h	15	0	0	83	
LT Traffic	PHF	0.90	0.90	0.90	0.90	
	Flow rate, veh/h	16	0	0	92	
	Volume, veh/h	18	42	0	0	
TH Traffic	PHF	0.90	0.90	0.90	0.90	
	Flow rate, veh/h	20	46	0	0	
	Volume, veh/h	0	164	0	34	
RT Traffic	PHF	0.90	0.90	0.90	0.90	
	Flow rate, veh/h	0	182	0	37	
Approach F	low Computation					
Ap	proach Flow (veh/h)			Va (veh/h) 36 228 0		
	Vae		11/17			
	Vaw					
	Van					
0' 1''	Vas			129		
	Flow Computation			14.7.1.11.5		
Ар	proach Flow (veh/h) Vce			Vc (veh/h) 92		
	Vce Vcw			92 16		
	Vcn			128		
	Vcs			46		
Capacity Co				1.4		
		EB	WB	NB	SB	
Latin de la	Upper bound	1288	1367	1252	1335	
Capacity	Lower bound	1073	1145	1041	1116	
71.7	Upper bound	0.03	0.17	0.00	0.10	
v/c Ratio	Opper bound	0.00	0.20 -	0.00	0.10	

 $HCS2000^{\mathrm{TM}}$

Copyright © 2003 University of Florida, All Rights Reserved

Version 4.1f

APPENDIX B

Near-Term Without Project

- OTHER PROJECTS DESCRIPTIONS
- INTERSECTION LOS WORKSHEETS

7.0 Existing + Project (Phase 1D & 1E ONLY) ANALYSES

7.1 Trip Generation

Land uses which are expected to be constructed by Year 2010, were considered for existing plus project (Phase 1D & 1E Only) analysis. Based on the land use phasing described in Section 2.3, the following land uses were considered for Existing + Project (Phase 1D & 1E Only) analysis:

Phase 1D: Commercial Development Asset Property – Hotel Site. According to the El Corazon Land Use Master Plan Project Report dated June 28th, 2005 the hotel is planned to be developed in an urban compact form due to its near location near the Village Commercial district. Therefore, a trip generation for Hotel (w/convention facilities/restaurants) was considered for this land use.

Phase 1E: Commercial Development Asset Property – Village Commercial. Based on the El Corazon Land Use Master Plan Project and Report dated June 28th, 2005, the Village Commercial will contain specialty retail that is complementary and compatible to adjacent park, community, and cultural and surrounding land uses. Based on this description, since high generation retail anchor is planned and based on the proposed nature of this commercial, a trip generation for Specialty Retail/Strip Commercial was utilized for this land use.

The trip generation for both the land uses was calculated based on the SANDAG publication "Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region", April 2002. *Table 7–1* summarizes the trip generation calculations for both the project sites.

Additionally, the Village commercial traffic generation was divided into primary trips and pass-by trips due to the percentage of pass-by trips attracted to this type of development. Pass-by trips are trips attracted from traffic already on the street system passing near the site while going from one location to another such as work to retail to home. This is as opposed to primary trips in which the trip returns to its place of origin such as home to grocery store to home. Table 7-1 shows the breakdown of primary trips and pass-by trips for the existing + project (Phase 1D & 1E Only) project site.

Appendix B contains a detailed description of pass-by trips as contained in the Institute of Transportation Engineers (ITE) Trip Generation Manual. As seen on Table 7-1, the project (Phase 1) is calculated to generate a total of 7,960 primary daily trips, with 285 trips (171 inbound and 114 outbound trips) in the AM peak hour and 702 trips (363 inbound and 339 outbound trips) in the PM peak hour.

7.2 Trip Distribution/Assignment

The project-generated traffic was distributed to the street system based on a SANDAG Select Zone Assignment (SZA). The SZA uses the land-use assumptions in the Cities/County Transportation Forecast to distribute traffic volumes generated by the project site throughout the region. It is from this forecasted distribution (as well as existing traffic counts and the project's location in relation to the I-5, SR-76 and SR-78 freeways) that the general regional traffic distribution is deduced.

TABLE 7-1
PHASE I-PROJECT TRIP GENERATION

Rate Volume % of ADT In:Out Split Volume 300 /Acre³ 1,500 6% 6:4 54 36 400/Acre³ 7,600 3% 6:4 137 91 6eneration: 9,100 — 191 127 9 Generation: 7,960 — 171 114 1440 — 20 13			Daily Trip Ends (ADT)	nds (ADT)		AMI	AM Peak Hour				PIM	PM Peak Hour	ur	
y Rate Volume ADT Split In Out Total ADT Split 300 /Acre³ 1,500 6% 6:4 54 36 90 8% 6:4 1Trip Generation: 9,100 — 191 127 318 — — y Trip Generation: 7,960 — 171 114 285 — — Hance Commercial: 1,140 — 20 13 33 — —					% of	In-Out		Volume		30 %	In:Out		Volume	
300 /Acre³ 1,500 6% 6:4 54 36 90 8% 6:4 400/Acre³ 7,600 3% 6:4 137 91 228 9% 5:5 1Trip Generation: 9,100 — 191 127 318 — — y Trip Generation: 7,960 — — 171 114 285 — — name Commercial: 1,140 — 20 13 33 — —	Land Use	Quantity	Rate	Volume	ADT	Split	Тп		Total	ADT	Split		Out	Total
1Trip Generation: 7,960 3% 6:4 137 91 228 9% 5:5 1Trip Generation: 9,100 — 191 127 318 — — y Trip Generation: 7,960 — — 171 114 285 — — man Commercial: 1.140 — 20 13 33 — —	ID: Hotel Site A	5 Acres	300 /Acre ^a	1,500	%9	6:4	54	36	96	%8	6:4	72	48	120
Generation: 9,100 — 191 127 318 — — Generation: 7,960 — — 171 114 285 — — Commercial: 1,140 — — 20 13 33 — —	1E: Village Commercial	19 Acres	400/Acre	7,600	3%	6:4	137	91	228	%6	5:5	342	342	684
Generation: 7,960 — — 171 114 285 — — — — 170 114 285 — — — — — — — — — — — — — — — — — — —	- Charles	Total T	rip Generation:	9,100			191	127	318	1	1	414	390	804
Commercial. 1140 20 13 33		Primary T	rip Generation:	7,960			171	114	285	ļ		363	339	702
COMMUNICACIONAL LIANO	Pass-by Trip Generation For Village	on For Villag	ge Commercial:	1,140			20	13	33			51	51	102

Footnotes:

- a. Generation rates obtained from the SANDAG Brief Guide (May 2002).
 b. Rate is a trip-end 1,000 square feet for retail.

- General Nates:
 1. Trip-ends are one-way traffic movements, either entering or leaving.
 2. Numbers shown in parenthesis are negative values.

Phase I (1A, 1D-1F) Project Traffic Volumes AM/PM Peak Hours & ADT (3/11)

57

REV. 10/15/07 LLG1866 FIG7-35

Hotel - Project Regional Traffic Distribution

EL CORAZON A G

LLO Ref. 3-06-1666
El Corazon Project
MaitAGRiepariReport Clean FFREDN: dee

TABLE 8-2 TRIP GENERATION YEAR 2010 (PHASE II)

		Daily Trip Ends (ADT)	(ADT)		AM P	AM Peak Hour	ur.			PIM	PM Peak Hour	[our	
				Jo %	In:Out		Volume		Jo %	% of In:Out		Volume	63
Land Use	Quantity	Rate	Volume	ADT	Split	In	In Out Total	Total	ADT	ADT Split	III	Out	Total
Soccer Fields & Infrastructure	55.3 Acres	50 /Acre ¹	2,765	2%	5:5	28	28	56	13%	5:5	180	180	360
Softball Complex & Infrastructure	12.5 Acres	50 /Acre ¹	625	2%	5:5	7	9	13	13%	5:5	41	41	82
Baseball Complex & Infrastructure	15.7 Acres	50 /Acre ¹	785	2%	5:5	8	8	16	13%	5:5	52	51	103
Total Trip	Total Trip Generation (Phase 2)	1Se 2)	4,175			43	42	85			273	272	545

Trip Generation (Phase 1D & 1E) From Table 7-1	9,100	191	191 127 318	318	414 390	390	804
Net Short Term (Year 2010) Trip Generation	13,275	234	234 169 403	403	687	662	662 1,349
A THE RESERVE AND A STREET AND						,	!

Net Short Term (Year 2010) Total Primary Trip Generation	12,135	214	156	370	636	611	1,247
Pass-by Trip Generation For Village Commercial (Phase 1E)	1,140	20	13	33	51	51	102

Footnotes:

LGeneration rate for daily traffic obtained from the SANDAG Brief Guide (April 2002) for City park (Active Park), and the peak hour percentages and split is based on the additional survey conducted by LLG.

Park - Project Regional Traffic Distribution

EL CORAZON

80

EL CORAZON EL-COP

83

EL CORAZON PHASE / (IA, ID, IE)+PHASE 2 (3) 2 Camino Real Camino Rea ä SR-78 BB Ramps SR-78 WB Rarreps 14/33_ El Camino Real at SR-78 WB Ramps El Camino Real at SR-78 EB Ramps El Camino Real at Vista Way 6 [5] 4 9/34 Canino H Plaza Dr. Marron Rd Carlsbad Village Dr. 13/33 El Camino Real at Plaza Dr. El Camino Real at Carlsbad Village Dr. El Camino Real at Marron Rd. 8 9 Rancho Del Oro Del SB-78 TE Off SR-78 EB Off -78 EB On. SR-78 WB On Vista Way FUTURE FUTURE Rancho Del Oro Road at SR-78 WB Ramps Rancho Del Oro Road at SR-78 EB Ramps Vista Way at Rancho Del Oro Rd (\vec{N}) EL CORAZON PAASE I (14-10-15) + PHASE 2
AM/PM Peak Hour Volumes

.

NO SGALE

AM/PM Peak Hour Volumes

40%

Generation
Office Trip
Medical
Tri-City

								•
				AM Peak		;	PM Peak	
Land Use		Daily (per unit)	Total	Inbound	Inbound Outbound	Total	Inbound	Outbound
			(of daily)	(% AM)	(% AM)	(of daily)	(% PM)	(% PM)
Trip Generation Rates		-				-		
Medical Office (SANDAG)		50	%9	80%	20%	11%	30%	70%
Forecast Project Generated Trips	Size (KSF)							
Medical Office (SANDAG)	60.000	3,000	180	144	36	330	66	231
TOTAL		3,000	180	144	36	330	66	231

					,,,			·······	
1	2				3			4	
6(35) → (←−22(15)		22(15) →	5(35) 5(35) 8(51) 7 7 7 7 7 7 7 7 7 7 7 7 7	- a	104(71)>	← 19(120)		132(91)	
Waring Road	Coffege Blvd	a Way	60(42	College Blvd	Vista Way	- (29(20)	78 WB Ramps	Vista Way	Tri-City Hospital Entrance
5	6				7			8	
(3) ← 9(6)	_	(3)	← 7(5)		43(30)	^	·	(882) + 1 - 3(2)	
1(5) — 6(37) —→ Vista Way	Thunder Dr	0(2) —7 2(12) —> 4(23) —3		Emeraid Dr	78 EB Off-ramp	17(12) —	College Blvd	Plaza Dr	College Blvd
9	10				11			12	
<u>555</u> ~ 4(3)		-	← 3(2)		← 4(23)			k_ 4(23)	
	College Blvd	4(23) — 1(5) → za Dr		78 EB Ramps	78 WB Ramps		Emeraid Dr	78 EB Ramps	Emerald Or
Lake Blvd	14		I						
← 5(35)	_	(<u>S)</u> 14(10) →	2(12) 4(23)						
Vista Way	Buena Hills	14(10) > ta Way		Rancho Del Oro					

LEGEND

XX(XX) AM/PM PEAK HOUR VOLUME

PROJECT TRIP ASSIGNMENT

55-100702.003 MAY 2011

TRANSPORTATION STUDY FOR THE WESTFIELD PLAZA CAMINO REAL REVITALIZATION PROJECT

March 2010

Prepared for:

WESTFIELD LLC

Prepared by:

GIBSON TRANSPORTATION CONSULTING, INC.

660 S. Figueroa Street, Suite 1120 Los Angeles, California 90017 (213) 683-0088

Ref: J1017

Trip Generation Estimates for Vacant Leasable Space

The trip generation rates used in this study are those identified for a 'Super Regional Shopping Center' land use in the *Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region*, San Diego Association of Governments (SANDAG), April 2002. These estimates are conservative in that they do not account for trip reductions from pass-by trips. Table 14 provides a summary of the trip generation rates and estimates for the vacant Robinson's-May building. As shown in the table, it is estimated that the existing vacant leasable space would generate a total of 5,186 daily trips on a typical weekday, including approximately 207 morning peak hour trips (145 inbound, 62 outbound) and 519 afternoon peak hour trips (260 inbound, 259 outbound).

Trip Distribution and Assignment

The trip distribution and assignment for traffic from the Project Site is based on the SANDAG model. SANDAG model runs, that isolated trips to and from the Traffic Analysis Zone that contains the Project Site, were used to develop a regional distribution and assignment. This assignment was further refined, at a local level, based on consultation with the City of Carlsbad and City of Oceanside staff.

The Project Site trip distribution is illustrated in Figure 9. As indicated, the trip distribution applied for the Project Site traffic is:

- 20% to/from the north
- 26% to/from the south
- 24% to/from the east
- 11% to/from the west
- · 19% trips from within the local Study Area

Traffic volume projections from the Robinson's-May building are illustrated in Figures 10, 11, and 12.

Street Segments - Peak Hour Analysis

Existing Baseline street segment peak hour analysis was conducted for all of the street segments in the City of Carlsbad jurisdiction and the two segments under the City of Oceanside jurisdiction that are projected to operate at LOS D. As shown in Table 17, all of the 10 street segments in the City of Carlsbad are projected to operate at LOS D or better, during both the morning and afternoon peak hours. However, both of the street segments in the City of Oceanside are projected to operate at LOS E or F during both peak hours. The City of Oceanside's standard for an acceptable LOS for peak hour street segment operations is LOS D. Detailed worksheets for the street segments in the City of Oceanside are provided in Appendix E.

PROJECT TRIP GENERATION AND TRAFFIC PROJECTIONS

Trip Generation

Similar to the Robinson's-May building, trip generation estimates for the Project were developed using trip generation rates those identified for a 'Super Regional Shopping Center' land use in the *Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region*. Table 18 provides a summary of the trip generation rates and estimates for the development proposed under the Project. As shown in the table, it is estimated that the Project would generate a total of 1,240 net new daily trips on a typical weekday, including approximately 49 morning peak hour trips (35 inbound, 14 outbound) and 124 afternoon peak hour trips (62 inbound, 62 outbound). These estimates are conservative in that they do not account for trip reductions from pass-by trips.

Project Circulation

Access to the land uses north of Marron Road would be the same as those under Existing Conditions. The existing cinema on the parcel south of Marron Road currently has access to parking via a right-turn only driveway just west of the intersection of El Camino Real & Marron Road. Access to the new retail proposed to be built on this parcel as part of the Project would

Waln)

€ 2(10) 2 (10) 6(10) → (1) ¬	5. Jefferson St & SR 78 WB Remps SR 78 WB Remps 3.500 ← "(") 2.500 ← "(") 2.500 ← "(")	7. El Camino Real & SR 78 WB Ramps	(°) \$\frac{1}{25(44)} \rightarrow 45(81)}	*(*) 13(54) 13(23) *(*) 15(23) *(*) (*) (*) (*) (*) (*) (*) (*) (*)	9. El Camino Real & Plaza Dr	FIGURE 10 A 49
	4. Rancho Del Oro Rd & Vista Myy (c) (c) (c)	(1) → ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	*(*) ∮ 65(99) →	₹ 11(47) ₹ 27(111) ₹ (2) (00) € (8)	8. El Camino Real & SR 78 EB Ramps	
(1) (2) (10) (2) (10) (10) (10) (10) (10) (10) (10) (10	S El Camino Real & Vista Wy Vista Wy Nista o the state of th	A design of the country of the count	20 1000	Project Site Analyzed Intersection	TRAFFIC FROM VACANT LEASABLE SPACE INTERSECTION PEAK HOUR TRAFFIC VOLUMES	
	2. Jefferson Stflvy Rd & Vista Wyflvy Rd	Va Germanza	The state of the s		•	TRAFFIC FRC INTERSECTION
○○○○	ă l			PACIFIC COCEM	x(x) A.M.(P.M.) Peak Hour Traffic Volumes Negligible Volume	

0

8

B

(E)

 $q_{\mathcal{A}}$

Č.

333 ← 2(10) 4 + \ F (3)	↑ (C.).	14. I-5 SB Ramps & Carlsbad Village Dr	(c) 1/2 1(5) 7 3(13) 7	V (61) V (5) V (1) V (1) V (1)	Monroe St & Carlsbad VIIIage Dr				FIGURE 10 B	50
(°) A 6(23) A 25(44)	*(*) + 13(23) + 13(23) + (8)27 (9)27 (9)28	13. El Camino Real & Marron Rd	(°) (°) ← 3(13)	1(3) 1(7) 1(7) 1(7) 1(7) 1(7) 1(8) 1(9) 1(10) 1(15. I-5 NB Ramps & Carlsbad Village Dr	2(8) A 5(21) A 1(6)	₹ (?)	17. El Carriho Real & Carlsbad Village Dr		
17(85) A 13(41)	₹ (ve)71 † (°)7	12. Project Dwy & Marron Rd	A z z z z z z z z z z z z z z z z z z z	To account		P. Carrier Ross	The state of the s	Project Site Analyzed Intersection	TRAFFIC FROM VACANT LEASABLE SPACE INTERSECTION PEAK HOUR TRAFFIC VOLUMES	
(3,5,5) (3,5,5) (4,6) (4,6)	10(18) 10(18)	11. Monroe St & Marron Rd		Via Remarca An article	Marron Rd			c Volumes	TRAFFIC FR INTERSECTION	
(°) ×		10. Jefferson St & Marron Rd					PACIFIC ONES	LEGEND x(x) A.M.(P.M.) Peak Hour Traffic Votumes Negligible Votume		

(5)

领

(3)

P.C.

G.

Ç,

20

(0)

6

Ç.

Ø.

Ç,

6

6

 $\binom{2n}{2}$

60

 Q_{j}

49

 $t_{M^{2}}^{i}$

€€€ ← 1(4)	Egunbs St. 8	(F) 4 2(11) 4 3(13)	Real & Ramps		*(*) 1(6) 4(7) Real &	FIGURE 18 A
1(1) →	5. Jefferson St & SR 78 WB Ramps	× (7. El Camino Real & SR 78 WB Ramps		(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	10 0000
	4. Rancho Del Oro Rd & Vista Wy	\(\times_{1(7)}\) \(\times_{1	6. Jefferson St & SR 78 EB Ramps	*(") # \\ 15(26) \rightarrow \(\text{:} \)	2(22) 2 12(22) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SN 10 ED KALIPS
(1/2) (1/2) (1/7) (1	3. El Carnino Real & Vista Wy Nata Wy Nata Wy	FU DIO 100 Orthody	Ž	C COMPAND PROMI	Project Site Analyzed Intersection	SCENARIOS 3 AND 5: PROJECT-ONLY INTERSECTION PEAK HOUR TRAFFIC VOLUMES
	2. Jefferson St/lvy Rd & Vista Wy/lvy Rd	Via Esmarca	Paramon D. Marine Inc.	d sound series	Volumes	SCENARI
4(1) × + 1(1) × + 1(1) × + 1(1) × + 1(1) × + 1(1)	1. El Camino Real & Fire Mountain Dr/Skyline Dr	10 mm			PACIFIC OCCEAN LEGEND X(X) A.M.(P.M.) Peak Hour Traffic Volumes Negligible Volume	

變

(*

1

(5)

e in

Œ

@

(St

Ġ.

59

©; ÷ √ (0) × ↑ (1) × ↑		I-5 SB Ramps & Carlsbad Village Dr		Monroe St & Carlsbad Village Dr			FIGURE 18 B) 09
(1)		14. I-5 SB Carisbe	1(5) 74 22	16. Monroe Carlsba				
(°) (°) (°) (°) (°) (°) (°) (°) (°) (°)		13. El Camino Real & Marron Rd	0.00 × √ € € € € € € € € € € € € € € € € € €	15. I-5 NB Ramps & Carlsbad Village Dr	(2) A (2) (2) (2) (2) (2) (2) (2)	17. El Camino Real & Carlsbad Village Dr		
(£) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		12. Project Dwy & Marron Rd	PS OF MP OF MP OF MP	Ŏ.	De compara de la	Project Site Analyzed intersection	SCENARIOS 3 AND 5: PROJECT-ONLY INTERSECTION PEAK HOUR TRAFFIC VOLUMES	
(1) (1) (2) (3) (4) (4) (5) (7) (7) (7) (7) (8)		11. Monroe St & Marron Rd	Vo Emara Vo Emara	Manual Property Control of Manual Property Contr	To and the state of the state o	•	SCENARIC	
(°) > 0(-5) = (°) > (°)	4 x + (2)	10. Jefferson St & Marron Rd			Weston Delicine	LEGEND x(x) A.M.(P.M.) Peak Hour Traffic Volumes v Negligible Volume		

(2)

 Q_{ij}

Ĉ.

90

TRIP GENERATION ESTIMATES FOR VACANT LEASABLE SPACE TABLE 14

	TRIP GENERATION RATES [a]	RATION RA	TES [a]					
	C		A.I	A.M. Peak Hour	ur	P.f	P.M. Peak Hour	ıur
Land Use	Kale	Lany	Ш	Out	Total	드	Out	Total
Super Regional Shopping Center	per 1,000 GLA Square Feet ¹	35.00	%02	30%	1.40	50%	20%	3.50

	TRIP GENERATION ESTIMATES	TION EST	IMATES					
	į	J. C	A.I	A.M. Peak Hour	ur	P.I	P.M. Peak Hour	ur
Land Use	SIZE	Dally	п	Out	Total	드	Out	Total
Existing Robinson-May's Building	148,159 GLA sf	5,186	145	62	207	260	259	519
TOTAL TRIPS	IIPS	5,186	145	62	207	260	259	519

Notes: 1,000 GLA square feet = 1 GLA ksf. [a] Source: Brief Generation Rates for the San Diego Region, SANDAG, April 2002. [a] Source: Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region,

TABLE 18
PROJECT TRIP GENERATION ESTIMATES

	TRIP GENERATION RATES [a]	TION RATE	S [a]					
	7	=	A.n	A.M. Peak Hour	ַּהַ	l d	P.M. Peak Hour	our
Land Use	A Sign	Cany	rī.	Out	Total	цJ	Out	Total
Super Regional Shopping Center	per 1,000 GLA Square Feet ¹	35.00	%02	30%	1.40	20%	20%	3.50

	TRIP GENERATION ESTIMATES	ON ESTIMA	TES					
	Č	2	A.I	A.M. Peak Hour	nı	P.I	P.M. Peak Hour	ur
Land Use	Size	Daily	드	Out	Total	ln.	Out	Total
Existing Super Regional Shopping Center	1,151,092 GLA sf	40,288	1,128	484	1,612	2,015	2,014	4,029
Proposed Super Regional Shopping Center	1,186,509 GLA sf	41,528	1,163	498	1,661	2,077	2,076	4,153
TOTAL NET NEW TRIPS	RIPS	1,240	35	14	49	62	62	124

Notes:

¹1,000 GLA square feet = 1 GLA ksf. [a] Source: *Brief Guide of Vehicular Traffic Generation Rates for the San Diego Region*, SANDAG, April 2002.

VACANT RETAIL PLUS EXPANSION ADD WATIOB Page I of 1 18 A + 183 WESTFIELD PLAZA CAMING REAL SR-78 EB Rumps Fista Way El Camino Real at SR-78 EB Ramps El Camino Real at Vista Way El Camino Real at SR-78 WB Ramps Marron Rd. Carlebad Village Dr. Plaza Dr. El Camino Real at Plaza Dr. El Camino Real at Carlsbad Village Dr. El Camino Real at Marron Rd. 9 8 4 3 /7 SR-78 WE Off SR-78 EB Off SR-78 WB 011 Vista Way FUTURE FUTURE Rancho Del Oro Road at SR-78 WB Ramps Vista Way at Rancho Del Oro Rd. Rancho Del Oro Road at SR-78 EB Ramps WESTFIELD PLAZA PROJECT ONLY WORKSHELT

AM/PM Peak Hour Volumes

©Urban Systems Associates, Inc. September 1, 2005

TABLE 4-2 Project Trip Generation Without School

				T				AM	PEAK I	IOUR			PM	PEAK I	HOUR	
PA	Use	Amo	unt	R	ate	ADT	%	#	Split	În	Out	%	#	Split	In	Out
		2	Acce	ss Fr	om El	Camin	o Re	al & T	amarac	k Aver	ue					
1	Multi-Family	27	DU	8	/DU	216	8	17	2:8	3	14	10	22	7:3	15	(
2	RV Storage	2.3	AC	30	/AC	69	6	4	5 : 5	2	2	9	6	5 : 5	3	3
3	Single Family	82	DU	10	/DU	820	8	66	3:7	20	46	10	82	7:3	57	25
4	Community Recreation	1.0	AC	50	/AC	50	13	7	5 : 5	3	4	9	5	5 : 5	3	2
5	Single Family	25	DU	10	/DU	250	8	20	3:7	6	14	10	25	7:3	18	8
6	Single Family	61	DU	10	/DU	610	8	49	3:7	15	34	10	61	7:3	43	18
7	Multi-Family	201	DU	6	/DU	1,206	8	96	2:8	19	77	9	109	7:3	76	33
8	Multi-Family	195	DU	6	/DU	1,170	8	94	2:8	19	75	9	105	7:3	74	31
9	Single Family	45	DU	10	/DU	450	8	36	3:7	11	25	10	45	7:3	32	13
10	Single Family	55	DU	10	/DU	550	8	44	3:7	13	31	10	55	7:3	39	16
11 ¹	Comm. Commercial	8.0	AC	700	/AC	5,600	4	224	6:4	134	90	10	560	5 : 5	280	280
111	Community Facilities	5.0	AC	50	/AC	250	13	33	5:5	16	17	9	23	5 : 5	12	11
				Su	btotal	11,241		690		261	429		1,098		652	446
					Acc	ess Froi	n Co	nnon .	Road							
12	Park	13.5	AC	50	/AC	675	13	88	5:5	44	44	9	61	5 : 5	31	30
13	Multi-Family	138	DU	6	/DU	828	8	66	2:8	13	53	9	75	7:3	53	22
14	Multi-Family	69	DU	6	/DU	414	8	33	2:8	7	26	9	37	7:3	26	11
15	Multi-Family	71	DU	6	/DU	426	8	34	2:8	7	27	9	38	7 : 3	27	11
16	Single Family	100	DU	10	/DU	1,000	8	80	3:7	24	56	10	100	7:3	70	30
17	Single Family	110	DU	10	/DU	1,100	8	88	3 : 7	26	62	10	110	7:3	77	33
18	Single Family	100	DU	10	/DU	1,000	8	80	3:7	24	56	10	100	7:3	70	30
19	Community Recreation	1.6	AC	50	/AC	80	13	10	5 : 5	5	5	9	7	5 : 5	4	3
21	Courtyard Homes	84	DU	8	/DU	672	8	54	2:8	11	43	10	67	7:3	47	20
22	Courtyard Homes	20	DU	8	/DU	160	8	13	2 : 8	3	10	10	16	7:3	- 11	
				Su	btotal	6,355		546		164	382		603		411	192
					Total	17,596		1,236		425	811		1,701		1,063	638

¹ = Planning Area 11 is designated for dual use with a minimum of 5.0 acres of community facilities.

3101-Tab4-2.wpd

LEGEND

--- = Future Streets

FIGURE 5-2
Project Only Average Daily Traffic
For Existing Conditions

Year 2010 Project Only AM Peak Hour Traffic

FIGURE 6-3
Year 2010 Project Only AM Peak Hour Traffic

FIGURE 6-3
Year 2010 Project Only AM Peak Hour Traffic

Page 4 of 4

FIGURE 6-3
Year 2010 Project Only AM Peak Hour Traffic

Page 1 of 4

FIGURE 6-4 Year 2010 Project Only PM Peak Hour Traffic

Page 2 of 4

FIGURE 6-4
Year 2010 Project Only PM Peak Hour Traffic

©Urban Systems Associates, Inc. September 1, 2005

FIGURE 6-4
Year 2010 Project Only PM Peak Hour Traffic

RR

Page 4 of 4

FIGURE 6-4
Year 2010 Project Only PM Peak Hour Traffic

00--

PROJECT ONLY AM/PM Peak Hour Volumes
No RDO Interchange / No RDO Extension / No Marron Road

FIGURE AM/PM Peak Hour Volumes

No RDO Interchange / No RDO Extension / No Marron Road

Page 3 of 3

FIGURE
AM/PM Peak Hour Volumes
No RDO Interchange / No RDO Extension / No Marron Road

Project Only ADT Traffic Volumes

001609

Page 2 of 2 PALONA

Figure 3-5
Project Only AM / PM Peak Hour Traffic Volumes

AM/PM Peak Hour Volumes

N SCALE

PALEMAN (12/4)

ND SCALE

AM/PM Peak Hour Volumes

OTHER PROJECTS - DOS COLINAS EL CAMINO REAL/ COLLEGE BOULEVARD EL CAMINO REAL/ FARADAY AVENUE ÉL CAMINO REAL/ PALOMAR AIRPORT ROAD EL CAMINO REAL/ CANNON ROAD EL CAMINO REAL/ TAMARACK AVENUE **(S)** (3) -5/12 14/12 7/5 16/14 3/6 ₹ 3/6 **√** 0/1 1/1/ ₽/21<u>~</u> 4/10-1/27 3/7 COLLEGE BOULEVARD/ PROJECT DWY NORTH/ CANTARINI PROJECT DWY College Boulevard/ PROJECT DWY SOUTH/ CANTARINI PROJECT DWY COLLEGE AVENUE/ PALOMAR AIRPORT ROAD COLLEGE BOULEVARD/ FARADAY AVENUE/ Θ **(B)** (6) **₹** 1/1 2/3 1 4/4 🎤 2/5 2/6---11/23 10/10 15/16 5 (11) PROJECT DRIVEWAY/ SUNNY CREEK ROAD BLVD 4/15_1 TAMARACK AVE COLLEGE BOULEVARD/ CANNON ROAD **(2)** 870 - 6/12 10/B-140 Project L CANNON RD SILVER TO SEEN TO 9/01 (6)COLLEGE PALOMAR AIRPORT RD REV. 07/06/2011 N:\1636\2011 WORK\FIGURES\LLG1636 FIGURE 8--3.DWG

LINSCOTT
LAW &
GREENSPAN
engineers

NOTES:

 ADT (Average Daily Traffic) shown midblock

 AM/PM peak hour volumes are shown at the intersections & midblock

- Intersection names: North-South/East-West

Figure 8-3

Project Traffic Volumes (Without Cannon Road Extension)

Dos Colinas

URBAN SYSTEMS ASSOCIATES, INC.

4540 Kearny VIIIa Road, Suite 106 SAN DIEGO, CALIFORNIA 92123

JOB	
SHEET NO,	OF
CALCULATED BY	DATE

		CHECKED BY	DATE
		SCALE	
		TILED	PROJECTS (HSP)
			140493
		MOR	
		12 How	1 CORINGO
	(B2) ADT	7. How	0.5
		- Tolland	3512
1 1 1 1 1 1 1 1 1 1	00		
		W 625 ADT	-
- Libe	[14]	14M 625 ADT	
75			
		CUQ	
	1 P		
		25/20	
	731703	477	
	1		
	43547		
		1 de	
	1600	Collins	
			AND THE RESIDENCE OF THE PROPERTY OF THE PROPE
		, 625ADT	
20/20			
	1 4 711		
(20%) I	D TO C 1 245		SALASAN GALLERY AND AND AND AND AND AND AND AND AND AND
	2080407	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Soliar	4	
		3) 45/2	
		105ADT & MOR	70 MFD4 X6 = 420 ADT
		14741 3 MOR	10 45 07 10 -42 40
		HOLL HOLL	Spanis 16956 DH X10= 1690 ADT
		CATA	
)		410165
	1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1. A. 1.		
		(35%)	managari daga dan managari daga da da da da da da da da da da da da da
			M
		1/4/	MENT NO FENT
			240 290 125
		Libo	1440 1121

AM/PM Peak Hour Volumes

HOLLY SPRING

AM/PM Peak Hour Volumes

NO SCALE

					Sŀ	IORT	RI	EPO	RT								
General Inf	formation					•	Si	te Inf	orma	atio	n					·	
Analyst Agency or 0 Date Perfor Time Period	med	U. 08/1	SAI SAI 15/12 PEAK				Ar Ju	tersed rea Ty risdic nalysi	/pe ction	ar	C	AMINO All of DCEAN R-TERI	WA hei SIL	Y are DE-I	eas NT.#1		
Volume an	nd Timing In	put															
				EB				WB				NB				ŞB	
			LT	TH	RT		딬	TH	R	_	LT	TH	-	₹T	LT_	TH	RT
Num. of Lar	nes		1	2	1	2	4	2	0	_	2	3	_ ()	2	3	0
Lane group			L	Τ	R	L	_	TR			L	TR			L	TR	<u> </u>
Volume (vpl			23	45	75	407	7	108	70		109	866	-	36	82	1706	60
% Heavy v	<u>eh</u>		2 0.92	2 0.92	2 0.92	2 0.9	. 	2 0.92	0.9		2 0.92	2 0.92	_	<u>2</u> 92	2 0.92	2 0.92	2 0.92
Actuated (P	2/Δ1		0.92 A	0.92 A	0.92 A	2 0.9 A	-	0.92 A	O.9	_	0.92 A	0.92 A	<i>V.</i>		0.92 A	0.92 A	0.92 A
Startup lost			3.0	3.0	3.0		7	3.0	+^`	\dashv	3.0	3.0	ΙŤ	<u> </u>	3.0	3.0	
Ext. eff. gre			3.0	2.0	1.2	2.0	_	2.0			1.2	5.0			0.8	5.8	
Arrival type			3	3	3	3		3			5	5			5	5	<u> </u>
Unit Extens			3.0	3.0	3.0			3.0			3.0	3.0	Ļ		3.0	3.0	ļ <u>.</u>
	TOR Volume)	5	10	0	5		10	0		5	10)	5	10	0
Lane Width			12.0	12.0	12.0			12.0	+-	-	12.0	12.0	<u> </u>		12.0	12.0	
Parking/Gra	ade/Parking		N	0	N	N	-	0	٨		N	0	/	V	N	0	N
Parking/hr			_		_		_						-				
Bus stops/h			0	0	0	0	\dashv	0	-	_	0	0	╀		0	0	
Unit Extens		T	3.0	3.0	3.0			3.0	<u> </u>		3.0	3.0	<u>L</u> ,		3.0	3.0	<u></u>
Phasing	Excl. Left	-1	Only	Thru 6		G =	04		Excl. G =			ru & R = <i>4</i> 8.6	_	G =	07	G =	08
Timing	G = 10.3 Y = 5.2	G = Y =		Y = S		Y =			G – Y = ₹			- 46.0 = 6.3	ᅥ	Y =		Y =	
Duration of	Analysis (hrs								, ,	<i></i>		cle Len	gth	-			
	up Capac			l Dela	av. a	and L	OS	De	term	ina	ation						
	······································		EB		Ť		W					NB				SB	
Adj. flow rat	te	25	49	82		442	19	93		1	18	1252	T		89	1919	\top
Lane group		136	446	426	7	720	88	38		3:	52	1840	T		342	1941	\top
v/c ratio		0.18	0.11	0.19) ().61	0.2	22	<u> </u>	0.	34	0.68	T		0.26	0.99	1
Green ratio		0.08	0.13	0.28	3 ().21	0.2	27		0.	10	0.38	T		0.10	0.38	1
Unif. delay	d1	57.7	51.8	36.8	3 4	17.9	37	'.9		55	5.7	34.7	┪		55.6	40.8	1
Delay factor	r k	0.11	0.11	0.11	, 0	0.20	0.1	11		0.	11	0.25	T		0.11	0.49	\top
Increm. dela	ay d2	0.7	0.1	0.2		1.6	0.	.1		0	.6	1.0	†		0.4	17.7	
PF factor		1.000	1.000	1.00	0 1	.000	1.0	000		0.9	924	0.594	T		0.926	0.583	-
Control dela		58.4	51.9	37.0) 4	19.5	38	3.1		52	2.0	21.7	T		51.9	41.5	
Lane group	LOS	E	D	D		D	L)		1	D	С			D	D	
Apprch. del	ay	4	5.1		\top	40	5.0		-		24	1.3				42.0	
Approach L	os		D		十	ı	D			T	(2				D	
Intersec. de	elay	3	6.9			•		Int	terse	ction	n LOS				1	D	
HCS2000TM		-		opyright @	2000	Ilminovait	F	Tilonialo	A II Di	obto D	Danner and					7	Version 4.1

 $HCS2000^{\mathrm{TM}}$

:2

Copyright © 2000 University of Florida, All Rights Reserved

·					SH	IORT	REP	OI	RT							
General Inf	ormation		•		, .		Site I	nfo	ormati	on			•			
Analyst Agency or 0 Date Perfor	med	U: 08/1	SAI SAI 15/12				Inters Area ' Jurisc	Ту	ре	EL	CAMIN All o OCEA	W oth	/AY er are	as	îTA	
Time Period	<u> </u>	PM I	PEAK						year	NE	AR-TE	RM.	/NO F	PROJE	CT	
Volume ar	nd Timing In	put														
				EB		- 	W		T ==	 	NB	_		ļ. <u>.</u>	SB	I 5=
Num. of Lar	300		LT 1	TH 2	RT 1	LT 2	T1-		RT 0	LT 2	TH 3	+	RT 0	LT 2	TH 3	RT O
	165		L	T	R	L	TF		+	L	TR	╁	0	L	TR	
Lane group	h\		183	310	372				140	441	1821	+	537	168	1347	165
Volume (vp % Heavy v			2	2	2	2	2		2	2	2	ť	2	2	2	2
PHF	<u> </u>		0.92	0.92	0.92				0.92	0.92		1	0.92	0.92	0.92	0.92
Actuated (P	P/A)		Α	Α	Α	Α	Α		Α	Α	Α		Ä	Α	Α	Α
Startup lost			3.0	3.0	3.0	3.0	3.0			3.0	3.0	\prod		3.0	3.0	
Ext. eff. gre	en		3.0	2.0	1.2	2.0	2.0			1.2	5.0	4		0.8	5.8	
Arrival type Unit Extens	·		3	3	3	3	3		+	5	5 3.0	+		5 3.0	5 3.0	
	ion TOR Volume		3.0 5	3.0 10	3.0 0	3.0 5	3.0 10		0	3.0 5	10	+	0	3.0 5	10	0
Lane Width	TOR VOIUITIE	,	12.0	12.0	12.0		_		1	12.0		十	U	12.0	12.0	
Parking/Gra	ade/Parking		N	0	N	N	0		N	N	0	\dagger	N	N	0	N
Parking/hr							┪					†				
Bus stops/h	r		0	0	0	. 0	0			0	0	T		0	0	
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0	<u> </u>		3.0	3.0	T		3.0	3.0	
Phasing	Excl. Left	Thru	& RT	00	3)4	$\overline{\mathbb{L}}$	Excl. L	.eft	NB On	ly	Thr	u & RT	. (08
Timing	G = 16.0	G =		G =		G =		_	3 = 12		3 = 12.	8		41.7	G =	
	Y = 5.2 Analysis (hrs	Y = Y		Y =		Y =		ΤĀ	(= 5.2		/ = <i>6.3</i> cycle Le	nai		6.3	Y =	
	up Capac			L Dale	3V 1	nd L	06 D		ormi			ng	u1 C -	- 133.	0	
Lane Gro	up Capac	ity, C	EB	n Dela	ау, с 	illu L	WB	C t	emm	ialio	NB			<u> </u>	SB	
Adj. flow rat	to.	199	337	404		107	381	┰		479	2563	\neg		183	1643	Τ
Lane group		212	566	650		386	524	十		731	2293	┪		257	1658	<u> </u>
v/c ratio	сар.	0.94	0.60	0.62	}	.05	0.73	┽		0.66	1.12	\dashv		0.71	0.99	
			0.00	0.02		.05	0.16	+	-+	0.00	0.47	┥		0.77	0.33	
Green ratio		0.12 58.3	+	30.3		9.3	53.4	\dashv		48.1	35.4	┥		60.4	44.3	
Unif. delay			52.1	+		-		\dashv				\dashv			+	+
Delay factor		0.45	0.18	0.20		0.50	0.29	\dashv		0.23	0.50			0.28	0.49	
increm. dela	ay d2	44.8	1.7	1.8		0.8	5.0	\dashv		2.1	59.6	4		8.9	19.9	
PF factor		1.000	1.000	_			1.000	_		0.820	0.409	4		0.946	0.667	
Control dela		103.1	53.9	32.1	1	20.1	58.4	4		41.6	74.1	4		66.1	49.5	-
Lane group		F	D	С		F	Е			D	E			E	D	
Apprch. del			5.0		_	90					69.0			<u> </u>	51.1	
Approach L			D			<i>F</i>	Ξ				E				D	
Intersec. de	lay	6	4.6				l	Inte	ersecti	on LC	<u>S</u>				E	
HCS2000 TM			C	novrioht @	2000	University	of Flori	đa.	All Right	s Reserv	ed				v	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

MITIGATION: ADD NB RTO LANE

					SH	ORT F			_							
General Inf	formation					- 5	Site In	form	atio		0111	14.10	DE 4	0 1/10	T.4	
Analyst	20		ISAI ISAI				nterse		1	EL		V	NEAL VAY ner are	L@ VIS	IA	
Agency or 0 Date Perfor	med		15/12				Area T			0				:#1/WI	TH	
Time Period			PEAK				lurisdi					1	MIT.			
						1	Analys	is Ye	ear	NE.	AR-TE	R٨	1/NO I	PROJE	CT	
Volume an	nd Timing I	nput	Г -	EB		1	WE				N	D	_	1	SB	
			LT	TH	RT	LT	TH		RT	LT	TH	_	RT	LT	TH	RT
Num. of Lar	nes		1	2	1	2	2	$\overline{}$	0	2	3	_	1	2	3	0
Lane group			L	Т	R	L	TR	+	- 1	L	T		R	L	TR	
Volume (vpl			23	45	75	407	108	7	0	109	860	_	286	82	1706	60
% Heavy v			2	2	2	2	2		2	2	2		2	2	2	2
PHF			0.92	0.92	0.92	0.92	0.92	_	92	0.92	0.9	2	0.92	0.92	0.92	0.92
Actuated (P			Α	Α	Α	Α	A	1	4	Α	Α		Α	Α	Α	Α
Startup lost			3.0	3.0	3.0	3.0	3.0			3.0	3.0		2.0	3.0	3.0	
Ext. eff. gre Arrival type	en	_	3.0	2.0	1.2	2.0	2.0	+		1.2 5	5.0	-	2.0	0.8 5	5.8 5	-
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0	+		3.0	3.0	$\frac{1}{2}$	3.0	3.0	3.0	
Ped/Bike/R		ie	5	10	0	5	10	+	2	5	10	_	0	5	10	0
Lane Width	TOTA TOTAL		12.0	12.0	12.0	12.0	12.0	_		12.0		-	12.0	12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0	1	N	N	0		N	N	0	N
Parking/hr							-									
Bus stops/h	r		0	0	0	0	0			0	0		0	0	0	
Unit Extens	ion	7	3.0	3.0	3.0	3.0	3.0			3.0	3.0		3.0	3.0	3.0	
Phasing	Excl. Left		Only	Thru 8		04			l. Le		Thru &			07		80
Timing	G = 10.3		13.5	G = 1		G =		G =	_		3 = 48	_	G =		G =	
Duration of	Y = 5.2	Y =		Y = 5	0.6	Y =	-	Y =	5.2	_	$\prime = 6.$	_	Y=	= 133.	Y =	_
Lane Gro				I Dol	21/ 21	nd I O	S Do	torr	nin			enç	jiii C -	- 155,	U	
Lane Gro	ир Сара	Lity, C	EB	Dela	ay, a		/B	terr	1	atio	NB	-			SB	
Adj. flow rat	.0	25	49	82	44.		93		11	Ω	941	1.	311	89	1919	1
Lane group		136	446	426	72		38		35	-	1922	_	563	342	1941	
v/c ratio	сар.	0.18	0.11	0.19	0.6		22	-	0.3		0.49	-	0.55	0.26	0.99	-
	_		0.11	0.19						-	22.04.2	-			0.38	_
Green ratio	14	0.08	100000	-	0.2	_	27	-	0.1		0.38	-	0.36	0.10	40.8	-
Unif. delay		57.7	51.8	36.8	47.		7.9	-	55.		31.7	-	33.8	55.6		-
Delay factor		0.11	0.11	0.11	1.6		11		0.1	_	0.11	_).15 1.2	0.11	0.49 17.7	_
Increm. dela	ay uz	1.000	0.1	1.000			000				0.2	-	.619	0.4	0.583	_
PF factor			1.000	1000/852					0.9			-		2000000		_
Control dela		58.4	51.9	37.0	49.		3.1		52.		19.0	-	22.1	51.9	41.5	1
Lane group		E	D	D	D)		D		В		С	D	D	5
annuch del	ay	4:	5.1			46.0				22	2.5				42.0	
Apprch. dela	Crist.										G					
Appron. dei Approach Li Intersec. de			D 6.3			D				n LO	2				D D	

					SHO	ORT F	REPO	RT							
General Info	ormation					1	Site Inf	orma	tion						
Analyst Agency or C	(O		ISAI ISAI			- 1	ntersed Area Ty		Е			O REAL WAY ther are	.@ VIS	TA	
Date Perforr	ned	08/	15/12			9.6	lurisdic		(INSIL	DE-INT	#1/WI7	ГН	
Time Period		PM	PEAK				Analysi		· N	FAR-		MIT. M/NO F	PROJE	CT	
Volume an	d Timing I	nput					inaryor	0 100		-/ 0.3			7,002		
				EB			WB		III.		NB			SB	
	5.0		LT	TH	RT	LT	TH	RT	L	-	TH	RT	LT	TH	RT
Num. of Lan	es		1	2	1	2	2	0	2	-	3	1	2	3	0
Lane group	·V		L 100	T 240	R	L 274	TR	110	L		T	R	L 460	TR	105
Volume (vph % Heavy ve		_	183	310 2	372 2	374	211	140	44	_	821 2	537	168 2	1347 2	165 2
PHF	41		0.92	0.92	0.92	0.92	0.92	0.92	_	_	0.92	0.92	0.92	0.92	0.92
Actuated (P/	(A)		Α	Α	Α	Α	A	Α	A		Α	Α	Α	Α	Α
Startup lost			3.0	3.0	3.0	3.0	3.0		3.	_	3.0	2.0	3.0	3.0	
Ext. eff. gree	en		3.0	2.0	1.2	2.0	2.0		1		5.0 5	2.0	0.8 5	5.8 5	
Arrival type Unit Extensi	on		3.0	3.0	3.0	3.0	3.0	+	3.	_	3.0	3.0	3.0	3.0	
Ped/Bike/RT		e	5	10	0	5	10	0	5		10	0	5	10	0
Lane Width			12.0	12.0	12.0	12.0	12.0		12.	_	2.0	12.0	12.0	12.0	
Parking/Gra	de/Parking		Ν	0	N	N	0	N	N		0	N	N	0	N
Parking/hr															
Bus stops/hr			0	0	0	0	0		C		0	0	0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0	3.0		3.	0	3.0	3.0	3.0	3.0	
Phasing	Excl. Left		& RT	03	3	04		Excl.			Only	_	u & RT		08
Timing	G = 16.0 Y = 5.2	G =	22.3	G = Y =		G = Y =		G = 1 $Y = 5$		G =	6.3		6.3	G =	
Duration of A			-	14		1 -		1 - 5				_	= 133.		
Lane Gro				l Dela	ay, ar	nd LO	S De	term	nati	on					
			EB		Ť		/B				IB			SB	
Adj. flow rate	9	199	337	404	407	38	81		479	197	79	584	183	1643	
Lane group	сар.	212	566	650	386	5 5	24		731	238	35	706	257	1658	
v/c ratio		0.94	0.60	0.62	1.0	5 0.	73	-	0.66	0.8	3	0.83	0.71	0.99	
Green ratio		0.12	0.16	0.42	0.1	1 0.	16		0.21	0.4	7	0.46	0.07	0.33	4
Unif. delay d	1	58.3	52.1	30.3	59.	3 53	3.4	-	18.1	30.	8	31.8	60.4	44.3	
Delay factor		0.45	0.18	0.20	0.5		29	_	0.23	0.3		0.37	0.28	0.49	
Increm. dela		44.8	1.7	1.8	60.		.0	-	2.1	2.6		8.1	8.9	19.9	
PF factor	. 17. 1	1.000	1.000		-		000	_	.820	0.40	_	0.443	0.946	0.667	3 14
Control dela	V	103.1	53.9	32.1	120		3.4	-	11.6	15.		22.2	66.1	49.5	
Lane group		F	D	C	F		=		D	В		С	E	D	
Apprch. dela			5.0		Ť	90.3		+		20.7	_			51.1	1
Approach LO			D		1	F				C	-			D	
Intersec. del			2.3			65	Int	ersect	ion I (D	
	~J	T/A			-		1111	2,200					1	_	

 $HCS2000^{\mathrm{TM}}$

					SH	ORT R	EP	OR	T							
General Inf	ormation						ite l		-	tio	n					
Analyst Agency or C Date Perforl Time Period	Co. med	US US 08/2 AM F	SAI 2/12			lr A J:	nters rea urisd	ecti Typ lictio	on e on		El		3 RAM her are SIDE-li	PS eas NT.#2		
Volume an	d Timing In	nut			······									,		
Volume an	a mining m	Jul	· · · · · ·	EB			W	R		\neg		NB		T	SB	
			LT	TH	RT	LT	Τ̈́		RT	-	LT	TH	RT	LT	TH	RT
Num. of Lar	nes	••	0	0	0	1	1		1		2	3	0	0	3	1
Lane group						L	LTI	₹	R		L	T			T	R
Volume (vpl	า)					379	5		405	,	157	812			1726	458
% Heavy ve	eh					2	2		2		2	2			2	2
PHF						0.92	0.9	2	0.92	2	0.92	0.92			0.92	0.92
Actuated (P.	/A)					Α	Α		Α		Α	Α			Α	Α
Startup lost	time					3.0	3.0)	3.0		3.0	3.0			3.0	3.0
Ext. eff. gree	en					2.0	2.0)	2.0		2.0	2.0			2.0	2.0
Arrival type						3	3		3		5	5			5	5
Unit Extensi	ion					3.0	3.0)	3.0	,	3.0	3.0			3.0	3.0
Ped/Bike/R	TOR Volume		10			10			75					10	5	250
Lane Width						12.0	12.	0	12.0	7	12.0	12.0			12.0	12.0
Parking/Gra	de/Parking		Ν		N	Ν	0	•	Ν		Ν	0	N	N	0	N
Parking/hr																
Bus stops/h	r	•				0	0		0		0	0			0	0
Unit Extensi	ion					3.0	3.0)	3.0		3.0	3.0			3.0	3.0
Phasing	WB Only	02	2	03	3	04		N	IB C)nly	/]	hru & R1		07		08
Timing	G = 31.0	G =		G =		G =		_	= 1			6 = 39.0	G =		G =	
	Y = 5.1	Υ=		Y =		Y =		Υ	= 4	.2		′ = 7	Y =		Y =	
The second secon	Analysis (hrs				·							ycle Leng	gth C =	= 100	.0	
Lane Gro	up Capaci	ty, Co	ontro	l Dela	ay, aı	nd LO	S D	ete	rmi	ina	atio	า				
			EB			WE	3					NB			SB	
Adj. flow rat	е				288	237		251		17	1	883			1876	226
Lane group	cap.				531	508	ا	475		43	6	2836			1928	588
v/c ratio					0.54	0.47	().53		0.3	9	0.31			0.97	0.38
Green ratio					0.30	0.30	().30)	0.1	3	0.56		:	0.38	0.38
Unif. delay	1 1				29.3	28.5	[2	9.1	'	40.	1	11.8			30.5	22.5
Delay factor	·k				0.14	0.11	().13	}	0.1	1	0.11			0.48	0.11
Increm. dela	ay d2				1.1	0.7	一	1.1		0.6	5	0.1			14.6	0.4
PF factor					1.000	1.000) 1	.00	0 0	0.9	03	0.155		ı	0.591	0.591
Control dela	ıy				30.4	29.2	3	30.2	?	36.	8	1.9			32.7	13.7
Lane group	LOS				С	С		С		D		Α			С	В
Apprch. dela	ay					30.0	_				7	.6		•	30.6	
Approach L	os					С			\dashv			4			С	
Intersec. de	lay	2	24.3				Int	ers	ectio	on I	os	*			С	
rrcco co cTM		-				niversity A						1		L		Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	ORT							
General In	formation					S	ite lı	nform	atio						
Analyst Agency or (Date Perfor Time Period	med	US US 08/2 PM F	AI 2/12			<u>A</u> J	\rea ⁻ urisd	ectior Type iction sis Ye			L CAMIN 78WE All oti OCEANS AR-TERN	B RAM her ard SIDE-	IPS eas INT.#2		
Volume ar	nd Timing Inp	out													
				EB			W				NB		 	SB	T
			LT	TH	RT	LT	Th		RT_	LT	TH	RT	LT	TH	RT
Num. of La			0	0	0	1	1		1	2	3	0	0	3	1
Lane group		,				L	LTF		R	L	T			T 1557	R
Volume (vp				ļ	-	517 2	10		35 2	247 2	2026 2		-	1557 2	505 2
% Heavy v PHF	en		_	+		0.92	0.9		<u>2</u> 92	0.92			+	0.92	0.92
Actuated (F	P/A)				 	A	A		4	A	A			A	A
Startup lost						3.0	3.0		.0	3.0	3.0			3.0	3.0
Ext. eff. gre						2.0	2.0		.0	2.0	2.0			2.0	2.0
Arrival type				<u></u>	_	3	3		3	5	5	_	<u> </u>	5	5
Unit Extens				ļ		3.0	3.0		3.0	3.0	3.0		10	3.0	3.0
	TOR Volume		10	<u> </u>		10 12.0	12.0		0 2.0	12.0	12.0		10	5 12.0	12.0
Lane Width			N	<u> </u>	N	12.0 N			2.0 N	12.0 N	0	N	N N	0	N N
	ade/Parking		//	-	1//	14	0	+	//	/V	- 0	//	1/4	U	+~
Parking/hr					 	0	0	+	0	0	0		+	0	0
Bus stops/h Unit Extens			-	 		3.0	3.0		3.0	3.0			 	3.0	3.0
	WB Only	O:	<u> </u>	0	2	04			Onl	<u> </u>	Thru & R	<u> </u>	07	1 J.U	08
Phasing	G = 31.0	G =		G =	3	G =			13.	_	3 = 39.0	G:		G =	
Timing	Y = 5.1	Y =		Y =		Y =		Y =			/= 7	Ϋ́		Y =	
Duration of	Analysis (hrs) = 0.2	5							C	ycle Leng	gth C	= 100).0	
Lane Gro	up Capaci	ty, Co	ontro	l Del	ay, aı	nd LO	S D	eteri	min	atio	n				
			EB			WE	3				NB			SB	
Adj. flow ra	te				416	397		559	26	38	2202			1692	549
Lane group	сар.				531	499		17 5	43	36	2836			1928	588
v/c ratio		 		<u> </u>	0.78	0.80	1	.18	0.0	61	0.78			0.88	0.93
Green ratio					0.30	0.30	-	.30	+	13	0.56			0.38	0.38
Unif. delay					32.0	32.2	3	35.0	41	.3	17.2			28.8	29.8
Delay facto	r k				0.33	0.34	: 0	.50	0.2	20	0.33			0.40	0.45
Increm. del	ay d2				7.5	8.7	٤	9.7	2.	.6	1.4			5.0	22.2
PF factor					1.000	1.00	0 1	.000	0.9	903	0.155			0.591	0.591
Control dela	ay				39.6	40.9	1	34.7	39).9	4.1			22.0	39.8
Lane group	LOS				D	D		F)	Α			С	D
Apprch. del	ay					78.7				8	3.0			26.4	
Approach L	.OS					E					Ä			С	
Intersec. de	elay		30.7				Int	ersec	ction	LOS				С	
HCS2000 TM		•	C	onvright (- © 2000 II	niversity o	f Floric	la. All F	Rights	Reserv	ed				Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	OR	TR	EPC	R									
General Inf	ormation						Sit	te In	forr	natio	on				••			
Analyst Agency or C Date Perfor Time Perioc	med	US, US, 08/22 AM Pi	AI 2/12				Are Ju:	erse ea T risdi alys	ype ctio		٨	C	78E All (CEAI	∃B oth VS≀	RAM er are IDE-=			
Volume an	d Timing Inp	out					-											
			LT	EB TH	R	_	LT	WI TH		RT	╀,	_T	NB TH		RT		SB TH	RT
Num. of Lar			2	0	1	1	0	0	+	0	+	<u>- 1 </u>	3	+	1	2	3	0
Lane group			L		R	十			_		╁		T	1	R	L	T	
Volume (vpl	h)		356		190	, +			+		╁		668	+	352	510	1560	-
% Heavy v	· · · · · · · · · · · · · · · · · · ·		2		2				\dashv		t		2	Ť	2	2	2	
PHF			0.92		0.9	2							0.92	(0.92	0.92	0.92	
Actuated (P			Α		Α						L		Α		Α	Α	Α	
Startup lost			3.0		3.0	_			\perp		╀		3.0		3.0	3.0	3.0	
Ext. eff. gre	en		2.0 3	1	2.0 3	-					╄-		2.0 5	+	2.0 5	2.0 5	2.0 5	
Arrival type Unit Extens	ion		3.0		3.0	_			+		╁		3.0	+	3.0	3.0	3.0	<u> </u>
	TOR Volume		5		0	\dashv	5		+		+	5	10	+	0	3.0	0.0	
Lane Width	TOR Volume		12.0		12.0	<u>, </u>			\dagger		Ť		12.0	1	12.0	12.0	12.0	
Parking/Gra	de/Parking		N	0	N	\top	N			N	7	٧	0	T	Ν	N	0	N
Parking/hr											T			Ī				
Bus stops/h	r		0		0								0		0	0	0	
Unit Extens	ion		3.0		3.0								3.0		3.0	3.0	3.0	
Phasing	EB Only	02		03			04		SE	3 On	ly		ıru & l			07	_	8
Timing	G = 20.0	G =		G =		G				- 38.	-		= <i>50</i> .	2	G =		G =	
	Y = 5.1	Y =		Y =		Υ:	<u> </u>		Y =	4.7			= 7		Y =	= 125.	Y =	
	Analysis (hrs			Dolo	<u> </u>		1 00	Do	tor	min	o fi		Je Le	ing	III C .	- 120.	<u> </u>	
Lane Gro	up Capaci	ly, Co	EB	• • • •	<u>у, а</u> П	na	LUS Wi		LEI	1	alı		NB				SB	
Adj. flow rat	Δ	387	7	207	+		T **	- T		╁		72		38	3	554	1696	1
Lane group	-	522	- 	241	_		+	-		+		199		61		1017	3730	
v/c ratio	оцр.	0.74	-	0.86	+							0.3	_	0.6	-	0.54	0.45	
Green ratio		0.15	+	0.15	-		\dagger	\dashv		 		0.3		0.3		0.30	0.74	
Unif. delay		50.7		51.7						+		26.		30.		36.9	6.6	
Delay factor		0.30	 	0.39	_		 			†		0.1	-	0.2		0.14	0.11	
Increm. dela		5.6	-	25.3	\top		\dagger					0.	1	2.	1	0.6	0.1	
PF factor		1.000		1.000	7		†	十		╅		0.5	67	0.5	67	0.720	0.189	
Control dela	ay	56.3	1	77.0				\top		\top		15.	3	19.	4	27.2	1.3	
Lane group	LOS	E		E								В		В	;	С	Α	
Apprch. dela	ay	ϵ	3.5									16.	7				7.7	
Approach L	os		Е									В					Α	
Intersec. de	lay	1	8.6					In	ters	ectic	n L	.os					В	
HCS2000 TM		•	Cox	pyright © :	2000 T	Inivar	eity of I	Florida	A 11	Righte	Dece	harred					V	ersion 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT	ΓRF	PC	RT	-								
General Inf	formation				<u> </u>	<u> </u>				natio	n						·	
Analyst Agency or 0 Date Perfor Time Period	Co. med	US US 08/22 PM P	AI 2/12				Are Jur	erse ea T isdic alysi	ype ctior			C	78E All o CEAN	B F the ISI	RAMi er are DE-=			
Volume ar	nd Timing Inp	out																
				EB				WE					NB				SB	
			LT	TH	RT		LT	T⊦	<u> </u>	RT	L		TH	╀	RT	LT	TH	RT
Num. of Lar	nes		2	0	1	\perp	0	0	_	0	0)	3	╀	1	2	3	0
Lane group			L		R				_				T		R	L	T	
Volume (vp			647		354	<u> </u>			_		_		1553		84	530	1547	<u> </u>
% Heavy v	eh		2 0.92		2	+			_		<u> </u>		2 0.92	_	2 .92	2 0.92	2 0.92	
PHF Actuated (P	9/Δ\		0.92 A	<u> </u>	0.92 A	- -			+		-		0.92 A	-	.92_ A	0.92 A	0.92 A	
Startup lost			3.0	1	3.0	+			\top		\vdash		3.0		3.0	3.0	3.0	
Ext. eff. gre			2.0		2.0								2.0		2.0	2.0	2.0	
Arrival type			3		3								5		5	5	5	
Unit Extens	ion		3.0		3.0								3.0		3.0	3.0	3.0	
Ped/Bike/R	TOR Volume		5		0	_	5		_		5	<u> </u>	10	-	80	<u> </u>		<u> </u>
Lane Width			12.0		12.0	_			_		<u> </u>		12.0		2.0	12.0	12.0	<u> </u>
Parking/Gra	ade/Parking		Ν	0	Ν		N			Ν	٨		0	<u> </u>	N	N	0	Ν
Parking/hr														_				
Bus stops/h	nr .		0		0								0		0	0	0	
Unit Extens	ion		3.0	<u> </u>	3.0								3.0	<u> </u>	3.0	3.0	3.0	
Phasing	EB Only	02	2	03			04			3 Onl	_		ıru & F			07	_	8
Timing	G = 22.0	G =		G =		G =				32.	0		= <i>54.2</i> = 7	2	G = Y =		G = Y =	
Duration of	Y = 5.1 Analysis (hrs	Y = 0.26	-	Y =		Y =			7 =	4.7		Ė		nat		= 125.		
	up Capaci			l Dola	V 3	nd 1	75	Da	tor	min	ati		ole Lei	gı		120.		
Lane Gro	up Capaci	ly, GC	EE		<u>y,a</u> │	IIU L	WE		tei	T	au		NB				SB	
A ali dia mad		700			+		VVL	,		┿	_			548	5	<i>5</i> 76	1682	1
Adj. flow rat	· · · · · · · · · · · · · · · · · · ·	703	+	385						+	-	168					 	
Lane group	сар.	577		266		·				4_		215		660	_	852	3649	<u> </u>
v/c ratio		1.22		1.45								0.7	8 (0.8	3	0.68	0.46	
Green ratio		0.17		0.17								0.4	3 (0.43	3	0.25	0.72	
Unif. delay	d1	52.0		52.0								30.	9 3	31.9	9	42.5	7.4	
Delay factor	r k	0.50		0.50					•			0.3	3 (2.3	7	0.25	0.11	
Increm. dela	ay d2	113.4		221.2	2	·						1.	9	8.8		2.1	0.1	
PF factor		1.000		1.000	2					1		0.5	06 C).50)6	0.780	0.178	-
Control dela	ay	165.4		273.2	2				٠.			17.	6 2	24.	9	35.3	1.4	
Lane group	LOS	F	1	F		***		\top		\top		В		С		D	Α	
Apprch. del			03.5		\neg					<u> </u>		19.4	4		, , , , , , , , , , , , , , , , , , ,		10.0	,.I
Approach L	-	 	F	,	\top					 		В					В	
Intersec. de		1	51.5		_			ln	ters	ectio	n L	os					D	
HCS2000 TM		1		pyright ©	2000 T	Iniversi	tv of F										V	ersion 4.1:

 $HCS2000^{\mathsf{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT	REP	OR	₹T								
General Inf	ormation						Site I	nfo	rmat	tio	n						·
Analyst Agency or 0 Date Perfor		US	SAI SAI)3/12			ļ	Inters Area Jurisd	Гур	e			EL CAM MAR All ot CAH	R(he	ON F	RD. eas		
Time Period	ť	AM I	PEAK			,	Analy	sis	Year	г	E	(ISTING PR		LUS ECT		R	
Volume an	nd Timing In	put															
	•		**	EB			W			\Box		NB				SB	
			LT	TH	RT	LT	Th	븨	RT	_	LT	TH	-	RT	LT	TH	RT.
Num. of Lar	nes		1	2	0	1	2	_	0	_	2	3	L	0	2	3	0
Lane group			L	TR		L	TF			Ц	L	TR	L		L	TR	↓
Volume (vpl			51	32	98	133	46	\Box	107	4	106	709	L	92	87	954	125
% Heavy vo	eh		1 0.95	1 0.95	1 0.95	0.95	0.9	_	0.95	╤╅	<u>1</u> 0.95	2 0.95		1 .95	0.95	2 0.95	0.95
Actuated (P	2/A)		0.95 A	0.95 A	0.95 A	0.95 A	A.	\dashv	0.90 A	' 	0.95 A	0.95 A	-	.95 A	0.95 A	0.95 A	0.95 A
Startup lost			2.0	2.0	, ·	2.0	2.0	,	,	┪	2.0	2.0	T		2.0	2.0	
Ext. eff. gre			2.0	2.0		2.0	2.0)			2.0	2.0			2.0	2.0	
Arrival type			4	4		4	4				5	5	L		5	5	
Unit Extensi			3.0	3.0		3.0	3.0)			3.0	3.0	L		3.0	3.0	
	TOR Volume		5		0	5			0	_	5	5	L	0	5	5	0
Lane Width			12.0	12.0		12.0	12.	-		4	12.0	12.0	Ļ		12.0	12.0	—
Parking/Gra	de/Parking		N	0	N	N	0		Ν	_	N	0	L	N	N	0	N
Parking/hr	·					ļ							L				
Bus stops/h	ır		0	0		0	0			┙	0	0	L		0	0	
Unit Extens	ion		3.0	3.0		3.0	3.0)			3.0	3.0			3.0	3.0	
Phasing	Excl. Left	Thru		03	3	04	1	_	xcl.			hru & R	_	<u>L</u>	07		80
Timing	G = 12.0 Y = 5	G = :		G = Y =		G = Y =			= 1. = 5			= 61.0		G =		G = Y =	
Duration of	Analysis (hrs			•		•		<u> </u>				cle Len	gtl				
	up Capac			l Dela	ay, ar	nd LC	S D		ermi	ina			<u>~</u>				
*******			EB		1		VB					NB				SB	
Adj. flow rat	:e	54	137		140	0 1	61	Т		11	2	843	Π		92	1136	\Box
Lane group		179	318		179	9 3	21	T		40	5	2533	T		405	2533	
v/c ratio		0.30	0.43		0.7	8 O.	.50	T		0.2	28	0.33	T		0.23	0.45	
Green ratio		0.10	0.10)	0.1	o o.	.10	T		0.1	12	0.51	Γ		0.12	0.51	1
Unif. delay	d1	50.1	50.8		52.	7 5	1.2			48.	.4	17.5	Γ		48.1	18.8	
Delay factor	rk	0.11	0.11		0.3	3 0.	.11			0.1	11	0.11	Γ		0.11	0.11	
Increm. dela	ay d2	1.0	0.9		19.	8 1	.2			0.	4	0.1			0.3	0.1	
PF factor		1.000	1.00	0	1.00	00 1.	000		Ó	0.9	12	0.311			0.912	0.311	
Control dela	ay	51.1	51.7		72.	5 5	2.4			44.	.5	5.5			44.1	6.0	
Lane group	LOS	D	D		Ε		D			D)	A			D	Α	
Apprch. dela	ay	5	51.5			61.8					10).1				8.8	
Approach L	os		D			Ε					L	3				Α	
Intersec. de	lay	1	8.3				lr	ıter	secti	ion	LOS					В	
иссэлолТМ			0.	novright ©	A DOOD TT		e 171	1_ A	ii Diak	.+- D	l anomico d					*	Version 4.1

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

	. .				SH	ORT	REP	OF	₹T								
General Inf	ormation	٠				,	Site I	nfo	rmat	ion							
Analyst Agency or 0 Date Perfor Time Period	med	U- 06/0	SAI SAI 03/12 PEAK				nters Area Jurisc Analy	Typ licti	oe .			L CAM MAR All ot CAF ISTING PRO	ROI her RLSI PL	V R are BAI US	RD. eas D OTHE	R	
Volume an	ıd Timing In	put				•											
				EB			W					NB				SB	
NI			LT	TH	RT	LT	Th		RT	+	LT	TH	R.		LT	TH	RT
Num, of Lar	nes		1	2	0	1	2		0	╀	2	3	0		2	3	0
Lane group			L	TR		L	TF			4	L	TR			L	TR	15.
Volume (vpl % Heavy v			237 1	149 1	200 1	214	110	j	174 1	- -	248 1	1171 2	13 1	7	241 1	827 2	191 1
PHF	קונ <u>.</u>		0.95	0.95	0.95	0.95	0.9	5	0.95	10	.95	0.95	0.9	5	0.95	0.95	0.95
Actuated (P	/A)		A	A	A	A	A	_	A	_	A	A	A		A	A	A
Startup lost	time		2.0	2.0		2.0	2.0)		1	2.0	2.0			2.0	2.0	
Ext. eff. gre	en		2.0	2.0		2.0	2.0)			2.0	2.0			2.0	2.0	
Arrival type			4	4		4	4	_		+	5	5	<u> </u>		5	5	
Unit Extensi			3.0	3.0		3.0	3.0		_	+	3.0	3.0	_		3.0	3.0	
Lane Width	TOR Volume	!	5 12.0	12.0	0	5 12.0	12.	_	0	+	5 2.0	5 12.0	0		5 12.0	5 12,0	0
Parking/Gra	ide/Parking		12.0 N	0	N	12.0 N	1/2.		N	_	2.0 N	-0	N	_	12.0 N	0	N
Parking/Gra	ide/Faiking		7.4	U	''	- /٧	+ 0	_	/\	+	14	1.0	/\		//	U	//
Bus stops/h	r		0	0	<u></u>	0	0				0	0	-		0	0	
Unit Extensi			3.0	3.0	<u></u>	3.0	3.0	7			3.0	3.0		•	3.0	3.0	
Phasing	Excl. Left	Thru	& RT	0.0	<u> </u> ર	0.0			xcl. L			ru & R	<u> </u> 		07	<u> </u>	08
	G = 23.0	G =		G =	,	G =	i .		i = 16			= 50.0		} =		G =	50
Timing	Y = 5	Y = .		Y =	•••	Y =		Y	= 5		_	= <i>6</i>	1	/ =		Y =	
Duration of	Analysis (hrs	(0.2)	?5								Су	de Len	gth (<u> </u>	135.0)	
Lane Gro	up Capac	ity, C	ontro	l Dela	ay, aı	nd LO	S D	ete	ermii	nat	tion						
			EB			V	VB					NB				SB	
Adj. flow rat	е	249	368		22	5 3	05	Ī	1	261	1	1377			254	1072	
Lane group	сар.	304	606		304	4 6	04	Τ	4	411	1	1848		٦	411	1823	
v/c ratio		0.82	0.61		0.7	4 0.	50	T	(0.64	1	0.75		ヿ	0.62	0.59	
Green ratio		0.17	0.19	,	0.1	7 0.	19	1	0	0.12	2	0.37		7	0.12	0.37	
Unif. delay o	<u></u> 11	54.0	50.5	;	53.	2 49	9.4	T	5	56.7	7	37.0		ヿ	56.6	34.2	
Delay factor	k	0.36	0.19	,	0.3	0 0.	11	T	(0.22	2	0.30		┪	0.20	0.18	
Increm. dela	ay d2	16.1	1.8		9.3	3 0	.7	1		3.2		1.7		┪	2.8	0.5	
PF factor		1.000	1.00	0	1.00	00 1.0	000	T	0	0.91	0 0	0.608		7	0.910	0.608	
Control dela	ıy	70.1	52.3		62.	5 50).1	T	5	54.9) ;	24.2			54.3	21.3	
Lane group	LOS	E	D		E)	T		D	寸	С		\dashv	D	С	"
Apprch. dela	ay		59. <i>4</i>			55.4					29.	0		7		27.6	
Approach L	os		E		1	Ε					С			1		С	
Intersec. de		3	36.5		<u> </u>		lr	nter	section	on l	os			寸		D	
riciganoaTM		I			1 0000 TT	níversity c								1			ergion 4.11

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT	REP	OF	₹Т								
General Inf	ormation						Site I	nfo	rma	tior	n						
Analyst Agency or C Date Perfor Time Period	med	US 06/0	SAI SAI)3/12 PEAK			,	Inters Area Juriso Analy	Typ	oe ion	r		EL CAN CARLS All of CARLS (ISTING PRO	SB he B/ S P	AD \ r are \D-II	VILL. eas NT.#6 OTHE	'R	
Volume an	d Timing In	put					•										
			. =	EB		<u> </u>	W					NB	_			SB	T ==
Num. of Lar	100		LT 1	TH 2	RT 0	LT 1	T 2	-	RT 0		<u>LT</u> 1	TH 3	-	RT_ 0	LT 1	TH 3	RT 0
Lane group			L	TR	l		TF		ľ	\dashv	Ĺ	TR	H		L	TR	\dashv
Volume (vpl	٦)		131	99	109	96	50		141	+	93	610	┝	30	98	970	65
% Heavy ve			1	1	1	1	1		1	1	1	2	Ť	1	1	2	1
PHF			0.95	0.95	0.95	0.95	0.9		0.98	5	0.95	0.95	0	.95	0.95	0.95	0.95
Actuated (P.			Α	Α	Α	Α	A	***	Α	_	Α	Α	L	Α	Α	Α	Α
Startup lost			2.0	2.0		2.0	2.0			\dashv	2.0	2.0	Ļ		2.0	2.0	
Ext. eff. gree Arrival type	en		2.0 4	2.0 4		2.0	2.0			\dashv	2.0 5	2.0 5	H		2.0 5	2.0	
Unit Extensi	on		3.0	3.0	<u> </u>	3.0	3.			┪	3.0	3.0	┢		3.0	3.0	
	ΓOR Volume		5	0.0	0	5	+		0	\dashv	5	5	┢	0	5	5	0
Lane Width			12.0	12.0		12.0	12.	0		一	12.0	12.0	T		12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N)	Ν	╗	N	0	Γ	N	N	0	N
Parking/hr		·								1							
Bus stops/h	*		0	0		0	0			\Box	0	0	Г		0	0	
Unit Extensi	on		3.0	3.0		3.0	3.	0		\Box	3.0	3.0			3.0	3.0	
Phasing	Excl. Left	Thru		03	3	04	4	_	xcl.			nru & R	Γ		07		08
Timing	G = 17.0 Y = 5	G = . Y = .		G = Y =		G = Y =		_	= 1 = 5			= 48.0 = 6		G = Y=		G = Y =	
Duration of A	Analysis (hrs								_ 0			cle Len	ath				
	up Capaci			l Dela	av. aı	nd LC	S D	ete	rmi	ina							
			EB		T		ΛB					NB				SB	
Adj. flow rate	e	138	219		10	1 6	82			98	3	674	Γ		103	1089	
Lane group		234	762	_	234		00			19.		1859	T		192	1855	
v/c ratio		0.59	0.29		0.4	3 <i>0</i>	.85	T		0.5	51	0.36	T		0.54	0.59	
Green ratio		0.13	0.23		0.1	3 0	.23			0.1	1	0.37	Γ		0.11	0.37	
Unif. delay o	i1	53.2	41.2		52.	0 4	7.9			54.	.8	29.9	Γ		54.9	33.0	
Delay factor	k	0.18	0.11		0.1	1 0	.38			0.1	2	0.11	Γ		0.14	0.18	
Increm. dela	y d2	3.9	0.2		1.3	3 8	3.8			2.3	3	0.1	Г		3.0	0.5	
PF factor				0	1.00	00 1.	000			0.9	20	0.610			0.920	0.610	:
Control dela	У	57.1	41.4		53.	3 5	6.7			52.	.6	18.3			53.5	20.6	
Lane group	LOS	Ε	D		D		E			D		В			D	С	
Apprch. dela	ay	4	17.5			56.3					22	7.7				23.5	
Approach L0	os		D			Ε					(С	
Intersec. del	lay	3	34.3				- II	nter	sect	ion	LOS					С	
rraggagaaTM			-	vovriaht ©				L	11 75 (-1	4 - D						•	Jereion 4.1f

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	OF	RT								
General Inf	ormation					(5	ite l	nfo	rmati	on							
Analyst Agency or C Date Perfor Time Period	med	U. 06/0	SAI SAI 03/12 PEAK			4	nters Area Jurisd Analy	Typ licti	ре	E	(L CAM CARLS All of CARLS STING PRO	BAE her a BAD) VII irea -INT IS (ILL. ns T.#6 OTHE	R	
Volume an	d Timing In	put				*											
				EB			W					NB				SB	
<u> </u>	.		LT	TH	RT	LT	Th		RT	<u>L</u>]	_	TH	RT	+	LT	TH	RT
Num, of Lar	nes		1	2	0	1	2		0	1	_	3	0		1	3	0
Lane group			L	TR		L	TF			L	_	TR		_	L	TR	
Volume (vpl			165 1	257 1	130 1	55 1	202	2	155 1	153	}	1279 2	78 1	+	200	879 2	136 1
% Heavy von	en		7 0.95	0.95	0.95	0.95	0.9	5	0.95	0.93	_	0.95	0.95	.	0.95	2 0.95	0.95
Actuated (P	/A)		A	A	A	A	A		A	A	_	A.	A	´ `	A	A	A
Startup lost			2.0	2.0		2.0	2.0)		2.0		2.0		_	2.0	2.0	
Ext. eff. gre			2.0	2.0		2.0	2.0)		2.0		2.0			2.0	2.0	
Arrival type			4	4		4	4	_		5		5			5	5	
Unit Extensi			3.0	3.0		3.0	3.0)		3.0)	3.0		_	3.0	3.0	
	TOR Volume		5		0	5	ļ. <u>.</u>		0	5		5	0	4	5	5	0
Lane Width			12.0	12.0	<u> </u>	12.0	12.	_		12.0)	12.0		4	12.0	12.0	
Parking/Gra	ide/Parking		N	0	N	N	0	1	N	N		0	Ν	+	N	0	N
Parking/hr							_			<u> </u>				+			
Bus stops/h			0	0		0	0			0		0		4	0	0	igwdown
Unit Extensi		T	3.0	3.0		3.0	3.0		<u> </u>	3.0		3.0			3.0	3.0	
Phasing	Excl. Left		& RT	0: G =	3	04 G =		-	Excl. Le			ru & R		= 0)7	G =)8
Timing	G = 17.0 Y = 5	Y = .	18.0 5	Θ= Y=		Y =			5 = 20. $5 = 5$			= <i>54.0</i> = 6	Y			Y =	
Duration of	Analysis (hrs		•	•		,		<u>.</u>			-	le Leng			130.0		
	ир Сарас			l Dela	av. aı	nd LO	S D	ete	ermin								
		<u> </u>	EB		1	•	/B				_	NB		Т		ŞB	
Adj. flow rat	<u> </u>	174	408		58	3	76	Т	1	61	_	428		12	211	1068	T
Lane group		234	471	_	23		64	\dagger		75	+	089		-	275	2063	
v/c ratio		0.74	0.87		0.2		81	\dagger	-	.59	+	0.68		+).77	0.52	+
Green ratio		0.13	0.14		0.1		14	十		.15	-	0.42		+).15	0.42	+
Unif. delay	 ქ1	54.4	54.8	_	50.		1.3	T		1.1	+	31.0			2.8	28.3	
Delay factor		0.30	0.40	_	0.1		35	十		.18	+	0.25		-	0.32	0.12	+
Increm. dela		12.1	15.6		0.6).4	十		3.2	t	0.9		-	2.3	0.2	1
PF factor		1.000			1.00		200	\dagger		879	-	.526		+	.879	0.526	+
Control dela	ny	66.5	70.4	_	51.	-	1.7	t		8.2	-	17.3			8.7	15.1	
Lane group	•	Ε	E	\top	D		<u> </u>	T	_	D	\dagger	В			E	В	1 "
Apprch. dela			39.2	<u> </u>	_	63.0					20.			+		22.3	
Approach L			E	*· ··		Е					С			+		С	
Intersec. de		- 3	33.1		+	•- - ·	lr	ntei	rsectio	n LO				\dagger		С	
HC52000TM					2000 11	niversity o								L_			ersion 4.11

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	EPC	ORT									
General Inf	ormation					S	ite In	forn	natio								
Analyst Agency or C Date Perfon Time Period	med	U 06/0	SAI SAI 03/12 PEAK			Ai Ju	iterse rea T urisdi nalys	ype ction	1			All oti OCE STING	RO Ri her a ANS	D. reas IDE 'S O	3		
Volume an	d Timing In	put				•											
				EB			WE					NB	.,			SB	
	1		LT	TH	RT	LT	TH		RT	Ľ.		TH	RT	_	LT	TH	RT
Num. of Lar	ies		1	2	0	1	2	4	0	1		1	0	_	1	1	1
Lane group			L	TR		L	TR			L		TR	<u> </u>		L	TR	R
Volume (vpl		i	203	147	29	61	169	1	67	13		2	10	3	342	23	343
% Heavy ve	<u>eh</u>		2	2	2	2	2	4	2	2		2	2	, 	2	2	2
PHF Actuated (P.	/A \		0.93 A	0.93 A	0.93 A	0.93 A	0.93 A	_	.93 A	0.9 A		0.93 A	0.93 A).93 A	0.93 A	0.93 A
Startup lost	. /		2.0	2.0		2.0	2.0		А	2.0		2.0	 ^	_	2.0	2.0	2.0
Ext. eff. gree			2.0	2.0		2.0	2.0	+		2.0		2.0			2.0	2.0	2.0
Arrival type			5	5		5	5			3		3			5	3	5
Unit Extensi	ion		3.0	3.0		3.0	3.0			3.0	0	3.0		Τ.	3.0	3.0	3.0
Ped/Bike/R	ΓOR Volume)	5	10	0	5	10		0	5		10	0		5	10	0
Lane Width			12.0	12.0		12.0	12.0	<u> </u>		12.	0	12.0		1	12.0	12.0	12.0
Parking/Gra	de/Parking		Ν	0	N	N	0		Ν	N	r	0	Ν		Ν	0	N
Parking/hr																	
Bus stops/h	r		0	0		0	0			0		0			0	0	0
Unit Extensi	on		3.0	3.0		3.0	3.0			3.	0	3.0			3.0	3.0	3.0
Phasing	Excl. Left	4		03	}	04			cl. Le	_		ru & R		0	7		08
Timing	G = 15.0	G =		G =		G =			25.0			= 20.0		=		G =	
Duration of A	Y = 5	Y = .	_	Y =		Υ =		Y =	5			: 5 le Len		=	100	Y =	
				I Dole		-4 I O	<u> </u>	4a r	min			ie Leii	gurc	<i>,</i>	100.		
Lane Gro	up Capac	ity, C		Dela	iy, ai			Lei	1	auc						CD	
A 1: 0:		040	EB	1		WE			 		_	B		00	<u>. T</u>	SB	400
Adj. flow rate		218	189		66	362	-		14		╄	3		368	-	198	196
Lane group	cap.	266	686		266		-		443		╄	7		443	 -	309	301
v/c ratio		0.82	0.28		0.25	0.57	7		0.0	3	0.0	04		0.8	3 (0.64	0.65
Green ratio		0.15	0.20		0.15	0.20	2		0.2	5	0	20		0.2	5 (0.20	0.20
Unif. delay o	11	41.2	33.9		37.5	36.1	1		28.	3	32	.3		35.	5	36.7	36.8
Delay factor	k	0.36	0.11		0.11	0.16	5		0.1	1	0.	11		0.3	7	0.22	0.23
Increm. d e la	ıy d2	18.1	0.2		0.5	1.2			0.0)	0.	1		12.	6	4.4	4.9
PF factor		0.882	0.833	3	0.88	2 0.83	33		1.00	00	1.0	000		0.77	78 1	1.000	0.833
Control dela	y	54.4	28.4		33.6	31.2	2		28.	4	32	.3		40	2 4	41.1	35.6
Lane group	LOS	D	С		С	С	寸	•	С		7	,		D	,	D	D
Apprch. dela	ay	4	2.3			31.6				3	0.3				3	9.3	
Approach Lo	os		D			С					С					D	
Intersec. del	lay	3	7.9				Inte	rsec	ction	LOS	3					D	
HCS2000 TM			Co	vovcioht ©	2000 11	niversity of	Florida	Δ11.1	Qiahta 1	Decem	ued.					7	ersion 4.1f

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	EP	OR 1	Γ							
General Inf	formation					s	ite In	forn	natio	n			•			
Analyst Agency or 0 Date Perfor Time Period	med	U. 06/0	SAI SAI 03/12 PEAK			A Ju	iterse rea T urisdi nalys	ype	า			OF All oti OCE STING	RO RE her ar ANSI	eas DE S OTHE		
Volume an	nd Timing In	put														
	<u> </u>			EB			W					NB			SB	
			LT	TH	RT	LT	Th	4	RT	L'	_	TH	RT	LT	TH	RT
Num. of Lar	nes		1	2	0	1	2	\downarrow	0	1		1	0	1	1	1
Lane group			L	TR		L	TR			L		TR		L	TR	R
Volume (vpl			473	441	9	11	316) (318	26		31	8	268	8	308
% Heavy v	eh		2 0.96	2 0.96	2 0.96	2 0.96	0.90	-	2).96	0.9		2 0.96	2 0.96	2 0.96	2 0.96	2 0.96
Actuated (P	/Δ)		0.90 A	0.90 A	0.96 A	0.96 A	0.90 A		A.90	O.S		0.96 A	0.90 A	0.90 A	0.90 A	0.96 A
Startup lost			2.0	2.0	 	2.0	2.0		/ 	2.0		2.0	 ^	2.0	2.0	2.0
Ext. eff. gre			2.0	2.0		2.0	2.0			2.0		2.0		2.0	2.0	2.0
Arrival type			5	5		5	5			3		3		5	3	5
Unit Extens			3.0	3.0		3.0	3.0			3.		3.0		3.0	3.0	3.0
	TOR Volume	•	5	10	0	5	10	_	0	5		10	0	5	10	0
Lane Width			12.0	12.0		12.0	12.0	-		12.		12.0		12.0	12.0	12.0
Parking/Gra	de/Parking		N	0	N	N	0	4	Ν	N		0	N	N	0	N
Parking/hr							_	4		<u> </u>			<u> </u>			<u> </u>
Bus stops/h			0	0		0	0	\dashv		0		0		0	0	0
Unit Extens		<u> </u>	3.0	3.0	<u> </u>	3.0	3.0			3.		3.0	<u> </u>	3.0	3.0	3.0
Phasing	Excl. Left		& RT	03	3	04			cl. Le	_		ru & R		07		80
Timing	G = 33.0 Y = 5	G = Y = :		G = Y =		G = Y =		Y =	= 19.0 - 5	_	<u>G =</u> Y =	= 16.0 = 5	G Y		G = Y =	
Duration of	Analysis (hr:			· · · · · · · · · · · · · · · · · · ·					· <u>J</u>			le Len				
	up Capac			l Dela	av. ar	nd LO	S De	-ter	min				J			
	<u> </u>		EB		.,, <u></u>	WE						IB	······		SB	
Adj. flow rat	· · · · · · · · · · · · · · · · · · ·	493	468		11	660	_		27	,	_	0		279	159	170
Lane group		517	782		517		_		298		╁	54		298	213	210
v/c ratio		0.95	0.60		0.02	_	3		0.0		0.	16		0.94	0.75	0.81
Green ratio		0.29	0.22		0.29	0.2	2		0.1	7	0.	14		0.17	0.14	0.14
Unif. delay d	<u></u>	39.2	39.5		28.5	43.	2		39.	7	42	2.6		46.4	46.6	47.0
Delay factor	·k	0.46	0.19		0.11	0.48	5		0.1	1	0.	11		0.45	0.30	0.35
Increm. dela	crem. delay d2 28.2				0.0	19.2	2		0.1	1	0.	.3		35.6	13.5	20.6
PF factor		0.725	0.811		0.72	5 0.81	11		1.00	00	1.0	000		0.865	1.000	0.890
Control dela	ıy	56.7	33.3		20.7	54.	2		39.	8	42	2.9		75.8	60.0	62.5
Lane group	LOS	E	С		С	D			D		I			E	Ε	Ε
Apprch. dela	ay	4	5.3			53.6				4	1.6				67.9	
Approach L	os				D					D				Ε		
Intersec. de	lay	5	3.6				Inte	erse	ction	LOS	3		\prod		D	
HCS2000 TM			Cc	nvright @	- ነ ኃስበስ ነ ኬ	niversity of	Florid:	a A11	Rights 1	Reser	ved .					Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT	REP	OR	T							
General Info	ormation					j	Site lı	nfor	rmatic	n						
Analyst Agency <i>o</i> r C	· 0		SAI SAI				Inters			С	OLLEG	W	LVD. 'AY er are	_	TA	
Date Perform			28/12				Jurisd						NSIE			
Time Period		AM	PEAK				Analy:	sis \	Year	l	EXISTIN				R	
 	1.001 1 2						,a.,		· oui		PF	₹О	IECT	S		
Volume an	d Timing I	nput	<u> </u>	ΕB		<u></u>	W	<u> </u>			NB			1	SB	
			LT	TH	RT	LT	TH		RT	L		T	ŔŤ	LT	TH	RT
Num. of Lan	es		2	2	1	2	2		0	1	3	T	1	2	3	0
Lane group			L	Т	R	L	TF			L	Т	T	R	L	TR	
Volume (vpl	1)		44	146	409	510	166	3	238	15	623	17	774	68	1432	35
% Heavy ve	eh		2	2	2	2	2		2	2	2		2	2	2	2
PHF			0.95	0.95	0.95	0.95		5 (0.95	0.9			.95	0.95	0.95	0.95
Actuated (P			A	<i>A</i>	A	A	A	_	Α	A	A	_	<u>A</u>	A	A	Α
Startup lost			2.0	2.0	2.0	2.0	2.0	_		2.0			2.0 2.0	2.0	2.0	
Ext. eff. gree Arrival type	311		5	2.0 5	2.0 5	2.0 5	2.0 5	' 		∠.t	5	ť	<u>2.0</u> 5	5	5	
Unit Extensi	on .		3.0	3.0	3.0	3.0	3.0	,		3.0			3.0	3.0	3.0	
Ped/Bike/R1		e	5	10	0	5	10		0	5	10	+	0	5	10	0
Lane Width			12.0	12.0	12.0	12.0	12.0)		12.	0 12.0	1	2.0	12.0	12.0	
Parking/Gra	de/Parking		N	0	Ν	N	0		Ν	Ν	0		Ν	Ν	0	Ν
Parking/hr	·		·													
Bus stops/hi	Γ .		0	0	0	0	0			0	0		0	0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0	3.0)		3.0	3.0		3.0	3.0	3.0	
Phasing	Excl. Left		Only	Thru 8		0	4		xcl. Le		Thru &	_		07		08
Timing	G = 4.0 Y = 5.6	G = Y =		G = 7 Y = 6		G = Y =			= 9.5 = 5.6	_	G = 42. Y = 6.3		G = Y =		G = Y =	
Duration of A				1 - 0	.4	1 -		<u> </u>	- 0.0		Cycle Le					
Lane Gro				l Dela	av. aı	nd LC	OS D	ete	rmin							
			EB		Ť		VΒ				NB				SB	
Adj. flow rate	0	46	154	431	537	7 4	26		16	5	656	8	15	72	1544	
Lane group	сар.	137	248	347	608	5 6	554		16	8	2131	8	12	327	2122	
v/c ratio		0.34	0.62	1.24	0.8	9 0	.65		0.9	98	0.31	1.	00	0.22	0.73	
Green ratio		0.04	0.07	0.23	0.1	8 0	.21	Г	0.0	9	0.42	0.	52	0.09	0.42	
Unif. delay o	11	46.7	45.2	38.5	40	2 3	6.4		45	.2	19.3	23	3.9	41.8	24.2	
Delay factor	k	0.11	0.20	0.50	0.4	1 0	.23	Γ	0.4	19	0.11	0.	50	0.11	0.29	
Increm. dela	ncrem. delay d2 1.5			131.1	15.	0 2	2.3		63	.9	0.1	32	2.5	0.3	1.3	
PF factor	PF factor 0.972			0.802	0.88	58 0.	.827		0.9	30	0.517	0.2	269	0.930	0.517	,
Control dela	Control delay 46.9				49.	5 3	2.4		100	6.0	10.1	38	3.9	39.2	13.8	
Lane group	LOS	D	D	F	D		С		F	:	В	1)	D	В	
Apprch. dela	ay	12	5.7			41.9)			3	4.1			ļ,	15.0	
Approach L0	os	j	F			D					С				В	
Intersec. del	ay	4	1.2				lı	nter	sectio	n LC	S				D	
HCS2000 TM	·		Cr	pyright ©	2000 11	niversity	of Florid	a. Al	I Rights	Reser	<i>i</i> ed				ν	ersion 4.1:

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REPO	RT	-								
General Inf	ormation					S	ite In	forr	natio								
Analyst Agency or C Date Perfor		U	SAI SAI 28/12				nterse Area T urisdi	уре		С	OLL		WA her	Y are		ΓΑ	
Time Period			PEAK			1	nalys			Ė	EXIS	STING	+ 6		HER NO	0	
Volume an	d Timing I	nput															
			LT	EB	RT	LT	WE TH		RT	LT		NB TH	7 -	₹T	LT	SB TH	RT
Num. of Lar			2	2	1	2	2	-	0	1		3	1	1	2	3	0
Lane group			L	Т	R	L	TR	1		L	寸	T	F	₹	L	TR	
Volume (vpl	n)		118	234	404	703	409	13	95	305	5 1	216	74		151	1205	92
% Heavy v			2	2	2	2	2		2	2	+	2	2		2	2	2
PHF			0.95	0.95	0.95	0.95	0.95		.95	0.98	5 (0.95	0.9		0.95	0.95	0.95
Actuated (P	/A)		Α	Α	Α	Α	A		A	Α	T	Α	1	4	Α	Α	Α
Startup lost			2.0	2.0	2.0	2.0	2.0			2.0		2.0	2.	.0	2.0	2.0	
Ext. eff. gre	en		2.0	2.0	2.0	2.0	2.0			2.0		2.0	2.	.0	2.0	2.0	
Arrival type			5	5	5	5	5			5		5			5	5	
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0			3.0		3.0	_	.0	3.0	3.0	
Ped/Bike/R	ΓOR Volum	е	5	10	0	5	10	_	0	5		10	(5	10	0
Lane Width			12.0	12.0	12.0	12.0	12.0	<u> </u>		12.0) 1	12.0	12	2.0	12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0	\bot	Ν	N	_	0		٧	Ν	0	Ν
Parking/hr								\bot		<u> </u>	_		_			<u> </u>	
Bus stops/h	r		0	0	0	0	0	丄		0		0	—	0	0	0	
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0	丄		3.0		3.0	3.	.0	3.0	3.0	
Phasing	Excl. Left		Only	Thru &		04			cl. Le			3 Only			u & RT		08
Timing	G = 6.0 Y = 5.6	G = Y =	16.0	G = 1 Y = 6		G = Y =			7.0 5.6			5.0 5.6			31.1 6.2	G = Y =	
Duration of				1 - 0	.3	T -		<u> </u>	5.0						110.		
Lane Gro			~	l Dela	ıv a	nd I O	S De	ter	min				<u> </u>				
20110 010	ир очри		EB		.,,	W			T			√B				SB	
Adj. flow rat	е	124	246	425	74		47	***	32	21	128		780	0	159	1365	
Lane group	cap.	187	322	471	86	2 93	32		28	33	192	24	106	6	219	1417	<u> </u>
v/c ratio		0.66	0.76	0.90	0.8	6 0.9	91		1.1	13	0,6	37	0.7	3	0.73	0.96	
Green ratio		0.05	0.09	0.31	0.2	5 0.	29		0.	16	0.3	38	0.6	9	0.06	0.28	T
Unif. delay	11	51.0	48.8	36.5	39.	3 37	7.8		46	3.2	28.	.4	10.	9	50.6	38.9	
Delay factor	·k	0.24	0.32	0.42	0.3	9 0.	43		0.8	50	0.2	24	0.2	9	0.29	0.47	
Increm. dela	ay d2	8.5	10.4	20.4	8.7	7 12	2.6		94	.7	0.	9	2.6	3	11.4	16.0	
PF factor		0.962	0.933	0.703	0.7	77 0.7	731		0.8	373	0.5	93	0.15	59	0.955	0.737	,
Control dela	ıy	57.6	56.0	46.1	39.	2 40).3		13.	5.0	17.	.7	4.4	1	59.7	44.6	
Lane group	LOS	E	E	D	D				F		В	3	Α		E	D	
Apprch. dela		-	0.9			39.8					9.1			<u></u>		46.2	
Approach L			D		ļ	D					С	•				D	
Intersec. de	lay	38	9.7							n LC					<u> </u>	D	
HCS2000 TM			C	opyright ©	2000 U	niversity o	f Florida	ı, All	Rights	Reserv	red					V	ersion 4.1

W/MIT.

					SHO	ORT R	EP	OR	T.								
General In	formation						_	_	natio	n							
Analyst Agency or (Date Perfor Time Period	rmed	08	USAI USAI 8/28/12 1 PEAK			Are Jur	erse ea T isdic alysi	ype ction	1	OCI	EAI	W/ All othe VSIDE	AY er a /MI PLU	reas ITIG IS O	VISTA S ATION THER		
Volume ar	nd Timing	Input								1							
				EB			W	_			_	NB	т.	-		SB	T ==
N			LT	TH	RT	LT	TI	-	RT	L		TH 3	+	RT	LT	TH 3	RT 0
Num. of La			2	2	1	2	2	-	1	1	_		-	2	2		0
Lane group			L	T	R	L	T		R	L		T	_	R	L	TR	
Volume (vp			44	146	409	510	16	_	238	15	/	623	-	74	68	1432	35
% Heavy v	en		2	2	2	2	2	$\overline{}$	2	2	5	2 0.95	_	2 95	2 0.95	2	0.95
PHF Actuated (F	2/Δ)		0.95 A	0.95 A	0.95 A	0.95 A	0.9 A		0.95 A	0.9 A	U	0.95 A	-	95 A	0.95 A	0.95 A	0.95 A
Startup lost			2.0	2.0	2.0	2.0	2.0		2.0	2.0)	2.0	_	2.0	2.0	2.0	1
Ext. eff. gre			2.0	2.0	2.0	2.0	2.0	_	2.0	2.0		2.0	_	2.0	2.0	2.0	
Arrival type			5	5	5	5	5	_	5	5		5	-	5	5	5	
Unit Extens			3.0	3.0	3.0	3.0	3.0	_	3.0	3.0)	3.0	3	3.0	3.0	3.0	
Ped/Bike/R	LI - Manager	me	5	10	0	5	10	_	0	5		10	_	0	5	10	0
Lane Width		1110	12.0	12.0	12.0	12.0	12.	_	12.0	12.	0	12.0	-	2.0	12.0	12.0	
Parking/Gra		na	N	0	N	N	0	-	N	N	_	0	-	N	N	0	N
Parking/hr	adon dimi	19		-						1			H				
Bus stops/h	nr		0	0	0	0	0		0	0		0		0	0	0	
Unit Extens			3.0	3.0	3.0	3.0	3.0	-	3.0	3.0	_	3.0	-	3.0	3.0	3.0	
Phasing	Excl. Le	oft MA	B Only	Thru		04		_	xcl. L			ru & R			07		08
	G = 4.0		8.0	G = 7		G =		_	= 9.8			= 42.0		G =		G =	00
Timing	Y = 5.6		5.6	Y = 6		Y =			= 5.6			= 6.3		Y =		Y =	-5
Duration of					-			_			Сус	le Len	gth	1 C =	= 100.	0	
Lane Gro	oup Cap	acity.	Contro	ol Dela	av. ar	nd LO	S D	ete	rmir	natio	on						
		1	EB			W						NB				SB	
Adj. flow ra	te	46	154	431	537	175	-	251	1	165	Te	656	81	15	72	1544	dia
Lane group		137	248	347	605	731	_	316	_	168	-	131	-	18	327	2122	_
v/c ratio	оцр.	0.34	0.62	1.24	0.89		_	0.79		.98	+	.31		57	0.22	0.73	_
Green ratio	-	0.04	0.07	0.23	0.18		_	0.21	_	0.09	+	.42	-	52	0.09	0.42	_
Unif. delay		46.7	45.2	38.5	40.2		_	37.7	_	5.2	-	9.3	-	5.3	41.8	24.2	_
			0.20	0.50	0.41	_	-	0.34	_	0.49	-).11	-	17	0.11	0.29	
	Delay factor k 0.11 ncrem. delay d2 1.5			131.1	15.0		_	13.1	-	3.9	-	0.1	_	.6	0.77	1.3	
ncrem. delay d2 1.5 PF factor 0.972			4.7 0.950	0.802	0.858		-	0.82		.930	+	.517	_	269	0.930	-	7
	OV.	46.9	47.7	162.0	49.5	_	\rightarrow	44.3	_	06.0	-	0.1		.0	39.2	13.8	_
Control dela	ane group LOS D				22.57.2	_	-	_	1	06.0 F	+		_	_	D D	13.0 B	+
			D	F	D	C		D			17	В	1	1	D		
Apprch. del		25.7			44.1					17.					15.0		
	ersec. delay 35.9					D				217	В				-	В	-
Intersec. de	elay	3	5.9				_ lj	nter	sectio	on LC	S					D	

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

WITH/MIT

					SH	ORT F	REP	ORT							11. 11	111
General Inf	ormation	Į,						orma		n						
Analyst Agency or C Date Perfor Time Period	med		USAI USAI 08/28/12 PM PEA			Ar Ju	ersec ea Ty risdic nalysi	/ре	ar	OCE	LEGE E V All oth EANSIDE ISTING PRO	VAY ner a E/M + O	areas ITIG ITHE	s ATION		
Volume an	d Timing	Inpu	t													
			1.7	EB	Lot	1.7	W			1.7	NB		DT	17	SB	LDT
Num. of Lar	188		LT 2	TH 2	RT 1	LT 2	T1-		RT 1	L7	TH 3	_	RT 2	LT 2	TH 3	RT 0
	100		L	T	R	L	T	_	R	L	T	-	R	L	TR	-
Lane group	h)								_	305		_				92
Volume (vpl % Heavy ve			118	234	404	703	409		95 2	2	2	_	41 2	151 2	1205	2
PHF	en		0.95	_	0.95	0.95	0.9		<u>9</u> 5	0.9		_	.95	0.95	0.95	0.95
Actuated (P.	/A)		A	A	A	A	A		4	A	A		A	A	A	A
Startup lost			2.0	2.0	2.0	2.0	2.0		.0	2.0			2.0	2.0	2.0	1
Ext. eff. gree			2.0	2.0	2.0	2.0	2.0	_	.0	2.0		_	2.0	2.0	2.0	
Arrival type			5	5	5	5	5		5	5	5	_	5	5	5	
Unit Extensi	ion		3.0	3.0	3.0	3.0	3.0) 3	3.0	3.0	3.0	1	3.0	3.0	3.0	
Ped/Bike/R7	TOR Volu	me	5	10	0	5	10	74.0	0	5	10		0	5	10	0
Lane Width			12.0	12.0	12.0	12.0	12.0	0 12	2.0	12.0	12.0	1.	2.0	12.0	12.0	
Parking/Gra	N	0	N	N	0		N	N	0		N	N	0	N		
Parking/hr																
Bus stops/h	r		0	0	0	0	0		0	0	0		0	0	0	
Unit Extensi	ion		3.0	3.0	3.0	3.0	3.0) 3	3.0	3.0	3.0	3	3.0	3.0	3.0	
Phasing	Excl. Le	eft '	WB Only	Thru	& RT	04		Exc	d. Le	eft	NB On	ly	Thr	u & RT		08
Timing	G = 6.0		6 = 16.0			G =		G=	_		G = 5.0			31.1	G=	
Duration of	Y = 5.6		= 5.6	Y = 1	5.3	Y =	- 1	Y =	5.6		Y = <i>5.6</i> Cycle Le			6.2 = 110.	Y = 1	_
Lane Gro				rol Del	av a	nd I O	S D	otori	min			ngu	10-	- 110.	Ų	
Lane Oro	ир Сар	l	EB		ay, a	W		CtCII	T	iatic	NB				SB	
Adj. flow rat	0	124		425	740			416	1	21	1280	79	80	159	1365	
		187		471	862		_	444	-	83	1924	-	62	219	1417	
Lane group	сар.	_			_				-	_	_	-	-	_		_
v/c ratio		0.66		0.90	0.86		_	0.94	-	.13	0.67	-	42	0.73	0.96	
Green ratio		0.05		0.31	0.25	_	-	0.29	-	.16	0.38	-	69	0.06	0.28	_
Unif. delay o		51.0	_	36.5	39.3		_	38.2	-	6.2	28.4	+	.6	50.6	38.9	
Delay factor		0.24		0.42	0.39	_	_	0.45		.50	0.24	-	11	0.29	0.47	_
Increm. dela	ncrem. delay d2 8.5			20.4	8.7	0.3	2	27.6	9.	4.7	0.9	0.	.2	11.4	16.0	
F factor 0.962			2 0.933	0.703	0.77	7 0.73	31 0	.731	0.	873	0.593	0.1	159	0.955	0.73	7
Control dela	control delay 57.6 ane group LOS E				39.2	23.8	5 8	55.5	13	35.0	17.7	1.	.4	59.7	44.6	
Lane group	E	D	D	С		E	7	F	В	1	4	E	D			
Apprch. dela	ay		50.9			39.2				- 2	28.2				46.2	
pproach LOS D						D					С				D	
Intersec. de	tersec. delay 3						In	terse	ctio	n LO	S				D	
TCS2000TM		-		Convright	@ 2000 H											Jersian 4

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

	cy or Co. Performed Period me and Timing In of Lanes group ne (vph) eavy veh ted (P/A) up lost time iff. green il type extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr tops/hr extension ng EB Only G = 26.0 Y = 5 ion of Analysis (hrs e Group Capac ow rate group cap. tio n ratio delay d1					SHC	RT R	EP	OR	T							
General Inf	ormation									matic	on			•			
Analyst Agency or 0 Date Perfor Time Period	Co. med	US US 08/28 AM P	AI 8/12				A Jt	iters rea urisd naly:	Type	Э			OCE STING	OFF-R her are ANSID	AM as E OTHE		
Volume an	nd Timing In	put															
					В				٧B		Τ.		NB		L	SB	
			LT		Н	RT	LT		TH	RT	_	LT_	TH	RT	LT	TH	RT
			2	0	_	1	0	<u> </u>	0	0	+	0	4	0	0	5	0
Lane group			L		_	R		┸			┸		T			T	<u> </u>
Volume (vpl			549	_		247	_	+					1005	 	ļ	1902	<u> </u>
% Heavy v	en		2 0.95	+	\dashv	2 0.95	+	+			+		2 0.95		<u> </u>	2 0.95	├─
Actuated (P	P/A)		0.95 A	+	\dashv	0.95 A	+-	╁		 	+		0.95 A			A	
Startup lost			3.0	_		3.0		十		<u> </u>	 		3.0	1		3.0	1.
Ext. eff. gre		,	2.0			2.0							2.0			2.0	
Arrival type			3	Ţ		3		Ţ			I		5			5	
Unit Extens	ion		3.0			3.0							3.0			3.0	<u> </u>
]			5 12.0			0	5	┸						<u> </u>			Ļ
Lane Width					_	12.0							12.0	<u> </u>		12.0	<u> </u>
	rking/Grade/Parking					N	N	┸		N	1	N	0	N	N	0	N
Parking/hr																	
Bus stops/h	r		0			0		\perp					0			0	
Unit Extens	ion		3.0			3.0				<u> </u>			3.0			3.0	
Phasing		02	2		03		04			iru Or			06		07)8
Timing		G = Y =		G = Y =			G = Y =			= 62. = 6.3		G = Y =		G = Y =		G = Y =	
Duration of			2	<u> </u>			<u> </u>		<u> </u>	- 0.0			le Leng		100.		
		<u></u>		l De	lav	ı. an	d LO	S D	ete	rmin	ati				-		
	-1	, , , ,	•	В	<i>y</i>	T		WB		1			NB			SB	
Adj. flow rat	ie	578	$\overline{}$		260	-			T	\dashv		10	058			2002	T
 	,	859			396					\dashv		-	174			5218	1
v/c ratio	-	0.67	+		.66				+		***	+	.25			0.38	_
Green ratio		0.25	_		.25	_							.62			0.62	\vdash
Unif. delay		33.8			3.6	_			t			_	3.7			9.6	
Delay factor		0.24			.23					\dashv		0	.11			0.11	1
Increm. dela		2.1		-	3.9	\top			1	一			0.0			0.0	T
PF factor				1.	.000	2			Τ	_		0.	131			0.131	
Control dela					7.6							1	.2			1.3	
Lane group	LOS	D			D								Α			Α	
Apprch. del	ay		36.4									1.	2			1.3	
Approach L	os		D									F				Α	
Intersec. de	elay		8.8						Inte	rsecti	ion	LOS				Α	
HCS2000TM				- auriah	- @ J	በበበ III	iversity of	Florid	10 A1	l Diahta	Doca	mred				- 7/	ersion 4.1

						SHC	RT	RE	PC)R	T							
General Inf	formation							Sit	e In	for	mati	on						
Analyst Agency or 0 Date Perfor Time Period	med	US US 08/28 PM P	AI 8/12					Are Jur	erse ea T isdi alys	ype ctio)			OCE STING	OFF-R her are ANSIL	AM Pas DE OTHE		
Volume an	nd Timing In	out														•		
					EB				W			\perp		NB			SB	
N			LT		TH_	RT	_	LT <i>0</i>	T 0		R T 0	-	LT	TH	RT 0	LT O	TH	RT 0
Num. of Lar			2	-	0	1	+	U	-		U	+	0	4 T	-	U	5 T	0
Lane group			L 107	+		R	4					_			<u> </u>		_	-
Volume (vpi % Heavy v			497 2	╬		464 2	-					╁		1718 2	├─		1893 2	
PHF	EII		0.95	+		0.95	╁		┢			+		0.95			0.95	
Actuated (P	² /A)		A	十		A	\top					十		A			A	
Startup lost	time		3.0			3.0								3.0			3.0	
Ext. eff. gre	en		2.0	\perp		2.0						Ţ		2.0			2.0	
Arrival type			3	+		3	\bot					_ _		5		 	5	
Unit Extens			3.0	\bot		3.0	\bot	_	_			_		3.0	<u> </u>	<u> </u>	3.0	
	TOR Volume		5	+		0	_	5	_			+		10.0	<u> </u>	-	100	
Lane Width			12.0 N	_		12.0	_				.,	+		12.0	 		12.0	
	rking/Grade/Parking rking/hr				0	N	- 1	N	<u> </u>		N	\dashv	N	0	N	N	0	N
Parking/hr				+			+				-	\dashv			<u> </u>		 	
Bus stops/h			0	+		0	- -					+		0		<u> </u>	0	
Unit Extens			3.0	ㅗ		3.0		0.4	<u> </u>					3.0		0.7	3.0	<u> </u>
Phasing	EB Only G = 36.0	02 G =	2	G :	03		G =	04	-		ru O = <i>63</i>	_	G	06	G =	07	G =)8
Timing	Y = 5.2	Y =		Y =			<u> </u>			_	= 5.6		Y :		Y =		Y =	
Duration of	Analysis (hrs	<u> </u>	5	Ė			•			•	<u> </u>			le Leng				
	up Capaci			I D	elav	v. an	d L	os	De	te	rmiı	nat	tion					
		1		В	<u> </u>	,,		W						NB			SB	
Adj. flow rat	te	523			488			T		<u> </u>			1	808			1993	
Lane group		1094			504			T		_	一十		3	825			4782	
v/c ratio		0.48			0.97									.47			0.42	
Green ratio		0.32	_		0.32			 			一			.57			0.57	
Unif. delay		30.2	_		37.0	,		T				,··	1	4.2			13.6	
Delay factor		0.11			0.48	3							C	.11			0.11	
Increm. dela	ay d2	0.3			32.0	,		T						0.1	•		0.1	
PF factor		1.000	2		1.00	0	***	T			一		0	.132			0.132	
Control dela	яy	30.5			68.9)		Τ						2.0			1.9	
Lane group	LOS	С			Ε									A			Α	
Apprch. del	ay		49.0										2	0			1.9	
Approach L	os		D										-	4			Α	
Intersec. de	elay		11.8							nte	rsec	tion	LOS	3	· · · · · · · · · · · · · · · · · · ·		В	
HCS2000 TM			C	nvrie	ht © 2	2000 Uni	iversit	v of F	lorida	a. All	Right	s Re	served				v	ersion 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	OF	RT								
General Inf	ormation	* *				S	ite l	nfo	rmat	ior	1						
Analyst Agency or C Date Perfori Time Period	med	U. 08/2	SAI SAI 28/12 PEAK			A J	nters rea urisc	Typ dicti	ре	,		All of OCE ISTING	DF her EAN Pl	R. r are NSIE LUS	as DE OTHE		
Volume an	d Timing In	put					,	_				PRO	JJE	<u> </u>	<u>S</u>		
				EB			W	/B		Т		NB				SB	
			LT	TH	RT	LT	T	H	RT		LT	TH	F	रा	LT	TH	RT
Num. of Lar	ies		1	1	0	1	1		1		1	3	()	2	3	0
Lane group			L	TR		L	7	-	R		L	TR			L	TR	
Volume (vpl			11	12	14	101	14		228	T	35	772	33	_	762	1349	38
% Heavy ve	<u>eh</u>		2	2	2	2	2		2	4	2	2	_	2	2	2	2
PHF	/A \	<u> </u>	0.95	0.95	0.95	0.95	0.9		0.95	+	0.95 A	0.95	0.5		0.95 A	0.95	0.95
Actuated (P. Startup lost			A 3.0	3.0	<u> </u>	3.0	3.0		3.0	+	<u>A</u> 3.0	3.0	-	1	3.0	3.0	A
Ext. eff. gree			2.0	2.0		2.0	2.0		2.0		2.0	2.0	├		2.0	2.0	
Arrival type			4	4		4	4		4	十	5	5	T		5	5	1
Unit Extensi	on		3.0	3.0		3.0	3.	0	3.0		3.0	3.0			3.0	3.0	
Ped/Bike/R1	ΓOR Volume)	5	10	0	5	10)	0		5	10	()	5	10	0
Lane Width			12.0	12.0		12.0	12.	.0	12.0		12.0	12.0			12.0	12.0	
Parking/Gra	de/Parking		Ν	0	N	N)	N	_	N	0	1	V	N	0	N
Parking/hr										┙							
Bus stops/h			0	0		0	0)	0	┵	0	0	L		0	0	
Unit Extensi			3.0	3.0		3.0	3.	0	3.0		3.0	3.0			3.0	3.0	<u> </u>
Phasing	EB Only		Only	0:	3	04		_	Excl. L			B Only			u & RT		38
Timing	G = 12.0 Y = 4	G = Y =		G = Y =		G = Y =		_	6 = 10 $6 = 4$	0.0		= 19.0 = 4	_	G = Y =	31.0	G = Y =	
Duration of	<u> </u>			<u> </u>							حنداد	cle Len		·			
Lane Gro	up Capac	ity, C	ontro	l Dela	ay, ar	nd LO	S D	ete	ermi	na	tion						
	······································		EB			W						NB				SB	
Adj. flow rat	e	12	28		106	15		24	0	37	7	1167			802	1460	
Lane group	cap.	195	184		124	130)	67	2	15	9	1442	T		1100	2676	
v/c ratio		0.06	0.15		0.85	0.1	2	0.3	36	0.2	23	0.81	T		0.73	0.55	
Green ratio		0.11	0.11		0.07	0.0	7	0.4	14	0.0	9	0.30	T		0.32	0.53	
Unif. delay o	11	39.9	40.3		46.0	43.	6	18.	.6	42	.3	32.4			30.2	15.5	
Delay factor	k	0.11	0.11		0.39	0.1	1	0.1	11	0.1	11	0.35			0.29	0.15	
Increm. dela	ıy d2	0.1	0.4		40.7	0.4	!	0.	3	0.	8	3.6			2.5	0.2	
PF factor		1.000	1.000)	1.00	0 1.00	00	0.8	49	0.9	34	0.714			0.686	0.248	
Control dela	у	40.0	40.7		86.7	44.	0	16.	.1	40	.3	26.7			23.2	4.1	
Lane group	LOS	D	D		F	D		В	3]	D)	С			С	A	
Apprch. dela	ay	0.5			38.0					27	7.1				10.9		
Approach L0	os			D					()				В			
Intersec. de	lay	1	8.8				<u>I</u> r	nter	section	on l	LOS					В	
HCS2000TM			C.	م المانية المانية المانية المانية المانية المانية المانية المانية المانية المانية المانية المانية المانية الم	TT በበበሮ ብ	niversity of	f Elosi	do A	III Diahi	ta Da	- Saamtad					7	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

	 				SH	ORT F	REP	OF	RT							
General Inf	ormation					5	Site I	nfo	rmati	on						
Analyst Agency or C	So.		SAI SAI				nters			CC	LLEGE All ot	DF	₹.	_	ZA	
Date Perfori Time Period	med		28/12 PEAK			IJ	∖rea luriso \naly	dictio			OCE EXISTIN	Αl	VSIL	DΕ		
Volume an	d Timing In	put							-							
				EB			W				NB				SB	
			LT	TH	RT	LT	TI	_	RT	LT.	TH	Н	₹T	LT	TH	RT
Num. of Lar	nes		1	1	0	1	1		1	1	3		0	2	3	0
Lane group			L	TR		L	T		R	L	TR			L	TR	
Volume (vpl			40	27	30	152	12		461	24	1217	_	85	779	1542	36
% Heavy ve	eh		2	2	2	2	2		2	2	2		2	2	2	2
PHF Actuated (P.	/ / \\		0.95 A	0.95 A	0.95 A	0.95 A	0.9 A	_	0.95 A	0.95 A	0.95 A	-	95 4	0.95 A	0.95 A	0.95 A
Startup lost			3.0	3.0	 ^	3.0	3.0		3.0	3.0	3.0	┢	7	3.0	3.0	1
Ext. eff. gree			2.0	2.0		2.0	2.0		2.0	2.0	2.0	Т		2.0	2.0	<u> </u>
Arrival type			4	4		4	4		4	5	5			5	5	
Unit Extensi	on		3.0	3.0		3.0	3.0	9	3.0	3.0	3.0			3.0	3.0	
Ped/Bike/R7	FOR Volume)	5	10	0	22	10)	0	9	10		0	5	10	0
Lane Width			12.0	12.0		12.0	12.	0	12.0	12.0	12.0			12.0	12.0	
Parking/Gra	de/Parking		Ν	0	N	N	()	Ν	Ν	0	1	V	N	0	N
Parking/hr																
Bus stops/h	r		0	0		O.	0		0	0	0	L		0	0	
Unit Extensi	on		3.0	3.0		3.0	3.0	0	3.0	3.0	3.0			3.0	3.0	
Phasing	EB Only		Only	0	3	04		_	xcl. L		SB Only	_		u & RT		08
Timing	G = 12.0	G=		G =		G =			= 7.0		= 12.0			39.2	G =	
Duration of	Y = 4.2	Y =		Y =		Υ =		Y	= 4.2		′ = <i>5.2</i> ycle Len			5.6	Y =	
		•		l Dal		-d I O	e D					yu	-	- 110.	<u> </u>	
Lane Gro	up Capac	ity, C		n Dei	ay, aı		/В	ete	111111	iatio	NB			Ι	SB	
		40	EB	-	100			40				Т		000		
Adj. flow rat		42	60		160	-t $-$		48	-	25	1476	╀		820	1661	
Lane group	сар.	177	167		225	23	7	570	6	97	1721	╀		694	2545	
v/c ratio		0.24	0.36		0.71	0.0	5	0.8	4 (0.26	0.86			1.18	0.65	
Green ratio		0.10	0.10		0.13	0.1	3	0.3	9 (0.05	0.35			0.20	0.50	
Unif. delay o] 1	45.6	46.2		46.1	42.	2	30.	5	49.9	33.4	Γ		43.9	20.2	
Delay factor	k	0.11	0.11		0.27	0.1	1	0.3	8 (0.11	0.39	T		0.50	0.23	
Increm. dela	ay d2	0.7	1.3		10.0	0.	1	10.	9	1.4	4.6	T		96.1	0.6	1
PF factor		1.000	1.000	,	1.00	0 1.0	00	0.90	06 (0.962	0.645	T		0.831	0.324	1
Control dela	у	46.3	47.5		56.1	42.	3	38.	5	49.4	26.1	T		132.6	7.1	
Lane group	LOS		Е	D		D		D	С			F	Α			
Apprch. dela	ay			42.9				2	6.5				48.6			
Approach Lo	OS		D			D					С				D	
Intersec. de	lay	4	0.8				Ir	nter	sectio	n LOS					D	
HCS2000 TM		•	C	muriaht @	3000 II	niversity o	f Flori	do A	11 Diahts	a Decemie	đ			····	ν.	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

WINT

E					SHO	ORT R	EPOR	RT			00 / 10	-		
General Inf	ormation					Sit	e Infor	matio	n					
Analyst Agency or C Date Perfor Time Period	med	08/	ISAI ISAI /28/12 PEAK			Are Jur	ersection ea Type risdiction alysis Y	e on	OC	All oth EANSIDI ISTING	DR. ner area E/MITIG	s SATION		
Volume an	d Timing	Input												
				EB			WB		h i	NB		12.00	SB	
			LT	TH	RT	LT	TH	RT	L	_	RT	LT	TH	RT
Num. of Lar	ies		1	1	0	1	1	1	1	3	1	2	3	0
Lane group			L	TR		L	T	R	L	T	R	L	TR	
Volume (vpl			11	12	14	101	14	228	35		336	762	1349	38
% Heavy ve	eh		2	2	2	2	2	2	2	2	2	2	2	2
PHF	220		0.95	0.95	0.95	0.95	0.95	0.95	0.9		0.95	0.95	0.95	0.95
Actuated (P.			A	A	A	A	A	A	A	A	A	A	A	A
Startup lost			3.0	3.0		3.0	3.0	3.0	3.0		2.0	3.0	3.0	
Ext. eff. gree	en		2.0	2.0	-	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	_
Arrival type	an.		3.0	3.0	-	3.0		3.0	_	_	_	_	3.0	-
	2.24	70	5	10	0	5	3.0	0	3.	10	3.0	3.0 5	10	0
Lane Width	e Width king/Grade/Parking king/hr			12.0	0	12.0	12.0	12.0	12.	_	12.0	12.0	12.0	0
A security and an arrange and	king/Grade/Parking king/hr			0	N	N N	0	N	N N		N N	N N	0	N
	e Width king/Grade/Parking king/hr s stops/hr			<u> </u>		1	-	- 1.9	1'		1	-	-	1,4
	king/Grade/Parking king/hr s stops/hr			0		0	0	0	10	0	0	0	0	
	rking/Grade/Parking rking/hr s stops/hr it Extension			3.0		3.0	3.0	3.0	3.		3.0	3.0	3.0	
Phasing	EB Only	, I \\/D	3.0 Only	0.0	2 1	04		Excl. L	_	SB On		ru & RT		08
	G = 12.0			G =	3	G =		G = 10		G = 19.		= 31.0	G =	00
Timing	Y = 4	Y =		Y =		Y =		= 4	.0	Y = 4		= 4	Y =	
Duration of										Cycle Le				
Lane Gro				ol Del	av. ar	d LO	S Dete	ermi	natio	n				
		1	EB		,,	WB		T		NB			SB	
Adj. flow rate	e	12	28	T	106	15	240	1	37	813	354	802	1460	
Lane group		195	184	3 7	124	130	672		59	1522	479	1100	2676	_
v/c ratio		0.06	0.15		0.85	0.12	0.36		23	0.53	0.74	0.73	0.55	+
Green ratio	_	0.11	0.11		0.07	0.07	0.44		09	0.30	0.31	0.32	0.53	+
Unif. delay o	11	39.9	40.3		46.0	43.6	18.6		2.3	29.2	30.9	30.2	15.5	+
Delay factor		0.11	0.11	+	0.39	0.11	0.11		11	0.14	0.30	0.29	0.15	7
Increm. dela		0.1	0.4		40.7	0.4	0.77		.8	0.14	6.0	2.5	0.73	+
PF factor	, uz	1.000	1.000		1.000	1.000		-	934	0.714	0.700	0.686	0.248	2
Control dela	V	40.0	40.7		86.7	44.0	16.1		0.3	21.2	27.6	23.2	4.1	SH =
Lane group		D	D	+	F	D	B	_	D. 3	C	C	C	A. 1	-
Apprch. dela			0.5			38.0		-		3.7		<u> </u>	10.9	
Approach Lo			D				C		1	В				
			U	Inta-	nostic:	210								
ntersec. delay 17.7 CS2000 TM Cop					11		inters	section	II LU	5			В	

W/MIT.

					SH	ORT R	EPO	RT							
General In	formation					Sit	e Info	rma							
Analyst Agency or Date Perfo Time Perio	rmed	08/	ISAI ISAI '28/12 PEAK			Are Jur	ersecti ea Typ risdiction alysis	e on	c)CE/	All othe	R. er areas MITIG	ATION		
Volume a	nd Timing I	Input													
				EB			WB				NB			SB	
			LT	TH	RT	LT	TH	R	_	LT	TH	RT	LT	TH	RT
Num. of La	nes		1	1	0	1	1	1		1	3	1	2	3	0
Lane group			L	TR		L	T	F		L	T	R	L	TR	
Volume (vp			40	27	30	152	12	46		24	1217	185	779	1542	36
% Heavy v	/eh		2	2	2	2	2	2	_	2	2	2	2	2	2
PHF Actuated (F	Σ/Λ\		0.95 A	0.95 A	0.95 A	0.95 A	0.95 A	0.9 A	_	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A	0.98 A
Startup los			3.0	3.0	-	3.0	3.0	3.	_	3.0	3.0	2.0	3.0	3.0	A
Ext. eff. gre			2.0	2.0		2.0	2.0	2.	_	2.0	2.0	2.0	2.0	2.0	
Arrival type			4	4		4	4	4	_	5	5	5	5	5	
Unit Extens	sion		3.0	3.0		3.0	3.0	3.	0	3.0	3.0	3.0	3.0	3.0	
Ped/Bike/R	TOR Volum	ne	5	10	0	22	10	0		9	10	0	5	10	0
Lane Width	1		12.0	12.0		12.0	12.0	12	0	12.0	12.0	12.0	12.0	12.0	
Parking/Gr	ade/Parking		N	0	N	N	0	٨	/	Ν	0	N	N	0	N
Parking/hr				1000			1 1	1					2014	1	
Bus stops/l	nr		0	0		0	0	0		0	0	0	0	0	
Unit Extens	sion		3.0	3.0		3.0	3.0	3.	0	3.0	3.0	3.0	3.0	3.0	
Phasing	EB Only	WB	Only	0	3	04		Excl	. Lef	t S	SB Only		u & RT		80
Timing	G = 12.0		15.0	G =		G =		G =			= 12.0		39.2	G =	
	Y = 4.2	Y =		Y =		Y =		Y =	4.2	_	= 5.2	_	5.6	Y =	
	Analysis (h			I Dal		-410	C Dad					igin C -	= 110.	U	
Lane Gro	oup Capa	City, C		oi Dei	ay, aı			tern	nina	tion				0.0	_
			EB		1.00	WB	-		_		NB		1	SB	
Adj. flow ra	te	42	60		160	13	48		25	-	281	195	820	1661	1
Lane group	сар.	177	167		225	237	57	6	97	1	762	550	694	2545	
v/c ratio		0.24	0.36		0.71	0.05	0.8	14	0.26	3 (0.73	0.35	1.18	0.65	
Green ratio		0.10	0.10		0.13	0.13	0.3	19	0.05	5 (0.35	0.36	0.20	0.50	
Unif. delay	d1	45.6	46.2		46.1	42.2	30.	5	49.9) :	31.3	26.1	43.9	20.2	
Delay facto	or k	0.11	0.11		0.27	0.11	0.3	8	0.11	1 (0.29	0.11	0.50	0.23	
Increm. del	ay d2	0.7	1.3		10.0	0.1	10.	9	1.4		1.5	0.4	96.1	0.6	1
PF factor		1.000	1.000	1	1.000	1.000	0.9	06	0.96	2 0	.645	0.631	0.831	0.324	
Control del	ay	46.3	47.5		56.1	42.3	38.	5	49.4	1 2	21.8	16.8	132.6	7.1	
Lane group	LOS	D	D		E	D	D		D		С	В	F	Α	
Apprch. de	ne group LOS Deprch. delay					42.9				21.	6			48.6	
Approach L	os		D			D				C				D	
Intersec. de	elay	3:	9.2		-		Inte	rsec	tion L	os				D	
HCS2000 TM		•	C	opvright (© 2000 U	niversity of	Florida.	All Ri	ghts Re	eserved				V	ersion -

HCS2000[™]

						SH	OF	RT R	ΕP	OR	T										
General Inf	ormation							Si	te l	nfo	rma	itioi	n								
Analyst Agency or C Date Perfor Time Period	med		US 08/2	SAI SAI 29/12 PEAK				Ar Ju	ea Iriso	ecti Typ dictions	e on			oc	All of	R(he SIE	ON Ri er area DE-IN	D.	CT		
Volume an	d Timing	Inpu	ıt																		
					EB		4	. ~	_	VB.				_	NB	_			SB	_	
Num, of Lar	166			LT 2	TH 1	RT 1	+	LT 1	1	Ή_ (R 1	_	LT _2		TH 2	+	RT 1	LT 2	TH 2	+	RT 0
Lane group				L	T	R	+	Ĺ	7		R		L		T	+	R	L	7	╁	<u> </u>
Volume (vpl	٦)			115	34	120	+	<u> </u>	8		26		153	$\overline{}$	783	+	256	197	1001	╫	
% Heavy v				2	2	2	╁	2	2		2	_	2		2	ť	2	2	2	+	
PHF				0.92	0.92	0.92	1	0.92	0.9		0.9		0.92	2	0.92	10).92	0.92	0.92	+	
Actuated (P				Α	Α	Α	I	Α	A		Α		Α		Α	Ι	Α	Α	Α		Α
Startup lost				2.0	2.0	2.0	_	2.0	2.		2.0	_	2.0		2.0	_	2.0	2.0	2.0	工	
Ext. eff. gree	en			2.0 4	2.0	2.0 4	+	2.0 4	2.		2.0 5		2.0 5		2.0 5	+	2.0 5	2.0 5	2.0 5	+	- 0.0
Arrival type Unit Extensi	ion			3.0	3.0	3.0	╬	3.0	3.		3.		3.0	_	3.0	+	3.0	3.0	3.0	+	
Ped/Bike/R		me		5	5	0	┿	5	5.		0		5.0	_	5	t	0	5	3.0	+	
Lane Width	TOTA VOIGI	110		12.0	12.0	12.0	1	12.0	12		12.	_	12.0	5	12.0	1	12.0	12.0	12.0	T	
Parking/Gra	de/Parkin	g		N	0	N	Ť	N	H	0	٨		N		0	T	N	Ν	0	┪	Ν
Parking/hr							1									T				İ	
Bus stops/h	r			0	0	0	T	0	()	0)	0		. 0	Ť	0	0	0		
Unit Extensi	ion			3.0	3.0	3.0	1	3.0	3.	.0	3.	0	3.0		3.0	T	3.0	3.0	3.0	T	
Phasing	Excl. Le	eft	WB	Only	Thru 8	RT		04		E	xcl.	Lef	t	SE	3 Only		Thru	ı & RT		80	
Timing	G = 10.0) =		G = 1	0.0	G				= 8				6.0			32.0	G =		
	Y = 4		/ = 4		Y = 4		Υ	=		Υ	= 4	1		/ =		41	Y =	4 100.0	Y =		
Duration of					l Dolo			100	ר י	-4-	WIGO	los	_	<u> </u>	e Len	gu	10-	100.0	,		
Lane Gro	up Capa	acity	/, C		Dela	y, ar	ıu			ete	: [[]]	1116	llio		NB			1	SB		
A 11 C1 1		405		EB	400	440		WE) 	00-		- 10		_			70	044		_	
Adj. flow rat		125		37	130	442		95		287		16			51		78	214	1088	\dashv	
Lane group	сар.	344	-	186	337	425		447	-	558		27		₩	35		33	619	1490		
v/c ratio Green ratio		0.36	-	0.20 0.10	0.39 0.22	1.04 0.24	_	0.21 0.24	-	0.51 0.36		0.6 0.0		-	75 32		30 60	0.35 0.18	0.73	_	
Unif. delay		42.0		11.3	33.2	38.0		30.4		25.1		44.		₩	0.4		.7	35.9	24.3	-	
Delay factor	 	0.11).11	0.11	0.50		0.11	_	0.12		0.1					., 11	0.11	0.29		
Increm. dela		0.7	-	0.5	0.7	54.4	_	0.11	-	0.12		3.7		₩	.8		.2	0.77	1.9	-	
PF factor	ıy uz	-		1.000	1.000		1.000	+	0.62		0.9		┢				0.854	0.51	-		
Control dela	ıv		11.8	34.0	92.4		30.7		16.5		45.		₩	3.7		.4	30.9	14.4	_		
Lane group		-	D	C	F		C	十	В		D		-	,,, C		4	C	В			
Apprch. dela				<u></u> 58	8.9				Ť		1.7					17.1					
	Approch. delay 38.7 Approach LOS D													С					В		
Intersec. de					E	lı	nter	sec	lion	LOS			•			С					
L		ч—	29.		vavriaht @	2000 XI															ion / 1f

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SHO	ORT R	EPO	RT								
General Inf	ormation					Si	te Inf	orma	tion							
Analyst Agency or C Date Perfort Time Period	med	08.	ISAI ISAI /30/12 PEAK			Ar Ju	tersed ea Ty trisdic nalysis	pe tion	a r	oc	МІТ	RC he DE IG	ON R r area -INT. ATIC	D. as #14/N(
Volume an	d Timina	Input				I/VI	lalysia	5 1 64		IVLA	\- 1 L1\1	VI I	VOT	NOOL		
Volume an	u mining	input	1	EB		T	WB				NB			Ĭ	SB	
			LT	TH	RT	LT	TH	R	7	LT	TH	Т	RT	LT	TH	RT
Num. of Lar	nes		2	1	1	1	1	1		2	2	T	1	2	2	0
Lane group			L	7	R	L	T	R	?	L	Т	T	R	L	Т	
Volume (vpl	n)		470	229	244	180	145	16	7	222	952	14	145	327	812	
% Heavy ve	eh .		2	2	2	2	2	2		2	2		2	2	2	
PHF			0.92	0.92	0.92	0.92	0.92	0.9	2	0.92	0.92	0	.92	0.92	0.92	
Actuated (P.			Α	Α	Α	Α	Α	Α		Α	Α	_	Α	Α	Α	Α
Startup lost			3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	_	3.0	3.0	3.0	
Ext. eff. gree	en	•	2.0	2.0	2.0	2.0	2.0	2.0	_	2.0	2.0	1	2.0	2.0	2.0	
Arrival type			5	5	5	5	5	5	-	5	5	╀	5	5	5	
Unit Extensi			3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	
Ped/Bike/R	ΓOR Volun	ne	5	10	0	5	10	0	\rightarrow	5	10	-	45	5		
Lane Width			12.0	12.0	12.0	12.0	12.0		\rightarrow	12.0	12.0	+	2.0	12.0	12.0	
Parking/Gra	de/Parking]	N	0	N	N	0	٨	/	N	0	╀	Ν	N	0	N
Parking/hr									_			╀				
Bus stops/h			0	0	0	0	0	0	-	0	0	╀	0	0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0	
Phasing	Excl. Let		ı & RT	03	3	04		Excl.			ru & R			07	08	3
Timing	G = 17.0 Y = 3) G= Y=	15.0	G = Y =		G = Y =		$\frac{G}{Y} = 3$			= 38.5 = 5	_	G = Y =		G = Y =	
Duration of				T —		<u> </u>		<u> </u>)		cle Len	ath		99.5		
Lane Gro				l Dola	W ar	74 I US	: Dof	orm	ina		JIC EOII	gu		00.0		
Lane Old	up Capa	icity, c	EB	Dela	ly, ai	WE			IIIa	LIOII	NB				SB	
Adj. flow rat		511	249	265	196	158	18	22	241	1 1	035	43) F	355	883	I
		553	262	495	285	267	49		432		364	58		432	1337	+-
Lane group v/c ratio	сар.	0.92	0.95	0.54	0.69	0.59	0.3		0.50).76	0.7		0.82	0.66	+
Green ratio		0.92	0.95	0.32	0.09	0.59	0.3		0.13	-).38	0.3		0.02	0.38	+
Unif. delay	11	41.2	42.4	27.7	39.4	40.1	26		40.9	-	7.36 27.1	26		42.4	25.7	╂
Delay factor		0.44	0.46	0.14	0.26	0.18	0.1		0.10		0.31	0.3		0.36	0.24	
<u> </u>				1.1	6.8		-		1.6	-					1.2	1
Increm. dela	ıy uz	21.4	42.1		-	3.5	0.			_	2.5 .597	5.		12.1	+	+
PF factor				0.684	0.872				0.90					0.904	0.597 16.6	
Control dela	<u> </u>	<i>57.3</i>	79.9	20.1	41.2	39.2	18		38.6		8.7	21		50.4	 	╂
Lane group		E 53	E	С	D	32.8	E	,	D	<u> </u>	B 1		,	D	B 26.3	
Approach L					-	32.8 C				22. C					20.3 C	
Approach Lo Intersec. de		31				U	lete	VFC C 2 ⁴	ion						C	
HCS2000 TM	ay	37		an ariaht @	2000 II-	niversity of		rsect								sion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

WMIT

72.77					SHC	ORT R	EPO	RT							
General Inf	ormatio	n				Si	te Info	ormat	tion						
Analyst Agency or 0 Date Perfor Time Period	med	08	USAI USAI 8/29/12 1 PEAK			Ar Ju	tersec rea Ty irisdict	pe tion		MA All CEANS	RR othe IDE MIT	ON R er are -INT.1 IGAT	as #14/WI		
Volume an	d Timin	g Input													
				EB			WB	1 -		N				SB	
N	72.0		LT	TH	RT	LT 1	TH	RT			1	RT	LT 2	TH	RI
Num. of Lar	ies	_	2	1	1	-	1	1	2		\dashv	2		2	0
Lane group			L	T	R	L	T	R	L		_	R	L	T	
Volume (vp			115	34	120	407	87	264			3	256	197	1001	1 =
% Heavy v	eh		2	2	2	2	2	2	2			2	2	2	_
PHF	7.4.3		0.92	0.92	0.92	0.92	0.92	0.92			2	0.92	0.92	0.92	-
Actuated (P			A 2.0	A 2.0	A 2.0	A 2.0	A 2.0	A 2.0	A		+	A 2.0	A 2.0	A 2.0	Α
Startup lost			2.0	2.0	2.0	2.0	2.0	2.0				2.0	2.0	2.0	
Ext. eff. gre Arrival type	en		4	4	4	4	4	5	5		+	5	5	5	-
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0	3.0	_		7	3.0	3.0	3.0	-
Ped/Bike/R	10T 50	ıme	5	5	0	5	5	0	5	ACT THE PLANT	+	0	5	3.0	
Lane Width	TOR VOIC	anie	12.0	12.0	12.0	12.0	12.0	12.0		_	0	12.0	12.0	12.0	
Parking/Gra	de/Parki	ng	N	0	N	N	0	N	_			N	N	0	N
Parking/hr										W.C					
Bus stops/h	r		0	0	0	0	0	0	. (0		0	0	0	
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0	3.0	3.	0 3.0)	3.0	3.0	3.0	
Phasing	Excl. L	eft W	B Only	Thru &	RT	04	= 10	Excl. I	Left	SB Or	nly	Thr	u & RT	0	8
Timina	G = 10	0.0 G=	10.0	G = 1	0.0	G =	(3 = 8	.0	G = 6.	0	G=	32.0	G =	
Timing	Y = 4	Y =		Y = 4		Y =	Y	l = 4		Y = 4		Y =		Y =	
Duration of										Cycle L	engt	th C =	100.0)	
Lane Gro	up Cap	pacity,	Contro	ol Dela	ay, an	d LOS	S Det	ermi	inatio	on					
			EB			WE	3	11		NB				SB	_
Adj. flow rat	e	125	37	130	442	95	28	37	166	851	2	278	214	1088	
Lane group	сар.	344	186	337	425	447	55	8	275	1135	10	631	619	1490	
v/c ratio		0.36	0.20	0.39	1.04	0.21	0.5	51	0.60	0.75	0	.17	0.35	0.73	
Green ratio		0.10	0.10	0.22	0.24	0.24	0.3	36	0.08	0.32	0	.60	0.18	0.42	illi.
Unif. delay	d1	42.0	41.3	33.2	38.0	30.4	25.	.1	44.5	30.4	8	3.9	35.9	24.3	
Delay factor	·k	0.11	0.11	0.11	0.50	0.11	0.1	12	0.19	0.30	0	.11	0.11	0.29	
Increm. dela	ay d2	0.7	0.5	0.7	54.4	0.2	0.	8	3.7	2.8	(0.0	0.3	1.9	
PF factor		1.000	1.000	1.000	1.000	1.000	0.6	25 (0.942	0.686	0.	125	0.854	0.517	
Control dela	ay	42.7	41.8	34.0	92.4	30.7	16.	.5	45.6	23.7	1	1.2	30.9	14.4	
Lane group	LOS	D	D	С	F	С	В	3	D	С	Ť,	Α	С	В	
Apprch. delay 38			8.7			58.9				21.7				17.1	
Approach L			E				С				В				
Intersec. de		2				Inte	rsecti	on LO	S				С		
HCS2000 TM				opyright ©	2000 Un	iversity of							1	V	ersion -

1.11					SHC	RTR	EPOF	TS							
General Info	ormation					Si	te Info	rmatio	on						
Analyst Agency or C Date Perforr Time Period	med	08	JSAI JSAI /30/12 I PEAK			Ar Ju	tersect rea Typ irisdicti nalysis	e on		MA All OCEAN	RR oth SID	GATIC	D. as .#14/M		
Volume and	d Timing	Input	n i i						12.						
				EB			WB			N	_			SB	
	V-		LT	TH	RT	LT	TH	RT	L		1	RT	LT	TH	R
Num. of Lan	ies		2	1	1	1	1	1	2			2	2	2	0
Lane group			L	T	R	L	T	R	L		_	R	L	T	_
Volume (vph			470	229	244	180	145	167	22		2	445	327	812	_
% Heavy ve PHF	en		0.92	0.92	2 0.92	2 0.92	2 0.92	0.92	0.9		2	2	2	0.92	-
Actuated (P/	/A)		0.92 A	0.92 A	0.92 A	0.92 A	0.92 A	0.92 A	O.S		4	0.92 A	0.92 A	0.92 A	A
Startup lost t			3.0	3.0	3.0	3.0	3.0	3.0	3.)	3.0	3.0	3.0	1
Ext. eff. gree			2.0	2.0	2.0	2.0	2.0	2.0	2.	_	$\overline{}$	2.0	2.0	2.0	
Arrival type			5	5	5	5	5	5	5			5	5	5	
Unit Extension			3.0	3.0	3.0	3.0	3.0	3.0	3.		_	3.0	3.0	3.0	
	OR Volum	ne	5	10	0	5	10	0	5	_	-	45	5		
Lane Width			12.0 N	12.0	12.0	12.0	12.0	12.0	12.		0	12.0	12.0	12.0	
	ing/Grade/Parking ing/hr			0	N	N	0	N	Λ	0		N	N	0	٨
Parking/hr															
Bus stops/hr			0	0	0	0	0	0	0			0	0	0	
Unit Extension			3.0	3.0	3.0	3.0	3.0	3.0	3.			3.0	3.0	3.0	
Phasing	Excl. Lef		u & RT	03		04		xcl. Le	_	Thru &	_		07	0	8
Timing	G = 17.0 Y = 3		15.0 4.5	G = Y =		G = Y =		= 13.		G = 38 $Y = 5$.5	G =		G =	
Duration of A				Υ =		Υ =	Y	= 3		Y = b Cycle Le	ana.		99.5	Υ =	
Lane Grou				l Dals	v an	4100	Doto	rmin			nig	110	99.0	-	_===
Lanc Oro	up Oapa	City, v	EB	n Dele	ly, an	WB			auc	NB	-			SB	-
Adj. flow rate		511	249	265	196	158	182	2	41	1035	1	135	355	883	
							_	_	-		+	-		-	+
Lane group o		553	262	495	285	267	495	_	32	1364	-	018	432	1337	
v/c ratio		0.92	0.95	0.54	0.69	0.59	0.3	_	56	0.76	-	.43	0.82	0.66	
Green ratio	C - 11	0.16	0.14	0.32	0.16	0.14	0.32	2 0.	13	0.38	0	.38	0.13	0.38	
Unif. delay d	11	41.2	42.4	27.7	39.4	40.1	26.0) 40	0.9	27.1	2	3.0	42.4	25.7	
Delay factor	k	0.44	0.46	0.14	0.26	0.18	0.1	0.	16	0.31	0	.11	0.36	0.24	
Increm. dela	y d2	21.4	42.1	1.1	6.8	3.5	0.5	1	.6	2.5	(0.3	12.1	1.2	
PF factor		0.872	0.891	0.684	0.872	0.891	0.68	4 0.5	904	0.597	0.	597	0.904	0.597	
Control delay		57.3	79.9	20.1	41.2	39.2	18.2	_	3.6	18.7	_	4.0	50.4	16.6	+
			E	C	D	D	В	_	D	В		В	D	В	+
Lane group I	ne group LOS E		-	•	-	-				-		7	120		
		53	2			328				20.3				26 3	
Lane group I Apprch. dela Approach LO	ny		3.2			32.8 C			2	20.3 C				26.3 C	

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

	,				Sŀ	IORT	REP	OF	RT			· · · · · ·	·····-			
General Inf	ormation						Site lı	nfo	rmati	on						
Analyst Agency or 0 Date Perfor Time Period	med	U: 06/0	SAI SAI 03/12 PEAK				Interse Area ⁻ Jurisd Analy:	Гур licti	e ion	E	c	CARLS All of ARLSI STING	GE BL SBAD \ ther are SAD-IN S PLUS OJECT	VILL. eas IT.#15 OTHE	ī R	
Volume an	d Timing In	put												<u> </u>		
				EB			W					NB			SB	
			LT	TH	RT	_	TH	╝	RT	<u> L7</u>	_	TH	RT	LT	TH	RT
Num. of Lar	nes		1	1	1	1	1	_	0	1		2	0	1	2	0
Lane group			L	LT	R	L	TR	<u>'</u>		L		TR		L	TR	
Volume (vpl			419	3	106		9		11	74		516	1	4	1611	432
% Heavy vo	eh		1	1	1	1	1	_	1	1	-	2	1	1	2	1
PHF Actuated (P	/Δ)		0.95 A	0.95 A	0.95 A	0.95 A	0.98 A	긕	0.95 A	0.98 A	,	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A
Startup lost			2.0	2.0	2.0	2.0	2.0	,—		2.0		2.0	 ^ -	2.0	2.0	<u> </u>
Ext. eff. gree			2.0	2.0	2.0	2.0	2.0	_		2.0	_	2.0	<u> </u>	2.0	2.0	
Arrival type			4	4	4	4	4	\neg		5		5		5	5	
Unit Extensi	ion		3.0	3.0	3.0	3.0	3.0)		3.0	,	3.0		3.0	3.0	
Ped/Bike/R	ΓOR Volume	;	5	5	0	5	5		0	5		5	0	5	5	200
Lane Width			12.0	12.0	12.0	12.0	12.0	כ		12.0)	12.0		12.0	12.0	
Parking/Gra	de/Parking		Ν	0	Ν	N	0		Ν	Ν		0	Ν	Ν	0	Ν
Parking/hr																
Bus stops/h	r		0	0	0	0	0			0		0		0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0	3.0)		3.0)	3.0		3.0	3.0	
Phasing	EB Only		Perm	03	3	04	1		xcl. L			ru & R		07)8
Timing	G = 17.0	G =		G =		G =		_	= 13.			= 65.0			G =	
	Y = 5	Y = .		Υ=		Y =		<u>Y</u>	= 5			= 5	Y = gth C =		Y =	-
Duration of				I Dale			NS D	-4-				le Len	giii C -	- 120.	<i>U</i>	
Lane Gro	up Capac	ity, C		n Dela	1y, 6			3 LE	311KIIL	iauc	m	ND		Í	CD	
			EB	1			WB				_	NB	T .		SB	
Adj. flow rat	* *	221	223	112	 -	1	21	4		78	-	544		4	1940	
Lane group	сар.	393	388	211	1	41	134	\perp		186	╝	1844		186	1805	
v/c ratio		0.56	0.57	0.53	0	.01 (0.16	╧	().42	_	0.30		0.02	1.07	
Green ratio		0.26	0.26	0.14	0	.08 (0.08	\perp	C	0.10		0.52		0.10	0.52	
Unif. delay o	11	39.5	40.6	50.3	5	2.9	53.6		5	52.5		17.0		50.3	30.0	
Delay factor	k	0.16	0.17	0.13	0	.11 (0.11	Τ	(0.11		0.11		0.11	0.50	
Increm. dela	ay d2	1.8	2.1	2.6	(0.0	0.5	Т		1.5	1	0.1		0.0	44.5	
PF factor	-			1.00	0 1.	.000 1	.000	十	О	.923	7	0.278		0.923	0.278	
Control dela	ontrol delay 41.4			52.8	5	3.0 5	54.1	十	4	19.9	\dagger	4.8		46.4	52.8	
Lane group	LOS	D	D	\top	D	D	十		D	\dagger	Α		D	D		
Apprch. dela	ау	•	\top	54.	1				10.	.5	•		52.8	•		
Approach Lo	OS		D	•		D					В	}			D	
Intersec. de	lay	4	2.9	·			lı	nte	rsectio	on LC	S				D	
HCS2000 TM			Co	vouriaht @	2000 1	University (of Florid	п. А	Il Righte	Dogge	ad			·	13	ersion 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

				<u></u> .	Şŀ	IORT	REF	20	RT								
General Inf	ormation						Site	Inf	ormat	ion							
Analyst Agency or C Date Perford Time Period	med	U. 06/0	SAI SAI 03/12 PEAK				Inter Area Juris Anal	Ty dic	/pe		C	COLLE CARLS All of CARLSE ISTING PRO	SBA hei SAL PL	AD V r are D-IN LUS	/ILL. pas T.#15 OTHE	R	
Volume an	d Timing In	put															
				EB				۷B		\perp		NB	_			SB	
Num. of Lar	100		LT 1	TH 1	RT 1	LT	$\overline{}$	"H 1	RT 0	╫	<u>LT</u> 1	TH 2	-	₹ <u>Т</u> 0	LT 1	TH 2	RT 0
				LT	R	L	—	R	+	╬	Ĺ		H		L	TR	
Lane group Volume (vpl	2)		L 384	10	70	1	3		3	-	L 181	TR 1283	H	1	13	1R 645	440
% Heavy ve			1	1	1	1	1		1	+	1	2	_	<u>′</u> 1	1	2	1
PHF			0.95	0.95	0.95				0.95	lo	.95	0.95	_	95	0.95	0.95	0.95
Actuated (P.			Α	Α	Α	Α	1		Α	_	Α	Α	_	4	Α	Α	Α
Startup lost			2.0	2.0	2.0	2.0	2.			_	2.0	2.0			2.0	2.0	
Ext. eff. gree	en		2.0	2.0 4	2.0 4	2.0 4	2.			_	2.0	2.0		•	2.0	2.0	
Arrival type Unit Extensi	on		3.0	3.0	3.0	3.0		.0		-	5 3.0	5 3.0	H		5 3.0	5 3.0	
Ped/Bike/R1		,	5	5	0	5	5.		0		5	5.0	Η,	<u> </u>	5	5	150
Lane Width			12.0	12.0	12.0		$\overline{}$		1	_	2.0	12.0			12.0	12.0	100
Parking/Gra	de/Parking		N	0	N	N	1	0	N	十	N	0	1	٧	N	0	N
Parking/hr										┪							
Bus stops/h	r		0	0	0	0	7	<u>)</u>	1	1	0	0			0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0	3.	.0		1	3.0	3.0			3.0	3.0	
Phasing	EB Only		Perm	03	3		4		Excl. L			ru & R	_		07		08
Timing	G = 17.0 Y = 5	G = ,		G = Y =		G = Y =			G = 14 $Y = 5$	4.0	_	= 59.0 = 5		G = Y =		G = Y =	
Duration of A			_			<u> </u>			1 - 5			le Len			: 120.0		
	up Capac			I Dela	ıv. a	nd L0	OS E)et	ermi	nat							
		<u> </u>	EB		Ť		WB					NB				SB	
Adj. flow rate		202	213	74		1	6			191	1	1352	Τ		14	984	
Lane group	cap.	423	419	220	1	47	142	┪		208	3	1743	T		208	1653	
v/c ratio		0.48	0.51	0.34	0.	.01	0.04			0.9	2	0.78	T		0.07	0.60	
Green ratio		0.27	0.27	0.14	· 0.	.08	0.08			0.1	2	0.49			0.12	0.49	
Unif. delay o	11	36.4	37.3	46.4	5	0.4	50.6			52.4	4	25.1			47.2	21.9	
Delay factor	k	0.11	0.12	0.11	0.	.11	0.11			0.4	4	0.33			0.11	0.18	
Increm. dela	ıy d2	0.9	1.0	0.9	C	0.0	0.1			40.	4	2.3			0.1	0.6	
PF factor		1.000	1.000	1.00	0 1.	000	1.000			0.91	12	0.355			0.912	0.355	
Control dela	у	37.3	38.4	47.3	5	0.5	50.7			88.	2	11.2	L		43.2	8.4	
Lane group	LOS	D	D	D		D	D			F		В			D	Α	
Apprch. dela	-	3.	9.3			50.	.7			··	20	.7				8.9	
Approach L0			D			D)				C	,				Α	
Intersec. del	ау	1	9.9					Inte	ersecti	ion	LOS					В	
HCS2000TM			C	nyright ©	2000 1	Iniversity	of Flor	:4-	All Dight	n Don	an word					τ,	ersion 4.11

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REPO)R	T								
General Inf	ormation					(Site Ir	ıfoı	rmati	on							
Analyst Agency or C Date Perfori Time Period	med	U. 06/0	SAI SAI 03/12 PEAK			,	nterse Area 7 Jurisd Analys	ypo ictic	e on	i	c	COLLE CAN All of CARLSE ISTING PRO	NC hei 3Al Pl	N R r are D-IN LUS	RD. Pas IT.#16 FOTHE	R	
Volume an	d Timing In	out							···;			7 //	JUL	_0,	<u> </u>		
				ΕB			W	3				NB				SB	
			LT	TH	RT	LT	TH		RT	L	ľ	TH	F	₹T	LT	TH	RT
Num. of Lan	es		2	2	0	1	2		0	2		2	_	0	2	2	0
Lane group			L	TR		L	TR			L		TR			L	TR	
Volume (vpl	1)		244	139	58	90	60		37	12	6	241		10	88	728	724
% Heavy ve	eh		2	2	2	2	2		2	2		2	_	2	2	2	2
PHF			0.95	0.95	0.95	0.95	0.98	5	0.95	0.9	5	0.95		95	0.95	0.95	0.95
Actuated (P			A	A	A	A 2.0	A	4	Α	A	<u> </u>	A	<u> </u>	4	A 2.0	A	Α
Startup lost			2.0	2.0	<u> </u>	2.0	2.0	_		2.0 2.0		2.0	\vdash		2.0	2.0	
Ext. eff. gree Arrival type	en		2.0 5	2.0 5	_	5	5	\dashv		5	,	2.U 5	H		5	2.0 5	
Unit Extensi	on	3.0		3.0	3.0			3.	2	3.0	┢		3.0	3.0	\vdash		
	OR Volume		3.0 5	5	0	5	5		0	5		5	Η,	2	5	5	0
Lane Width	OIT VOIGING	12.0	۲	12.0	12.0	7	-	12.	0	12.0	Ť		12.0	12.0	 		
Parking/Gra	de/Parking	0	N	N	0	-	N	N		0	7	v	N	0	N		
Parking/hr										1							
Bus stops/h	<u>^</u>	0		0	0			0		0	Г		0	0	†		
Unit Extensi			3.0	3.0		3.0	3.0	,		3.	0	3.0	Г		3.0	3.0	
Phasing	Excl. Left	Thru	& RT	0:	3	04	ļ.	E	xcl. L	eft	Th	ru & R	Г		07	T (08
Timing	G = 11.0	G =		G=		G = '			= 12.	.0		= 62.0		G =		G =	
	Y = 5	Y =		Y =		Y =		Y	= 5		•	= 5		<u>Y</u> =		Y =	
	Analysis (hrs			<u> </u>				_			_	le Len	gth	C=	125.	U	
Lane Gro	up Capaci	ity, C		•	ay, a			ete	rmir	atio	n						
			EB			V	VB					NB	•			SB	
Adj. flow rat	e	257	207		95	5 1	02		1	33	1	475	L		93	1528	
Lane group	сар.	302	538		15	6 5	29		3	30	1	623	L		330	1613	
v/c ratio		0.85	0.38	}	0.6	31 0.	19	<u> </u>	0	.40	(0.29	L		0.28	0.95	
Green ratio		0.09	0.16	3	0.0	9 0.	16		0	.10	- (0.50			0.10	0.50	
Unif. delay o	11	56.2	47.0)	54.	.9 4	5.5		5	3.1		18.6			52.5	29.9	
Delay factor	k	0.38	0.11	'	0.1	9 0.	11		0	.11	(0.11			0.11	0.46	
Increm. dela	y d2	20.1	0.5		6.1	7 0	.2		(0.8	Ţ	0.1			0.5	12.2	
PF factor				3	0.9	<i>36 0.</i>	873		0.	929	0).344			0.929	0.344	
Control dela	ontrol delay 72.7 41.5				58.	.1 39	9.9		5	0.2	T	6.5			49.2	22.5	
Lane group	ane group LOS E D pprch. delay 58.8						D			D	T	Α	Γ		D	С	
Apprch. dela	ay	•		48.7					16.	0				24.0			
Approach L	os			D					В					С			
Intersec. de	lay				lr	ter	sectio	n LC	S					С			
HCS2000 TM			opyright @	2000 U	Jniversity of	of Florid	a, A1	ll Rights	Reser	ved					V	ersion 4.1	

				<u> </u>	SH	ORT F	REP	OF	RT								
General Inf	ormation					5	ite lı	nfo	rmati	on							
Analyst Agency or C Date Perfor Time Period	med	U\$ 06/0	SAI SAI)3/12 PEAK			J J	nters area ⁻ urisd analy:	Гур icti	e		C	COLLE CAN All ot CARLSE ISTING PRO	NO he BA F	DN R er are D-IN	RD. Pas T.#16 OTHE	R	
Volume an	d Timing In	put															
				EB			W	B				NB				SB	
			LT	TH	RT	LT	TH	\perp	RT	-	LΤ	TH	-	RT	LT	TH	RT
Num. of Lar	ies		2	2	0	1	2		0	┸	2	2	L	0	2	2	0
Lane group			L	TR		L	TR	<u>}</u>			L	TR			L	TR	
Volume (vpl			722	46	152	90	60		37		76	740		60	25	345	279
% Heavy v	eh		2	2	2	2	2		2		2	2	Ļ	2	2	2	2
PHF Actuated (P	/A \		0.95 A	0.95 A	0.95 A	0.95	0.9 A	5	0.95 A		.95 A	0.95 A	-	.95 A	0.95 A	0.95 A	0.95 A
Startup lost			2.0	2.0	<u> </u>	2.0	2.0	,—	A	_	2.0	2.0	┝	<u> </u>	2.0	2.0	 ^
Ext. eff. gree			2.0	2.0		2.0	2.0			_	2.0	2.0	┢		2.0	2.0	
Arrival type	<u> </u>		5	5		5	5				5	5	T		5	5	†
Unit Extensi	on		3.0	3.0		3.0	3.0	\bigcup		3	3.0	3.0	T		3.0	3.0	
Ped/Bike/R	ΓOR Volume		5	5	0	5	5		0	1	5	5	T	0	5	5	0
Lane Width			12.0	12.0		12.0	12.0	0		12	2.0	12.0			12.0	12.0	
Parking/Gra	de/Parking		Ν	0	N	Ν	0		Ν	T'	N	0		N	N	0	N
Parking/hr																	
Bus stops/h	r		0	0		0	0	П			0	0	Γ		0	0	
Unit Extensi	on		3.0	3.0		3.0	3.0	\Box		3	3.0	3.0	Γ		3.0	3.0	
Phasing	Excl. Left	Thru	& RT	0;	3	04		Ē	xcl. L	.eft	Th	ru & R	Γ		07		08
Timing	G = 30.0	G =		G =		G =			= 12	2.0		= 50.0		G=		G =	
	Y = 5	Y = 6		Υ =		Υ =		Y	= 5			= <i>5</i> de Leng	~41	Y =		Y =	
	Analysis (hrs			I Dal		-410	C D		!	4:		de Len	gu	10-	- 130.)	
Lane Gro	up Capac	ity, C		Dela	ay, ar			<u> </u>	ermir	ıatı	ion	ND		_		CD	
			EB				/B	т-	_			NB	_			SB	
Adj. flow rat	e	760	208		95)2	퇶		80		842	L		26	657	
Lane group	cap.	793	424		408	8 45	57	L	3	317	1	347	L		317	1262	
v/c ratio		0.96	0.49		0.2	3 0	22	L	0).25	(0.63			0.08	0.52	
Green ratio		0.23	0.14		0.2	3 0.	14		0	0.09	- 1	2.38			0.09	0.38	
Unif. delay o	11	49.4	51.8		40.	6 49	.8	Π	5	4.8	,	32.4	Γ		54.0	30.8	
Delay factor	k	0.47	0.11		0.1	1 0.	11		0).11	(0.21	Γ		0.11	0.13	
Increm. dela	y d2	22.3	0.9		0.3	3 O.	2	Π	(0.4		0.9	Г		0.1	0.4	
PF factor				3	0.80	0.8	393	Γ	0.	.932	2 ().583	Г		0.932	0.583	
Control dela	Control delay 61.8				32.	8 44	.7	Π	5	1.5	1	19.8			50.4	18.3	
ane group LOS E			D		С	L)	П		D	一	В	Γ		D	В	
Apprch. dela			39.0					22.	6				19.6				
Approach Lo	os		E			D					С					В	
Intersec. de	\top		ļr	iter	sectio	on L	os					D					
HCS2000TM		and a late of	• • • • • • • • • • • • • • • • • • •	niversity o	f Dlooid	a A	11 Diahta	. Don	amrad					7.	ersion 4.1		

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	IORT	·R	EPO	R	₹T							
General Inf	ormation	·					Si	te Inf	or	rmatio	on						
Analyst Agency or C Date Perfor Time Period	med	US 08/2	SAI SAI 29/12 PEAK				Ar Ju	tersed ea Ty risdic nalysi	/po etic	e on		00	ON I All oth CEANS	RAMP ner are IDE-IN	as		
Volume an	d Timing In	put															
				EB				WB					NB			SB	
			LT	TH	RT	_		TH	\dashv	RT	L		TH	RT	LT	TH	RT
Num. of Lar	ies		1	2	1	2		2	4	0	1		1	1	0	2	0
Lane group	`		L	T	R	L		TR	4		L		LT	R	1/2	LTR	05
Volume (vpł % Heavy ve			78 2	623 2	284 2	21		237 2	4	<i>37</i>	719	,	61 2	205 2	43 2	68 2	35 2
PHF	3 11		0.95	0.95	0.95			0.95	_	0.95	0.9	5	0.95	0.95	0.95	0.95	0.95
Actuated (P	/A)		A	A	A	A	-	A	+	A	A	_	A	A	A	A	A
Startup lost			3.0	3.0	3.0	3.0		3.0			3.0		3.0	3.0		3.0	
Ext. eff. gree	en		2.0	2.0	2.0	2.0		2.0			2.0)	2.0	2.0		2.0	
Arrival type			5	5	5	5		5	4		3		3	3	-	3	
Unit Extensi Ped/Bike/R1			3.0 5	3.0 10	3.0 0	3.0 5		3.0 10	4	0	3.0 5		3.0 10	3.0 0	5	3.0 10	0
Lane Width	IOR Volume	;	12.0	12.0	12.0			12.0	\dashv	U	12.0	<u> </u>	12.0	12.0	1 5	12.0	1
Parking/Gra	de/Parking		N	0	N	N		0	\dashv	N	N N		0	N N	N	0	l _N
Parking/hr	aon anni		,,	Ŭ	 ``	+ '`	-,	Ť	7		+ ^ `				+	Ť	 ``
Bus stops/h	<u> </u>		0	0	0	0		0			10		0	0		0	
Unit Extensi	-		3.0	3.0	3.0	3.0)	3.0	7		3.0	-	3.0	3.0		3.0	
Phasing	Excl. Left	Thru	& RT	03	<u></u> 3	''''	04			SB On	ly	N	B Only	$\overline{}$	07	1 (08
Timing	G = 11.0	G = .		G =		G =				= 9.0		G :	= 37.0	G =		G =	
	Y = 4	Y = 4		Υ =		Y =		,	Y	= 4		_	= 4	Y =		Y =	
Duration of			•	. D. I.		1 1	^	<u> </u>	4.				le Len	gth C:	= 100.	0	
Lane Gro	up Capac	ity, C		i Deia	iy, a	ina L			te	rmir	iatic	חי	ND			SB	
0.11.07			EB	1000		200	1	√B	Т		000	_	NB	040	-		
Adj. flow rat		82	656	299	-	229	╌	38	Ļ		606	+	215	216		154	
Lane group	cap.	177	922	961	-	344	-	98	Ļ	-	634	-	645	557		265	
v/c ratio		0.46	0.71	0.31	0	.67	0	32	L	(0.96	<u> </u>	0.33	0.39		0.58	
Green ratio		0.10	0.26	0.62	2 0	.10	0	26		(0.36		0.36	0.36		0.08	
Unif. delay o	1 1	42.5	33.6	8.9	4	3.4	29	9.9	Γ	[3	31.2		23.3	23.8		44.4	
Delay factor	k	0.11	0.27	0.11	0	.24	0.	11	Γ	7	0.47	1	0.11	0.11		0.17	
Increm. dela	ay d2	1.9	2.6	0.2	4	4.8	0.	.2	Γ	12	25.2	T	0.3	0.4		3.2	
PF factor				0.13	2 0.	.926	0.7	766	T	1	.000	1	1.000	1.000		1.000	
Control dela	ıy	41.2	28.3	1.4	4	5.0	23	3.1	T	1	56.4	†	23.6	24.3	\top	47.6	1
Lane group		D	С	A	\top	D	7		T		E	+	С	С	\top	D	
Apprch. dela				32	2.8		1	$\neg \dagger$		<u>4</u> 2	.9	<u> </u>	1	47.6			
Approach L			C			\dashv		L				D					
Intersec. de			$\neg \vdash$			lı	nte	ersect	ion L				+	С			
HCS2000 TM	<u>, , , , , , , , , , , , , , , , , , , </u>		3.2	pyright ©	2000	Universit	by of										ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright @ 2000 University of Florida, All Rights Reserved

					S	НО	RT F	REPO)F	₹T								
General Int	ormation									rmati	on							
Analyst Agency or (Date Perfor Time Period	med	U: 08/2	SAI SAI 29/12 PEAK				A	nterse rea T urisdi nalys	yp cti	e on		00	A WAY(ON I All oth CEANS R-TERM	RAM ner IDE	MPS area E-IN	S as T.#17		
Volume ar	nd Timing In	put																
			LT	EB TH	R	т	LT	WE TH		RT	+	LT	NB TH	R	· T	LT	SB TH	RT
Num, of Lar	nes		1	2	1	_	2	2		0	+	1	1	1	_	0	2	0
Lane group			L	T	R		L	TR			+	L	LT	F	~		LTR	
Volume (vp			86	547	31.		362	530		33	+ 9	<u>-</u> 118	62	13		65	83	56
% Heavy v			2	2	2		2	2		2	╅	2	2	2		2	2	2
PHF			0.95	0.95	0.9	5	0.95	0.95	5	0.95		.95	0.95	0.9		0.95	0.95	0.95
Actuated (P			A	A	A		A	A		Α		A	A	A		Α	A	Α
Startup lost			3.0	3.0	3.0		3.0	3.0	_		_	3.0	3.0 2.0	3.i			3.0	
Ext. eff. gre Arrival type	en		2.0 5	2.0 5	2.0 5		2.0 5	2.0 5			┽	2.0 3	2.0	3			2.0	
Unit Extens	ion		3.0	3.0	3.0	7	3.0	3.0			+	3.0	3.0	3.	_		3.0	
	TOR Volume)	5	0.0	0		5	10		0		5	10	0		5	10	0
Lane Width			12.0	12.0	12.	0	12.0	12.0)		1	2.0	12.0	12.	.0		12.0	
Parking/Gra	ade/Parking		Ν	0	Ν		N	0		Ν		N	0	٨	/	Ν	0	Ν
Parking/hr									,									
Bus stops/h	ır		0	0	0		0	0				0	0	C)		0	
Unit Extens	ion		3.0	3.0	3.0)	3.0	3.0			,	3.0	3.0	3.	0		3.0	
Phasing	Excl. Left	_	Only	Thru 8			04			SB O			B Only			07)8
Timing	G = 10.0 $Y = 4$	G =		G = 1 Y = 4		_	G = Y =			i = 10	0.0		= 42.0 = 4		G = Y =		G = Y =	
Duration of	T = 4 Analysis (hr:		•	Y - 4			7 –		<u> </u>	- 4		-	ele Len			110.		
	up Capac			l Dela	iV.	an	dIO	S De	te	ermi	nat		JIO EOIT	9	<u> </u>		<u> </u>	
<u> </u>	ир оцрио		EB		, <u>, , , , , , , , , , , , , , , , , , </u>	<u> </u>		NB		1			NB			1	SB	
Adj. flow rat	te	91	576	328		381		593	T		531	1	500	14	12	 	214	
Lane group		145	580	849	-+	687		87	\dagger		656	_	663	57			269	
v/c ratio		0.63	0.99	0.39		0.58	-	.60	†		0.8	\rightarrow	0.75	 	25	+	0.80	
Green ratio		0.08	0.16	0.54		0.20		.28	\dagger	-	0.3	-	0.37	0.3			0.08	
Unif. delay		48.9	45.9	14.9	-	39.6		4.2	\dagger		31.0	-	30.1	23			49.6	
Delay facto		0.21	0.49	0.11	-	0.18		.19	t		0.3		0.31	0.1	11	+	0.34	1
Increm. del		8.3	35.5	0.3	\rightarrow	1.0		1.0	t		7.5	\rightarrow	4.9	╂	2		15.2	+
PF factor	,	0.941	0.870			0.83		738	t		1.00	-	1.000	╄	000	_	1.000	
Control dela	зу	54.3	75.5	3.7	-	34.0) 2	6.2	t		38.	5	35.0	24	1.1	1	64.8	
Lane group	<u></u>	D	E	A	寸	С	$\neg \uparrow$	С	†		D		D			1	E	1
Apprch. del	ay	4	9.9		寸		29.3	3	_			35	.3	<u>, I , </u>			64.8	•
Approach L	os		D				С					E)				Е	
Intersec. de		3	9.7		寸				nt	ersec	tion	LOS	3				D	
HCS2000 TM			Co	pyright ©	2000) I Iní	versity o	f Florid:	a A	All Right	ts Res	erved					ν	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SHO	ORT R	EPO	DR'	T						•	
General Inf	formation								matic	n						
Analyst Agency or 0 Date Perfor Time Period	med	US 08/2	SAI SAI 29/12 PEAK			A Ji	nterse rea T urisd nalys	ype ictio	e n		00	OFF All o CEAN	-ON R ther are SIDE-li			
Volume ar	nd Timing In	put				<u>r</u>										
VOIGING A	ta mining in	put		EB			W	В				NB			SB	
			LT	TH	RT	LT	TH	1	RT	L.	Т	TH	RT	LT	TH	RT
Num. of Lar	nes		2	2	0	1	2		0	1		1	1	1	1	0
Lane group			L	TR		L	TR			L		LT	R	L	TR	
Volume (vp			878	204	23	24	253	, †	36	31	1	3	7	65	11	36
% Heavy v			2	2	2	2	2		2	2		2	2	2	2	2
PHF			0.95	0.95	0.95	0.95	0.9	5 (0.95	0.9		0.95	0.95	0.95	0.95	0.95
Actuated (P			A	A	Α	A	A	\perp	Α	A		A	A	A	A	Α
Startup lost Ext. eff. gre		-	3.0 2.0	3.0 2.0		3.0 2.0	3.0 2.0			3.0 2.0		3.0 2.0	3.0 2.0	3.0 2.0	3.0 2.0	
Arrival type			4	4		4	4	+		3		3	3	3	3	
Unit Extens			3.0	3.0		3.0	3.0	, 		3.		3.0	3.0	3.0	3.0	
	TOR Volume	<u>,</u>	5	10	0	5	10		0	5		10	0	5	10	0
Lane Width			12.0	12.0		12.0	12.0			12.	0	12.0	12.0	12.0	12.0	
Parking/Gra	ade/Parking		Ν	0	N	N	0		Ν	Ν	1	0	N	N	0	Ν
Parking/hr											ı					
Bus stops/h	ır		0	0		0	0			0)	0	0	0	0	
Unit Extens	ion		3.0	3.0		3.0	3.0	,		3.	0	3.0	3.0	3.0	3.0	
Phasing	Excl. Left	EB (Only	Thru 8	RT	04		S	B Onl	у	Ñ	B Only	/	07	()8
Timing	G = 5.0	G =		G = 2		G =			= 10.	0		= <i>5.0</i>	G :		G =	
	Y = 4	Y = 4		Y = 4		Y =		Υ =	= 4			= 4	Y =		Y =	
	Analysis (hrs			<u> </u>		110		•				ie Ler	igth C	= 100.	U	
Lane Gro	up Capac	ity, C		Dela	ıy, ar			ete	<u>rmın</u>	atic				1		
			EB		ļ	WE			+			NB		<u> </u>	SB	_
Adj. flow rat	te	924	239		25	304	-+		33	}	╌	3	7	68	50	
Lane group	сар.	1609	2194		71	693	3		67		7	5	57	157	143	
v/c ratio		0.57	0.11		0.35	0.4	4		0.4	9	0.0	04	0.12	0.43	0.35	
Green ratio		0.47	0.63		0.04	0.20	0		0.0	4	0.0	04	0.04	0.09	0.09	
Unif. delay	d1	19.2	7.3		46.7	35.	1		47.	0	46	6.2	46.3	43.1	42.8	
Delay facto	rk	0.17	0.11		0.11	0.1	1		0.1	1	0.	11	0.11	0.11	0.11	
Increm. dela	ay d2	0.5	0.0		3.0	0.4	·		5.6	3	0.	2	1.0	1.9	1.5	
PF factor	factor 0.8			7	1.000) 1.00	00		1.0	00	1.0	000	1.000	1.000	1.000	
Control dela	ay	16.1	3.7		49.7	35.	5		52.	6	46	6.4	47.3	45.0	44.2	
Lane group	LOS	В	Α		D	D			D		Ĺ		D	D	D	
Apprch. del	ay	1	3.5			36.6				5	1.3				44.7	
Approach L	os		В			D					D				D	
Intersec. de	elay	2	1.3				ln	ters	ection	ı LO	S	•	***************************************		С	
HCS2000 TM			C	myright ©	2000 Ui	niversity of	f Florid	a. All	Rights	Reser	ved				v	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	EP(RT	_								
General Inf	ormation								natio	n	•						
Analyst Agency or 0 Date Perfor Time Period	med	U 08/2	SAI SAI 29/12 PEAK			A Ji	nterse rea T urisdi nalys	ype ctior	1		00	OFF All of CEANS	-ON her SIDL	I RA are E-IN			
Volume an	d Timing In	put							"								
				EB			Wi					NB			,,	SB	
			LT	TH	RT	LT	Th	4	RT	Lī		TH	1	RT.	LT	TH	RT
Num. of Lar	nes		2	2	0	1	2	\bot	0	1		1	1	1	1	1	0
Lane group			L	TR		L	TR	╧		L		LT	F		L	TR	
Volume (vp			924	324	55	96	354		59	145	5	44	5		123	38	52
% Heavy v	<u>eh</u>		2	2	2	2	2	-	2	2	_	2	2		2	2	2
PHF Actuated (P)/A\	<u> </u>	0.95 A	0.95 A	0.95 A	0.95 A	0.98 A		.95 A	0.9 A	5	0.95 A	0.9		0.95 A	0.95 A	0.95 A
Startup lost			3.0	3.0	\vdash	3.0	3.0			3.0	,	3.0	3.		3.0	3.0	├
Ext. eff. gre			2.0	2.0		2.0	2.0	\dashv		2.0		2.0	2.		2.0	2.0	
Arrival type			5	5		5	5			3		3	3	}	5	3	
Unit Extens	ion		3.0	3.0		3.0	3.0			3.0)	3.0	3.	.0	3.0	3.0	
Ped/Bike/R	TOR Volume	;	5	10	0	5	10		0	5		10	0		5	10	0
Lane Width			12.0	12.0		12.0	12.0			12.		12.0	12		12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0		Ν	N		0		/	N	0	N
Parking/hr										<u> </u>							
Bus stops/h	r	:	0	0		0	0			0		0	()	0	0	
Unit Extens	ion		3.0	3.0		3.0	3.0			3.0)	3.0	3.	.0	3.0	3.0	<u> </u>
Phasing	Excl. Left		Only	Thru 8		04			3 Onl	_		B Önly			07		08
Timing	G = 14.0	G =		G = 2		G =			15.0			= 12.0		G =		G=	
Duration of	Y = <i>4</i> Analysis (hrs	$Y = \frac{1}{2}$		Y = 4		Y =		Y =	4	_	-	: 4 le Len		Y =		Y =	
	up Capac			l Dala		24 0	S D	tor	min		_ <u>-</u>	ie Len	gai	<u> </u>	110.		
Lane Gro	up capac	ity, C		n Dela	ay, aı	WE		rei	1	auc		NB		-	·	SB	
A 11 5		070	EB		101				-				- -		400	_	_
Adj. flow rat		973	399	-	101	435	-		84	-	11	-+	57		129	95	_
Lane group	сар.	1336	1632		209				174		17	-	151		223	212	
v/c ratio		0.73	0.24		0.48	0.6	3		0.4	8	0.6	34 (2.38	3	0.58	0.45	
Green ratio		0.39	0.47		0.12	0.20	0		0.1	0	0.	10	0.10)	0.13	0.13	
Unif. delay	d 1	28.5	17.3		45.4	40.3	3		46.	8	47	.6	46.3	3	45.2	44.4	
Delay factor	r k	0.29	0.11		0.11	0.2	1		0.1	1	0.2	22	0.11	1	0.17	0.11	
Increm. dela	ay d2	2.0	0.1		1.8	1.8	3		2.1	ſ	7.	6	1.6		3.7	1.5	
PF factor		0.572	0.402	2	0.91	1 0.83	33		1.00	00	1.0	000	1.00	0	0.903	1.000	
Control dela	ay	18.4	7.0		43.1	35.4	4		48.	9	55	.2	47.9	,	44.5	45.9	
Lane group	LOS	В	Α		D	D			D		E		D		D	D	
Apprch. dela	ay	1	5.1			36.8				5	1.5					45.1	
Approach L	os		В			D					D					D	
Intersec. de	lay	2	6.7				ln [•]	erse	ection	LO	s					С	
rrcganon/TM						niversity of		4 11 2	n: 1		-						lersion 4 1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	DR'	T											
General Inf	ormation						ite In			n										
Analyst Agency or 0 Date Perfor Time Period	med	U 08/2	SAI SAI 29/12 PEAK			A Ji	nterse rea T urisdi nalys	ype ction	n		00	I All oth EANS:	DR. Ier are IDE-IN							
Volume an	d Timing In	put																		
		-		EB			WI					NB			SB					
			LT	TH	RT	LT	T⊦	Ц.	RT	L.		TH	RT	LT	TH	RT				
Num. of Lar	nes		1	2	0	1	2	\perp	0	1		1	0	1	1	0				
Lane group			L	TR		L	TR			L		TR		L	TR					
Volume (vpl			137	270	2	2	528		84	0		2	2	53	2	191				
% Heavy v	<u>eh</u>		2	2	2	2	2	+	2	2		2	2	2	2	2				
PHF Actuated (P	/Δ \	}	0.92 A	0.92 A	0.92 A	0.92 A	0.92 A	2 (0.92 A	0.9 A		0.92 A	0.92 A	0.92 A	0.92 A	0.92 A				
Startup lost			3.0	3.0		3.0	3.0	+	Л	2.0		3.0	├	3.0	3.0	├~				
Ext. eff. gre			2.0	2.0		2.0	2.0	_		2.0		2.0		2.0	2.0					
Arrival type			3	3		3	3			3		3		3	3					
Unit Extens			3.0	3.0		3.0	3.0			3.		3.0		3.0	3.0					
Ped/Bike/R	TOR Volume		5	10	0	5	10		0	5			0	5	ļ	0				
Lane Width			12.0	12.0		12.0	12.0	1		12.		12.0		12.0	12.0					
Parking/Gra	de/Parking		Ν	0	N	N	0		Ν	N		0	Ν	N	0	N				
Parking/hr																				
Bus stops/h	r		0	0		0	0	\bot		0	1	0		0	0					
Unit Extens	ion	. , ,	3.0	3.0		3.0	3.0			3.	0	3.0		3.0	3.0					
Phasing	Excl. Left	-	& RT	03	3	04			ccl. Le			ru & R		07)8				
Timing	G = 13.0	G =		G =		G =			= 8.0			= 19.1	G =							
	Y = <i>4.2</i> Analysis (hrs	Y = 0.3		Υ=		Y =		Υ =	= <i>4.</i> 2			4.2	Y =			****				
				l Dole		24 I O	S D	+01	rm in			ie cen	gin C -	- 100.0	<u> </u>					
Lane Gro	up Capac	πy, C		Dela	iy, ai			tei	<u> </u>	iauc)[]	ND			CD					
A !! D			EB		+-		/B		-		$\overline{}$	NB								
Adj. flow rat		149	295		2		55 			0	+	4								
Lane group	сар.	212	1452	2	21	2 14	18		1	42		312		124	287					
v/c ratio		0.70	0.20)	0.0	1 0.	47		0.	.00	(0.01		0.47	0.73					
Green ratio		0.12	0.41		0.1	2 0.	41		0.	.08	(0.18		0.07	0.18					
Unif. delay o	1 1	42.3	19.0	,	38.	8 21	.5		4.	2.3	7	33.6		44.7	38.7					
Delay factor	· k	0.27	0.11		0.1	1 0.	11		0.	11	7).11		0.11	0.29	\top				
Increm. dela	ay d2	10.0	0.1		0.0	0.	.2		0	0.0	十	0.0		2.8	9.2	\top				
PF factor		1.000	1.00	0	1.0	00 1.0	000		1.	000	1	.000		1.000	1.000	1				
Control dela	ıy	52.3	19.1		38.	8 21	.8	<u> </u>	4.	2.3	1	33.6		47.5	47.9					
Lane group	LOS	D	В	_	D		5			D	+	С		D	D	\top				
Apprch. dela	ay	- 3	30.2			21.8			\dashv		33.	6			3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5					
Approach Lo	os		1	С					С				D							
Intersec. de	lay	2	29.6		\top		ln	ters	ectio	n LC	S				С					
HCS2000TM		-	С.	مامند	2000 TI	niversity o		-							7.7	ersion 4.1				

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	EPO)R	T							
General Inf	ormation				<u> </u>		ite In			on						
Analyst Agency or C Date Perfor	Co. med	U 08/2	SAI SAI 29/12			ln Aı	terse rea T	ctic	on e			I	DR. ier area		₹	
Time Period		PM.	PEAK				nalysi			N				ROJEC	CT .	
Volume an	d Timing In	put				,									•	
				EB			WE	3				NB			\$B	
			LΤ	TH	RT	LT	TH		RT	L	Τ	TH	RT	LT	TH	RT
Num. of Lar	nes		1	2	0	1	2	ļ	0		1	1	0	1	1	0
Lane group			L	TR		L	TR					TR		L	TR	
Volume (vpl	า)		252	562	5	5	320		99			2	6	124	3	133
% Heavy v	eh		2	2	2	2	2		2		2	2	2	2	2	2
PHF			0.92	0.92	0.92	0.92	0.92	<u>`</u>	0.92	0.		0.92	0.92	0.92	0.92	0.92
Actuated (P.			<u>A</u>	A	Α	A	A	_	Α	1.		A	A	A	A	Α
			3.0	3.0		3.0	3.0	_		3.		3.0	<u> </u>	3.0	3.0	
	en		2.0 3	2.0 3		2.0	2.0	-		2.	. <i>u</i> 3	2.0		2.0 3	2.0 3	
	ncy or Co. e Performed e Period ume and Timing Input n. of Lanes e group Ime (vph) Heavy veh Elated (P/A) tup lost time eff. green val type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing Excl. Left Ing G = 4.0 Y = 4.2 Interpretation of Analysis (hrs) Inte			3.0		3.0	3.0	\dashv		_	.0	3.0		3.0	3.0	╫
			3.0 5	10	0	5	10	\dashv	0	۲,		0.0	0	5	0.0	0
Lane Width	lyst ncy or Co. e Performed e Period ume and Timing Inpu n. of Lanes e group Ime (vph) Heavy veh Eated (P/A) tup lost time eff. green Val type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing Excl. Left Extension sing Excl. Left Extension sing G = 4.0 G Y = 4.2 Y extion of Analysis (hrs) = 10 G The Group Capacity flow rate		12.0	12.0	Ť	12.0	12.0	7		-	2.0	12.0	Ť	12.0	12.0	Ť
	de/Parking	•	N	0	N	N	0	\dashv	N	-	V	0	N	N	0	N
Parking/hr								7		\top						
Bus stops/h	r		0	0		0	0	1		1	0	0		0	0	T
Unit Extensi			3.0	3.0		3.0	3.0	7		3	.0	3.0		3.0	3.0	
Phasing	Excl. Left	EW	Perm	Thru 8	& RT	04	-	E	xcl. L	.eft	Th	ru & R	T I	07	.	08
Timing		G =		G = 4	10.0	G =			= 13			= 14.8	G =		G =	•
		Y =		Y = 5	.3	Y =		Υ:	= 4.2	2	—	= 4.2	<u> </u>		Y =	******
											<u> </u>	de Len	gth C =	= 110.	0	
Lane Gro	up Capaci	ity, C		l Dela	ay, aı			te	rmir	nati	on					
		ļ .	EB			W	/B					NB			SB	
Adj. fl <i>o</i> w rat	е	274	616		5	45	56			1		9		135	148	
Lane group	сар.	357	1909)	113	5 12	02			193		206		193	199	
v/c ratio		0.77	0.32		0.0	4 0.3	38		C	0.01	-	0.04		0.70	0.74	
Green ratio		0.20	0.54	!	0.2	0 0.3	35		C	0.11	7	0.13		0.11	0.13	
Unif. delay o	11	41.5	14.1		35.	7 26	5.5		4	3.7		42.3		47.3	46.4	
Delay factor	k	0.32	0.11		0.1	1 0.	11		C	0.11	7	0.11		0.27	0.30	
Increm. dela	ay d2	9.7	0.1		0.2	2 0.	2			0.0		0.1		10.7	14.0	
PF factor		1.000	1.00	0	1.00	00 1.0	000		1	.000	1	.000		1.000	1.000	
Control dela	у	51.2	14.2	2	35.	9 26	7.7		4	3.7	Ţ,	42.4		57.9	60.4	
Lane group	LOS	D	В		D		>			D		D		Ε	Ε	
Apprch. dela	ау		25.6			26.8					42.	5			59.3	
Approach L	os		С			С					D				Е	
Intersec. de	lay		31.8				ln	ters	sectio	n Lo	os				С	
TLOGO O O O TM				1.6		nivianaityz a l			1.72.14	_						Iorgian 4.1

 $HCS2000^{\rm TM}$

Copyright @ 2000 University of Florida, All Rights Reserved

					SHO	ORT R	EPO)R	T							
General Info	ormation					S	ite Ir	ıfoı	rmatio	n						
Analyst Agency or C Date Perforr Time Period	med	08	USAI USAI 8/28/12 1 PEAK			A Ji	nterse rea T urisdi nalys	yp.	е	E	W A C XIST	ARII II otl DCE ING	NG Ro her ar ANSI	eas DE S OTHE	ER	
Volume an	d Timing Ir	nput														
	ey or Co. Performed 08 Period AM The and Timing Input of Lanes group the (vph) avy veh the (P/A) p lost time off. green I type xtension tike/RTOR Volume Width the g/Grade/Parking tig/hr tops/hr txtension the G 14.0 G = 14.0 G			EB		ļ	W					IB		<u> </u>	SB	<u> </u>
			LT	TH	RT	LT	TH		RT	LT		H	RT	LT	TH	RT
Num. of Lan	ies		0	1	1	1	1	4	0	2	2		1	1	2	1
Lane group				LT	R	L	TR	_	. <u> </u>	L	_		R	L	T	R
Volume (vph			25	32 2	178 2	107	47 2		43 2	436 2	70	_	195 2	71	1268 2	138
% Heavy ve	∌n	- · · · -	2 0.92	0.92	0.92	0.92	0.92	, 	0.92	0.92			0.92	0.92	0.92	0.92
Actuated (P	/A)	- "	A	A	A	A	A	\dashv	A	0.02 A		_	A	A	A	A
Startup lost				2.0	2.0	2.0	2.0	1		2.0	2.	0	2.0	2.0	2.0	2.0
Ext. eff. gree	en			2.0	2.0	2.0	2.0			2.0	2.		2.0	2.0	2.0	2.0
Arrival type				4	4	4	4	_		5	5	_	5	5	5	5
Unit Extensi			 _	3.0	3.0	3.0	3.0	<u>'</u>		3.0	3.	.0	3.0	3.0	3.0	3.0
	OR Volum	е	5	5	90	5	5	\dashv	0	5 12.0	12		0 12.0	5 12.0	5 12.0	0 12.0
Lane Width	da/Daylsina		 N	12.0	12.0 N	12.0 N	12.0	-	N	12.C	0		12.0 N	N 12.0	0	12.0 N
	de/Parking		IV	+ 0	N	IN	- 0	-	/V	/٧	+	_	- 14	 /\	+ -	- 1
Parking/hr	·			0	0	0	0			0	+,)	0	0	0	0
				3.0	3.0	3.0	3.0			3.0	_	.0	3.0	3.0	3.0	3.0
		VA/	I B Only	J 0		04			xcl. Le	<u> </u>	Thru (07		08
Phasing			= 7.0	G =	2	G =		_	= 15.		3=4		G		G =	00
Timing				Y =		Y =			= 4.6		r = 6		Υ:		Y =	
	 										•	Lenç	gth C	= 100	.0	
Lane Gro	ир Сарас	city,	Contr	ol Del	ay, ar	nd LO	S De	ete	rmin	atio	n					
			EB			WB					NB				SB	
Adj. flow rate	e		62	96	116	98			474	7	65	21	2	77	1378	150
Lane group	сар.		255	215	124	118			519	13	561	69	7	267	1561	684
v/c ratio			0.24	0.45	0.94	0.83			0.91	0	49	0.3	30	0.29	0.88	0.22
Green ratio			0.14	0.14	0.07	0.07			0.15	0	44	0.4	14	0.15	0.44	0.44
Unif. delay o	11		38.3	39.4	46.3	45.9			41.8	2	0.0	18.	.1	37.7	25.6	17.4
Delay factor	·k		0.11	0.11	0.45	0.37			0.43	0	.11	0.1	11	0.11	0.41	0.11
Increm. dela	n ratio		0.5	1.5	61.0	37.0			20.7	(), 2	0	2	0.6	6.3	0.2
PF factor	delay d1 38.3 factor k 0.11 n. delay d2 0.5 ctor 1.000			1.000	1.000	1.000)		0.881	1 0.	476	0.4	76	0.881	0.476	0.476
Control dela	ıy		38.8	40.9	107.3	82.9			57.5	9	9.8	8.	9	33.8	18.5	8.4
Lane group	LOS		D	D	F	F			Ε		Α	Α		С	Α	
Apprch. dela	зу		40.1			96.1				25.2	2				18.3	
Approach Lo	os		D			F				С					В	
Intersec. de	lay		27.1				Inte	rse	ection l	LOS					С	
HCS2000TM				'anvright (<u>ര 2000 II</u>	níversity o	f Florid	α Δ	Il Rights	Reserv	ed .				-	Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SHO	ORT F	EPO)R	T							
General Inf	ormation					S	ite In	for	rmatic	n						
Date Perfor	med	08	JSAI /28/12			A J	rea T urisdi	ype ctic	e on		N Al OCE/ (ISTI	/ARI oth ANS NG	NG F er ar IDE-l	eas INT#20 S OTHE		
Volume an	d Timing Ir	nput												•		
		•		EB							N				SB	
		-3	-	TH	RT	LT	TH	_			TI		RT	LT	TH	RT
Num. of Lar	nes		0	1	1	1	1	_	0		2	_	1	1	2	1
Lane group				LT	R	L	TR			L	7		R	L	T	R
			103					_			135	5	164	68	1038	78
	<u>eh</u>							_				<u>, </u>	2	2 0.92	2 0.92	2 0.92
	/Δ)		-								0.9 A	<u> </u>	0.92 A	0.92 A	0.92 A	0.92 A
			+~-					ᆉ	71		2.0	, 	2.0	2.0	2.0	2.0
				2.0	2.0	2.0	2.0	寸		2.0	2.0	_	2.0	2.0	2.0	2.0
Analyst				5		5	5	5	5							
				3.0								0	3.0	3.0	3.0	3.0
	FOR Volume	е	5		-	+	+	_	0	-	+	4				0
				 			12.0				+-	0			_	12.0
	de/Parking		N	0	N	N	0	4	N	N	0	_	N	N_	0	N
					ļ		<u> </u>	4								<u> </u>
					<u> </u>		-	_		<u> </u>	+	-				0
Unit Extensi						3.0	3.0									3.0
Phasing		_			3							_				08
Timing		_			-							0.1	_			
Duration of	<u> </u>			11 -		<u> </u>		1	- 4.0			ena				
				ı Deli	av ar	1d I O	S De	o to	rmin							
Lane Olo	up Capac	Jity, ') DCI	l , a.		<u> </u>	,	<u> </u>			-	Т		SB	
Adi flow rat	Α			213	140	_	Т		409			108	3	74		85
<u> </u>		-			}		+		+			-	\rightarrow			565
<u> </u>									+	_						0.15
									+			├				0.36
		_			 		-		+			⊢	-		32.7	23.6
					 		-		+			⊢	\rightarrow	0.12	0.40	0.11
-									+	-		 		3.0	7.0	0.1
	-				_	_			+	_		 				0.619
Control dela	ay		59.3	134.6	61.0	122.	7		32.3	11	.2	5.0	,	48.5	27.2	14.7
			E	F	E	F	十		С	1	3	Α	寸	D	В	
		1	01.0			95.8				15.2		<u> </u>	$\neg \uparrow$. •	27.6	
Approach L																
Intersec. de	lay		34.0				Inte	rse	ection	LOS	•		_		С	
HCS2000 TM	-			'opyriaht (n 2000 II	niversity o	f Florid	a A1	II Rights	Reserve	d				,	Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

W/MIT.

					SHO	ORT R	REPO)R	T							
General Inf	ormation					Sit	e Info	orm								
Analyst Agency or 0 Date Perfor Time Period	med	U 08/	ISAI ISAI '28/12 PEAK			Are Jui	ersec ea Ty risdict alysis	pe ion		OC.	EAI	RO All othe NSIDE/	AD r area MITI LUS	as GATIOI OTHEF	N	
Volume an	d Timing In	put														
				EB			WE	3				NB			SB	
			LT	TH	RT	LT	TH		RT	L	T	TH	RT	LT	TH	RT
Num. of Lar	nes		0	1	1	1	1		0	2		3	0	1	2	1
Lane group				LT	R	L	TR			L		TR		L	T	R
Volume (vpl	h)		25	32	178	107	47		43	43	6	704	195	71	1268	138
% Heavy v			2	2	2	2	2		2	2		2	2	GGATION SOTHER SETS T LT TH 1 2 L T 5 71 1268 2 2 2 0.92 0.92 A A 2.0 2.0 5 5 3.0 3.0 5 5 12.0 12.0 N 0 0 0 3.0 3.0 07 0 G = G = Y = Y = C = 100.0 SB 77 1378 267 1561 0.29 0.88 0.15 0.44 37.7 25.6 0.11 0.41 0.6 6.3 0.881 0.476 33.8 18.5 C B 18.3 B		2
PHF			0.92	0.92	0.92	0.92	0.92	(0.92	0.9	2	0.92	0.92	_		0.92
Actuated (P			A	Α	Α	Α	A		Α	A		Α	Α	_		A
Startup lost			1	2.0	2.0	2.0	2.0			2.0	_	2.0	7-			2.0
Ext. eff. gre	en			2.0	2.0	2.0	2.0			2.	_	2.0				2.0
Arrival type				4	4	4	4			5	_	5		_		5
Unit Extens				3.0	3.0	3.0	3.0			3.		3.0				3.0
	TOR Volume)	5	5	90	5	5		0	5	_	24.4	0	_	_	0
Lane Width				12.0	12.0	12.0	12.0	2.1	2.0	12.	-	12.0		1 1 1 2 - 1 A	THE PARTY	12.0
Parking/Gra	de/Parking		N	0	N	N	0	4	Ν	Ν		0	N	N	0	N
Parking/hr											11					
Bus stops/h	r		1-4	0	0	0	0	-1		0		0		1 28/	0	0
Unit Extens	ion			3.0	3.0	3.0	3.0			3.	0	3.0		3.0	3.0	3.0
Phasing	EB Only	WB	Only	0:	3	04		Ex	cl. Le	eft	Th	ru & R				80
Timing	G = 14.0	G =		G =		G =		_	= 15.	_		= 44.0				
	Y = 4.6	Y =		Y =		Y =		Υ =	= 4.6		_	6.7	1			
	Analysis (hrs	-6		- LC - P.S.			_					cle Len	gth C	= 100	0.0	
Lane Gro	up Capac	ity, C	Contro	ol Dela	ay, ar			te	rmin	atio						
			EB			W	3				١	NB			SB	
Adj. flow rat	e		62	96	116	98	3		47	4	9	77		77	1378	150
Lane group	сар.		255	215	124	118	8		51	9	21	160		267	1561	684
v/c ratio			0.24	0.45	0.94	0.8	3	Т	0.9	1	0.	45		0.29	0.88	0.22
Green ratio			0.14	0.14	0.07	0.0	7		0.1	5	0.	44		0.15	0.44	0.44
Unif. delay	d1		38.3	39.4	46.3	45.	9		41.	8	15	9.6		37.7	25.6	17.4
Delay factor	· k		0.11	0.11	0.45	0.3	7		0.4	13	0.	11		0.11	0.41	0.11
Increm. dela			0.5	1.5	61.0	37.	0		20.	7	0	.2		0.6	6.3	0.2
PF factor			1.000	1.000	1.00	0 1.00	00		0.8	81	0.	476		0.881	0.476	0.476
Control dela	ay		38.8	40.9	107.	_	9		57.	.5	9	.5		33.8	18.5	8.4
Lane group			D	D	F	F			E		1	Α		С	В	Α
Apprch. del			40.1	_		96.1				2	5.2				18.3	
Approach L			D		14.	F					С				В	
Intersec. de		2	27.1				Inte	erse	ection	LO	S				С	
HCS2000 TM	**			`onvright @	2000 IJ	niversity o	_	11.12		-	_		-			Version

 $HCS2000^{\mathrm{TM}}$

SHORT REPORT Site Information General Information COLLEGE BLVD.@ WARING Intersection RD. Analyst USAI Area Type All other areas Agency or Co. USAI OCEANSIDE-Date Performed 08/28/12 Jurisdiction INT#20MITIGATION Time Period PM PEAK EXISTING PLUS OTHER Analysis Year **PROJECTS** Volume and Timing Input WB NB SB EB RT RT LT TH RT LT TH TH RT TH LT LT 1 1 3 1 Num, of Lanes 0 1 1 0 2 R L TR L TR L T R LT Lane group 54 386 129 51 376 1355 164 68 1038 78 103 116 Volume (vph) % Heavy veh 2 2 2 2 2 2 2 2 2 2 2 2 0.92 PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Actuated (P/A) A A A A A A A A A A A A Startup lost time 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Ext. eff. green 2.0 2.0 2.0 2.0 2.0 2.0 4 5 5 Arrival type 4 5 4 5 5 5 3.0 3.0 3.0 3.0 3.0 3.0 Unit Extension 3.0 3.0 3.0 Ped/Bike/RTOR Volume 5 5 190 5 5 0 5 5 65 5 5 0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 ane Width Parking/Grade/Parking N 0 N N 0 N N 0 N N 0 N Parking/hr 0 0 0 0 0 0 0 0 0 Bus stops/hr 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Unit Extension 3.0 04 Excl. Left NB Only Thru & RT 08 Phasing EB Only WB Only 03 G = 10.1G = 40.0G = G = 14.0G = 12.0G = G = G = 9.0Timina Y = 4.6Y = 4Y = Y = Y = 4.6Y = 5Y = 6.7 Y = Duration of Analysis (hrs) = 0.25 Cycle Length C = 110.0 Lane Group Capacity, Control Delay, and LOS Determination NB SB WB EB 1581 74 1128 Adi. flow rate 171 213 140 181 409 85 1290 228 191 177 741 2511 145 565 Lane group cap. 195 0.75 v/c ratio 1.09 0.73 1.02 0.55 0.63 0.51 0.87 0.15 Green ratio 0.13 0.13 0.11 0.11 0.22 0.50 0.08 0.36 0.36 Unif. delay d1 46.3 48.0 47.4 49.0 38.4 20.0 48.4 32.7 23.6 0.21 0.12 0.40 0.11 0.31 0.50 0.29 0.50 0.15 Delay factor k 7.0 Increm. delay d2 13.0 91.3 13.6 73.7 0.9 0.5 3.0 0.1 0.619 1.000 1.000 0.331 0.941 0.619 PF factor 1.000 0.903 0.817 59.3 134.6 61.0 122.7 32.3 7.1 48.5 27.2 14.7 Control delay F F C C E E A D B Lane group LOS 12.3 27.6 Apprch. delay 101.0 95.8 F F В C Approach LOS C Intersec, delay 32.5 Intersection LOS

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	EPC	RT								
General Inf	ormation								atio	n						
Date Perfor	med	U 06/	SAI 03/12			A: Ju	rea T urisdio	ype ction			A	REE II oth CE	EK Č ner al ANS	TR. reas IDE		
Volume an	d Timing I	nput														
					1 5-	│ ,_	_		_	17				+		1 5-
Num of Lar	200				1	+	+	_			_			_	- 	RT 1
	Analyst				l 	+	-							- 		R
Agency or Co. USAI Area Type Unrisdiction Analysis Year NEW							0									
	Site Information Site Information Intersection Area Type USA				2											
Size Information				0.92												
Actuated (P	/A)	•	Α	Α	Α	Α	Α	1	1	Α	1	1	Α	Α	Α	Α
																2.0
	en		-		<u> </u>		_	_								2.0
	ion				├──		 					_			_	3.0
		Δ			0					5						0
	TOR VOIGIT				Ť		-					_				12.0
Parking/Gra	de/Parking				N		-			N	-	_				N
Parking/hr																
Bus stops/h	r		0	0		0	0	())	0	0	0	0
Unit Extens	ion		3.0	3.0		3.0	3.0	3.	.0		3	.0	3.0	3.0	3.0	3.0
Phasing				_	3							_				08
Timing																
Duration of	_			Υ =		Υ =		Υ =	5							
				l Del:	av aı	nd I O	S De	tern	nina			LOTI	jiii O	70.		
Laric Oro	ар Оара	 		, DCI	 		-		T	46101					SB	
Adi. flow rat	:e	0			188			71		1 (91	1	95		0
<u> </u>			-				-			+		₩			-	218
	<u>'</u>		+			_				-					 	0.00
			+			0.29	_			-						0.14
		25.7			27.2		12	2.8		25	.8	27.	4	27.2	26.8	25.7
<u> </u>		0.11	0.11		0.11	0.11	0.	11	<u> </u>	0.	11	0.1	1	0.11	0.11	0.11
Increm. dela	ay d2	0.0	0.0		0.5	0.0	0.	2		0.	0	1.4	4	1.0	0.6	0.0
PF factor		1.000	1.000		1.000	1.000	1.0	000		1.0	000	1.0	00	1.000	1.000	1.000
Control dela	ay	25.7	17.9		27.7	17.9	13	3.1	Π	25	.8	28.	8	28.2	27.3	25.7
Lane group	LOS	С	В	Ì	С	В	I	3		7	;	С		С	С	С
Apprch. dela	ay	17	7.9	•		20.6				28	.6				27.8	•
Approach L	os		В			С				(;				С	
Intersec. de	lay	23	3.5				Inte	secti	on L	.os					С	
HCS2000 TM		_	Co	opyright @	- ⊇ 2000 U:	niversity of	`Florida	. All Ri	i⊈hts F	leserve	d			-		Version 4.1:

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

					SH	ORT R	EPO	DRT								
General Inf	ormation				٠	S	ite In	forma	atio							
Analyst Agency or C Date Perfori Time Period	med	U. 06/0	SAI SAI 03/12 PEAK			A Ju	rea T urisdi	ction ype ction is Yea	ar		C. Ali O	REE oth CE	EK C ner ar ANSI	eas		1
Volume an	d Timing la	nput	<u> </u>													
		•		EB			W				N				SB	
			LT	TH	RT	LT	T⊦	l R	Τ.	LT	T	_	RT	LT	TH	RT
Num. of Lar	ies		2	2	0	2	2	1		0	1		1	1	1	1
Lane group			L	TR		L	T	F	?		LT.		R	L	LT	R
Volume (vpl			0	55	0	350	33	31	_	0	5		290	509	5	0
% Heavy ve	eh		2	2	2	2	2	2		2	2		2	2	2	2
PHF	/^ \		0.92	0.92	0.92	0.92	0.92		_	0.92 A	0.9 A		0.92 A	0.92 A	0.92 A	0.92 A
Actuated (P. Startup lost			A 2.0	A 2.0	A	2.0	2.0	2.	_	Α.	2.0		2.0	2.0	2.0	2.0
Ext. eff. gree			2.0	2.0		2.0	2.0				2.0		2.0	2.0	2.0	2.0
Arrival type	-		3	3		3	3	3			3		3	3	3	5
Unit Extensi	on		3.0	3.0		3.0	3.0	3.	0		3.	0	3.0	3.0	3.0	3.0
Ped/Bike/R	ΓOR Volum	е	5	10	0	5	10	C	1	5	10)	25	5	10	0
Lane Width			12.0	12.0		12.0	12.0	12	.0		12.	0	12.0	12.0	12.0	12.0
Parking/Gra	de/Parking		Ν	0	N	Ν	0	^	/	Ν	0		N	N	0	N
Parking/hr																
Bus stops/h	r		0	0		0	0	()		0)	0	0	0	0
Unit Extensi	on		3.0	3.0		3.0	3.0	3.	0		3.	0	3.0	3.0	3.0	3.0
Phasing	Excl. Left	Thru	& RT	0	3	04		NB			SB C			07		08
Timing	G = 15.0	G =		G =		G =		G =			= 3	2.0	G		G =	
	Y = 5	Y =		Υ=		Y =		Υ =	5		= 5	000	Y ath C	= = 100	Y =	
Duration of				L Dal		-410	C D.	4	. in			.enç	gui C	- 100	7.0	
Lane Gro	up Capa	CITY, C		n Dela	ay, aı I			etern	11116	atioi					SB	
		_	EB			WE		4=		Т.,	NB			000		
Adj. flow rat	е	0	60		380	36	-	47		14		14		332	226	0
Lane group	cap.	516	532		516	532	7	25		27	2	27	0	563	565	495
v/c ratio		0.00	0.11		0.74	0.07	0.	48		0.5	54	0.5	4	0.59	0.40	0.00
Green ratio		0.15	0.15		0.15	0.15	0.	47		0.1	8	0.1	8	0.32	0.32	0.32
Unif. delay	 1	36.1	36.7		40.6	36.5	1	8.1		37.	.2	37.	.3	28.5	26.5	23.1
Delay factor	· k	0.11	0.11		0.29	0.11	0.	11		0.1	4	0.1	4	0.18	0.11	0.11
Increm dela	ay d2	0.0	0.1		5.5	0.1	(),5		2.	1	2.3	3	1.6	0.5	0.0
PF factor		1.000	1.000		1.000	1.000) 1.	000		1.0	00	1.0	00	1.000	1.000	1.000
Control dela	ıy	36.1	36.8		46.1	36.5	1.	8.6		39	.3	39.	.6	30.1	27.0	23.1
Lane group	LOS	D	D		D	D		В		E)	D)	С	С	
Apprch. dela	ay	36	5.8			33.2				39	.4				28.9	
Approach L	os	i	D			С				L)				С	
Intersec. de	lay	33	3.0				Inte	rsecti	on L	.os					С	
HCS2000 TM			C	opyright (9 2000 U	Iniversity o	f Florid	a, All Ri	ghts I	leserve	1					Version 4.1

APPENDIX C

Near-Term With Project

- INTERSECTION LOS WORKSHEETS
- FAIR SHARE CALCULATIONS
- ARTERIAL ANALYSIS WORKSHEETS

			.		S	НО	RT F	(EPC)F	₹T			.					
General Inf	ormation						S	ite In	ıfo	rmati	ior	1						
Analyst		U.	SAI				lr	nterse	∍ct	ion		EL C	AMINO) Ri WA		_@ VIS	TA	
Agency or C	ror Co. erformed eriod							rea T					All of					
Date Perfori Time Period							J	urisdi	cti	ion			CEAN					
I lime Period		AW	PEAN				A	nalys	sis	Year		,	NEAR- PR		KIVI/ EC:			
Volume an	d Timing In	put							_									
				EB				WE			1		NB				SB	
N				TH	R'		LT	TH		RT	+	LT	TH	R	_	LT	TH	RT
Num. of Lan	ies			2	1		2	2		0	4	2	3			2	3	0
Lane group				T	R		L	TR			1	L	TR			L	TR	<u> </u>
Volume (vpl				46 2	75 2	5	407 2	111		73 2	4	109 2	869 2	28 2		83	1707	60
PHF	en			0.92	0.9	2	0.92	2 0.92	\dashv	0.92	+,	2 0.92	0.92	0.9		2 0.92	2 0.92	2 0.92
Actuated (P	/A)			0.92 A	(A	_	0.92 A	0.92 A	-	0.92 A	+	A.92	0.92 A	A		0.92 A	0.92 A	0.92 A
Startup lost				3.0	3.0)	3.0	3.0		 ''	+	3.0	3.0	_		3.0	3.0	 ``
Ext. eff. gree				2.0	1.2		2.0	2.0				1.2	5.0			0.8	5.8	\vdash
Arrival type			3	3	3		3	3				5	5			5	5	
Unit Extensi				3.0	3.0)	3.0	3.0				3.0	3.0			3.0	3.0	
	OR Volume)		10	0		5	10		0	1	5	10	0)	5	10	0
Lane Width				12.0	12.	_	12.0	12.0)		1	12.0	12.0			12.0	12.0	
	de/Parking		N	0	N		N	0		N	4	Ν	0	٨	<u> </u>	N	0	N
Parking/hr	,*				ļ <u>.</u>			<u> </u>	_		4							<u> </u>
Bus stops/hi				0	0	\vdash	0	0			4	0	0			0	0	ļ
		1		3.0	3.0	_	3.0	3.0		<u> </u>	<u>l</u>	3.0	3.0	<u></u>		3.0	3.0	<u> </u>
Phasing		-		Thru 8		_	04 3 =		_	Excl. L		_	ru & R			<u>07`</u>		08
Timing				G = 1 Y = 5			ງ = (=		_	5 = 15 5 = 5.2			= 48.6 = 6.3		G = Y =		G = Y =	
Duration of A					,, 0				'	Ų.2		_	cle Len					
Lane Gro	ир Сарас	ity, C	ontro	l Dela	ay, a	and	d LO	S De	te:	ermi	na	tion						
			EB				٧	VΒ					NB				SB	
Adj. flow rate	е	25	50	82		442	2	00	Τ		11	8	1256	l	·	90	1920	T
Lane group	сар.	136	446	426	:	720	8	88	Ť		35	2	1841	Ī		342	1941	
v/c ratio		0.18	0.11	0.19) (0.61	1 0.	23	T		0.3	34	0.68			0.26	0.99	1
Green ratio		0.08	0.13	0.28	3 (0.21	1 0.	27	T	(0.1	0	0.38			0.10	0.38	\top
Unif. delay d	11	57.7	51.8	36.8	} 4	47.9	3	8.0	T	,	55.	.7	34.8			55.6	40.8	\top
Delay factor	k	0.11	0.11	0.11	1 (0.20	0.	.11	T		0.1	1	0.25			0.11	0.49	
lncrem. dela	y d2	0.7	0.1	0.2		1.6	C).1			0.	6	1.1	Π		0.4	17.9	
PF factor		1.000	1.000	1.00	0 1	.00	0 1.	000	T	(0.9	24	0.594			0.926	0.583	
Control dela	у	58.4	51.9	37.0) 4	49.5	5 3	8.2	I	,	52.	.0	21.7			51.9	41.7	
Lane group	LOS	Ε	D	D		D		D	Ţ		D)	С			D	D	
Apprch. dela	ay	4	5.2				45.9					24	.3				42.1	
Approach L0	os		D				D					C	>				D	
Intersec. del	ay	3	7.0					Ir	ıte	rsecti	on	LOS					D	
HCS2000 TM			Co	pyright ©	2000	Unix	versity of	Elorida	. A	II Diaht	e De	eserved					v	ersion 4.1:

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	IORT I	REPO)R	RT						•	
General Inf	ormation		•				Site Ir	ıfo	rmati	on						
						- 1				E	EL C	1	WAY	_	TA	
											,					
						- 1										
Time Fenoc	1	I IVI	LAN			/	Analys	₃is `	Year							
Analyst																
			1 T		Грт	+ -			DT	+-	т		рτ	1		RT
Num. of Lar	nes							\dashv		+	•	 	-	 	3	0
				T	R		+	ヿ				TR		L	TR	
	h)			314		374			142	44	11		539			165
								┪							2	2
			0.92	0.92	0.92	0.92	0.92	<u> </u>	0.92	0.:	92	0.92	0.92	0.92	0.92	0.92
									Α				Α		Α	Α
							_	_		_					3.0	
	en							4						_	1	<u> </u>
	·						$\overline{}$	\dashv		_						
								4	0				0			0
	TOR VOIUTILE	;		1				, 		_		-	0	_	}	╁
	de/Parking								N	-		!	N	-	0	N
Site Information																
Bus stops/h	r		0	0	0	0	0				0	0		0	0	
Unit Extens	ion	·	3.0	3.0	3.0	3.0	3.0			3	.0	3.0		3.0	3.0	
Phasing					3		1	—			_					28
Timing		_1						_								
Duration of						<u> - </u>			- Q.Z	<u>-</u>	_					
				l Dela	av. a	nd LC	S De	ete	rmiı	nati			J			
									Ī						SB	·
Adj. flow rat	e	199	341	404	4	07	386	Т		479		2568		187	1647	
Lane group	cap.	212	566	650	3	86	524	T		731		2293		257	1658	-
v/c ratio		0.94	0.60	0.62	2 1	.05 (0.74	T		0.66	;	1.12		0.73	0.99	
Green ratio		0.12	0.16	0.42	2 0	.11 (0.16	T		0.21		0.47		0.07	0.33	
Unif. delay	d1	58.3	52.2	30.3	3 5	9.3	53.5	T		48.1	i	35.4		60.5	44.4	
Delay factor	rk	0.45	0.19	0.20	0	.50 (0.29	T		0.23	}	0.50		0.29	0.49	
Increm. dela	ay d2	44.8	1.8	1.8	6	0.8	5.4	Γ		2.1		60.5		10.0	20.5	
PF factor		1.000	1.000	1.00	0 1.	000 . 1	.000			0.82	0	0.409		0.946	0.667	
Control dela	зу	103.1	54.0	32.1	1 12	20.1	58.9			41.6	}	75.0		67.2	50.1	
Lane group	LOS	F	D	С		F	Ε			D		Ε		Ε	D	
Apprch. dela	ay	5	5.0			90.	3				69	9.7			51.8	
Approach L	os		E			F					ı	=			D	
Intersec. de	lay	6	5.1				lı	nte	rsecti	on L	.os				Е	
rrega og aTM	······································		C	onvright @	2000 1	University of	of Florid	n A	11 Right	s Rese	rved					ersion 4.

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

MITIGATION ADD NB RTO

Comment Ind	e and barda				SH	ORT											
General Inf	rormation								rmatic			AMM) P	- 1	@ VIST	ΓΛ	
Analyst Agency or 0 Date Perfor Time Period	med	US	SAI SAI 5/12 PEAK				Inters Area Juriso Analy	Typ	e on		CE	All ot ANSIE	NA` her E-li MIT TER	Y are NT. M/\	as #1/WIT WITH		
Volume ar	nd Timing In	put													3		
				EB				/B				NB				SB	
			LT	TH	RT	LT			RT	L	_	TH	-	Т	LT	TH	RT
Num. of Lar	nes		1	2	1	2	2		0	2	_	3	1	-	2	3	0
Lane group			L	T	R	L	TF			L		T	F	-	L	TR	
Volume (vp			23	46	75	407		_	73	10		869	28	_	83	1707	60
% Heavy v	eh		2	2	2	2	2		2	2	_	2	2		2	2	2
PHF Actuated (P	ν/Λ \	-	0.92	0.92 A	0.92 A	0.92 A	2 0.9 A		0.92 A	0.9 A		0.92 A	0.9	_	0.92 A	0.92 A	0.92 A
Startup lost			A 3.0	3.0	3.0	3.0	3.		Α	3.		3.0	2.	_	3.0	3.0	A
Ext. eff. gre			3.0	2.0	1.2	2.0	2.			1.	-	5.0	2.	_	0.8	5.8	
Arrival type			3	3	3	3	3	_		5		5	5	_	5	5	
Unit Extens			3.0	3.0	3.0	3.0	3.	0		3.	0	3.0	3.	0	3.0	3.0	
Ped/Bike/R	TOR Volume	9	5	10	0	5	10)	0	5		10	0)	5	10	0
Lane Width			12.0	12.0	12.0	12.0	12.	0		12.	0	12.0	12	.0	12.0	12.0	
Parking/Gra	ade/Parking		N	0	N	N	()	N	٨		0	Λ	I	N	0	N
Parking/hr																	
Bus stops/h	ır		0	0	0	0	0			0)	0	()	0	0	
Unit Extens	ion		3.0	3.0	3.0	3.0	3.	0		3.	0	3.0	3.	0	3.0	3.0	
Phasing	Excl. Left	WB	Only	Thru &	RT	0	4	TE	xcl. Le	eft	Th	ru & R	T		07		08
	G = 10.3	G =		G = 1	7.8	G=		G	= 15.	5	G:	= 48.6		G =		G =	
Timing	Y = 5.2	Y = 3		Y = 5.	6	Y =	-	Y	= 5.2		_	6.3		Y =		Y =	
	Analysis (hr											le Len	gth	<u>C</u> =	: 133.6	3	
Lane Gro	up Capac	ity, Co	ontrol	Delay	, an	d LO	S De	ter	mina	tio	n						
			EB				WB					NB				SB	
Adj. flow rat	te	25	50	82	44.	2 2	200		1:	18	9	45	311	1	90	1920	1
Lane group	сар.	136	446	426	72	0 8	388	T	38	52	1	922	563	3	342	1941	
v/c ratio	4/6	0.18	0.11	0.19	0.6	-	0.23			34	-	TEY A	0.5		0.26	0.99	
Green ratio		0.08	0.13	0.28	0.2	1 0	0.27	T	0.	10	0	.38	0.3	6	0.10	0.38	
Unif. delay		57.7	51.8	36.8	47.		38.0	1		5.7	-		33.8	_	55.6	40.8	
Delay factor		0.11	0.11	0.11	0.2		0.11	T	_	11	-		0.13	_	0.11	0.49	
Increm. dela		0.7	0.1	0.2	1.0		0.1	T	0.	6	(0.2	1.2		0.4	17.9	
PF factor		1.000	1.000	1.000	+-		.000	1		924	-		0.61		0.926	0.583	
Control dela				37.0	49.		38.2	1		2.0	-	-	22.	_	51.9	41.7	_
Lane group	·	E	51.9 D	D	D		D	1	_)	+	В	С	_	D	D	
Apprch. del			5.2			45.9	-	1			22.5			T		42.1	
Approach L		_	D			D					С					D	
Intersec. de			5.4					nto	rsectio	n I C	_		_	=		D	=
accannaTM	, ay	1 30	7.0		2000 1	657.00.00			Il Rights		-						Version

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

WTH MITIGATION: ADD NB RTD

					SH	ORT	REP	OR	T			- 101		116	ATION :		,
General Inf	formation						Site I			on							
Analyst Agency or 0 Date Perfor Time Perioc	med	US 08/1	SAI SAI 15/12 PEAK				Inters Area Jurisc Analy	Type	e on		CE	All ot EANSIE NEAR-	WA hei DE- MI TEI	Y area INT.: T.	#1/WIT VITH		
Volume an	nd Timing In	put															
				EB		7	W	_		-		NB				SB	
. N			LT	TH	RT	LT	TI	_	RT	L	_	TH		RT	LT	TH	RT
Num. of Lar	nes		1	2	1	2	2	-	0	2		3	L	1	2	3	0
Lane group			L	T	R	L	TF			L		T		R	L	TR	
Volume (vpl			183	314	372	374		3	142	44		1823	_	39	172	1351	165
% Heavy v	eh		2	2	2	2	2	_	2	2		2	_	2	2	2	2
PHF Actuated (P	2/Δ)	_	0.92 A	0.92 A	0.92 A	0.92 A	0.9 A	2	0.92 A	0.9 A	_	0.92 A	-	92 A	0.92 A	0.92 A	0.92
Startup lost			3.0	3.0	3.0	3.0	3.0)	А	3.		3.0	_	2.0	3.0	3.0	A
Ext. eff. gre			3.0	2.0	1.2	2.0	2.0			1.		5.0	_	2.0	0.8	5.8	
Arrival type			3	3	3	3	3			5	_	5	_	5	5	5	1
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0)		3.	0	3.0	3	3.0	3.0	3.0	
Ped/Bike/R	I/Bike/RTOR Volume e Width			10	0	5	10	1	0	5		10		0	5	10	0
_ane Width			12.0	12.0	12.0	12.0	12.	0		12.	0	12.0	1:	2.0	12.0	12.0	
Parking/Gra	de/Parking		N	0	N	Ν	0		Ν	N		0	To the	N	N	0	N
Parking/hr								_									
Bus stops/h	r		0	0	0	0	0			0		0		0	0	0	-
Jnit Extensi	ion		3.0	3.0	3.0	3.0	3.0)		3.	0	3.0	3	3.0	3.0	3.0	
Phasing	Excl. Left	Thru	& RT	03	3	0	4	E	kcl. Le	eft	N	B Only		Thr	u & RT		08
Γiming	G = 16.0	G =	F C V2	G =		G=		G:	= 12.	_	G:	= 12.8		G =	41.7	G =	
	Y = 5.2	Y = ,		Υ =		Y =		Υ:	5.2			6.3			6.3	Y =	
	Analysis (hrs							1				le Len	gth	C =	133.6	3	
_ane Gro	up Capac	ity, Co		Dela	y, an			teri	mina	tio		A				-5-	
			EB		4	1	WB		7/1			NB				SB	
Adj. flow rat	e	199	341	404	40	7 3	386		47	79	15	982	58	6	187	1647	
ane group	cap.	212	566	650	38	6 5	524		73	31	23	385	70	6	257	1658	
//c ratio		0.94	0.60	0.62	1.0	5 0	.74		0.	66	0.	.83	0.8	3	0.73	0.99	
Green ratio		0.12	0.16	0.42	0.1	1 0	.16		0.:	21	0	.47	0.4	6	0.07	0.33	
Jnif. delay o	d1	58.3	52.2	30.3	59.	3 5	3.5	T	48	3.1	3	0.8	31.	9	60.5	44.4	
Delay factor	k	0.45	0.19	0.20	0.5	0 0	.29		0.2	23	0	.37	0.3	7	0.29	0.49	1
ncrem. dela	ay d2	44.8	1.8	1.8	60.	_	5.4		2.	1	+	2.6	8.3		10.0	20.5	
PF factor		1.000	1.000	1.000			.000		-	320	+	_	0.4	_	0.946	0.667	
Control dela				32.1	120		8.9			.6	+		22.		67.2	50.1	
ane group		F	54.0 D	С	F	_	E			_	+	В	C	_	Ε	D	
Apprch. dela		_	5.0			90.3			+		20.7					51.8	_
Approach Lo			E		1	F			T		С			i		D	
ntersec. del			2.6		1		Ď	nter	sectio	nlC	-					D	
ICS2000 TM	-			muriaht @	2000 11	niversity							-	-			ersion 4

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

				·	SH	ORT F	(EP	OR ⁻	Т				**		
General Inf	ormation					S	ite Ir	nfor	matio						
Analyst Agency or (Date Perfor Time Period	med					A J	nterse area T urisd analys	Гуре ictio	e in	E	All oth OCEAN NEAR-	3 RAM her are SIDE-I	PS eas NT.#2 WITH		
Volume ar	d Timing In	put						-							
		•		EΒ			WI	3			NB			SB	
			LT	TH	RT	LT	T⊦		RT	LT	TH	RT	LT	TH	RT
Num. of Lar	nes		0	0	0	1	1		1	2	3	0	0	3	1
Lane group						L	LTF	?	R	L	Т			T	R
Volume (vp	h)					386	5	4	408	157	812			1727	458
% Heavy v	eh					2	2		2	2	2			2	2
PHF						0.92	0.92		0.92	0.92				0.92	0.92
Actuated (P			<u> </u>			Α	A		Α	Α	Α		ļ	Α	Α
Startup lost			<u> </u>			3.0	3.0		3.0	3.0				3.0	3.0
Ext. eff. gre	en				-	2.0	2.0		2.0	2.0			<u> </u>	2.0	2.0
Arrival type			<u> </u>			3	3	\perp	3	5	5			5	5
Unit Extens			40		 	3.0	3.0		3.0	3.0	3.0		10	3.0	3.0
Lane Width	TOR Volume	· · · · · · · · · · · · · · · · · · ·	10			10 12.0	12.0		75 12.0	40.6	2 40.0		10	5	250
Parking/Gra	ida/Parkina		N	<u></u>	N	12.0 N	 	1	N N	12.0 N		N	N	12.0	12.0 N
Parking/Gra	iue/Farking		-/-	-	111	10	0	+	//	10	0	//	/V	0	1//
Bus stops/h	r					0	0	+	0	0	0	 	 	0	0
Unit Extensi						3.0	3.0	_	3.0	3.0		_	<u> </u>	3.0	3.0
Phasing	WB Only	02) }	L0:	2 1	04	J 3.0					<u> </u>	07		
	G = 31.0	G =	<u>-</u>	G =)	G =			B Only = 13.7		Thru & R7 3 = 39.0	G =	07	G =	08
Timing	Y = 5.1	Y =		Y =		Y =			4.2		1 = 7	Y =		Y =	
Duration of	Analysis (hrs) = 0.23	5			<u></u>		•		_	ycle Leng				
Lane Gro	up Capaci	ty, Co	ontro	l Dela	ay, aı	nd LO	S De	ter	mina	atio	n .			-	
			EB			WB				•	NB			SB	•
Adj. flow rat	e				294	240	2	53	17	1	883			1877	226
Lane group	сар.				531	508	4	75	43	6	2836		,	1928	588
v/c ratio					0.55	0.47	0.	53	0.3	 89	0.31			0.97	0.38
Green ratio					0.30	0.30	0.	30	0.1	3	0.56			0.38	0.38
Unif. delay o	11				29.4	28.5	2:	9.2	40.		11.8			30.5	22.5
Delay factor	k				0.15	0.11	—	14	0.1		0.11		-	0.48	0.11
Increm. dela	ıy d2				1.3	0.7	1	.2	0.0		0.1			14.7	0.4
PF factor					1.000	1.000) 1.	000	0.9	03	0.155		- 1	0.591	0.591
Control dela				·	30.6	29.2	3	0.3	36.	8	1.9		1	32.8	13.7
Lane group	LOS				С	С		С	D		Α			С	В
Apprch. dela	ау					30.1				7	7.6		-	30.7	
Approach Lo	OS		P			С	• • • • • • • • • • • • • • • • • • • •				A			С	
Intersec. de	ay	2	4.4	·			Inte	erse	ction I	os				С	
HCS2000 TM			Co	pyrioht @	2000 11	niversity of	Florida	Δ11 1	Diohte D	AGATYE		I			Version 4.1f

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	ORI	Γ							
General Inf	ormation					S	ite lı	nforr	matic							
Analyst Agency or 0 Date Perfor Time Period	med	US 08/2	SAI SAI 2/12 PEAK			A J	nterso trea ⁻ urisd tnaly:	Гуре iction	e n	l	AII OCEA NEAF	NB R other NSID	AM are E-I RM	PS as NT.#2 WITH	R-	
Volume an	nd Timing In	out										•				
				EB			Wi				NE				SB	
			LT	TH	RT	LT	T⊦		RT	L		_	₹T	LT	TH	RT
Num. of Lar	nes		0	0	0	1	1		1	2		()	0	3	1
Lane group			<u> </u>	<u> </u>	<u> </u>	L	LTF		R	L	T				Τ	R
Volume (vpl						521	10	7	737	24		6		ļ	1561	505
% Heavy v	eh		<u> </u>	<u> </u>	ļ	2	2		2	2	2			ļ	2	2
Actuated (P	/ / \\			-	1	0.92 A	0.92 A).92 A	0.9 A	2 0.92 A	'			0.92 A	0.92 A
Startup lost				 	 	3.0	3.0	_	3. <i>0</i>	3.0		┿			3.0	3.0
Ext. eff. gre					 	2.0	2.0		2.0	2.0					2.0	2.0
Arrival type					 	3	3		3	5	5	十			5	5
Unit Extens	ion					3.0	3.0	,	3.0	3.	3.0				3.0	3.0
Ped/Bike/R	TOR Volume		10			10	ļ		0					10	5	0
Lane Width						12.0	12.0) 1	2.0	12.	0 12.0)			12.0	12.0
Parking/Gra	ide/Parking		Ν		N	N	0		N	N	0	/	V	N	0	N
Parking/hr	·															
Bus stops/h	r					0	0		0	0	0				0	0
Unit Extensi	ion					3.0	3.0	,	3.0	3.6	3.0				3.0	3.0
Phasing	WB Only	0:	2	0;	3	04		NE	3 Onl	у	Thru &	RT		07		08
Timing	G = 31.0	G =		G =		G =			13.		G = 39		G =		G =	
	Y = <i>5.1</i> Analysis (hrs	Y =	5	Y =		Υ =		Y =	4.2		Y = 7 Cycle Le		Y =		Y =	
	_	<u> </u>		I Dal	214 01	-d I O	e D.	. 4 - 1	una i un			ngui	<u> </u>	- 100.	.0	
Lane Gro	up Capaci	ty, Co	·	Dela	ay, ar	WB		ter	111111	auc				· · · · · · · · · · · · · · · · · · ·	00	
A -1: - £1 4			EB		440			.04	-		NB		\dashv		SB	5.40
Adj. flow rat				-	419	398		61	26		2202	-	\dashv		1697	549
Lane group	cap.				531	499	-	75	43		2836		\dashv		1928	588
v/c ratio					0.79	0.80	-	.18	0.6		0.78		_		0.88	0.93
Green ratio					0.30	0.30		.30	0.1		0.56		_		0.38	0.38
Unif. delay o					32.1	32.2	3	5.0	41	.3	17.2				28.9	29.8
Delay factor	k				0.34	0.34	0	.50	0.2	20	0.33				0.41	0.45
Increm. dela	ay d2				7.9	8.9	10	01.3	2.	6	1.4				5.1	22.2
PF factor					1.000	1.000) 1.	000	0.9	03	0.155			(0.591	0.591
Control dela					40.0	41.1	13	36.3	39	.9	4.1				22.2	39.8
Lane group	ne group LOS				D	D		F)	Α	\top	丁		С	D
Apprch. dela	зу					79.5			1		8.0		寸		26.5	
Approach Lo	os					E				•	Α				С	
Intersec. de		3	1.0				Inte	ersec	 ction	LOS			\dashv		С	
HCS2000 TM	•	<u> </u>		nyright @	1 2000 III	niversity of				-			1			Version 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	OR'	TRE	EPC	RT									
General Inf	ormation									natio	n							
Analyst Agency or 0 Date Perfor Time Period	med	US US 08/2: AM P	AI 2/12			,	Are Jur	erse ea T risdio alys	ype ction	1	E	00	78E All o CEAN EAR	B F the ISI -TE	RAM er are DE-=	eas =INT#3 WITH	R-	
Volume an	d Timing In	put																
				EB				W					NB				SB	
			LT	TH	RT	_	LT	TH	4	RT	LT	4	TH	_	RT	LT	TH	RT
Num. of Lar	nes		2	0	1	4	0	0	_	0	0	4	3	╄	1	2	3	0
Lane group			L		R							_	T		R	L	T	ļ
Volume (vpl			356		190)			_			4	668	3	55	511	1567	
% Heavy vo PHF	en		2 0.92		2 0.92	,			_			4	2 0.92	1	2 .92	0.92	2 0.92	
Actuated (P	/A)		0.92 A	+	0.92 A	-	-		+).92 A	_	.92 A	0.92 A	0.92 A	-
Startup lost			3.0		3.0	十		-	\dashv			\dagger	3.0		3.0	3.0	3.0	
Ext. eff. gre	en		2.0		2.0							1	2.0	2	2.0	2.0	2.0	
Arrival type			3		3				\bot			\perp	5	+	5	5	5	
Unit Extensi			3.0	<u> </u>	3.0				_			_	3.0	_	3.0	3.0	3.0	
	TOR Volume	· · ·	5		0	-	5		4		5	4	10	-	0	 		
Lane Width	1 /B 1/		12.0		12.0	-			_			┥	12.0	4	2.0	12.0	12.0	ļ
Parking/Gra	ide/Parking		N	0	N	_	N			N	N	+	0	╀	N_	N	0	N
Parking/hr				<u> </u>		+			_			4		╀				
Bus stops/h			0		0	+			4			+	0	\perp	0	0	0	
Unit Extensi		1 00	3.0		3.0	<u> </u>					Т-		3.0	_	3.0	3.0	3.0	
Phasing	EB Only G = 20.0	02 G =		03 G =		G =	04	\dashv		38.0			u & R 50.2		G =	07	G =	8
Timing	Y = 5.1	Y =		Y =		Y =			_	4.7		/ =			Y =		Y =	***
Duration of	Analysis (hrs) = 0.25	5								C	ycl	e Ler	igtl	ı C	= 125.		
Lane Gro	up Capaci	ity, Co	ntro	l Dela	y, aı	nd L	os	De	teri	mina	atio	n						
			ΕE	3			WE	3			• •	N	ΙB				SB	
Adj. flow rat	e	387		207							7	26	T	386	}	555	1703	
Lane group	cap.	522	1	241							1	997	7 6	310		1017	3730	
v/c ratio		0.74		0.86							0	.36	C	63	3	0.55	0.46	<u> </u>
Green ratio		0.15		0.15							0	.39	0	.39	,	0.30	0.74	
Unif. delay o	<u></u> 11	50.7		51.7							2	6.8	3	0.6	3	36.9	6.6	
Delay factor	·k	0.30		0.39				丁			0	.11	C	.21	1	0.15	0.11	
Increm. dela	ay d2	5.6		25.3							(), 1	_ ;	2.1		0.6	0.1	
PF factor		1.000		1.000		*					0.	56	7 0	.56	7	0.720	0.189	
Control dela	ıy	56.3		77.0							1	5.3	1	9.5	5	27.2	1.3	
Lane group	LOS	Ε		Ε								В		В		С	Α	
Apprch. dela	ау	ϵ	3.5								16	.8					7.7	
Approach L0	os		Ε								E	3					Α	
Intersec. del	lay	1	8.6					Int	terse	ection	ı LO	S					В	
HCS2000TM			Co	pyright © 2	2000 II	nizovoi	ty of El	lorida	A 11 D	lighta D	OGDITIO						17.	ersion 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

	ncy or Co. Performed Performed Period a. of Lanes Period a. of L				SH	OF	RT RI	ΕPO	RT	•					·		
General Inf	ormation						Sit	e Inf	orn	natio							
Analyst Agency or C Date Perfort Time Period	med	US US 08/2. PM P	AI 2/12				Ard Ju	ersed ea Ty risdic alysi	/pe :tion	1		C	78E. All o CEAN NEAR-	B RAI ther a ISIDE	reas :=INT#3 1 WITH	R-	
Volume an	d Timing In	out															
				EB				WE	}				NB			SB	
			LT	TH	RT		LT	TH		RT	L	T	TH	RT	LT	TH	RT
Num. of Lar	ies		2	0	1		0	0		0	0		3	1	2	3	0
Lane group			L		R								T	R	L	T	
Volume (vpl			647		354								1553	591	534	1551	
% Heavy ve	eh		2		2								2	2	2	2	
PHF	14.5		0.92		0.92	2			_				0.92	0.92		0.92	
			A		A	_			-				A	A	A	A	
			3.0 2.0		3.0 2.0	_	 	<u> </u>	+				3.0 2.0	3.0 2.0	3.0 2.0	3.0 2.0	
Arrival type	311		3	<u> </u>	3								5	5	5	5	
	on.		3.0		3.0	ᅥ			╅				3.0	3.0	3.0	3.0	
			5	<u> </u>	0.0	\dashv	5		+		5		10	80	10.0	0.0	
Lane Width			12.0		12.0	7			╅		Ť		12.0	12.0	12.0	12.0	
	de/Parking		N	0	N	+	N		\top	N	٨	,	0	N	N	0	N
Parking/hr	do, r da mang					\dashv			+					+	+	+ -	
Bus stops/h	<u></u> r		0		0	\dashv			+				0	0	0	0	\vdash
	 		3.0	 	3.0	\dashv			十	_			3.0	3.0	3.0	3.0	
Phasing		02	L	03		一	04	<u> </u>	SB	Only	<u>, </u>	Th	ru & R		07		8
		G =		G =		G		- ,		32.0			= 54.2			G =	<u></u>
Timing		Y =		Y =		Υ	=			4.7			= 7	Υ	=	Y =	
Duration of A	Analysis (hrs) = 0.28	5									Су	de Ler	ngth C	= 125.	0	
Lane Gro	up Capaci	ty, Co	ntrol	Dela	y, a	nd	LOS	Det	teri	mina	atio	on				•	
			EB				WE	3					NB			SB	
Adj. flow rate	e	703	\neg	385								168	88 8	555	580	1686	
Lane group	cap.	577		266							1	215	59 <i>6</i>	360	852	3649	
v/c ratio		1.22		1.45	1							0.7	8 0),84	0.68	0.46	
Green ratio	····	0.17		0.17	\top			十		1	寸	0.4	3 0	0.43	0.25	0.72	
Unif. delay o		52.0		52.0							┪	30.	9 3	32.1	42.5	7.4	
Delay factor	k	0.50	1	0.50			1			<u>† </u>	寸	0.3	3 0	0.38	0.25	0.11	1
Increm. dela	ıy d2	113.4		221.2	?					†	\exists	1.9	9 !	9.6	2.2	0.1	
PF factor		1.000		1.000	7				•	 		0.5	06 0	.506	0.780	0.178	
Control dela	У	165.4		273.2	?		1				┪	17.	6 2	25.8	35.4	1.4	
Lane group	LOS	F		F								В		С	D	Α	
Apprch. dela	ау	2	03.5		1		•				7	9.6	3			10.1	•
Approach L0	os		F									В	•			В	
Intersec. del	lay		51.5					Int	erse	ection	n LO	os				D	
HCS2000 TM		-	Cor	yright © 2	2000 U	Inive	rsity of F	lorida.	A11 R	lights F	Leser	ved			•	V	ersion 4.1f

					SH	ORT	R	EP	OR'	Т						•		
General Inf	ormation									matie	on							
Analyst			SAI				ı	iters			Ε	L C	AMINC	DR		_	IZA	
Agency or C Date Perfor			SAI 03/12					rea ⁻ urisd					All of CAF					
Time Period			PEAK				1					E	CAF XISTIN				-	
	•						<u> </u> A	naly	SIS Y	Year				OJI				
Volume an	d Timing I	nput																
				EB			-	W			╀-	_	NB		_	1 ~	SB	L 5-
Ni eft en			LT	TH	RT	L		TH	╧	RT	L		TH	R		LT	TH	RT
Num. of Lar	ies		1	1	1	1	-	1	<u>+</u>	1	2		3	0		2	3	0
Lane group			L	LT	R	L		LT		R	L		TR			L	TR	
Volume (vpl % Heavy vo			44	3	15 1	42	-	16 1	+	79 1	34		771 2	48	_	204 1	1117 2	97
PHF	<u> </u>		0.95	0.95	0.95	0.9	5	0.9	5 (0.95	0.9		0.95	0.9	-	0.95	0.95	0.95
Actuated (P	/A)		Α	A	A	A	_	A		A	A		A	A		A	A	A
Startup lost	time		2.0	2.0	2.0	2.0)	2.0		2.0	2.	0	2.0			2.0	2.0	
Ext. eff. gree	en		2.0	2.0	2.0	2.0	_	2.0		2.0	2.		2.0			2.0	2.0	
Arrival type	<u>,</u>		4	4	4	4		4	4	4	5		5			5	5	
Unit Extensi			3.0	3.0	3.0	3.0	_	3.0)	3.0	3.		3.0			3.0	3.0	
Ped/Bike/R	ΓOR Volum	e	5	5	0	5		5	_	0	5	_	5	0		5	5	0
Lane Width	d = //D = 1.1 · ·		12.0	12.0	12.0	12.		12.0	-	12.0	12.		12.0	<u> </u>		12.0	12.0	
Parking/Gra	ide/Parking		N	0	N	N		0	-	N	\ \		0	Ν		N	0	N
Parking/hr						+-		_	+		 							
Bus stops/h			0	0	0	0		0	+	0	0		0			0	0	
Unit Extensi		1 14/5	3.0	3.0	3.0	3.0	_	3.0		3.0	3.		3.0			3.0	3.0	<u> </u>
Phasing	EB Only		Only 10.0	03 G =	3	G =	04			ccl. Le	_		ru & R		G =	07	G =	08
Timing	G = 10.0 Y = 5	Y =		Y =		Y=				= 14. = 5	.0		= 65.0 = 6	_	<u>σ =</u> Y =		Y =	
Duration of						<u> </u>			<u>'</u>				ele Len			120.		
Lane Gro				l Dela	ıv. aı	nd L	0	S De	etei	rmin	ati							
	-11	<u> </u>	EB		1			/B					NB		• •		SB	
Adj. flow rat	e	46	3	16	37	,	24		83	, 	36		863	Т		215	1278	<u> </u>
Lane group		149	157	309	149		15		373		405		2723	+		405	2714	
v/c ratio		0.31	0.02	0.05	0.2	-	0.1		0.2	\rightarrow	0.09		0.32	\dagger		0.53	0.47	
Green ratio		0.08	0.08	0.20	0.0	-	0.0		0.2		0.12		0.54	+		0.12	0.54	+
Unif. delay o		51.7	50.5	38.8	51.		51.		36.		47.3		15.2	╁		49.9	16.9	_
Delay factor	·k	0.11	0.11	0.11	0.1		0.1	1	0.1	\rightarrow	0.11		0.11	╁		0.13	0.11	
Increm. dela	 ay d2	1.2	0.0	0.1	0.9	,	0.5	5	0.3	3	0.1		0.1	T		1.3	0.1	
PF factor		1.000	1.000	1.000	1.00	00	1.00	00	1.00	00 0	0.91	2	0.212	T		0.912	0.212	
Control dela				38.9	52.	4	51.	5	36.	8	43.2)	3.3			46.9	3.7	
Lane group	LOS	D	D	D	D		D		D		D		Α			D	Α	
Apprch. dela	ay	49	9.4			43.	.2					4	.9				9.9	
Approach Lo	os	I	ס			D)			\Box		,	4				Α	
Intersec. de	lay	11	1.0					lr	nters	sectio	n L	วร					В	
TogganoaTM			-	nyright (1)	2000 TT		c	T33 . T	4.11	D: 1.	-						-	ergion 4.1

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

		······································			SH	ORT	REF	2 0	RT							
General Inf	ormation				•		Site	Inf	ormati	on						
0 1			0.41		20		Inter	sec	ction	Ε	L C	AMINO		L@ PLA	AZA	
Analyst Agency or C	co.		SAI SAI				Area					All of	DR. her ar	eas		
Date Perfor			03/12				Juris						RLSB/			
Time Period	ı	PM	PEAK				Anal	vsi	s Year		E			THER +	F	
Walana a	al Tiradia as la	4										PR	OJEC	1		
Volume an	a timing ii	nput	Γ	EB		1	١/	VΒ		Т		NB		T	SB	
			LT	TH	RT	LT		$\frac{7D}{H}$	RT	\dagger	.T	TH	RT	LT	TH	RT
Num. of Lan	es		1	1	1	1	_	1	1	2	?	3	0	2	3	0
Lane group			L	LT	R	L	L	Τ	R	L		TR		L	TR	<u> </u>
Volume (vpł	າ)		437	30	68	53	2	5	187	6	1	1440	36	360	1082	297
% Heavy ve	eh		1	1	1	1		1	1	1		2	1	1	2	1
PHF			0.95	0.95	0.95	0.95	_		0.95	0.9	_	0.95	0.95	0.95	0.95	0.95
Actuated (Pa			Α	Α	Α	Α		_	Α	P		Α	Α	A	Α	Α
Startup lost			2.0	2.0	2.0	2.0	2.		2.0	2.		2.0		2.0	2.0	
Ext. eff. gree	∍n		2.0	2.0	2.0	2.0		.0	2.0	2.		2.0	<u> </u>	2.0	2.0	
Arrival type Unit Extensi			<i>4</i> 3.0	3.0	<i>4</i> 3.0	3.0	$\overline{}$	<u>4</u> .0	3.0	3.		5 3.0		3.0	5 3.0	\vdash
Ped/Bike/RT		e	5	5	0	5	- 1 3		0	5.		5	0	5	5	0
Lane Width	011 7010111		12.0	12.0	12.0	12.0	_	_	12.0	12		12.0		12.0	12.0	Ť
Parking/Gra	de/Parking		N	0	N	N	_	0	N	٨		0	N	N	0	N
Parking/hr																
Bus stops/hi	ſ		0	0	0	0	(0	0	()	0		0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0	3	.0	3.0	3.	0	3.0		3.0	3.0	
Phasing	EB Only		Only	03	3		4	_	Excl. L		_	ru & R	_	07		08
Timing .	G = 20.0 Y = 5	G =		G =		G =		_	G = 16	.0		= <i>59.0</i> = 6			G =	
Duration of A	<u> </u>	Y = 0.2		Υ =		Y =			Y = 5			= 6 cle Len	Y =		Y =	
Lane Gro				l Dela	av ai	nd I (os r)ef	termir	nafi	بياسما	olo Lon	91110	700,	0	
	ap oupar	J. (j, 0	EB		1		WB			10101	<u> </u>	NB			SB	
Adj. flow rate	e	230	262	72	36	<u> </u>	46	1	197	64		1554	T	379	1452	$\overline{}$
Lane group		275	277	431	192	-	198	+	418	427		2294	+	427	2225	-
v/c ratio		0.84	0.95	0.17	0.1		23			0.15		0.68	+	0.89	0.65	
Green ratio		0.15	0.15	0.28	0.1),11			0.12		0.45		0.12	0.45	
Unif. delay o		53.4	54.5	35.6	52.	-+	3.1	+	39.8	50.9		28.0		56.1	27.5	_
Delay factor		0.37	0.46	0.11	0.1	-).11	+		0.1:		0.25	+	0.41	0.23	_
Increm. dela		19.7	39.6	0.2	0.5		0.6		0.8	0.2		0.8		19.7	0.7	
PF factor	-	1.000	1.000	1.000			.000	-		0.90		0.446		0.906	0.446	3
Control dela	y	73.1	94.1	35.8	53.		3.7	╬	10.6	46.3		13.3		70.6	13.0	+
Lane group		E	F	D	D	-	D	┿	D	D		В	1	E	В	\top
Apprch. dela		78	3.1	<u> </u>		44.4	4				1	4.6	•		24.9	
Approach L0	os	1	E			D						В			С	
Intersec. del			9.3		1			Inte	ersectio	on L					С	
HCS2000 TM		1	Co	iakt @	2000 11	niversitu			All Rights					1		ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORTI	REP	OF	₹T							
General Inf	formation				,	(Site I	nfo	ormat	ion						
Analyst Agency or 0 Date Perfor Time Period	med	U- 06/0	SAI SAI 03/12 PEAK				Inters Area Jurisd Analy	Ty _l lict	ре	,		All ot CAI XISTIN	RON F ther are RLSBA	RD. eas ND THER +	-	
Volume ar	nd Timing In	put												<u> </u>		
				EB			W	В				NB			SB	
			LT	TH	RT	LT	T⊦	1	RT		LT	TH	RT	LT	TH	RT
Num. of Lar	nes		1	2	0	1	2		0	\perp	2	3	0	2	3	0
Lane group			L	TR		L	TF	?			L	TR		L	TR	
Volume (vp			52	32	98	134	46	Ì	108	1	07	709	93	88	956	126
% Heavy v	eh		1	1	1	1	1		1		1	2	1	1	2	1
PHF			0.95	0.95	0.95	0.95	0.9	5	0.95	0	.95	0.95	0.95	0.95	0.95	0.95
Actuated (P			Α	Α	Α	Α	Α		Α	_	Α	Α	Α	Α	Α	Α
Startup lost			2.0	2.0		2.0	2.0		<u> </u>		2.0	2.0		2.0	2.0	
Ext. eff. gre	en		2.0	2.0		2.0	2.0)		4	2.0	2.0		2.0	2.0	
Arrival type			4	4	<u> </u>	4	4	_	 	-	5	5		5	5	
Unit Extens			3.0	3.0	_	3.0	3.0	,		+	3.0	3.0		3.0	3.0	
	TOR Volume		5	40.0	0	5	10	_	0	╁	5	5	0	5	5	0
Lane Width	ada /Dankina		12.0	12.0		12.0	12.	_		-	2.0	12.0		12.0	12.0	1
Parking/Gra	ide/Parking		N	0	N	N	0	,	N	+	N	0	N	N	0	N
Parking/hr	_					<u> </u>	+_			+		<u> </u>				
Bus stops/h			0	0		0	0			+	0	0		0	0	ļ
Unit Extens			3.0	3.0	<u></u>	3.0	3.0				3.0	3.0		3.0	3.0	<u> </u>
Phasing	Excl. Left	Thru		03	3	04		_	Excl. L			ru & R	_	07)8
Timing	G = 12.0 Y = 5	G = .		G = Y =		G = Y =		_	$\dot{s} = 14$ $\dot{s} = 5$	<i>1.0</i>		= 61.0 = 6	G =		G = Y =	
Duration of	Analysis (hrs			1		Ι			- 3		_	cle Len				
	ир Сарас			l Dela	iv. ai	nd LO	S D	ete	ermi	nat		DIO EOIT	9070	720.		
Lano Oro	ир очрио	., c	EB	- DOIC	.y, α.		VB		<u> </u>	iiu		NB		·	SB	
Adj. flow rat		55	137		14		62	Т		113	1	844	1	93	1139	<u> </u>
Lane group		179	318	_	17		20	╁		405		2533		<i>4</i> 05	2532	
	сар.		-	_	+-			╀								
v/c ratio		0.31	0.43		0.7		51	╀		0.28	\rightarrow	0.33		0.23	0.45	
Green ratio		0.10	0.10		0.1		10	┡	_	0.12	\rightarrow	0.51		0.12	0.51	
Unif. delay o		50.1	50:8	_	52.		1.2	L		48. <i>4</i>		17.5		48.1	18.8	
Delay factor	· k	0.11	0.11	<u> </u>	0.3		11	<u> </u>	().11		0.11		0.11	0.11	
Increm. dela	ay d2	1.0	0.9		20.	5 1	.3	L		0.4		0.1		0.3	0.1	
PF factor	<u> </u>			0	1.00	00 1.0	000	L	0	.91	2 (0.311		0.912	0.311	
Control dela	ıy	51.1	51.7		73.	3 52	2.5		4	14.5		5.5		44.2	6.0	
Lane group	LOS	D	D		E		D			D		Α		D	Α	
Apprch. dela	ay		51.6			62.2					10.	1			8.9	
Approach L	os		D		T	Е					В				Α	
Intersec. de	lay	1	18.4				In	iter	rsectio	on L	.os				В	
HCS2000 TM			Co	vpvright @	2000 11	niversity c	f Florid	ο Δ	II Diaht	n Dac	harrad				37	ersion 4.1f

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

					SHO	ORT F	REP(RT	-			· · · · · · · · · · · · · · · · · · ·				
General Inf	ormation					s	ite Ir	forn	natio	on						
Analyst Agency or C Date Perfori Time Period	med	U 06/	SAI SAI 03/12 PEAK			۵ J	nterse vrea T urisdi vnalys	ype ctior	ו			MAR. All ot CAF (ISTIN)	RON her a RLSB G + 0	reas AD OTHER :		
Volume an	d Timing In	nut				<u> </u>						PR	OJE	<u> </u>		
Volume an	a mining in	Jut	<u> </u>	EB			WE	}		1		NB			SB	
			LT	TH	RT	LT	TH		RT	L	Г	TH	RT	LT	TH	RT
Num. of Lar	nes		1	2	0	1	2		0	2		3	0	2	3	0
Lane group			L	TR		L	TR			L		TR		L	TR	
Volume (vpl	٦)		239	149	200	215	116	1	76	249)	1171	138	242	833	196
% Heavy ve	eh		1	1	1	1	1		1	1		2	1	1	2	1
PHF	(a)		0.95	0.95	0.95	0.95	0.95	_	.95	0.9	5	0.95	0.95		0.95	0.95
Actuated (Pa			A	A 2.0	Α	A 2.0	A 2.0	+	<u> </u>	A 2.0	\vdash	A 2.0	Α	A 2.0	A 2.0	A
Startup lost Ext. eff. gree			2.0 2.0	2.0		2.0	2.0	+		2.0		2.0		2.0	2.0	
Arrival type	J11		4	4	<u></u>	4	4	+		5		5		5	5	
Unit Extensi	on		3.0	3.0		3.0	3.0	十		3.0	,	3.0		3.0	3.0	
Ped/Bike/R1	TOR Volume		5		0	5	1	+	0	5		5	0	5	5	0
Lane Width			12.0	12.0		12.0	12.0			12.	0	12.0		12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0		N	N		0	Ν	N	0	Ν
Parking/hr																
Bus stops/h	r		0	0		0	0			0		0		0	0	
Unit Extensi	on		3.0	3.0		3.0	3.0			3.0)	3.0		3.0	3.0	
Phasing	Excl. Left		& RT	03	3	04		Exc	d. Le	eft	Thi	ru & R7		07		08
Timing	G = 23.0	G =		G =		G =			16.			50.0	G		G =	
	Y = 5 Analysis (hrs	Y =		Y =	<u>.</u> 1	Y =		Y =	5		Y =	le Leng	Y Th C		Y =	
	up Capaci			I Dale	or	41 O	e Da	tor	min		_	ie reili	Juic	<i>– 130.</i>	U	, i
Lane Gio	up Capaci	ity, C	EB	Dela	ay, an	id LO.		teri	13 (13 / 1	auc		NB		1	SB	
Adj. flow rate		252	368		226					62		378		255	1083	1
		304	606		304				-	02 11	+	370 848		411	1823	+
Lane group v/c ratio	υα μ .	0.83	0.61	_	0.74					64	+	040 0.75		0.62	0.59	
Green ratio		0.63	0.01		0.17					12	+	0.37		0.02	0.37	
Unif. delay o		54.1	50.5		53.2				-	6.7	-	7.0		56.6	34.3	
Delay factor		0.37	0.19		0.30				-	22	┿	0.30		0.20	0.18	+
Increm. dela		17.2	1.8	_	9.5				-	3.3	+	1.7		2.9	0.70	
PF factor	·	1.000		_	1.00		000		_	910	+-	.608		0.910	0.608	+
Control dela	у	71.3	52.3		62.7				-	4.9	+	4.2		54.4	21.4	
Lane group		E	D		E	L				D	Ť	С		D	С	
Apprch. dela			60.0			55.5		<u> </u>			29.	1			27.7	
Approach L0	os		E		1	E			1		С			1	С	
Intersec. del	ay	,	36.7				In	erse	ection	n LO	s				D	
HCS2000 TM	-	<u> </u>		pyright ©	2000 Un	iversity of									v	ersion 4.1

		*****			SH	ORT I	REP	OF	. Т								
General Inf	ormation								rma	tion)	* w • · · · · · · · · ·		·			
Analyst Agency or 0 Date Perfor Time Period	Co. med	U. 06/0	SAI SAI 03/12 PEAK			,	nters Area Juriso	ect Typ	tion be		Ė	EL CAM CARLS All ot CARLS XISTIN PR	SB. he BA G	AD \ r are \D-II	VILL. eas NT.#6 THER +	-	
Volume an	nd Timing In	put															
			LT	EB	RT	LT	W T TI		RT	+	LT	NB TH	Π	RT	LT	SB TH	RT
Num. of Lar	nes		1	2	0	1	2		0	T	1	3	Γ	0	1	3	0
Lane group			L	TR		L	TF	₹		十	L	TR	T		L	TR	
Volume (vpl			131	99	109	97	50	7	143	;	93	610	1	31	100	970	65
% Heavy v	eh		1	1	1	1	1		1		1	2	_	1	1	2	1
PHF	10.		0.95	0.95	0.95	0.95	0.9		0.95	5 (0.95	0.95	_	95	0.95	0.95	0.95
Actuated (P Startup lost			A 2.0	A 2.0	A	2.0	2.0		Α	\dashv	A 2.0	A 2.0	ŀ	<u> </u>	A 2.0	A 2.0	Α
Ext. eff. gre			2.0	2.0		2.0	2.0				2.0 2.0	2.0	Ͱ		2.0	2.0	
Arrival type			4	4		4	4	_		十	5	5	╁		5	5	
Unit Extens	ion		3.0	3.0		3.0	3.0		İ	十	3.0	3.0	T		3.0	3.0	
	TOR Volume	!	5		0	5	+	_	0	十	5	5	H	0	5	5	0
Lane Width			12.0	12.0		12.0	12.	0		1	12.0	12.0	Г		12.0	12.0	<u> </u>
Parking/Gra	de/Parking		N	0	N	N	0)	Ν	寸	Ν	0		N	N	0	Ν
Parking/hr													Γ				
Bus stops/h	r		0	0		0	0			一门	0	0	Г		0	0	
Unit Extens	ion		3.0	3.0		3.0	3.0	o		寸	3.0	3.0	Г		3.0	3.0	
Phasing	Excl. Left	Thru	& RT	03	3	04	ļ .	E	Excl.	Left	: Th	nru & R	Г		07		08
Timing	G = 17.0 Y = 5	G = Y = .		G = Y =		G = Y =			i = 1 $i = 5$	4.0		= 48.0 = 6		G = Y =		G = Y =	
Duration of	<u>Γτ = σ</u> Analysis (hrs			Υ =		Υ =		<u> </u>	- o		_	cle Len	oth				,
	up Capac	<u> </u>		l Dela	av aı	nd I O	S D	۵te	armi	ina			9.		100.		
Lanc Old	up Cupac	ity, C	EB	DOIL	1 y , a.		VB		<u> </u>	ıııa		NB				SB	
Adj. flow rat		138	219	~Т	10		85	\top		98		675	Т		105	1089	
								┿			-		Ͱ			+	-
Lane group v/c ratio	сар.	234 0.59	762 0.29	-	23 ⁴	_	99 86	╁	\dashv	192 0.5	-	1859 0.36	┝		192 0.55	1855 0.59	
Green ratio	·	0.13	0.23		0.1		23	+		0.1		0.37	┢		0.11	0.37	
Unif. delay		53.2	41.2		52.		7.9	+		54.	-	29.9	H		55.0	33.0	
Delay factor		0.18	0.11		0.1		39	\dagger		0.1	-	0.11	t		0.15	0.18	+
-		3.9	0.2		1.3	-+	.2	T		2.3	-	0.1	t		3.3	0.5	
PF factor			1.00	0	1.00	00 1.	000	1	(0.92	20 (0.610	T		0.920	0.610	
Control dela	ay	57.1	41.4		53.	4 5	7.2	T		52.	6	18.3	T		53.8	20.6	
Lane group	ne group LOS E				D		E	Τ		D		В			D	С	
Apprch. dela	ay		47.5		\top	56.7					22	.7	_		·	23.5	1
Approach L	os		D			E					C	;				С	
Intersec. de	lay	3	34.5				Ir	ıter	rsecti	ion	LOS					С	
rzagonooTM						niversity c			11.75.1	. 5							arcion 41

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

			SH	ORT F	REP	OR	₹T							
General Information				S	ite Ir	nfo	rmati	on						
Agency or Co. Date Performed 06	USAI USAI VO3/12 1 PEAK			J J	nterse trea T urisd	Гур icti	oe .		(CARLS XISTIN	SBAD her are BAD-II	VILL. eas NT.#6 THER +	-	
Volume and Timing Input						•								•
		EB			W			\perp		NB			SB	
Num. of Lanes	LT 1	TH 2	RT 0	LT 1	Th	╣	RT 0	+	_T 1	TH 3	RT 0	LT 1	TH 3	RT 0
			-	+	-		-		-		"	+	1	"
Lane group Volume (vph)	165	TR 257	130	56	7R 202		157		<u>.</u> 53	TR 1279	79	202	TR 879	136
% Heavy veh	105	1	130	1	1		157		<u> </u>	2	1	1	2	130
PHF	0.95	0.95	0.95	0.95	0.95	5	0.95		95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)	Α	Α	Α	Α	Α		Α	/	4	Α	Α	Α	Α	Α
Startup lost time	2.0	2.0		2.0	2.0	_			.0	2.0		2.0	2.0	
Ext. eff. green	2.0	2.0		2.0	2.0	_		_	.0	2.0		2.0	2.0	
Arrival type Unit Extension	3.0	<i>4</i> <i>3.0</i>		3.0	3.0	\dashv		_	.0	5 3.0		5 3.0	5 3.0	
Ped/Bike/RTOR Volume	5	3,0	0	5	3.0		0		.u 5	5	0	5	5.0	0
Lane Width	12.0	12.0	ا	12.0	12.0	,		_	2.0	12.0	<u> </u>	12.0	12.0	
Parking/Grade/Parking	N	0	N	N	0	\dashv	N	_	V	0	N	N	0	N
Parking/hr					1			1			<u> </u>	 		
Bus stops/hr	0	0		0	0			1	0	0		0	0	
Unit Extension	3.0	3.0		3.0	3.0	,		3	.0	3.0		3.0	3.0	
Phasing Excl. Left Thr	u & RT	00	3	04		Ē	xcl. L	eft	Th	ru & R	Г	07	()8
limina (18.0	G =		G =			= 20	.0		= 54.0	G =		G =	
Duration of Analysis (hrs) = 0		Y =		Y =		Υ	= 5			= 6 cle Len	Y =		Y =	
		l Dala		24 I O	e D.	.+.	rmir	. o t		de Len	gui C -	- 130.	J	
Lane Group Capacity, (FB		ay, aı		<u>з De</u> /В	, LE	#	Idli	OII	NB			SB	-
Adi flavorata 470						т		164	—т		Γ	040	F	
Adj. flow rate 174	-		59		78	-		161		1429		213	1068	
Lane group cap. 234			234		33	┝		275	-	2088		275	2063	
v/c ratio 0.74		_	0.2		32	\vdash		0.59	-+	0.68		0.77	0.52	
Green ratio 0.13	_	-	0.13 50.8		14	\vdash		0.15		0.42		0.15	0.42	1
Unif. delay d1 54.4					.4	\vdash		1.1	-+	31.0		52.8	28.3	
Delay factor k 0.30			0.1		36			0.18	-+	0.25		0.32	0.12	
Increm. delay d2 12.1	_	-+	0.6		0.9	\vdash	-+	3.2	-	0.9		12.9	0.2	
PF factor 1.00	_	_	1.00		000	-		.879		0.526		0.879	0.526	
Control delay 66.5	70.4 E	<u>'</u>	51.4		.3		-	8.2	\dashv	17.3		59.4	15.1	
Lane group LOS E Apprch. delay	69.2		D	63.4	<u> </u>			D	20.	<i>B</i>		E	В 22.5	
	•	+	63.4 E											
Approach LOS	pproach LOS E ntersec. delay 33.2								000	· · · · · · · · · · · · · · · · · · ·			C	
Intersec. delay			niversity o			sectio					<u></u>	C	ersion 4.11	

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

	· · · · · · · · · · · · · · · · · · ·				SHC	ORT R	EPO	DR.	T								
General Inf	ormation					Si	ite In	for	matio								
Analyst Agency or C Date Perfort Time Period	med	U: 06/0	SAI SAI)3/12 PEAK			Ai Ju	terse rea T urisdi nalys	ype ctio	n	VIS		All oth OCE, ISTING	O R ner a ANS	D, ireas IDE DTHE		PEL	
Volume an	d Timing In	put						•	•				•			•	
				EB			W			<u> </u>		NB				SB	
Num. of Lan	00		LT 1	TH 2	RT 0	LT 1	T⊦ 2	╬	RT 0	L 1	<u> </u>	TH 1	R 0	╬	<u>LT</u> 1	TH 1	RT 1
	69		<u>'</u>	TR	·	 	TR	. +				TR	Ľ	-	<u>'</u> L	TR	R
Lane group			203	150	29	61	178		171	13		2	10		<u>L</u> 343	23	343
Volume (vpl % Heavy ve		·	203	2	29	2	2	' +	2	2		2	2	_	2	23	2
PHF	711		0.93	0.93	0.93	0.93	0.93	3 (0.93	0.9		0.93	0.9		<u>-</u> .93	0.93	0.93
Actuated (P	'A)		Α	Α	Α	Α	Α		Α	Α		Α	Α		Α	Α	Α
Startup lost			2.0	2.0		2.0	2.0			2.0		2.0			2.0	2.0	2.0
Ext. eff. gree	en		2.0	2.0		2.0	2.0			2.0		2.0	_	_	2.0	2.0	2.0
Arrival type Unit Extensi			5	5		5	5			3		3 3.0			5	3.0	<i>5</i>
Ped/Bike/R1			3.0 5	3.0 10	0	3.0 5	3.0 10		0	3.0 5		10	0		3.0 5	10	0
Lane Width	Oly volume	,	12.0	12.0		12.0	12.0	_	0	12.		12.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2.0	12.0	12.0
Parking/Gra	de/Parking		N	0	N	N	0	-+	N	N		0	N		<u>N</u>	0	N
Parking/hr							Ť			Ħ				1	-		
Bus stops/hi			0	0		0	0			0		0		十	0	0	0
Unit Extensi			3.0	3.0		3.0	3.0	,		3.0	0	3.0		1	3.0	3.0	3.0
Phasing	Excl. Left	Thru	& RT	03	3	04		Εx	cl. Le	ft	Th	ru & R	Γ	07	7		08
Timing	G = 15.0	G =		G =		G =			= 25.			= 20.0		; =		G =	
	Y = 5	Y = 3		Υ =	<u> </u>	Υ =		Υ =	<u> 5</u>		-	= 5	_	<u> </u>	400	Y =	
Duration of				I Dala		41.0	<u> </u>	. 4	!			le Len	gın c	<i>,</i> =	100.	U	
Lane Gro	up Capac	ity, C		Dela	ay, an			etei	rmin T	atic		יבי		1			
7			EB		<u> </u>	WE			+		1	iB				SB	
Adj. flow rate		218	192		66	375	-		14		╄-	3		369	-	198	196
Lane group	cap.	266	687		266	641	-		44.		-	17		443	-	309	301
v/c ratio		0.82	0.28		0.25	0.59	\rightarrow		0.0		╄	04		0.83	\rightarrow).64	0.65
Green ratio		0.15	0.20		0.15	0.20	2		0.2	5	0.	20		0.28		0.20	0.20
Unif. delay o	l1	41.2	33.9		37.5	36.2	2		28.	3	32	2.3		35.8	5	36.7	36.8
Delay factor	k	0.36	0.11		0.11	0.18	8		0.1	1	Ō.	11		0.37	7 (0.22	0.23
Increm. dela	y d2	18.1	0.2		0.5	1.4			0.0)	0	.1		12.8	8 T	4.4	4.9
PF factor		0.882	0.833	3	0.882	0.83	33		1.00	00	1.0	000		0.77	78 1	.000	0.833
Control dela	у	54.4	28.5		33.6	31.0	6		28.	4	32	2.3		40.4	4 4	41.1	35.6
Lane group	group LOS D C				С	С			С		1			D		D	D
Apprch. dela	pprch. delay 42.3									3	0.3	•		1	3	9.4	
Approach L0			С					С					D				
Intersec. del		D 7.9				Inte	erse	ction					t^-		D		
HCS2000 TM		<u> </u>		vovright @	2000 Ha	iversity of											Version 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

					SH	ORTR	EPC	RT	•							
General Inf	ormation	·				S	ite In	form	natio							
Analyst Agency or C		U.	SAI SAI			A	terse rea T	уре		VIS	All o	RO the	RD. r are	as	DEL	
Date Perfor			03/12 PEAK			1	urisdio nalys			i	EXISTIN	G ·	NSID + OT JECT	HER +	-	
Volume an	d Timing In	put														
		•		EB			WE				NB		D.	. ~	SB	
Num. of Lar			LT 1	TH 2	RT 0	LT 1	TH 2	_	RT 0	LT 1	TH 1	╀	RT 0	LT 1	TH 1	RT 1
	162			TR	-	L	TR	+		L	TR	┿	0		TR	R
Lane group	-1		L 470		<u> </u>		1		20			4				
Volume (vpl % Heavy v			473 2	450 2	9	11	321 2		20 2	26 2	31 2	+	8 2	272 2	8	308 2
PHF	711		0.96	0.96	0.96	0.96	0.96		.96	0.96		10	.96	0.96	0.96	0.96
Actuated (P.	/A)		A	A	A	A	A	_	A	A	A	_	A	A	A	A
Startup lost			2.0	2.0	 	2.0	2.0	╁	, ,	2.0	2.0	\dagger		2.0	2.0	2.0
Ext. eff. gree			2.0	2.0		2.0	2.0			2.0	2.0	T		2.0	2.0	2.0
Arrival type			5	5		5	5			3	3			5	3	5
Unit Extensi			3.0	3.0		3.0	3.0			3.0	3.0	İ		3.0	3.0	3.0
Ped/Bike/R	FOR Volume)	5	10	0	5	10		0	5	10		0	5	10	0
Lane Width			12.0	12.0		12.0	12.0	_		12.0		1		12.0	12.0	12.0
Parking/Gra	de/Parking		Ν	0	N	N	0		Ν	Ν	0	4	Ν	N	0	N
Parking/hr							ļ			ļ		_			ļ	<u> </u>
Bus stops/h			0	0		0	0	_		0	0	_		0	0	0
Unit Extensi			3.0	3.0	<u> </u>	3.0	3.0			3.0				3.0	3.0	3.0
Phasing	Excl. Left	_	& RT	03	3	. 04			d. Le		Thru & F			07		08
Timing	G = 33.0 Y = 5	G = Y =		G = Y =		G = Y =		G = Y =	19.0		6 = 16.0 $6 = 5$		G = Y =		G = Y =	
Duration of a		•	_	•					<u> </u>		ycle Ler	ngti				
	ир Сарас			l Dela	ay, ar	nd LO	S De	teri	min	atio	n		-			
			EB		Ī	WE					NB				SB	
Adj. flow rat	е	493	478		11	667	7		27	.	40		2	283	159	170
Lane group	сар.	517	782	Ì	517	709)		298	3	254		2	98	213	210
v/c ratio		0.95	0.61		0.02	0.94	4		0.0	9	0.16		0	.95	0.75	0.81
Green ratio	·	0.29	0.22		0.29	0.2	2		0.1	7	0.14		0	.17	0.14	0.14
Unif. delay o	11	39.2	39.6		28.5	43.	3		39.	7	42.6		4	6.5	46.6	47.0
Delay factor	k	0.46	0.20		0.11	0.4	5		0.1	1	0.11		0	.46	0.30	0.35
increm. dela	y d2	28.2	1.4		0.0	20.6	6		0.1	'	0.3		3	8.7	13.5	20.6
PF factor		0.725	0.811		0.72	5 0.81	11		1.00	00	1.000		0.	865	1.000	0.890
Control dela	у	56.7	33.5		20.7	55.7	7		39.	8	42.9		7	9.0	60.0	62.5
Lane group	LOS	E	С		С	E			D		D		\perp	E	E	E
Apprch. dela	<u>-</u>	4	45.3 55.1 41.6 69.5													
Approach Lo				Ε				Ε)				E			
Intersec. del	lay	5	4.4						tion						D	
HCS2000 TM			Co	nvright ©	2000 Th	niversity of	Florida	All F	?ights l	Reservi	:d				,	Version 4.1f

 $HCS2000^{\mathrm{TM}}$

					SH	ORT F	REP()R	T			•				
General Inf	formation	•				S	ite Ir	for	matic							
Analyst		1.1	SAI			ļ _i	nterse	ectio	on	C	OL		BLVD.	@ VIS	TA	
Analyst Agency or 0	Co.		SAI				rea T	vne	ž.				WAY ther are	286		
Date Perfor			28/12				urisdi						EANSIL			
Time Period	d	AM	PEAK			A	nalys	is Y	/ear		٨		TERM ROJEC			
Volume an	nd Timing I	nput								-		<i></i>	(OJLC)	<u> </u>		1 119
·		•		ΕB	·		WE					NB			SB	
			LT	TH	RT	LT	T⊦		RT	L.		TH	RT	LT	TH	RT
Num. of Lar	nes		2	2	1	2	2	┙	0	1		3	1	2	3	0
Lane group			L	Τ	R	L	TR			L		Τ	R	L	TR	
Volume (vp			44	146	414	532	166		238	17.	2	670	862	68	1449	35
% Heavy v	eh		2	2	2	2	2		2	2	_	2	2	2	2	2
PHF			0.95	0.95	0.95	0.95	0.95	(0.95	0.9	5	0.95	0.95	0.95	0.95	0.95
Actuated (P Startup lost			A 2.0	A 2.0	A 2.0	2.0	2.0	-	Α	A		A 2.0	A 2.0	A 2.0	A	Α
Ext. eff. gre			2.0	2.0	2.0	2.0	2.0			2.0 2.0	$\overline{}$	2.0	2.0	2.0	2.0 2.0	
Arrival type	<u>011</u>		5	5	5	5	5	+		5	-	5	5	5	5	
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0	十		3.0	2	3.0	3.0	3.0	3.0	
Ped/Bike/R		e	5	10	0	5	10	\dagger	0	5	_	10	0	5	10	0
Lane Width	·		12.0	12.0	12.0	12.0	12.0			12.	0	12.0	12.0	12.0	12.0	
Parking/Gra	de/Parking		Ν	0	Ν	N	0		N	Ν		0	N	N	0	Ν
Parking/hr																
Bus stops/h	r		0	0	0	0	0			0		0	0	0	0	
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0			3.0)	3.0	3.0	3.0	3.0	
Phasing	Excl. Left		Only	Thru 8		04			cl. Le			u&R		07	_)8
Timing	G = 4.0	G = Y =		G = 7		G =			= 9.5	_		42.0			G =	
Duration of	Y = 5.6			Y = 6	.4	Y =		Υ =	5.6			6.3	Y = igth C =		Y =	
	up Capa			i Dela	v ar	nd I O	S De	te	rmin			io Lor	igin o	,00.		
<u>Lanc Gro</u>	ир опри		EB	DOIC	.y, u.	W			<u> </u>	utic		NB	,	T	SB	
Adj. flow rat	e	46	154	436	560		-		18	11			907	72	1562	ļ
Lane group		137	248	347	605				16		-		812	327	2123	
v/c ratio		0.34	0.62	1.26	0.93				1.0		-	-	1.12	0.22	0.74	
Green ratio	·	0.04	0.07	0.23	0.18				0.0		┿	-	0.52	0.09	0.42	
Unif. delay o		46.7	45.2	38.5	40.6				45.		┿		23.9	41.8	24.3	
Delay factor		0.11	0.20	0.50	0.44				0.5		╄		0.50	0.11	0.29	
Increm. dela		1.5	4.7	136.9					91.		┼		68.8	0.3	1.4	
PF factor	<u> </u>	0.972	0.950	0.802	_		27		0.9		╄	-	0.313	0.930	0.517	
Control dela				167.8	+			•	133		╄		76.3	39.2	14.0	
	ane group LOS D D			F	E	c			F		+	3	Е	D	В	
Apprch. dela			45.3				5	6.1				15.1				
Approach Lo	-,	,	<u> </u>		1	D			\top		E				В	
Intersec. de	lay	50	0.0				ln	ters	ectio	n LC	S				D	
HCS2000 TM		-	Co	nuriaht (1)	2000 11-	níversity of	f Florida	Δ11	Dighte	Decem	ıad.				37	ersion 4.1f

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REPO	DR'	Т							
General Inf	ormation			· ·		9	ite Ir	for	matic							
Analyst		U	SAI			11	nterse	ectio	n	C	OLLEGE		LVD. 'AY	@ VIS	TA	
Agency or C		U	SAI				∖rea T					the	er are			
Date Perfor			28/12			J	lurisdi	ctio	n				NSID			
Time Period		PM	PEAK			P	Analys	is Y	'ear		EXISTII Pi		+ 01 JECT		•	
Volume an	d Timing I	nput														
			17	EB TH	DT	17	WE		RT	1.4	NB TH		DT	LT	SB	I DT
Num. of Lar	nes		LT 2	2	RT 1	LT 2	TH	\dagger	0	LT 1	3	+	RT 1	2	TH 3	RT 0
Lane group			L	T	R	L	TR			L	T	T	R	L	TR	
Volume (vpl	n)		118	234	421	772	409	1	395	313	1242	†7	741	151	1258	92
% Heavy ve			2	2	2	2	2		2	2	2	┪	2	2	2	2
PHF			0.95	0.95	0.95	0.95	0.95	C).95	0.95	0.95	0	.95	0.95	0.95	0.95
Actuated (P.			Α	Α	Α	Α	Α		Α	Α	Α		Α	Α	Α	Α
Startup lost			2.0	2.0	2.0	2.0	2.0			2.0	2.0		2.0	2.0	2.0	
Ext. eff. gree	en		2.0	2.0	2.0	2.0	2.0	+		2.0	2.0	4	2.0	2.0	2.0	
Arrival type Unit Extensi			5	5 3.0	5 3.0	5 3.0	5 3.0	-		5 3.0	5 3.0	┿	5 3.0	5 3.0	<i>5</i>	
Ped/Bike/R		Α	3.0 5	10	0	5	10	+	0	5.0	10	╫	0	5.0	10	0
Lane Width	OIC VOIGITI		12.0	12.0	12.0	12.0	12.0			12.0	_	1	2,0	12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0	1	N	N	0	Ť	N	N	0	N
Parking/hr												T				
Bus stops/h	r	,	0	0	0	0	0			0	0	T	0	0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0	3.0			3.0	3.0		3.0	3.0	3.0	
Phasing	Excl. Left	_	Only	Thru &		04			cl. L€		NB Onl			u & RT		08
Timing	G = 6.0 Y = 5.6	G = Y =		G = 1 Y = 6		G = Y =			7.0 5.6		G = 5.0 Y = 5.6		_	31.1 6.2	G =	
Duration of				1 – 0	.0	1 —		1 -	- 0.0		ycle Le	nat				
Lane Gro				l Dela	ıv. aı	nd LO	S De	ter	min			٠٠				
			EB		<u>,,</u>	W			T		NB			<u> </u>	SB	
Adj. flow rat	e	124	246	443	813	3 84	47		32	29	1307	78	30	159	1421	
Lane group	сар.	187	322	471	862	2 93	32		28	33	1924	10	66	219	1418	
v/c ratio		0.66	0.76	0.94	0.9	4 0.	91		1.	16	0.68	0.	73	0.73	1.00	
Green ratio		0.05	0.09	0.31	0.2	5 0.	29		0.1	16	0.38	0.	69	0.06	0.28	
Unif. delay o	11	51.0	48.8	37.1	40.	4 37	'.8		46	.2	28.6	10).9	50.6	39.4	
Delay factor	k	0.24	0.32	0.45	0.4	6 0.4	43		0.8	50	0.25	0	29	0.29	0.50	
Increm. dela	relay factor k 0.24 orrem. delay d2 8.5			27.2	18.	4 12	2.6		10	4.9	1.0	2.	.6	11.4	24.4	
PF factor	F factor 0.96.			0.703	0.77	77 0.7	731		0.8	373	0.593	0.1	159	0.955	0.737	·
Control dela	Control delay 57.6			53.3	49.	8 40).3		14.	5.2	17.9	4.	.4	59.7	53.5	
Lane group	ane group LOS E		Ε	D	D)		F	=	В	1	4	Ε	D	
Apprch. dela	54	1.7			44.9				30	0.9				54.1		
Approach Lo	os		D			D					C				D	
Intersec. de	lay	4:	3.2				lr	ters	ectio	n LO	S				D	
HCS2000 TM			Co	nvright @	2000 II	niversity o	f Florid	a A11	Rights	Reserv	ed.				v	ersion 4.11

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

WINT

					SHO	ORT R	EPC	DRT								
General Inf	ormatio	n				Site	e Infe	ormat	Contract of the Contract of th					-		
Analyst Agency or 0 Date Perfor Time Period	med		USAI USAI 8/28/12 M PEAK			Are Jur	ersec ea Ty isdict alysis	ре	0	CEA	W All othe	AY er a E/M ER	areas IITIG M W	ATION	γ.	
Volume an	d Timing	g Input				1										
			17	EB	Грт	1.7	WE		T	LT	NB		RT	LT	SB	T DT
Num. of Lar	100		LT 2	TH 2	RT 1	LT 2	TH 2	R	-	1	TH 3	+	2	2	3	RT 0
11.41.41.41.41.41.41.41.41.41.41.41.41.4	100		L	T	R	L	7	F	_	L	T	t	R	L	TR	۰
Lane group Volume (vpl	2)		44	146	414	532	166	_		72	670	5	362	68	1449	35
% Heavy v			2	2	2	2	2	2		2	2	+	2	2	2	2
PHF	311		0.95	0.95	0.95	0.95	0.95			.95	0.95	0	.95	0.95	0.95	0.95
Actuated (P	/A)		A	Α	Α	A	A	A		A	Α	_	Α	Α	Α	A
Startup lost			2.0	2.0	2.0	2.0	2.0	2.	_	2.0	2.0	_	2.0	2.0	2.0	
Ext. eff. gre	en		2.0	2.0	2.0	2.0	2.0	2.	_	2.0	2.0	1	2.0	2.0	2.0	
Arrival type			5	5	5	5	5	5	_	5	5		5	5	5	
Unit Extens			3.0	3.0	3.0	3.0	3.0	100		3.0	3.0	_	3.0	3.0	3.0	
Ped/Bike/R	TOR Volu	ume	5 12.0	10	0	5	10	12	_	5	10	-	0	5	10	0
Lane Width	arking/Grade/Parking			12.0	12.0 N	12.0 N	12.0	12		2.0 N	12.0	-	2.0 N	12.0 N	12.0	N
Parking/Gra	ide/Farki	N	-	7.0	//	U	- 1	<u> </u>	IV	U	+	IV	7.4	0	17	
Bus stops/h	-	0	0	0	0	0			0	0	+	0	0	0	+	
Unit Extens			3.0	3.0	3.0	3.0	3.0	_		3.0	3.0	+	3.0	3.0	3.0	_
Phasing	Excl. L	oft I W	B Only	Thru		04	0.0		. Left		iru & F	_	1	07		08
5-26-	G = 4.0		= 8.0	G = 7		G =		G =		_	= 42.0		G=		G =	50
Timing	Y = 5.6		= 5.6	Y = 6		Y =		Y =		_	= 6.3		Y =		Y =	
Duration of	Analysis	(hrs) = 0	0.25							Су	cle Ler	ngt	h C =	= 100.	0	
Lane Gro	up Cap	oacity,	Contro	ol Dela	ay, ar	nd LOS	S De	tern	ninat	ion						
	Y		EB			WE	В				NB				SB	
Adj. flow rat	е	46	154	436	560	175	2	251	181	g i	705	9	07	72	1562	
Lane group	сар.	137	248	347	605	731	3	316	168	2	2131	14	118	327	2123	
v/c ratio		0.34	0.62	1.26	0.93	0.24	0	.79	1.08	3 (0.33	0.	64	0.22	0.74	
Green ratio		0.04	0.07	0.23	0.18	0.21	C	.21	0.09) (0.42	0.	52	0.09	0.42	
Unif. delay	d1	46.7	45.2	38.5	40.6	33.2	3	7.7	45.3	3	19.5	1	7.1	41.8	24.3	
Delay factor	·k	0.11	0.20	0.50	0.44	0.11	0	.34	0.50) (0.11	0.	22	0.11	0.29	21
Increm. dela	ay d2	1.5	4.7	136.9	20.4	0.2	1	3.1	91.6	3	0.1	1	.0	0.3	1.4	
PF factor		0.972	0.950	0.802	0.858	0.82	7 0	.827	0.93	0 0	.517	0.	269	0.930	0.51	7
Control dela	ay	46.9	47.7	167.8	55.1	27.6	3 4	4.3	133.	6	10.2	5	5.6	39.2	14.0	
Lane group	LOS	D	D	F	E	С	9.7	D	F		В	,	Α	D	В	-17
Apprch. del	ay	1.	29.9			47.5				20	.3				15.1	
			F			D				C				h	В	
Intersec. de	lay	3	37.7				In	tersec	ction I	os					D	
HCS2000 TM				Copyright ©	2000 Ur	niversity of	Florid	a, All Ri	ights Re	served				1	1	/ersion

WITH/MIT

					SHO	ORTE	REP	OR	T							
General Inf	formation					Sit	e In	form	natio	n						
Analyst Agency or 0 Date Perfor Time Period	med	08	USAI USAI 8/28/12 1 PEAK			Are Jui	erse ea Ty risdic alysi	ype ction		OCE	All o ANSIL XISTIN	WA ther DE/I IG +	Y areas MITIG	ATION		
Volume an	nd Timing	Input														
				EB			W				N	_			SB	T ==
			LT	TH	RT	LT	Th	4	RT	LT		4	RT	LT	TH	RT
Num. of Lar			2	2	1	2	2		1	1	3	-	2	2	3	0
Lane group			L	T	R	L	T	- 5	R	L	T		R	L	TR	
Volume (vp			118	234	421	772	409	9 .	395	313		2	741	151	1258	92
% Heavy v	en		0.95	2 0.95	2 0.95	0.95	0.9	5 /	2	0.98	2 5 0.9	5	2 0.95	2 0.95	2 0.95	0.95
Actuated (P	P/A)		A	A	A	A	A.		A	A	A	1	A	A	A	A
Startup lost			2.0	2.0	2.0	2.0	2.0		2.0	2.0		1	2.0	2.0	2.0	
Ext. eff. gre			2.0	2.0	2.0	2.0	2.0)	2.0	2.0	2.0		2.0	2.0	2.0	
Arrival type			5	5	5	5	5	<u>.</u>	5	5	5	= j	5	5	5	
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0)	3.0	3.0	3.0		3.0	3.0	3.0	
Ped/Bike/R	TOR Volu	me	5	10	0	5	10	_	0	5	10	_	0	5	10	0
Lane Width			12.0	12.0	12.0	12.0	12.	0	12.0	12.0	12.	0	12.0	12.0	12.0	
Parking/Gra	ade/Parkir	ng	N	0	N	N	0		Ν	N	0		N	Ν	0	N
Parking/hr							-									
Bus stops/h	ir		0	0	0	0	0		0	0	0		0	0	0	
Unit Extens	ion		3.0	3.0	3.0	3.0	3.0)	3.0	3.0	3.0		3.0	3.0	3.0	
Phasing	Excl. Le		3 Only	Thru	& RT	04		E	xcl. L	eft	NB O	nly	Thi	ru & RT		80
Timing	G = 6.0		16.0	G = 1		G =			= 7.0		G = 5		_	31.1	G =	
10	Y = 5.6		5.6	Y = 6	5.3	Y =		Υ:	= 5.6		Y = 5.			6.2	Y =	
Duration of				I Dali		-110	C D					eng	jin C -	= 110.	0	_
Lane Gro	up Cap	acity, i		oi Deia	ay, ar		_	ete	rmir	iatic		_		-	0.0	
			EB			W	_	PO.75		751.Yes	NB				SB	
Adj. flow rat	te	124	246	443	813	431	h J	416	3	29	1307		780	159	1421	
Lane group	cap.	187	322	471	862	101	9	444	2	283	1924	1	862	219	1418	3
v/c ratio		0.66	0.76	0.94	0.94	0.42	2	0.94	1	.16	0.68	(0.42	0.73	1.00	
Green ratio		0.05	0.09	0.31	0.25	0.29)	0.29	0	.16	0.38	(0.69	0.06	0.28	
Unif. delay	d1	51.0	48.8	37.1	40.4	31.8	3	38.2	4	6.2	28.6		7.6	50.6	39.4	
Delay factor	rk	0.24	0.32	0.45	0.46	0.11	1	0.45	0	.50	0.25	(0.11	0.29	0.50	
Increm. dela	av d2	8.5	10.4	27.2	18.4	0.3		27.6	10	04.9	1.0		0.2	11.4	24.4	
PF factor		0.962	0.933	0.703	0.777	0.73	1 (0.73	1 0.	873	0.593	0	0.159	0.955	0.73	7
Control dela	ay	57.6	56.0	53.3	49.8	_	_	55.5	_	45.2	17.9	-	1.4	59.7	53.5	-
Lane group		E	E	D	D	С		E	_	F	В		Α	E	D	
Apprch. del		-	4.7			44.4		-	+		29.9		¥/		54.1	_
			D			D			1		С			11	D	
Intersec. de	2.7				Ir	nters	ectio	n LO				1	D	-		
raga oooTM		1	77.5		1	nivercity o		1 1	7.77		T			1		/ercion

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

						SHO	RT RI	ΞP	OR	T							<u></u>
General Inf	ormation						Sit	e Ir	nfor	mati	on						
Analyst Agency or C Date Perfor Time Period	med	US US 08/28 AM P	AI 8/12				Ard Jul	ea ⁻ risd	ection Type iction	Э			OCE STING	OFF-R her are 'ANSID	AM as E "HER -		
Volume an	d Timing In	put			- 4												
				E	В			٧	٧B		\Box		NB			SB	
			LT	Т	+	RT	LT	Ţ	H	RT	1	LT	TH	RT	LT	TH	RT
Num. of Lar	nes		2	0		1	0	()	0	\bot	0	4	0	0	5	0
Lane group	:		L			R							Τ			Τ	
Volume (vpl			549			272							1155			1946	
% Heavy v	eh		2	_		2		<u> </u>			4		2	<u> </u>	<u> </u>	2	
PHF Actuated (P	/Δ)		0.95 A	+	+	0.95 A	 	-			+		0.95 A			0.95 A	
Startup lost			3.0	+	+	3.0	1	\vdash			+		3.0			3.0	\vdash
Ext. eff. gre			2.0	\top		2.0	1	\vdash			十		2.0	1	 	2.0	
Arrival type			3			3		1					5			5	
Unit Extens	ion		3.0		T	3.0		Γ					3.0			3.0	
Ped/Bike/R	TOR Volume		5			0	5										
Lane Width		,	12.0		1	12.0							12.0			12.0	
Parking/Gra	de/Parking		Ν	0		Ν	Ν			Ν		N	0	N	N	0	N
Parking/hr																	
Bus stops/h	r		0			0							0			0	
Unit Extens	ion		3.0			3.0							3.0			3.0	
Phasing	EB Only	02	2		03		04		Th	ru O	nly		06		07)8
Timing	G = 26.0 Y = 5	G = Y =		G = Y =) = ' =			= 62 = 6.3		G =		G = Y =		G = Y =	
Duration of	Analysis (hrs		<u> </u>	<u> </u>		! '			<u></u>	- 0.0	_	_	le Leng		100.		
	up Capaci			l De	lav.	and	LOS	D	ete	rmir	nat					<u> </u>	
	up oupao.	, , ,		В	· • · y ,	T		VB		T			NB		:	SB	
Adj. flow rat	·	578			86				Т	一十		1:	216			2048	T
Lane group		859			96	_			┢	_			174			5218	\vdash
v/c ratio		0.67		-	.72	+	\dashv			\dashv			.29			0.39	+
Green ratio		0.25		_	.25	+	-			\dashv		-	.62			0.62	
Unif. delay	d1	33.8			4.3				<u> </u>			_	3.9			9.7	
Delay factor		0.24	-		.28				 				.11	·.		0.11	T
Increm. dela		2.1	\top		5.4	+				\dashv			0.0			0.0	
PF factor	-	1.000	, 		000	\top	\top			\dashv		0.	131			0.131	T
Control dela	ay	35.9		4	0.7	\top	1					1	1.2			1.3	
Lane group	LOS	D		$\neg \uparrow$	D				<u> </u>				Α			Α	
Apprch. dela	ay		37.5	.4			•	•				1.	2			1.3	-1
Approach L	os		D			┪						A				Α	
Intersec. de	lay		8.9						Inte	rsect	tion	LOS				Α	
HC\$2000TM		* 	C		@ 200	OO I Insin	rersity of I	المحاط	a A 11	Diohe	n D or	houses				V.	ersion 4.

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

						SH	OF	RT RE	PC)R	T							
General Inf	ormation							Sit	e In	for	mat	ion			·			
Analyst Agency or C Date Perfor Time Period	med	US US 08/28 PM P	AI 8/12					Are Jui	erse ea T isdi alys	ype ctio	9	•		All oti OCE KISTING	OFF-R her are 'ANSID	'AM as E 'HER -		
Volume an	d Timing In	put								•								
					ĒΒ				W					NB			SB	
			LT		TH	R	Γ	LT	T.	-	R	-	LT	TH	RT	LT	TH	RT
Num. of Lar	nes		2		0	1		0	0		0	_	0	4	0	0	5	0
Lane group			L			R								T		<u> </u>	T	<u> </u>
Volume (vpl			497	\perp		543	3		ļ			\Box		1799			2032	
% Heavy ve	<u>eh</u>		2	+		2	_		ļ			_	····	2	ļ		2	
PHF Actuated (P	/ / /\		0.95 A			0.9 A	5					+		0.95 A	<u> </u>	<u> </u>	0.95 A	
Startup lost			3.0	+		3.0	<u> </u>		<u> </u>			\dashv		3.0			3.0	
Ext. eff. gree			2.0	+		2.0						\dashv		2.0			2.0	
Arrival type	-		3	十		3	<u></u>					十		5			5	
Unit Extensi	ion		3.0	\top		3.0)		t			\dashv		3.0	<u> </u>	 	3.0	
	ΓOR Volume		5	+		0.0		5	t			十		0.0		 	0.0	
Lane Width			12.0	\top		12.0	0					_		12.0			12.0	
Parking/Gra	de/Parking		N		0	N		N			N	一	N	0	N	N	0	N
Parking/hr				T								寸						
Bus stops/h	r		0	\top		0						十		0	1		0	
Unit Extensi			3.0			3.0)		1			十		3.0			3.0	
Phasing	EB Only	02	?		03	<u> </u>	Т	04		Th	ru C	Only	· [06	•	07	1 0)8
Timing	G = 36.0 Y = 5.2	G = Y =		G = Y =			G Y				= 6: = 5.		G :		G = Y =		G = Y =	
Duration of	LY = 5.∠ Analysis (hrs		5	Υ =			<u> </u>	=		Υ -	- D.	0		le Leng		110		
	up Capaci	<u> </u>		I D	ela:	/ 2	nd	LOS	De	tο	rmi	nai		NO LOIN	<u> </u>	, , , ,		
Latte O10	up Capac	ity, oc		В	Cla	y, a	IIu		/B	- 10		l a	lion	NB			SB	
Adj. flow rat		523		. <u></u>	572				70	-			1	894	<u> </u>		2139	Τ
Lane group		1094		\dashv	504	-		+		\vdash			_	825			4782	
v/c ratio		0.48			1.13					\vdash		\vdash	-	0.50			0.45	
Green ratio		0.32		\dashv	0.32					\vdash				.57			0.57	
Unif. delay o	<u></u> 1	30.2		1	37.5	5				H			1	4.4			13.9	$\overline{}$
Delay factor	· k	0.11			0.50	,							0).11			0.11	
Increm. dela	ay d2	0.3			82.8	,								0.1			0.1	
PF factor		1.000)		1.00	0							0	.132			0.132	
Control dela					120.	3								2.0			1.9	
Lane group	LOS	С			F									Α			Α	
Apprch. dela	ау		77.4										2	.0			1.9	
Approach L	os		Ε										1	1			Α	
Intersec. de	lay		18.1							nte	rsec	ction	i LOS	}			В	
HCS2000TM			C	vovrtio	-k+ @ ?	2000 T	Iniva	rsity of F	lorida	A 11	Righ	fc Da	cerved					ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

<u> </u>					SH	ORT F	REP	OR	T.		,			•		
General Inf	ormation								rmati	on						
A male and			CAI			·]ı	nters	ecti	on	CC	LLEGE			@ PLA	ZA	
Analyst Agency or C	Co.		SAI SAI				rea .				All o	D. the		289		
Date Perfor			28/12				urisc						NSIE			
Time Period		AM I	PEAK						Year		EXISTIN				+	
							пспу	313	i cai		PF	?O.	JEC	Τ		
Volume an	d Timing in	put		ED		1	1.07			1	NID			Į.	CD.	
			LT	EB TH	RT	LT	W Tł		RT	LT	NB TH	I	RT	LT	SB TH	RT
Num. of Lar	ies		1	1	0	1	1		1	1	3	┪~	0	2	3	0
Lane group			L	TR		L	T		R	L	TR	T		L	TR	
Volume (vpl	n)		82	43	64	103	17	, 	228	53	851	3	371	762	1385	71
% Heavy ve			2	2	2	2	2		2	2	2	_	2	2	2	2
PHF			0.95	0.95	0.95	0.95	0.9	5	0.95	0.95	0.95	0.	.95	0.95	0.95	0.95
Actuated (P.			Α	Α	Α	Α	Α		Α	Α	Α	<u> </u>	Α	Α	Α	Α
Startup lost			3.0	3.0		3.0	3.0		3.0	3.0	3.0	\perp		3.0	3.0	<u> </u>
Ext. eff. gree	en		2.0	2.0		2.0	2.0		2.0	2.0	2.0	1		2.0	2.0	
Arrival type			4	4		4	4		4	5	5	╀		5	5	
Unit Extensi			3.0	3.0		3.0	3.0		3.0	3.0	3.0	╀		3.0	3.0	
Ped/Bike/R1 Lane Width	IOR Volume	9	5 12.0	10 12.0	0	5 12.0	10 12.		0 12.0	5 12.0	10 12.0	╁	0	5 12.0	10 12.0	0
Parking/Gra	de/Parking		N	0	N	N	0		N	N 12.0	0	╁	N	N	0	N
Parking/hr						 ``	╁			╁┄	┤	Ħ		 ``	Ť	
Bus stops/h	r		0	0		0	0	十	ō	0	0	T		0	0	
Unit Extensi	on		3.0	3.0		3.0	3.0	5	3.0	3.0	3.0	T		3.0	3.0	
Phasing	EB Only	WB	Only	0;	3	04		E:	xcl. Le	eft	SB Only	,	Thr	u & RT	. (08
Timing	G = 12.0	G =		G =		G =			= 10.		= 19.0	}		31.0	G =	
Duration of A	Y = 4 Analysis (hr	Y = A		Υ =		Y =		Y :	= 4		′ = <i>4</i> ycle Len	ath	Y =		Y = 0	
	up Capac			l Dal	2V 21	24 I O	s n	oto	rmin			yu	10-	- 100.		
Lane GIO	up Capac	lty, C	EB	n Dek	ay, ai	W		e le	* 1 K A I K	iatio	NB			Γ	SB	
Adj. flow rate		86	112	Т	108			240	,	56	1287	Т		802	1533	T
Lane group		195	182	+	122	130		672	_	159	1442	\dagger		1100	2665	
v/c ratio	<u> </u>	0.44	0.62	+	0.89			0.36		0.35	0.89	╁		0.73	0.58	
Green ratio		0.11	0.11	+	0.07			0.44		0.09	0.30	\dagger		0.32	0.53	+
Unif. delay o		41.6	42.5		46.1			18.6	-+	12.8	33.5	\dagger		30.2	15.9	
Delay factor		0.11	0.20	+	0.41			0.11	-+	0.11	0.42	\dagger		0.29	0.17	_
Increm. dela		1.6	6.1	+	48.3			0.3		1.3	7.5	\dagger		2.5	0.3	
PF factor		1.000	1.000	, -	1.00			0.84		.934	0.714	†		0.686	0.248	1
Control dela	V	43.2	48.6		94.4			16.1		11.3	31.4	\dagger		23.2	4.3	_
Lane group		D	D	\top	F	D		В		D	С	†		С	A	1
Apprch. dela			6.3	<u> </u>		40.6	i	A			31.8				10.8	
Approach L0	· · · · · · · · · · · · · · · · · · ·	D	•		D			\dashv		С				В		
Intersec. del		2	1.6				In	ıters	ection	n LOS					С	
HCS2000 TM	-	<u> </u>	C	muniaht @	2000 T I	niversity of									T 7	ersion 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	REP	OR	Т						
General Inf	ormation	•				S	ite I	nfor	matio						
Analyst Agency or C Date Perfor	med	U 08/:	SAI SAI 28/12			A	nters irea urisc	Туре	е		All of	DR. her are ANSIL	eas DE		
Time Period	I	PM .	PEAK			A	naly	sis `	Year	Ε	XISTIN	G + O		-	
Volume an	d Timing In	nut				<u> </u>					PR	OJEC	<u> </u>		
		Par		EB			W	В			NB			SB	
			LT	TH	RT	LT	Tŀ	1	RT	LT	ΤH	RT	LT	TH	RT
Num. of Lar	nes		1	1	0	1	1		1	1	3	0	2	3	0
Lane group		:	L	TR		L	T		R	L	TR		L	TR	
Volume (vpl			78	44	56	164	23		461	79	1260	204	779	1656	140
% Heavy vo	eh		2 0.95	2 0.95	2 0.95	2 0.95	0.9		2 0.95	2 0.95	2 0.95	2 0.95	2 0.95	2 0.95	2 0.95
Actuated (P.	/A)		0.95 A	0.95 A	0.95 A	0.95 A	0.9 A	- 	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A
Startup lost			3.0	3.0	<u> </u>	3.0	3.0)	3.0	3.0	3.0	'	3.0	3.0	- ^ '
Ext. eff. gre	en		2.0	2.0		2.0	2.0		2.0	2.0	2.0		2.0	2.0	
Arrival type			4	4		4	4	-	4	5	5		5	5	
Unit Extensi			3.0	3.0		3.0	3.0		3.0	3.0	3.0		3.0	3.0	0
Ped/Bike/RT	IOR Volume)	5 12.0	10 12.0	0	22 12.0	10 12.	\rightarrow	0 12.0	9 12.0	10 12.0	0	5 12.0	10 12.0	0
Parking/Gra	de/Parking		N N	0	N	N N	12.		12.0 N	N	0	N	N N	0	N
Parking/hr	de/i aiking		/4		14	14	Ι -	-	/ \	14	+	- / V	1,4	U	-/-
Bus stops/h	r		0	0		0	0	\dashv	0	0	0		0	0	\vdash
Unit Extensi			3.0	3.0		3.0	3.0	_	3.0	3.0	3.0		3.0	3.0	
Phasing	EB Only	T WB	Only	03	<u>. </u>	04			xcl. Le		SB Only	Thr	u & RT	L	08
Timing	G = 12.0	G =		G =		G =			= 7.0	G	= 12.0	G =	39.2	G =	
_	Y = 4.2	Y =		Y =		Y =		Υ -	= 4.2		= 5.2		5.6	Y =	
	Analysis (hr			<u> </u>	•	110	<u> </u>				cle Len	gth C =	= 110.	0	
Lane Gro	up Capac	ity, C		ol Dela	ay, ar			<u>ete</u>	<u>rmın</u>	atior	-		1		
			EB	<u> </u>	1	W					NB	T		SB	
Adj. flow rat		82	105		173		-	485		83	1541	ļ	820	1890	_
Lane group	cap.	177	166		225	237	-	576	-	97	1719	<u> </u>	694	2520	
v/c ratio		0.46	0.63		0.77	0.10)	0.84	4 O	.86	0.90		1.18	0.75	
Green ratio		0.10	0.10		0.13	0.13	3	0.39	9 0	.05	0.35		0.20	0.50	
Unif. delay o	11	46.7	47.6		46.4	42.4	4	30.5	5 5	1.6	34.0		43.9	21.8	
Delay factor	k	0.11	0.21		0.32	0.1	1	0.38	3 0	.39	0.42		0.50	0.31	
Increm. dela	ıy d2	1.9	7.6		14.9	0.2		10.9	9 4	8.7	6.7		96.1	1.3	
PF factor		1.000	1.000	,	1.000	0 1.00	00	0.90	0.	.962	0.645		0.831	0.324	
Control dela	y	48.6	55.2		61.3	42.6	5	38.5	5 9	8.3	28.6		132.6	8.3	
Lane group	LOS	E		Е	D		D		F	С		F	Α		
Apprch. dela	ay			44.5				3	2.2	•		45.9			
Approach Lo	os				D					С			D		
Intersec. de	lay	4	1.7			·	Ir	iters	ection	ı LOS				D	
HCS2000 TM			C	anemials @	2000 11-	niversity of	FEloria		l Diabta	Dagarrad	 I		L	***	ersion 4.1f

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

W/MIT.

					SH	ORT R									
General In	formation					Sit	e Infor	matio			2700				
Analyst Agency or (Date Perfor Time Period	med	08/	ISAI ISAI /28/12 PEAK			Are Jur	ersectio ea Type risdictio alysis Y	e n	OCI	All ot EANSIE XISTIN	DR. her a DE/M	areas IITIG. OTH	ATION		
Volume ar	nd Timing	Input		ED			WD			NII	,			CD.	
			LT	EB	RT	LT	WB TH	RT	E	NE T TH	_	RT	LT	SB	RT
Num. of Lar	nes		1	1	0	1	1	1	1	3	1	1	2	3	0
Lane group			L	TR		L	T	R	L	T		R	L	TR	
Volume (vp			82	43	64	103	17	228	53		_	371	762	1385	71
% Heavy v			2	2	2	2	2	2	2	2	+	2	2	2	2
PHF	OII		0.95	0.95	0.95	0.95	0.95	0.95	0.9		5 0	.95	0.95	0.95	0.95
Actuated (P	7/A)		A	A	A	A	A	A	A	A		A	A	A	A
Startup lost			3.0	3.0		3.0	3.0	3.0	3.0			2.0	3.0	3.0	
Ext. eff. gre			2.0	2.0		2.0	2.0	2.0	2.0	_	1	2.0	2.0	2.0	
Arrival type			4	4		4	4	4	5	5		5	5	5	
Unit Extens	ion		3.0	3.0		3.0	3.0	3.0	3.0	3.0) ;	3.0	3.0	3.0	
Ped/Bike/R	TOR Volum	ne	5	10	0	5	10	0	5	10		0	5	10	0
Lane Width			12.0	12.0	7	12.0	12.0	12.0	12.		_	2.0	12.0	12.0	
Parking/Gra	ade/Parking	3	N	0	N	N	0	N	N	0		N	N	0	N
Parking/hr															
Bus stops/h	ir		0	0		0	0	0	0	0		0	0	0	
Unit Extens	ion		3.0	3.0		3.0	3.0	3.0	3.0	3.0) ;	3.0	3.0	3.0	
Phasing	EB Only		Only	0	3	04	E	Excl. L	.eft	SB O	nly	Thr	u & RT		80
Timing	G = 12.0			G =		G =		i = 10		G = 19	0.0		31.0	G =	
	Y = 4	Y =		Y =		Y =	Y	= 4		Y = 4		Y =		Y =	
Duration of											engt	h C =	= 100.	0	
Lane Gro	up Capa	city, (ol Del	ay, ar			ermi	natio			_	-		
S. D. Salveria			EB		121	WB	_			NB	1			SB	1
Adj. flow rat		86	112		108	18	240	_	56	896	39	-	802	1533	_
Lane group	cap.	195	182		122	130	672	_	59	1522	_	79	1100	2665	
v/c ratio		0.44	0.62		0.89	0.14	0.36	_	.35	0.59	0.8		0.73	0.58	
Green ratio		0.11	0.11		0.07	0.07	0.44	1 0	.09	0.30	0.3	31	0.32	0.53	
Unif. delay	d1	41.6	42.5		46.1	43.7	18.6	3 4	2.8	29.8	31	.9	30.2	15.9	
Delay factor	rk	0.11	0.20		0.41	0.11	0.11	1 0	.11	0.18	0.3	36	0.29	0.17	
Increm. dela	ay d2	1.6	6.1		48.3	0.5	0.3	1	1.3	0.6	10	0.6	2.5	0.3	
PF factor		1.000	1.000		1.000	1.000	0.84	9 0.	934	0.714	0.7	700	0.686	0.248	3
Control dela	ay	43.2	48.6		94.4	44.2	16.1	1 4	1.3	21.9	32	2.9	23.2	4.3	
Lane group	ane group LOS D		D		F	D	В		D	С		2	С	Α	
Apprch. del	ay	4	6.3			40.6			2	5.9				10.8	
Approach L	os	7	D		7	D				С				В	
Intersec. de	lay	1	9.8		To a		Inters	sectio	n LO	3				В	
HCS2000 TM			V - V -	onvright (D 2000 III	niversity of									ersion

W/MIT.

0 11	•				SH	ORTR								
General In	formation					Sit	e Infor	matic		LECE	RIVO	.@ PLAZ	Λ	
Analyst Agency or (Date Perfor Time Period	rmed	08/	ISAI ISAI '28/12 PEAK			Are Jur	ersectio ea Type risdictio alysis Y	n	OC	All ot EANSID XISTIN	DR. her ar E/MIT	eas TIGATION THER +		
Volume ar	nd Timing I	nput	_											
				EB	LDT	1.7	WB	DT	+	NE		T 1.T	SB	Lor
Num. of La	200		LT 1	TH 1	RT 0	LT 1	TH 1	RT 1	1 L	7 TH	1 R		TH 3	RT 0
			L	TR	ļ -	L	T	R	L	$\frac{3}{T}$	F		TR	۲
Lane group				1. 9	50				_					110
Volume (vp			78	44	56 2	164	23	461	79		_		1656	140
% Heavy v PHF	en		2 0.95	2 0.95	0.95	2 0.95	2 0.95	2 0.95	0.9	2 5 0.95	0.9		2 0.95	0.95
Actuated (F	2/Δ\		0.95 A	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A	0.9 A	5 0.98	A		0.95 A	0.98
Startup lost			3.0	3.0	1	3.0	3.0	3.0	3.0		2.		3.0	A
Ext. eff. gre			2.0	2.0		2.0	2.0	2.0	2.0		2.		2.0	
Arrival type			4	4		4	4	4	5	5	5		5	
Unit Extens			3.0	3.0		3.0	3.0	3.0	3.0		_		3.0	
	TOR Volum	ie	5	10	0	22	10	0	9	10	0		10	0
Lane Width			12.0	12.0		12.0	12.0	12.0	12.	_	_		12.0	
Parking/Gra	ade/Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking/hr								T.			e l			
Bus stops/h	ir		0	0		0	0	0	0	0	0	0	0	
Unit Extens	ion		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.	0 3.0	3.0	
Phasing	EB Only	WB	Only	0	3	04	E	xcl. L	_eft	SB Or	nly	Thru & R	T	80
Timing	G = 12.0		15.0	G =		G =		= 7.		G = 12		G = 39.2	G =	
	Y = 4.2	Y =		Y =		Y =	Y	= 4		Y = 5.2		Y = 5.6	Y =	
	Analysis (h										ength	C = 110	.0	
Lane Gro	up Capa	city, C		ol Del	ay, ar			rmi	natio					
Control De la control		100	EB		7.53.5	WB	_	_	2.2	NB	1	1 1 -0 201	SB	_
Adj. flow ra		82	105		173	24	485	_	83	1326	215		1890	_
Lane group	cap.	177	166		225	237	576	3	97	1762	550	694	2520	
v/c ratio		0.46	0.63	1	0.77	0.10	0.84	0	.86	0.75	0.39	1.18	0.75	
Green ratio		0.10	0.10		0.13	0.13	0.39	0	.05	0.35	0.36	0.20	0.50	
Unif. delay	d1	46.7	47.6	1	46.4	42.4	30.5	5	1.6	31.7	26.5	43.9	21.8	
Delay facto	rk	0.11	0.21		0.32	0.11	0.38	0	.39	0.31	0.11	0.50	0.31	
Increm. del	ay d2	1.9	7.6		14.9	0.2	10.9	4	8.7	1.9	0.5	96.1	1.3	
PF factor		1.000	1.000		1.000	1.000	0.90	6 0.	962	0.645	0.63	0.831	0.324	1
Control dela	ау	48.6	55.2		61.3	42.6	38.5	9	8.3	22.3	17.2	132.6	8.3	
Lane group	ne group LOS D		E	71	Е	D	D		F	С	В	F	Α	
Apprch. del	ay	5.	2.3			44.5			2	25.5			45.9	
Approach L	os	Tally.	D			D				С			D	
Intersec. de	elay	3:	9.6				Inters	ectio	n LO	S			D	
HCS2000 TM		. ,		apyriaht (↑ 2000 II	niversity of								ersion

				-		SH	OR	TR	ΕP	OR	T									
General Inf	ormation									nfo		tio	n							
Analyst Agency or C Date Perfor Time Perioc	med		U. 08/2	SAI SAI 29/12 PEAK				Ar Ju	ea irisc	ecti Typ dictio	e on	ır		00	EAR-	RC he SIE TE	ON Ri r area DE-IN	D. as T.#14 VITH		
Volume an	d Timing	lnpι	ıt										•							
"					EB				_	VΒ					NB				SB	
				LT	TH	RT	_	<u>LT</u>	Τ		R	_	LT		TH	╀	RT	LT	TH	RT
Num. of Lar	nes			2	1	1	_	1	1		1	_	2		2	╀	1	. 2	2	0
Lane group				L	T	R	┸	L	_7		R		L		T	퇶	R	L	T	┷
Volume (vpl				231	43	166	4	107	90		26		169)	798	4	256	204	1043	—
% Heavy vo	eh			2	2	2 0.92	+	2 .92	0.9		0.9		2 0.9		2 0.92	╁	2).92	2 0.92	2 0.92	+
Actuated (P	/A)			0.92 A	0.92 A	0.92 A		.92 A	O.S		0.9 A	_	0.9. A	_	0.92 A	۲	1.92 A	0.92 A	0.92 A	A
Startup lost				2.0	2.0	2.0	_	2.0	2.		2.0		2.0	ı	2.0	†	2.0	2.0	2.0	
Ext. eff. gre			• • • • • • • • • • • • • • • • • • • •	2.0	2.0	2.0	_	2.0	2.	0	2.0)	2.0	ı	2.0	1	2.0	2.0	2.0	
Arrival type				4	4	4	\perp	4	4		5	_	5		5		5	5	5	
Unit Extens				3.0	3.0	3.0		3.0	3.		3.		3.0)	3.0	Ļ	3.0	3.0	3.0	—
Ped/Bike/R	TOR Volur	ne		5	5	0	4	5	5		0		5		5	Ļ	0	5	1	₩
Lane Width				12.0	12.0	12.0	_	2.0	12		12.		12.0)	12.0	1	2.0	12.0	12.0	↓
Parking/Gra	ide/Parkin	g		N	0	N	4	N	_ (0	٨	\Box	N		0	Ļ	N	N	0	N
Parking/hr							4									╀	_		<u> </u>	—
Bus stops/h				.0	0	0	-	0	(0		0		0	╀	0	0	0	—
Unit Extens				3.0	3.0	3.0	<u> </u>	3.0	3.		3.		3.0	_	3.0	_	3.0	3.0	3.0	<u> </u>
Phasing	Excl. Le			Only	Thru 8		_	04		—	xcl.		_		Only	_		22.0	G =)8
Timing	G = 10.0 $Y = 4$			10.0 4	G = 1 Y = 4	0.0	G Y:			_	= 8 = 4			? = (=	6.0		G = Y ==	32.0 4	Y =	
Duration of					1		<u> </u>			<u> </u>						gth		100.		<u></u>
Lane Gro					l Dela	v. aı	nd	LOS	S D	ete	rm	ina		_		<u> </u>				
		1	,, -	EB		,,		WB						_	NB				SB	
Adj. flow rat	Α	251	, T	47	180	442	-1	98		289	}	18	<u></u>	_	67	2	 78	222	1134	\top
Lane group		344	-	186	337	425	-	447	+	558		27		┈	35		33	619	1490	+
v/c ratio	сар.	0.73	\rightarrow	0.25	0.53	1.04		0.22	\dashv	0.52		0.6		₩	76		30 30	0.36	0.76	
Green ratio		0.10	\rightarrow	0.10	0.22	0.24	-	0.24	-	0.36		0.0		₩-	32		60	0.18	0.42	+
Unif. delay	 11	43.7		41.5	34.5	38.0	-	30.5	-	25.2		44.		₩	0.6		.7	35.9	24.7	+
Delay factor		0.29	-	0.11	0.14	0.50		0.11	\dashv	0.12		0.2		₩	32		11	0.11	0.31	
increm. dela		7.7	\rightarrow	0.7	1.7	54.4	-	0.2	┰	0.9		6.		-	.1		.2	0.4	2.4	+-
PF factor		-	-+	1.000	1.000	1.00		1.000	,	0.62		0.9		-			125	0.854	+	,
Control dela				42.3	36.1	92.4	-	30.7	-+	16.6		48.		₩	4.1		.4	31.0	15.1	+
	ane group LOS D				D	F	<u> </u>	С	1	В		D		₩	C		4	С	В	+
Apprch. dela			<i>D</i> 7			58	3.7						2.7					17.8		
Approach L			D											С					В	
Intersec. de			1					lı	nter	sec	tion	LOS	3					С		
HCS2000 TM	-				pyright ©	2000 U	niver	sity of	Flori	da. A	ll Rie	hts R	eserv	ed					v	ersion 4,

 $HCS2000^{\mathrm{TM}}$

			•		SH	ORT F	REP	OR	T								
General Info	ormation							infor		tion							
							nters	section	on		-	COLLE					
Analyst	Formed riod 08/29/12 PM PEAK											MAR. All ot					
Agency or C	o.							Тур			00	Ali Oli EANSII)	
Date Perform						Ŋ	uris	dictio	on		00			TIO			
Time Period		PIVI F	ZEAK			A	naly	ysis `	Yeaı	г	1	NEAR-1 PR		RM W ECT	/ITH		
Volume and	d Timing Ir	nput															
			<u> </u>	EB	DT	17		NB ľH	R.	_	LT	NB TH	Т.	₹T	LT	SB TH	RT
Num. of Lan	-00			TH 1	RT 1	LT 1	_	1	1	' 	2	2	_	1	2	2	0
	es			T			-		<u> </u>	_			+			T	0
Lane group					R	L		T	R		L 074	T 007		R	L		
Volume (vph				234	269	180	_	55	170)	274	997 2	_	45 2	331 2	834 2	
% Heavy ve PHF	∍n			2 0.92	2 0.92	2 0.92	_	2 92	2 0.9	2	2 0.92	0.92		<u>2</u> 92	0.92	0.92	
PnF Actuated (P/	/A)			0.92 A	0.92 A	0.92 A		9 <u>2</u> 4	0.9 A	_	0.92 A	0.92 A		9 <u>2</u> 4	0.92 A	0.92 A	Α
Startup lost			-	3.0	3.0	3.0		.0	3.0)	3.0	3.0	_	.0	3.0	3.0	,,
Ext. eff. gree				2.0	2.0	2.0	_	.0	2.0	_	2.0	2.0	_	.0	2.0	2.0	
Arrival type			5	5	5	5		5	5		5	5		5	5	5	
Unit Extensi	on		3.0	3.0	3.0	3.0	3	1.0	3.6	0	3.0	3.0	3	3.0	3.0	3.0	
Ped/Bike/RT	OR Volume	е	5	10	0	5	1	0	0		5	10	4	5	5		
Lane Width			12.0	12.0	12.0	12.0	12	2.0	12.	0	12.0	12.0	12	2.0	12.0	12.0	
Parking/Gra	de/Parking		N	0	Ν	N		0	Ν		Ν	0	1	V	Ν	0	Ν
Parking/hr													上				
Bus stops/hr	ſ		0	0	0	0		0	0		0	0		0	0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0	3	1.0	3.0	0	3.0	3.0	3	3.0	3.0	3.0	
Phasing	Excl. Left	Thru	& RT	03		04		E:	xcl.	Left	t TI	ıru & R	T		07	0	8
Timing				G =		G =			= 1			= 38.5		G =		G=	
				Y =		Y =		Y	= 3			= 5		Y =		Y =	
							_					cle Len	gth	<u>C =</u>	99.5		
Lane Gro	up Capac	city, C		Delay	<u>, an</u>			eter	mir	nat	ion					-	
			EB			W	B					NB				SB	
Adj. flow rate	е	578	254	292	196	168	3	191		29	8	1084	43	5	360	907	ŀ
Lane group	сар.	553	262	495	285	267	7	495	5	43.	2	1364	58	4	432	1337	
v/c ratio		1.05	0.97	0.59	0.69	0.6	3	0.39	9	0.6	9	0.79	0.7	4	0.83	0.68	
Green ratio		0.16	0.14	0.32	0.16	0.1	4	0.32	2	0.1	3	0.38	0.3	8	0.13	0.38	
Unif. delay d	11	41.8	42.5	28.3	39.4	40.	3	26.1	1	41.	6	27.6	26.	9	42.5	26.0	
Delay factor	k	0.50	0.48	0.18	0.26	0.2	1	0.11	1	0.2	6	0.34	0.3	0	0.37	0.25	
Increm. dela	y d2	50.6	47.0	1.9	6.8	4.7		0.5		4.6	5	3.4	5.2	2	13.1	1.4	
PF factor		0.872	0.891	0.684	0.87.	2 0.89	91	0.68	34	0.9	04	0.597	0.5	97	0.904	0.597	
Control dela	у	87.0	84.9	21.2	41.2	40.	6	18.4	4	42.	3	19.8	21.	2	51.5	16.9	
Lane group				С	D	D		В		D		В	С		D	В	
Apprch. dela	ay	69	.4			33.2					23	.8				26.7	
Approach L0	os			С					()				С			
Intersec. del	ay	36	.5					Inter	sect	ion	LOS					D	
HCC2000TM				anveriabt @	2000 TI	niversity o	f Elor	ido A1	1 Dia1	sto Do	naamiad					V	ersion 4.

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

Page 1 of 1

					SH	ORT F	REP	OR	T							V	1
General Inf	ormation					S	ite I	nfor	mat	ion							
Analyst Agency or 0 Date Perfon Time Perioc	med	U 08/	ISAI ISAI '29/12 PEAK			A Ji	rea urisc	ection Type diction sis Y	n		IN7	OLLEG MARR All oth OCEA .#14/N EAR-T PRO	RON I er ard ANSII MITIG	RD. eas DE- ATIO WITI	N.		
Volume an	d Timing	Input															
	XC			EB			_	ΝB				NB		Ti (i		SB	
			LT	TH	RT	LT	_	TH	R	Г	LT	TH	R	_	LT_	TH	RT
Num. of Lar	nes		2	1	1	1		1	1		2	2	2		2	2	0
Lane group			L	T	R	L		T	R		L	T	R		L	T	
Volume (vpl			231	43	166	407	_	90	266	_	69	798	25	_	204	1043	
% Heavy ve	eh		2	2	2	2	_	2	2	_	2	2	2		2	2	
PHF	(A)		0.92	0.92	0.92			92	0.9	_	.92	0.92	0.9	_	.92	0.92	
Actuated (P Startup lost			2.0	2.0	2.0	2.0		.0	2.0		A 2.0	2.0	2.0		A 2.0	A 2.0	Α
Ext. eff. gre			2.0	2.0	2.0	2.0		.0	2.0	_	2.0	2.0	2.0	_	2.0	2.0	
Arrival type	CIT		4	4	4	4	_	4	5		5	5	5	_	5	5	
Unit Extensi	ion		3.0	3.0	3.0	3.0	_	3.0	3.0	_	3.0	3.0	3.0	$\overline{}$	3.0	3.0	
Ped/Bike/R		ne	5	5	0	5		5	0		5	5	0		5	75451	
Lane Width			12.0	12.0	12.0	12.0	_	2.0	12.	_	2.0	12.0	12.	0 1	2.0	12.0	
Parking/Gra	de/Parkind	1	N	0	N	N		0	N		N	0	N		N	0	N
Parking/hr							T			31							
Bus stops/h	r		0	0	0	0		0	0		0	0	0		0	0	
Unit Extensi			3.0	3.0	3.0	3.0	_	3.0	3.0	_	3.0	3.0	3.0	_	3.0	3.0	
Phasing	Excl. Le	ft WE	3 Only	Thru 8		04				Left	_	B Only	_	hru 8			8
	G = 10.0		10.0	G = 1		G =		_	= 8			= 6.0		= 3	_	G =	
Timing	Y = 4	Y =	4	Y = 4		Y =		Υ:	= 4		Υ =	= 4	Y	= 4		Y =	
Duration of a	Analysis (ł	(rs) = 0.2	25								Cyc	le Len	gth C) = 1	100.0)	
Lane Gro	up Capa	city, C	ontro	Dela	y, an	d LOS	S De	eter	mir	natio	n						
			EB			W	/B					NB		17.5		SB	
Adj. flow rat	е	251	47	180	442	98		289		184	8	367	278	2	22	1134	
Lane group		344	186	337	425	-		558	-	275	-	135	1631	-	19	1490	
v/c ratio	-24.	0.73	0.25	0.53	1.04			0.52	-	0.67	_	0.76	0.17		.36	0.76	
Green ratio		0.10	0.10	0.22	0.24		_	0.36	$\overline{}$	0.08	_	.32	0.60		.18	0.42	+
Unif. delay o	11	43.7	41.5	34.5	38.0			25.2		44.7	_	0.6	8.9		5.9	24.7	+
Delay factor		0.29	0.11	0.14	0.50		_	0.12		0.24	-	0.32	0.11	_	.11	0.31	-
Increm. dela		7.7	0.7	1.7	54.4	3 4 22		0.12	-	6.1	_	3.1	0.0	_	0.4	2.4	+
	ay uz	1.000	1.000	1.000	1.00	- 300		0.62	\rightarrow	0.1	_	.686	0.12		854 854	0.517	+
PF factor	N/		42.3		92.4		_		_		-			_	_		4
	ntrol delay 51.4		42.3 D	36.1	-			16.6	,	48.3	- 2	24.1	1.2	-+-	1.0	15.1	7
	ne group LOS D prch. delay 44			D	F	C 70.7		В		D		C	Α	110	С	17.0	
	prch. delay 44.7 proach LOS D					58.7			\dashv		22.			+		17.8	
			E					C					В				
Approach Lo Intersec. de		-	1.1		+					ion L				\rightarrow		С	

 $HCS2000^{TM}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT R	ΕP	OR	Т			······································					
General Inf	ormation								matio	n							
Analyst Agency or C Date Perfor Time Period	med	U. 08/2	SAI SAI 29/12 PEAK			A	геа	ection Type	€	00	EΑ	MI	RC hei E-i TIC	ON RE r area INT.# GAT	D. ns 14/WIT	'H	
	4	1 171 1				A	naly	sis \	ear/		Ni	EAR-1		RM V ECT	VITH		
Volume an	d Timina I	npuf	· · · · · · · · · · · · · · · · · · ·			L						FK	OJ	EUI			
	<u> </u>		T	EB		T	٧	VВ		1		NB		•		SB	
			LT	TH	RT	LT	T	Ή	RT	L		TH	\perp	RT	LT	TH	RT
Num. of Lar	nes		2	1	1	1	1	1	1	2		2		2	2	2	0
Lane group			L	T	R	L	7	г	R	L		T	Τ	R	L	T	
Volume (vpl			532	234	269	180	15		176	274	4	997	1	145	331	834	
% Heavy v	eh		2	2	2	2	2		2	2	_	2	4	2	2	2	
PHF Actuated (P	//\		0.92 A	0.92 A	0.92 A	0.92 A	0.9		0.92 A	0.9. A	2	0.92 A	4).92 A	0.92 A	0.92 A	_
Startup lost			3.0	3.0	3.0	3.0	3.		3.0	3.0	,	3.0	+	3.0	3.0	3.0	Α
Ext. eff. gree			2.0	2.0	2.0	2.0	2.		2.0	2.0	_	2.0	_	2.0	2.0	2.0	
Arrival type			5	5	5	5	5		5	5		5		5	5	5	·
Unit Extensi			3.0	3.0	3.0	3.0	3.	.0	3.0	3.0)	3.0		3.0	3.0	3.0	
Ped/Bike/R	TOR Volum	e	5	10	0	5	10	0	0	5		10		45	5		
Lane Width			12.0	12.0	12.0	12.0	12	.0	12.0	12.	0	12.0	1	2.0	12.0	12.0	
Parking/Gra	de/Parking		Ν	0	N	N		0	Ν	N		0	⊥	N	Ν	0	N
Parking/hr							L						┸				
Bus stops/h			0	0	0	0	()	0	0		0	\perp	0	0	0	
Unit Extensi	ion		3.0	3.0	3.0	3.0	3.	.0	3.0	3.0)	3.0	1	3.0	3.0	3.0	
Phasing	Excl. Lef		& RT	03		04			cl. Le			」& R			07	0	8
Timing	G = 17.0 $Y = 3$	G = Y =		G = Y =		G = Y =			= 13.8 = 3		3 = 7 =	38.5		G = Y =		G = Y =	
Duration of				<u>, – </u>		, <u> </u>		<u> </u>				e Len	gth		99.5	<u> </u>	
Lane Gro				Delav	/. an	d LOS	De	teri	mina	tion							
			EB		<u> </u>	Wi			<u> </u>			NB				SB	
Adj. flow rat	e	578	254	292	196			191	29	98	-	84	4:	35	360	907	Т
Lane group		55 3	262	495	285			495	_	32	1	64		18	432	1337	+
v/c ratio	<u> </u>	1.05	0.97	0.59	0.69			0.39		69	-	79		43	0.83	0.68	+
Green ratio		0.16	0.14	0.32	0.16	0.14		0.32	0.	13	0.	38	0.	38	0.13	0.38	\top
Unif. delay o		41.8	42.5	28.3	39.4	40.3		26.1	41	.6	27	7.6	23	3.0	42.5	26.0	
Delay factor	·k	0.50	0.48	0.18	0.26	0.21		0.11	0	26	0.,	34	0.	11	0.37	0.25	1
Increm. dela	ay d2	50.6	47.0	1.9	6.8	4.7		0.5	4.	6	3.	4	0.	3	13.1	1.4	1
PF factor		0.872	0.891	0.684	0.87	2 0.89	1	0.68	4 0.9	904	0.5	597	0.5	597	0.904	0.597	1
Control dela	ıy	87.0	84.9	21.2	41.2	40.6	;	18.4	42	2.3	19	9.8	14	1.0	51.5	16.9	
Lane group	LOS	F	F	С	D	D		В)	E	3	E	3	D	В	
Apprch. dela	ау	69	.4			33.2				2	2.1					26.7	
Approach Lo	os	Ē	=			С					С					С	
Intersec. del	lay	35	.8				I	nters	ection	LOS	3					D	
HCS2000 TM			C	novright ©	2000 U	niversity of	Florio	fa A11	Rights B	eserve	d					Ve	ersion 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

					SH	IORT	·R	EPC	R	T								
General Inf	ormation						S	ite In	foi	rmati	on							
Analyst Agency or C Date Perfor Time Period	med	U 06/0	SAI SAI 03/11 PEAK				A Ju	nterse rea T urisdi nalys	yp: ctic	e _ on		C		SBA her SAL G +	AD N are D-IN	VILL. eas IT.#15 THER +		
Volume an	d Timing In	put														•		
				EВ				WB					NB				SB	
			LT	TH	RT	L	Τ	TH	_	RT	ļ	_T_	TH	_	₹T	LT	TH	RT
Num. of Lar	ies	,	1	1	1	1		1	\downarrow	0		1	2	()	1	2	0
Lane group			L	LT	R	L		TR				L	TR			L	TR	
Volume (vpl			428	3	106			9		11	_	'4	534	1		4	1660	457
% Heavy ve	eh		1	1	1	1	_	1	4	1		1	2	1		1	2	1
PHF	/A \		0.95	0.95	0.95		5	0.95	4	0.95		95 4	0.95	0.9		0.95	0.95	0.95
Actuated (P Startup lost			A 2.0	A 2.0	A 2.0	2.0	<u> </u>	2.0	+	Α		.0	A 2.0		1	A 2.0	A 2.0	A
Ext. eff. gree			2.0	2.0	2.0			2.0	+			.0	2.0			2.0	2.0	
Arrival type			4	4	4	4		4	t			5	5			5	5	
Unit Extensi	ion		3.0	3.0	3.0	3.0	, 	3.0	T		3	.0	3.0			3.0	3.0	
Ped/Bike/R1	FOR Volume	;	5	5	0	5		5		0	1,	5	5	C)	5	5	200
Lane Width			12.0	12.0	12.0	12.	0	12.0			12	2.0	12.0			12.0	12.0	
Parking/Gra	de/Parking	·	N	0	N	N		0		Ν	7	٧	0	٨	/	Ν.	0	N
Parking/hr																		
Bus stops/h	r		0	0	0	0		0				0	0			0	0	
Unit Extensi	on		3.0	3.0	3.0	3.0)	3.0			3	.0	3.0			3.0	3.0	
Phasing	EB Only		Perm	03	3		04		E	xcl. L	.eft	Th	ru & R	Γ		07		08
Timing	G = 17.0	G =		G =		G =				= 11	.0		= 67.0		G =		G =	
Duration of	Y = 5	Y = .		Υ =		Y =			Y :	= 5			= 5		Y =	= 125.	Y =	
				l Dala		الممدد	0	2 D-	4_		4		de Len	gui	<u> </u>	- 120.	U	
Lane Gro	up Capac	ity, C		Dela	1y, č	ina L			te	rmir	ıaı	on	ND			T	<u> </u>	
			EB		_		_	VB	_	- 1		_	NB	_			SB	
Adj. flow rat		226	228	112	_	1	₩	21	Ļ		78	_	563	╄		4	2018	
Lane group	cap.	393	387	211	1	141	1;	34	L		157		1901	L		157	1858	
v/c ratio		0.58	0.59	0.53	3 0	.01	0.	16		(0.50	<u> </u>	0.30			0.03	1.09	
Green ratio		0.26	0.26	0.14	1 0	.08	0.	08		(0.09)	0.54			0.09	0.54	
Unif. delay o	<u> 1</u> 1	39.7	40.7	50.3	3 5	2.9	53	3.6			54.4	!	16.0			52.1	29.0	
Delay factor	k	0.17	0.18	0.13	3 0	.11	0.	11		(0.11		0.11	Γ		0.11	0.50	
Increm, dela	y d2	2.1	2.4	2.6	(0.0	0	.5			2.5		0.1	Γ		0.1	48.5	
PF factor		1.000	1.000	1.00	0 1.	.000	1.0	000		(0.93	6	0.230	Τ		0.936	0.269	
Control dela	У	41.7	43.1	52.8	3 5	3.0	54	4.1		,	53.3	}	3.8	Γ		48.8	56.3	
Lane group	LOS	D	D	D		D	1	ס			D		Α			D	Е	
Apprch. dela	ау	4	4.5			54	4. 1					9.	8				56.3	
Approach L(OS		D			L	כ					/	1				E	
Intersec. de	lay	5.1				•	In	ter	secti	on L	.os					D		
HCS2000 TM	•		Cc	pyright ©	2000	[Iniversit	vof	Florida	Δ1	1 Rights	s Rese	rved					V	ersion 4.1f

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					S	НС	RT F	REPO)F	RT.							
General Inf	ormation									rmat	ior	1					
Analyst Agency or C Date Perfor Time Period	med	U. 06/0	SAI SAI 03/12 PEAK				A L	nterse irea T urisdi inalys	yp icti	oe .		C	CARLSE XISTIN	SBAD \ her are BAD-IN	VILL. eas IT.#15 THER +		
Volume an	d Timing In	put													•		,
				EB				WE	_		\Box		NB			SB	
			LT	TH	R		LT	TH	_	RT	+	LT	TH	RT	LT	TH	RT
Num. of Lar	nes		1	1	1		1	1	_	0	4	1	2	0	1	2	0
Lane group			L	LT	R		L	TR			4	L	TR		L	TR	ļ
Volume (vpl			412	10	70		1	3	_	3	4	181	1337	1	13	671	454
% Heavy ve	<u>en</u>		1 0.95	1 0.95	0.9		1 0.95	1 0.95	\vdash	1 0.95	+,	<u>1</u> 0.95	2 0.95	1 0.95	1 0.95	2 0.95	1 0.95
Actuated (P.	/A)		0.95 A	0.95 A	0.9 A		0.95 A	0.90 A	_	0.95 A	+	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A
Startup lost			2.0	2.0	2.0		2.0	2.0	\dashv		十	2.0	2.0		2.0	2.0	
Ext. eff. gree	en		2.0	2.0	2.0	9	2.0	2.0				2.0	2.0		2.0	2.0	
Arrival type			4	4	4		4	4				5	5		5	5	
Unit Extensi			3.0	3.0	3.0)	3.0	3.0			┙	3.0	3.0		3.0	3.0	
	ΓOR Volume	;	5	5	0		5	5	_	0	4	5	5	0	5	5	150
Lane Width			12.0	12.0	12.		12.0	12.0		<u> </u>		12.0	12.0		12.0	12.0	
Parking/Gra	de/Parking		Ν	0	N	'	N	0	_	N	4	Ν	0	N	N	0	N
Parking/hr			_		<u> </u>			<u> </u>	_		+						ļ
Bus stops/h			0	0	0		0	0	_		+	0	0		0	0	ļ
Unit Extensi		1	3.0	3.0	3.0) 	3.0	3.0	_	<u> </u>		3.0	3.0		3.0	3.0	
Phasing	EB Only G = 17.0		Perm 10.0	0: G =	3	+	<u>04</u> G =		_	= 14		_	ru & R ⁻ = <i>59.0</i>	 G =	07	G =	28
Timing	Y = 5	G = Y =		Y=			<u>G –</u> Y =			= 5	4.0		- 59.0 - 5	Y =		Y =	
Duration of			_	· · · · · · · · · · · · · · · · · · ·			·		<u> </u>				cle Len				
	up Capac			l Dela	av.	an	d LO	S De	<u> </u>	ermi	na					······································	
	<u> </u>	<u> </u>	EB		Ť			VB	_				NB			SB	
Adj. flow rat		217	228	74	一	1		6	Τ		19)1	1408		14	1026	<u> </u>
Lane group		423	419	220	\rightarrow	14	_	42	t	\neg	20		1743	\vdash	208	1652	
v/c ratio		0.51	0.54	0.34		0.0		.04	t		0.9		0.81	+	0.07	0.62	+
Green ratio		0.27	0.27	0.14	1	0.0	8 O.	.08	t		0.1	12	0.49	 	0.12	0.49	1
Unif. delay o	11	36.8	37.7	46.4	1	50.	4 5	0.6	Ť		52	.4	25.7		47.2	22.3	
Delay factor	·k	0.12	0.14	0.11		0.1	1 0.	.11	T		0.4	14	0.35		0.11	0.20	1
Increm. dela	ay d2	1.1	1.5	0.9		0.0).1	Ī		40	.4	2.9		0.1	0.7	
PF factor		1.000	1.000	1.00	0	1.00	00 1.	000	Ι		0.9	12	0.355		0.912	0.355	
Control dela	у	37.8	39.2	47.3	3	50.	5 5	0.7	\prod		88	.2	12.1		43.2	8.7	
Lane group	LOS	D	D	D		D		D			F		В		D	Α	
Apprch. dela	ay	3	9.8				50.7					21	.2			9.1	
Approach Lo	os		D				D					(Α	
Intersec. de	lay					Ir	ıte	rsecti	ion	LOS				С			
HCS2000 TM			Co	opyright ©	2000) Uni	iversity of	f Florida	a. A	dl Right	ts Re	eserved				V	ersion 4.11

					SH	ORT F	REPO)R	T							
General Inf	ormation					5	Site In	for	mati	on						
Analyst Agency or C Date Perfori Time Period	med	U: 06/0	SAI SAI 03/12 PEAK			J J	nterse Area T Iurisdi Analys	ype ictio	e on		C	All ot ARLSE KISTIN	NON F her are BAD-IN	RD, eas IT.#16 THER +	<u>-</u>	
Volume an	d Timing In	put											* * * * * * * * * * * * * * * * * * * *			
				EB			W					NB			SB	
			<u>LT</u>	TH	RT	LT	TH	4	RT	L		TH	RT	LT	TH	RT
Num. of Lan	ies		2	2	0	1	2	4	0	2		2	0	2	2	0
Lane group			L	TR		L	TR	_		L		TR		L	TR	
Volume (vpł			246	139	58	90	60	4	38	12		254	210	91	765	731
% Heavy ve	en		2 0.95	2 0.95	2 0.95	2 0.95	2 0.95	=+,	2 0.95	0.9		2 0.95	2 0.95	2 0.95	2 0.95	2 0.95
Actuated (P	/A)		0.95 A	0.95 A	0.93 A	A	10.9c	- 	0.95 A	A		0.90 A	0.90 A	A	0.90 A	0.90 A
Startup lost			2.0	2.0	- 	2.0	2.0	\dashv		2.		2.0	<u> </u>	2.0	2.0	<u> </u>
Ext. eff. gree			2.0	2.0		2.0	2.0	_		2.	0	2.0		2.0	2.0	
Arrival type			5	5		5	5			5		5		5	5	
Unit Extensi			3.0	3.0		3.0	3.0	'		3,		3.0		3.0	3.0	
	OR Volume		5	5	0	5	5	4	0	5		5	0	5	5	0
Lane Width			12.0	12.0		12.0	12.0	-		12.		12.0		12.0	12.0	<u> </u>
Parking/Gra	de/Parking		N	0	N	N	0	_	Ν	<u> </u>		0	Ν	N	0	Ν
Parking/hr			_		<u> </u>	<u> </u>	 -	4		_		_				
Bus stops/h			0	0		0	0	4		10		0		0	0	
Unit Extensi			3.0	3.0		3.0	3.0	_		3.		3.0		3.0	3.0	
Phasing	Excl. Left	-	& RT	03	3	04			xcl. L		_	ru & R		07)8
Timing	G = 11.0 Y = 5	G = Y = .		G = Y ==	-	G = Y =		_	= 12 = 5	.0		= 62.0 = 5	G =		G = Y =	
Duration of	Analysis (hrs	-	_			1 -		1 -				_		= 125.		••••
	up Capaci			l Dela	av ai	nd I O	S De	te	rmir		_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9 0		<u> </u>	
Lanc Gro	ap Gapao		EB	1 15010	λη, ω.		VB	,,,,,				NB			SB	
Adj. flow rate		259	207		95		03	<u> </u>	1	133	T	488		96	1574	Т
Lane group		302	538		150		 29	\vdash		330	-	627		330	1616	
v/c ratio	cap.	0.86	0.38		0.6		19			.40	_	0.30		0.29	0.97	
Green ratio		0.09	0.16		0.0		16		_	0.10	+	0.50		0.10	0.50	+
Unif. delay of		56.2	47.0		54.		5.5	┢		3.1	+	18.7		52.5	30.7	+-
Delay factor		0.39	0.11		0.1		11).11	_	0.11		0.11	0.48	+
		21.0	0.77		6.7		.2	\vdash		0.8	+	0.1		0.17	16.6	-
PF factor	crem. delay d2 27				0.9		. <u>.</u> 873	\vdash	-	.929	-	0.7		0.929	0.344	+-
Control dela		0.936 73.6	0.87 41.5		58.	+	9.9	┢		0.2	+	6.5		49.3	27.1	+
Lane group	-	E	D		E))	\vdash		D		A		D	C	+
Apprch. dela			59.4			48.7			+		<u>15.</u>		l		28.4	
Approach Lo		 	E			D			+		В				С	
Intersec. de			1	_	ln	ters	sectio	on LC					С			
HCS2000 TM	,	novright ©	2000 U	niversity o										ersion 4.1f		

 $\textit{HCS2000}^{\text{TM}}$

					SH	ORT	REP	OI	RT								
General Inf	ormation						Site I	nfo	orma	atio	n	•					•
Analyst Agency or C Date Perfort Time Period	med	US 06/0	SAI SAI 03/12 PEAK			,	Inters Area Juriso	Ty _l dict	pe tion			COLLE CAN All o CARLS EXISTIN	IN the B/	ON F er are ND-IN	RD. eas IT.#16	-	
				<u> </u>			Analy	'SIS	Yea	ar ——				JEC			
Volume an	d Timing In	put						_				N I S					
			LT	EB TH	RT	LT	V Ti		I R	т	LT	NB TH	Т	RT	LT	SB TH	RT
Num. of Lar	ies		2	2	0	1	2		0		2	2	T	0	2	2	0
Lane group			L	TR		L	TF	₹			L	TR	T		L	TR	
Volume (vpl	n)		730	46	152	90	60		41		76	781	t	60	27	365	283
% Heavy ve			2	2	2	2	2		2		2	2	T	2	2	2	2
PHF			0.95	0.95	0.95	0.95	0.9	5	0.9	5	0.95	0.95	10	.95	0.95	0.95	0.95
Actuated (P.	/A)		Α	Α	Α	Α	Α		Α		Α	Α	I	Α	Α	Α	Α
Startup lost			2.0	2.0		2.0	2.0				2.0	2.0	Γ		2.0	2.0	
Ext. eff. gree	en		2.0	2.0		2.0	2.0				2.0	2.0	L		2.0	2.0	
Arrival type			5	5		5	5		_		5	5	Ļ		5	5	
Unit Extensi			3.0	3.0		3.0	3.				3.0	3.0	L		3.0	3.0	
	ΓOR Volume		5	5	0	5	5		0		5	5	_	0	5	5	0
Lane Width			12.0	12.0		12.0			_		12.0		╀		12.0	12.0	ļ
Parking/Gra	de/Parking		N	0	N	N	1 4)	N		N	0	╀	N	N	0	N
Parking/hr							+-	_	-				╀				
Bus stops/h			0	0		0	0		-		0	0	╀		0	0	
Unit Extensi			3.0	3.0		3.0	3.		<u> </u>		3.0	3.0	<u>L</u>		3.0	3.0	
Phasing	Excl. Left	Thru		03	3	04	4	_	Excl.			Thru & R		<u> </u>	07		38
Timing	G = 30.0 Y = 5	G = :		G = Y =		G = Y =		_	3 = 3 / = 5			6 = 50.0 $6 = 5$		G = Y =		G = Y =	
Duration of a	Analysis (hrs			•		<u>'</u>		<u> </u>				ycle Ler	ıgt	_			
Lane Gro	ир Сарасі	ity, C	ontro	l Dela	ıy, aı	nd LC	S D	et	erm	ina	atio	n					
			EB			١	NΒ					NB				SB	·
Adj. flow rate	e	768	208		95	5 1	06	Τ		8	0	885	Τ		28	682	
Lane group	сар.	793	424		408	8 4	56	Т		31	7	1348	T		317	1264	
v/c ratio		0.97	0.49	,	0.2	3 0	.23	Т		0.2	25	0.66	T		0.09	0.54	
Green ratio		0.23	0.14	!	0.2	3 0	.14	Τ		0.0	9	0.38	Τ		0.09	0.38	
Unif. delay o	11	49.5	51.8	3	40.	6 4	9.9	m I		54	.8	32.9			54.0	31.1	
Delay factor	k	0.48	0.11		0.1	1 0	.11	Ι		0.1	11	0.23			0.11	0.14	
Increm, dela	y d2	24.4	0.9		0.3	3 ().3	m I		0.	4	1.2		·	0.1	0.5	
PF factor				3	0.80	00 0.	893			0.9	32	0.583			0.932	0.583	
Control dela	y	64.0	47.1	1	32.	8 4	4.8			51	.5	20.4			50.5	18.6	
Lane group	LOS	D		С		D			L)	С			D	В		
Apprch. dela	ау	ϵ	50.4			39.1					2	3.0				19.8	
Approach L0	os		E			D						С				В	
Intersec. de				lı	nte	rsec	tion	LO	3				D				
HCS2000 TM	-	pyright ©	2000 11	niversity	of Flori	da .	All Rio	rhte B	eserv	-d					ersion 4.1		

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SI	HORT	RE	ΕPO	RT							
General Inf	ormation						Sit	e Inf	orma	tio						
Analyst Agency or 0 Date Perfor Time Period	med	U: 08/2	SAI SAI 29/12 PEAK				Are Jur	ersec ea Ty isdic alysis	/pe	r		All ot CEANS NEAR-	RAMP her are SIDE-IN	S as IT.#17 WITH	FF-	
Volume an	ıd Timing In	put														
				EB				WB	_			NB			SB	
			LT	TH	R		\dashv	TH	R	_	LT	TH	RT	LT	TH	RT
Num. of Lar			1	2	1	2	\dashv	2	0		1	1	1	0	2	0
Lane group			L	T	R	L	_	TR		_	L	LT	R		LTR	<u> </u>
Volume (vpl			85	633	358		}	241	37	_	736	61	205	43	68	37
% Heavy v PHF	en		2 0.95	2 0.95	0.9	2 5 0.9	- 	2 0.95	0.9	5	2 0.95	0.95	2 0.95	2 0.95	2 0.95	2 0.95
Actuated (P	/A)		0.95 A	0.95 A	0.9. A	3 0.9 A	~	0.95 A	A.S	J	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A	0.95 A
Startup lost			3.0	3.0	3.0		亓	3.0	1		3.0	3.0	3.0		3.0	
Ext. eff. gre			2.0	2.0	2.0	2.0)]	2.0			2.0	2.0	2.0		2.0	
Arrival type			5	5	5	5	\dashv	5	$oldsymbol{\perp}$		3	3	3		3	<u> </u>
Unit Extens			3.0	3.0	3.0		<u>'</u>	3.0	<u> </u>		3.0	3.0	3.0	ļ	3.0	
	TOR Volume)	5	10	0	5	_	10	0		5	10	0	5	10	0
Lane Width			12.0	12.0	12.		-	12.0			12.0	12.0	12.0	.	12.0	
Parking/Gra	ide/Parking		N	0	N	N	4	0	N		N	0	N	N	0	N
Parking/hr					<u> </u>		_		_	_			<u> </u>			
Bus stops/h			0	0	0	0	_	0	_	_	0	0	0		0	—
Unit Extens			3.0	3.0	3.0			3.0			3.0	3.0	3.0		3.0	<u> </u>
Phasing	Excl. Left		& RT	03	3		04		SB (NB Only		07		08
Timing	G = 11.0 Y = 4	G = .		G = Y =	····	G = Y =	·		G = 9 Y = 4			= 37.0	G =		G= Y=	
Duration of	Analysis (hr		•	<u> </u>		1 			1			/cle Len				
	up Capac			l Dela	av. :	and I	os	Det	term	in					-	
24110 010	ар оарас		EB		-,,,	<u> </u>	WE			Τ		NB		T	SB	
Adj. flow rat	· · · · · · · · · · · · · · · · · · ·	89	666	374	+	229	293		· · ·	1	20	219	216	+	156	T
•			+	_			-		<u> </u>	+			┼──		+	
Lane group	cap.	177	922	961		344	899			+	34	645	557	 -	265	+
v/c ratio	· · · · · · · · · · · · · · · · · · ·	0.50	0.72	0.39		0.67	0.3			┿	98	0.34	0.39	_	0.59	+
Green ratio		0.10	0.26	0.62		0.10	0.2			┿	36	0.36	0.36	_	0.08	
Unif. delay	11	42.6	33.7	9.5	4	43.4	29.	.9		31	1.6	23.3	23.8		44.4	
Delay factor	·k	0.11	0.28	0.11	(0.24	0.1	1		0.	48	0.11	0.11		0.18	
Increm. dela	ay d2	2.3	2.8	0.3		4.8	0.2	2		30	0.1	0.3	0.4		3.4	
PF factor		0.926	0.766	0.13	2 0	.926	0.76	66		1.0	000	1.000	1.000		1.000	1
Control dela				1.5	4	45.0	23.	.1		6:	1.7	23.6	24.3		47.8	
Lane group	<u> </u>	D	С	A	\top	D	С	;		1	E	С	С	1	D	1
Apprch. dela		0.7		\dashv		2.7		<u> </u>	T		6.1	1	+	47.8		
Approach L		· · · · · · · · · · · · · · · · · · ·	_		 C			十		D		1	D			
Intersec. de		-	C 3.7		十]r	nterse	ectio				\top		
HCS2000TM	· - · J				2000	Universit										ersion 4.1

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

					Sŀ	IORT	REF	oi	RT							
General Inf	ormation						Site I	nfo	ormat	ioi						
Analyst Agency or C Date Perfor Time Period	med	U- 08/2	SAI SAI 29/12 PEAK				Inters Area Juriso Analy	Ty _l dict	pe	•	0	All oti CEANS NEAR-1	RAMP: her are SIDE-IN	S as IT.#17 <i>N</i> ITH	FF-	
Volume an	d Timing In	put														
				EB				VΒ				NB			SB	
			LT	TH	RT		-	<u>H</u>	RT	_	LT	TH	RT	LT	TH	RT
Num. of Lar	nes		1	2	1	2	1		0	_	1	1	1	0	2	0
Lane group			L	T	R	L	<i>T.</i>			_	L	LT	R		LTR	
Volume (vpl			90 2	553 2	349 2	362	? 54 2		33 2	-	969 2	62 2	135 2	65 2	83 2	63 2
% Heavy vo	en <u>. </u>		_ <u>∠</u> 0.95	2 0.95	0.95				0.95	┥	2 0.95	0.95	0.95	0.95	0.95	0.95
Actuated (P	/A)		0.93 A	0.95 A	0.9c	A	<i>y</i> 0.3		0.9C	\dashv	0.95 A	A	0.95 A	0.90 A	0.90 A	0.93 A
Startup lost			3.0	3.0	3.0		_				3.0	3.0	3.0		3.0	
Ext. eff. gre	en		2.0	2.0	2.0	2.0	2.	0			2.0	2.0	2.0		2.0	
Arrival type			5	5	5	5	- 5			_	3	3	3	ļ	3	ļ
Unit Extensi			3.0	3.0	3.0	3.0				_	3.0	3.0	3.0	<u> </u>	3.0	
	TOR Volume)	5	40.0	0	5	1.		0	\dashv	5	10	0	5	10	0
Lane Width	-l - 10l -t		12.0	12.0	12.0 N		_		N	\dashv	12.0	12.0	12.0	A /	12.0	A.
Parking/Gra	de/Parking		N	0	/\	N	_	0	- /V	\dashv	Ν	0	N	N	0	N
Parking/hr				0	<u> </u>			<u> </u>	+	\dashv	0	o	0		0	
Bus stops/h			0		0	0	(+	┥	3.0					
Unit Extensi		LWD	3.0	3.0	3.0	3.0		.0	CD C	<u> </u>		3.0	3.0	07	3.0	20
Phasing	Excl. Left G = 10.0	G =	Only	Thru 8		G =)4		SB 0			IB Only = 42.0		07	G =	08
Timing	Y = 4	Y = 4		Y = 4		Y =			7 = 4			= 4	Y =		Y =	
Duration of	Analysis (hr	s) = 0.2	25						•		Су	cle Len	gth C =	= 110.	0	
Lane Gro	ир Сарас	ity, C	ontro	l Dela	ıy, a	and Lo	OS E)et	ermi	ina	ation					
			EB				WB					NB			SB	
Adj. flow rat	e	95	582	367	3	381	604	T		50	61	524	142		221	
Lane group	cap.	145	580	849	6	887	987	7		68	56	662	577		268	
v/c ratio		0.66	1.00	0.43	0	.55	0.61	T		0.	86	0.79	0.25		0.82	
Green ratio	 	0.08	0.16	0.54	0	.20	0.28	寸		0.	37	0.37	0.37		0.08	1
Unif. delay o	<u></u> 11	49.0	46.0	15.4	3	9.6	34.3			31	1.8	30.7	23.8	1	49.7	
Delay factor	·k	0.23	0.50	0.11	0	.15	0.20	T		0.	39	0.34	0.11		0.36	
Increm. dela	ay d2	10.2	38.2	0.4		1.0	1.1	寸		10	0.8	6.5	0.2		18.6	
PF factor				0.22	9 0.	.833	0.738			1.0	000	1.000	1.000		1.000	
Control dela	ıy	56.3	78.2	3.9	3	4.0	26.4	\dashv		42	2.5	37.2	24.1		68.3	
Lane group	LOS	E	E	Α		С	С			I	ס	D	С		E	
Apprch. dela	ay	5	0.1	-		29	.4				38	3.1	-		68.3	
Approach Lo	os		D			C)				l)			Е	
Intersec. de	lay	1.2	•				ln:	terse	ctic	on LOS	5			D		
HCS2000 TM		Co	myriaht C	2000 1	University	of Flor	ida	All Righ	ate P	eserved		·	•	v	ersion 4.1	

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REPO	DRT	•					•			
General Inf	ormation					S	ite Ir	nforn	natio	n							
Analyst Agency or C Date Perfort Time Period	med	U. 08/2	SAI SAI 29/12 PEAK			A J	nterse rea T urisd inalys	ype ictior	1	F	00	OFF All of CEANS VEAR-	-O: the SIL TE	N RA r are DE-IN	as IT.#18 WITH	B.	
Volume an	d Timing In	put				<u>'</u>											
				EB			W					NB	_			SB	T ==
Num. of Lar	106		LT 2	TH 2	RT 0	LT 1	Th	_	RT 0	L ⁷		TH 1	╁	RT 1	LT 1	TH 1	RT 0
	103		L	TR	۳		TR			L		LT	╁	, R	L	TR	
Lane group Volume (vpl	2)		924	214	33	24	256		36	34		3	╀	7	65	11	36
% Heavy ve			2	2	2	2	2		2	2		2	┿	2	2	2	2
PHF	311		0.95	0.95	0.95	0.95	0.9		<u>-</u> .95	0.9	5	0.95		.95	0.95	0.95	0.95
Actuated (P	/A)		Α	Α	Α	Α	Α		Α	Α		Α		A	Α	Α	Α
Startup lost			3.0	3.0		3.0	3.0			3.0		3.0	-	3.0	3.0	3.0	
Ext. eff. gree	en		2.0	2.0	ļ	2.0	2.0			2.0)	2.0	_	2.0	2.0	2.0	<u> </u>
Arrival type			4	4		4	4			3	_	3 3.0	-	3 3.0	3.0	3.0	
Unit Extensi	ол ГОR Volume		3.0 5	3.0 10	0	3.0 5	3.0 10		0	3,0 5	,	10	_	3.U 0	5.0	10	0
Lane Width	IOR Volume	;	12.0	12.0	<u> </u>	12.0	12.0	_	<u> </u>	12.	0	12.0	+-	2.0	12.0	12.0	
Parking/Gra	de/Parking		N 12.0	0	N	N N	0		N	N	_	0	-	N	N	0	N
Parking/hr		•					Ť	1					T			 	
Bus stops/h	r		0	0		0	0	\top		0		0	T	0	0	0	
Unit Extensi			3.0	3.0		3.0	3.0	,		3.0)	3.0	†	3.0	3.0	3.0	
Phasing	Excl. Left	EB	Only	Thru &	RT.	04		SE	3 Onl	<u>.</u> у Т	N	B Only			07	Ί (08
Timing	G = 5.0	G =		G = 2		G =			10.0			5.0		G=		G =	
	Y = 4	Y = .		Y = 4		Y =		Y =	4	_		: 4	اءما	Υ =		Y =	
Duration of				l Dala			Ċ D	.4	!		_	le Ler	gu	16-	100.	U	
Lane Gro	up Capac	ity, C		Dela	ay, aı	na LU Wi		eter	Min	auc		NB				SB	
A 11 G (070	EB	1	1 25				-				_		00		T
Adj. flow rat		973	260	-	25	307	—		36	-	-3	-	7		68	50	-
Lane group	сар.	1609	2180	-	71	694	-		67		7		57		157	143	
v/c ratio	<u>.</u>	0.60	0.12		0.35		-		0.5		0.0	_	0.1		0.43	0.35	
Green ratio		0.47	0.63	┿	0.04				0.0		0.0	-	0.0		0.09	0.09	
Unif. delay o		19.6	7.4	_	46.7				47.		46	-	46.		43.1	42.8	4—
Delay factor		0.19	0.11		0.11	_			0.1		0.		0.1		0.11	0.11	
Increm. dela	ay d2	0.7	0.0		3.0				8.3		0.	-	1.		1.9	1.5	
PF factor		0.810	0.497	<u> </u>	1.00	0 1.00	00		1.00	00	1.0	000	1.0	00	1.000	1.000	
Control dela	ıy	16.5	3.7	\perp	49.7	35.	6		55.4	4	46	.4	47.	.3	45.0	44.2	
Lane group	LOS	В	A		D	D			E		L)	D		D	D	
Apprch. dela	ay	1	3.8			36.6				5	3.6					44.7	
Approach L	os		В			D					D					D	
Intersec. de	lay	2	1.4			···············	ln	terse	ction	LO	S					С	
HC\$2000 TM		-	C	opyriaht C	2000 II	niversity o	f Florid	a All I	Rights 1	Reserv	red					· ·	ersion 4.1

					SH	ORT F	REP	OR1	Γ							
General Inf	ormation					9	ite Ir	nforr	natio				•			
Analyst Agency or C Date Perfort Time Period	med	U. 08/2	SAI SAI 29/12 PEAK			J J	nterse rea T urisd inalys	Type iction	า	F	All o OCEAI NEAF	F-O othe VSIL R-TE	N RA er are DE-IN	AM eas NT.#18 WITH	B.	
Volume an	d Timing In	put														
				EB		-	W				NB	_			SB	
Num. of Lar			LT 2	TH 2	RT 0	LT 1	Th 2	1	RT 0	L7 1	TH 1	+	RT 1	LT 1	TH_	RT 0
Lane group	163		L	TR	۳		TE	,			LT	╬	R	$\frac{1}{L}$	TR	ا
Volume (vpl	n)		950	329	60	96	365		59	156		╬	<u>54</u>	123	38	52
% Heavy ve			2	2	2	2	2		2	2	2	+	2	2	2	2
PHF	-		0.95	0.95	0.95	0.95	0.9	5 0	.95	0.9		6	.95	0.95	0.95	0.95
Actuated (P.	/A)		Α	Α	Α	Α	Α		Α	Α	Α		Α	Α	Α	Α
Startup lost			3.0	3.0		3.0	3.0			3.0		_	3.0	3.0	3.0	
Ext. eff. gree	en		2.0	2.0		2.0	2.0)		2.0	_	4	2.0	2.0	2.0	
Arrival type			5	5		5	5	+		3	3	+	3	<i>5</i>	3.0	-
Unit Extensi Ped/Bike/R			3.0 5	3.0 10	0	3.0 5	3.0		0	3.0 5	3.0	+	3.0 0	<i>3.0</i> <i>5</i>	10	0
Lane Width	TOR VOIGINE	;	12.0	12.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	12.0	12.		0	12.0		1	2.0	12.0	12.0	<u> </u>
Parking/Gra	de/Parking		N	0	N	N	0		N	N	0	+	N	N	0	N
Parking/hr							Ť					_				
Bus stops/h	r		0	0		0	0	+		0	0	十	0	0	0	
Unit Extensi	*		3.0	3.0		3.0	3.0	十		3.0	3.0	\dagger	3.0	3.0	3.0	
Phasing	Excl. Left	EB	Only	Thru &	₃ RT	04	<u> </u>	SE	3 Onl	y y	NB On	ly		07	1 (08
Timing	G = 14.0	G =		G = 2		G =			15.0	_	G = 12	0	G =		G =	
	Y = 4	Y = .		Y = 4		Y =		Υ =	4		Y = 4		Υ =		Y =	
	Analysis (hr			I Dala		1 1 0	<u> </u>	4			ycle Le	ngt	n Ç =	= 110.		
Lane Gro	up Capac	ity, C		oi Dela	ay, aı			eter	min	atio				Γ	SB	
41: 0		1000	EB	1	101	W			100	. 1	NB	T _		100		1
Adj. flow rat		1000	409		101				90		120	5		129	95	-
Lane group	cap.	1336	1629	-	209				174		179	15		223	212	
v/c ratio		0.75	0.25	_	0.48	_			0.5		0.67	0.3		0.58	0.45	4—
Green ratio		0.39	0.47		0.12	_			0.1		0.10	0.1		0.13	0.13	4—
Unif. delay o		28.8	17.4		45.4				47.		47.8	46		45.2	44.4	_
Delay factor		0.30	0.11		0.11			<u> </u>	0.1.		0.24	0.1		0.17	0.11	
Increm. dela	ay d2	2.4	0.1	\bot	1.8		-		2.7		9.3	1.		3.7	1.5	
PF factor		0.572	0.402	?	0.91	1 0.8	33		1.00	00	1.000	1.0	000	0.903	1.000	
Control dela	ıy	18.9	7.1		43.1	35.	7		49.	7	57.1	47	.9	44.5	45.9	
Lane group	LOS	В	Α		D	D			D		E	L)	D	D	
Apprch. dela	ay	1	5 .5			37.1				52	2.6				45.1	
Approach L	os		В			D				i)				D	
Intersec. de	lay	2	7.1				ln	terse	ection	LO:	3				С	
HCS2000 TM		-	- C	onariaht C	2000 TI	niversity o	f Florid	ο Δ11	Righte 1	Decer	ed				7	ersion 4.1

Short Report

				٠	SHO	ORT R	EPC	R.	T							
General Inf	ormation		•			Si	te in	orr	natio							
Analyst Agency or C Date Perfor Time Period	med	U: 08/2	SAI SAI 29/12 PEAK			Ar Ju	terse ea Ty irisdic nalysi	ype ction	1		oc.	l All oth EANS EAR-T	D.@TH DR. ner area IDE-IN ERM V DJECT	T.#19 NITH	R	
Volume an	d Timing In	put														
				EB			WE					NB			SB	
			LT	TH	RT	LT	TH	+	RT	L		TH	RT	LT	TH	RT
Num. of Lar	ies		1	2	0	1	2	_	0	1		1	0	1	1	0
Lane group			L	TR		L	TR			L		TR		L	TR	
Volume (vpl			141	284	2	2	532	4	84	0		2	2	53	2	192
% Heavy vo	e n		2	2	2 0.92	2	2	٠,	2 0.92	2	2	2	2	2	2	2
Actuated (P.	/A)		0.92 A	0.92 A	0.92 A	0.92 A	0.92 A		J.92 A	0.9: A	_	0.92 A	0.92 A	0.92 A	0.92 A	0.92 A
Startup lost			3.0	3.0	/1	3.0	3.0	\dagger		2.0)	3.0		3.0	3.0	 ^
Ext. eff. gre			2.0	2.0		2.0	2.0	J		2.0	_	2.0		2.0	2.0	
Arrival type			3	3		3	3			3		3		3	3	
Unit Extensi	_		3.0	3.0		3.0	3.0			3.0)	3.0		3.0	3.0	
	「OR Volume		5	10	0	5	10	4	0	5	_		0	5		0
Lane Width			12.0	12.0		12.0	12.0	4		12.0	0	12.0		12.0	12.0	
Parking/Gra	de/Parking		N	0	N	N	0	4	N	N		0	N	N	0	N
Parking/hr	•							4			_					
Bus stops/h			0	0		0	0	4		0	_	0		0	0	
Unit Extensi			3.0	3.0		3.0	3.0			3.0		3.0	<u> </u>	3.0	3.0	
Phasing	Excl. Left		& RT	03		- 04			cl. Le			u & R		07		80
Timing	G = 13.0 Y = 4.2	G = .		G = Y =		G = Y =			= <i>8.0</i> = <i>4.2</i>			19.1 4.2	G = Y =		G = Y =	
Duration of	<u>r − 4.∠</u> Analysis (hrs			T -		<u>r</u> –		Ϊ -	- 4 .2				gth C =			
	up Capaci			l Dela	av ar	d I O	S De	tei	min			io Long	guio	700.		· · · · · · · · · · · · · · · · · · ·
Lano Oro	ар Оарао		EB	. Deit	1	W						NB			SB	
Adj. flow rat		153	311	<u> </u>	2	66				0		4	Γ	58	211	1
Lane group		212	1452		212					42	+	312		124	287	+
v/c ratio		0.72	0.21	_	0.01				_	00	+	.01		0.47	0.74	+
Green ratio		0.12	0.41	_	0.12				-	08	+	.18		0.07	0.18	
Unif. delay o	 11	42.4	19.1		38.8	3 21	.6		42	2.3		3.6		44.7	38.7	+
Delay factor		0.28	0.11		0.11		11		_	11	+	.11		0.11	0.29	†
Increm. dela		11.4	0.1		0.0	0.	2		0	.0	1	0.0		2.8	9.5	
PF factor		1.000	1.00	0	1.00	0 1.0	00		1.0	000	1.	000		1.000	1.000	
Control dela	У	53.8	19.2	•	38.8	3 21	.8		42	2.3	3	3.6		47.5	48.2	1
Lane group	LOS	D	В		D	C	;		I)	T	С		D	D	1
Apprch. dela	ау	3	30.6			21.9					33.6	3	-		48.0	- 1
Approach Lo	OS		С			С					С				D	
Intersec. de	lay	2	29.8				In	ers	ectior	ı LO	S				С	
HCS2000 TM		•	Co	nvright ©	2000 IIn	iversity of	Florida	A11	Rights 1	Reserv	ed				v	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

		-			SHO	ORT F	≀EP(OF	₹T							
General Inf	ormation								rmatic	n						
Analyst Agency or C Date Perfort Time Period	med	U. 08/2	SAI SAI 29/12 PEAK			A: Ju	terse rea T urisdi	yp ctic	e on		00		DR. er are IDE-IN	IT.#19	₹	
Time Teriod		1 101 1	LAN			Α	nalys	is `	Year		/ ۷		JECT			
Volume an	d Timing In	out														
			LT	EB TH	RT	LT	W TH		RT	 	_	NB TH	RT	LT	SB TH	RT
Num, of Lar			1	2	0	1	2	1	0	1		1	0	1	1	0
Lane group			L	TR		L	TE		Ů	$\frac{1}{L}$		TR			TR	
Volume (vpl	٦)		254	569	5	5	335		99	$\frac{L}{1}$		2	6	124	3	137
% Heavy ve			2	2	2	2	2	_	2	1 2		2	2	2	2	2
PHF			0.92	0.92	0.92	0.92	0.9	2	0.92	0.9	2	0.92	0.92	0.92	0.92	0.92
Actuated (P.			Α	Α	Α	Α	Α		Α	Α		Α	Α	Α	Α	Α
Startup lost			3.0	3.0		3.0	3.0			3.0		3.0		3.0	3.0	
Ext. eff. gree	en		2.0	2.0		2.0	2.0)		2.0)	2.0		2.0	2.0	
Arrival type			3	3		3	3			3		3		3	3	
Unit Extensi			3.0	3.0		3.0	3.0			3.0)	3.0		3.0	3.0	
	TOR Volume		5	10	0	5 12.0	10		0	5 12.	_	12.0	0	5	12.0	0
Lane Width Parking/Gra	de/Darkina		12.0 N	12.0 0	N	N 12.0	12.0		N	$\frac{12}{N}$		0	N	12.0 N	0	N
Parking/Gra	ue/Farking		/ V		-/-	1 1	 '		- 14	 			74	+**	-	 '`
Bus stops/h	<u> </u>		0	0		0	10			10		0		0	0	
Unit Extensi			3.0	3.0		3.0	3.0			3.0		3.0		3.0	3.0	
Phasing	Excl. Left	Ε\Λ/	Perm	Thru d	l 8. RT I	04	<u> </u>		xcl. L			ru & R1	<u> </u>	0.0	<u> </u>	<u>1 </u>
	G = 4.0	G =		G = 4		G =		_	= 13	_		= 14.8	G:		G =	
Timing	Y = 4.2	Y =		Y = 5		Y =			= 4.2			4.2	Υ =		Y =	
Duration of	Analysis (hrs) = 0.2	25								Сус	le Lenç	gth C	= 110.	0	
Lane Gro	up Capaci	ity, C	ontro	l Dela	ay, ar	nd LO	S D	ete	ermin	atio	n					
	•		EB			V	/B					NB			SB	
Adj. flow rat	e	276	623		5	47	72	Π		1	T	9		135	152	
Lane group	сар.	357	1909)	115	5 12	04		1	93	1	206		193	199	
v/c ratio		0.77	0.33	: [0.04	4 0.	39	Γ	0	.01	1	0.04		0.70	0.76	
Green ratio		0.20	0.54		0.20	0.	35	T	0	.11	1	0.13		0.11	0.13	
Unif. delay o	11	41.5	14.2		35.7	7 26	3.6	T	4	3.7	7	42.3		47.3	46.5	
Delay factor	·k	0.32	0.11		0.1	1 0.	11		0	.11	(0.11		0.27	0.32	
Increm. dela	ay d2	10.1	0.1		0.2	O.	.2	Γ		0.0		0.1		10.7	16.1	
PF factor		1.000	1.00	0	1.00	00 1.0	000		1.	.000	1	.000		1.000	1.000	
Control dela	У	51.6	14.3		35.9	9 26	6.8		4	3.7]	12.4		57.9	62.6	
Lane group	LOS	D	В		D	()			D		D		Ε	Ε	
Apprch. dela	ay		25.7			26.9					42.	5			60.4	
Approach L	os		С			С					D				Ε	
Intersec. de	lay		32.1				İr	iter	sectio	n LC	S				С	
HCS2000 TM			Co	onvright ©	2000 II	niversity o	f Florid	в А	II Rights	Reserv	æđ				V	ersion 4.1

 $HCS2000^{\mathrm{TM}}$

Copyright © 2000 University of Florida, All Rights Reserved

					SH	ORT F	REP	OR	T							
General Inf	ormation		,		•	S	ite lı	nfo	rmatic	n				•		
Analyst Agency or C Date Perfort Time Period	med	08	JSAI JSAI /28/12 I PEAK) J	nters area ⁻ urisd analy:	Гур lictio	е		W. A	ARIN II oth DCEA NR-T	IG R er ar ANSI	eas DE PLUS		
Volume an	d Timing Ir	nput														
	***			ΕB			W					ΙB			SB	
			LT	TH	RT	LT	TI	1	RT	LT	$\overline{}$	<u>H </u>	RT	LT	TH	RT
Num. of Lar	es		0	1	1	1	1		0	2	2		1	1	2	1
Lane group				LT	R	L	TR			L	7		R	L	Τ	R
Volume (vpl			25	32	182	107	47	'	43	446	74		195	71	1281	138
% Heavy ve	eh		2	2	2	2	2	_	2	2 0.92	0.9		2 0.92	2 0.92	2 0.92	2 0.92
PHF Actuated (P.	/Δ \		0.92 A	0.92 A	0.92 A	0.92 A	0.9: A	_	0.92 A	0.92 A	<i>0.8</i>		0.92 A	0.92 A	0.92 A	0.92 A
Startup lost			+~	2.0	2.0	2.0	2.0)	/1	2.0	2.		2.0	2.0	2.0	2.0
Ext. eff. gree			1	2.0	2.0	2.0	2.0			2.0	2.	_	2.0	2.0	2.0	2.0
Arrival type				4	4	4	4			5	5		5	5	5	5
Unit Extensi				3.0	3.0	3.0	3.0)		3.0	3.	0	3.0	3.0	3.0	3.0
Ped/Bike/R1	FOR Volum	e	5	5	90	5	5		0	5		_	0	5	5	0
Lane Width				12.0	12.0	12.0	12.	0		12.0		-+	12.0	12.0	12.0	12.0
Parking/Gra	de/Parking		N	0	N	N	0		N	N	0	_	Ν	N	0	N
Parking/hr												\dashv		ļ		
Bus stops/h				0	0	0	0			0		\rightarrow	0	0	0	0
Unit Extensi			<u></u>	3.0	3.0	3.0	3.0			3.0	3.		3.0	3.0	3.0	3.0
Phasing	EB Only	_	3 Only	0:	3	04		-	xcl. Le		Thru &		_	07		80
Timing	G = 14.0 Y = 4.6	G = Y =	7.0	G = Y =		G = Y =		_	= 15. = 4.6		$\hat{b} = 4$ $\hat{f} = 6$		G Y:		G = Y =	
Duration of A								<u>'</u>	- 4.0		ycle l					
	up Capac			ı Del	av. ar	nd I O	S D	ete	rmin						***************************************	· .· ,
24110 010	ap capat	,,,,	EB	,, <u>D</u> 01.	 	WB		-		<u> </u>	NB				SB	
Adj. flow rat	e.	Т	62	100	116	98			485	8	05	212	2	77	1392	150
Lane group	,		255	215	124	118			519		61	697			1561	684
v/c ratio		\vdash		0.47	0.94	0.83			0.93	0.	52	0.3	0	0.29	0.89	0.22
Green ratio		,	0.14	0.14	0.07	0.07			0.15	0.	44	0.4	4	0.15	0.44	0.44
Unif. delay o	<u>i</u> 1		38.3	39.6	46.3	45.9			42.0	2	0.3	18.	1	37.7	25.8	17.4
Delay factor	k	(0.11	0.11	0.45	0.37			0.45	0.	12	0.1	1	0.11	0.42	0.11
Increm. dela	y d2		0.5	1.6	61.0	37.0			24.3	(.3	0.2	?	0.6	6.9	0.2
PF factor		7	1.000	1.000	1.000	1.000)		0.881	1 0.	476	0.47	76	0.881	0.476	0.476
Control dela	У		38.8	41.1	107.3	82.9			61.3	1	0.0	8.9	,	33.8	19.2	8.4
Lane group	LOS		D	D	F	F			Ε		4	Α		С	В	Α
Apprch. dela	ау	4	10.2			96.1				26.4	!				18.9	
Approach Lo	os		D			F				С					В	
Intersec. de	lay	2	27.8				Inte	erse	ection I	LOS					С	
HCS2000 TM			-	onvright @	⊃ 2000 II	niversity o	f Florid	la Ai	II Rights	Reserv	-d					Version 4.1

Page 1 of 1

					SHO	ORT R	EPC	R	T							
General Infe	ormation						ite In			n						
Analyst Agency or C Date Perfort Time Period	ned	U 08/	ISAI ISAI (28/12 PEAK			A Ji	nterse rea Ty urisdio nalysi	ype ctio	e n		0	WAF All ot CEAN: VEAR-	RING I her ar SIDE-	eas INT#20 I WITH)	
Volume an	d Timing In	put		_												
				EB			WB					NB		_	SB	
Num. of Lan			LT O	TH 1	RT 1	LT 1	ŤH 1	+	RT 0	L^ 		TH 2	RT 1	LT 1	TH 2	RT 1
			 		-	L	TR	+	<u> </u>	L		T	R	L	$\frac{1}{T}$	R
Lane group			103	LT 54	R 397	129	51	+	116	38;	2	1375	164	68	1080	78
Volume (vpl % Heavy ve			2	2	2	2	2	+	2	2		2	2	2	2	2
PHF	211		0.92	0.92	0.92	0.92	0.92	10	0.92	0.9		0.92	0.92	0.92	0.92	0.92
Actuated (P	/A)		Α	Α	Α	Α	Α		Α	Α		Α	Α	Α	Α	Α
Startup lost	time			2.0	2.0	2.0	2.0			2.0		2.0	2.0	2.0	2.0	2.0
Ext. eff. gree	en			2.0	2.0	2.0	2.0	4		2.0	_	2.0	2.0	2.0	2.0	2.0
Arrival type				4	5	4	4	+		5	-	5	5	5	5	5
Unit Extensi			ļ	3.0	3.0	3.0	3.0		0	3.0)	3.0	3.0	3.0	3.0	3.0
Ped/Bike/Ri Lane Width	OR Volume)	5	5 12.0	190 12.0	5 12.0	5 12.0	+	0	5 12.		5 12.0	65 12.0	5 12.0	5 12.0	12.0
	da/Darkina		N	0	12.0 N	12.0 N	0	+	N	12. N	$\overline{}$	0	12.0 N	N 12.0	0	N 12.0
Parking/Gra	de/Parking		10	U	170	IN	0	+	17	10		U	17	111	10	114
Parking/hr				0	o	0	0	+		0		0	0	0	0	10
Bus stops/hi Unit Extensi			 	3.0	3.0	3.0	3.0	+		3.0	_	3.0	3.0	3.0	3.0	3.0
	EB Only	I VA/ID	Only	0.0	<u> </u>	04	<u> </u>	<u> </u>	cl. Le	<u> </u>		B Only		ru & R		08
Phasing	G = 14.0	_	12.0	G =	- 	G =			= 9.0	_	G:			= 40.0	_	00
Timing	Y = 4.6	Y =		Y =		Y =	_		= 4.6		Υ =			= 6.7	Y =	
Duration of A	Analysis (hr	s) = <i>0.</i>	25								Сус	cle Len	gth C	= 110	0.0	
Lane Gro	up Capac	ity, C	Contro	ol Dela	ay, ar	nd LO	S De	te	rmin	atio	on					
			EB			WB					N	В			SB	
Adj. flow rate	е	1	171	225	140	181			415	1	49	5 10	08	74	1174	85
Lane group	сар.		228	195	191	177			741	1	77	7 77	71	145	1290	565
v/c ratio).75	1.15	0.73	1.02			0.56		2.84	<i>1 0.</i>	14	0.51	0.91	0.15
Green ratio).13	0.13	0.11	0.11			0.22		0.50	0.	50	0.08	0.36	0.36
Unif. delay o	11	4	6.3	48.0	47.4	49.0			38.5		23.7	7 14	4.7	48.4	33.3	23.6
Delay factor	k	C).31	0.50	0.29	0.50			0.16	- (0.38	3 0 .	11	0.12	0.43	0.11
Increm. dela	y d2	1	3.0	112.0	13.6	73.7			1.0	\prod	3.8	0.	.1	3.0	9.8	0.1
PF factor		1	.000	0.903	1.000	1.000)		0.817	7 ().33	31 0.3	331	0.941	0.619	0.619
Control dela	у	8	59.3	155.4	61.0	122.	7		32.4		11.7	7 5.	0	48.5	30.4	14.7
Lane group	LOS		Ε	F	Ε	F			С		В	1	4	D	С	В
Apprch. dela	ay	1:	13.9			95.8				15.	.6				30.4	
Approach Lo	os		F			F				В					С	
Intersec. de	lay	3	6.3				Inter	rse	ction I	LOS	5				D	
HCS2000 TM	•		(Copyright (2000 Ui	niversity o	f Florida	, All	Rights	Reser	ved					Version 4.

8/28/2012

W/MIT

					CII/	ORT F	ED	<u> </u>)T	_		V	9/	AII	18		
General Inf	ormation				эпс				mation					-			
Analyst Agency or 0 Date Perfor Time Perioc	Co. med	08/	ISAI ISAI /28/12 PEAK			Int Ard Ju	erse ea T risdic alys	ctio ype	on () n	COL	EA	GE BLV RO. All othe NSIDE/ EAR-TE PRO.	AD r are MIT RM	eas IGA PL	ATION		
Volume an	nd Timing In	put															
				EB	Loz	(=	W	_	L DT		-	NB		_		SB	Lot
N			LT	TH	RT 1	LT 1	TI	_	RT 0		_	TH 3	R		LT 1	TH 2	RT 1
Num. of Lar		-	0	1		_	-	_	U	-	_		0	-		-	_
Lane group			0.5	LT	R	L	TF		- 10	L	_	TR	10	_	L	T	R
Volume (vpl			25	32	182	107	47		<i>43</i>	44		741	19	_	71	1281	138
% Heavy v	en	-	0.92	0.92	0.92	0.92	0.9	and the second second	0.92	0.9		0.92	0.9		0.92	0.92	0.92
Actuated (P	2/A)		A	A	A	A	A		A	A		A	A	_	A	A	A
Startup lost				2.0	2.0	2.0	2.0			2.		2.0			2.0	2.0	2.0
Ext. eff. gre				2.0	2.0	2.0	2.0			2.		2.0			2.0	2.0	2.0
Arrival type				4	4	4	4	5		5	5	5		= 1	5	5	5
Unit Extens	ion			3.0	3.0	3.0	3.	0		3.	0	3.0			3.0	3.0	3.0
Ped/Bike/R	TOR Volume		5	5	90	5	5		0	5	5		0		5	5	0
Lane Width				12.0	12.0	12.0	12.	0	7	12	.0	12.0			12.0	12.0	12.0
Parking/Gra	ade/Parking		N	0	N	N	0)	N	٨	1	0	N		N	0	N
Parking/hr																	
Bus stops/h	r			0	0	0	0			()	0			0	0	0
Unit Extens	ion			3.0	3.0	3.0	3.	0		3.	0	3.0			3.0	3.0	3.0
Phasing	EB Only	WE	Only	0:	3	04		E	Excl. Le	eft	Th	ıru & R	T		07		08
Timing	G = 14.0	G =		G =		G =		_	i = 15.			= 44.0		G =		G =	
	Y = 4.6	Y =		Y =		Y =		Υ	= 4.6			= 6.7		Y =	400	Y =	
	Analysis (hrs											cle Len	gth	C =	100.	.0	
Lane Gro	up Capac	ity, (Contro	ol Dela	ay, ar	- A		ete	ermin	ati	_	135		7			
			EB			W	В				1	NB .		┸		SB	
Adj. flow rat	te		62	100	116	98	3		48	5	10	017		7	77	1392	150
Lane group	сар.		255	215	124	11	8		51	9	2	163		2	67	1561	684
v/c ratio			0.24	0.47	0.94	0.8	3		0.9	3	0.	.47		0.	.29	0.89	0.22
Green ratio	7		0.14	0.14	0.07	0.0	7		0.1	5	0.	.44		0.	.15	0.44	0.44
Unif. delay	d1		38.3	39.6	46.3	45.	9		42.	0	1	9.8		3	7.7	25.8	17.4
Delay factor	r k		0.11	0.11	0.45	0.3	7		0.4	5	0.	.11		0.	.11	0.42	0.11
Increm. dela	ay d2		0.5	1.6	61.0	37.	0	Г	24.	3	0	0.2		0	0.6	6.9	0.2
PF factor			1.000	1.000	1.00	0 1.0	00		0.8	81	0.	476		0.	881	0.476	0.476
Control dela	ay		38.8	41.1	107.	3 82.	9		61.	3	g	0.6		3.	3.8	19.2	8.4
Lane group	LOS		D	D	F	F			E			A			С	В	Α
Apprch. del			40.2			96.1		_		2	26.3	3		7		18.9	
Approach L			D			F					С					В	
Intersec. de		J 9	27.8				In	ters	ection	LO	S			T		С	
HC\$2000TM				Copyright @	3 2000 II	nivercity o				-				-			Version 4

W/MIT.

					SH	ORT	REP	OF	RT				,			
General Inf	ormation					5	ite li	ıfoı	rmatio							
Analyst Agency or C Date Perfon Time Period	med	US 08/2	SAI SAI 28/12 PEAK			J	nters Area ⁻ urisd Analy	Гур ictic	e	//	All of OCE IT#20/I NEAR-	RD her AN MIT TER	area ISIDE IGAT	- TION	VG	
Volume an	d Timing In	put														
				EB			_	/B			NB				SB	
A PROPERTY			LT	TH	RT	LT	Т	_	RT	LT	TH	+	RT	LT	TH	RT
Num. of Lar	nes		0	1	1	1	1	_	0	2	3	4	1	1	2	1
Lane group				LT	R	L	TI			L	TR	1	R	L	T	R
Volume (vpl			103	54	397	129	5		116	382	1375		164	68	1080	78
% Heavy ve	eh		2	2	2	2	2		2	2	2	4	2	2	2	2
PHF Actuated (P	/^\		0.92	0.92	0.92 A	0.92 A	0.9		0.92 A	0.92 A	0.92 A	+).92 A	0.92 A	0.92 A	0.92 A
Startup lost			Α	2.0	2.0	2.0	2.		A	2.0	2.0	+	2.0	2.0	2.0	2.0
Ext. eff. gree				2.0	2.0	2.0	2.	_		2.0	2.0	_	2.0	2.0	2.0	2.0
Arrival type	511			4	5	4	4	_		5	5	+	5	5	5	5
Unit Extensi	on			3.0	3.0	3.0	3.	_	1	3.0	3.0	1	3.0	3.0	3.0	3.0
ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	TOR Volume		5	5	190	5	5		0	5	5	1	65	5	5	0
Lane Width			/	12.0	12.0	12.0	12.	0		12.0	12.0	1	2.0	12.0	12.0	12.0
Parking/Gra	de/Parking		Ν	0	N	N	()	N	N	0		N	N	0	N
Parking/hr												1				
Bus stops/h	r			0	0	0	()		0	0		0	0	0	0
Unit Extensi	on			3.0	3.0	3.0	3.	0	-	3.0	3.0		3.0	3.0	3.0	3.0
Phasing	EB Only	WB	Only	0:	3	04	1	E	excl. Le	ft	VB On	ly .	Thr	u & RT	1 = 9	08
Section 1	G = 14.0	G =		G=		G =		_	6 = 9.0	_	= 10.	_		40.0	G =	
Timing	Y = 4.6	Y =		Y =		Y =		Y	' = 4.6		= 5			6.7	Y =	
	Analysis (hrs										/cle Le	ngt	h C =	: 110.	0	
Lane Gro	up Capaci	ty, C	ontro	l Dela	y, an	d LO	S De	te	rmina	tion						
			EB			W	3				NB				SB	
Adj. flow rat	е		171	225	140	18	1		415	14	95	108	3	74	1174	85
Lane group	сар.		228	195	191	17	7		741	25	42	771		145	1290	565
v/c ratio		(0.75	1.15	0.73	1.0	2		0.56	_		0.14	1 (0.51	0.91	0.15
Green ratio		(0.13	0.13	0.11	0.1	1		0.22	0.	50	0.50) (0.08	0.36	0.36
Unif. delay o	11	2	16.3	48.0	47.4	49.	0		38.5	19	9.4	14.	7	48.4	33.3	23.6
Delay factor		(0.31	0.50	0.29	0.5	0		0.16	0.	18	0.1	1 (0.12	0.43	0.11
Increm. dela		1	13.0	112.0	13.6	73.	7		1.0	0	.4	0.1		3.0	9.8	0.1
PF factor			.000	0.903	1.000	_	_		0.81			0.33	-		0.619	0.619
Control dela	ıy	-	59.3	155.4	61.0		_		32.4	_		5.0	\rightarrow	48.5	30.4	14.7
Lane group		Y	E	F	E	F	_		С	_	4	Α		D	С	В
Apprch. dela		11	13.9			95.8				12.0					30.4	
Approach L			F			F				В					С	
Intersec. de		3	4.5				In	ters	section	LOS					С	
HCS2000 TM	2774			Copyright (-				-		Version •

					SH	ORT R	EP	ORT								
General Inf	ormation				•	s	ite Ir	form	atio							
Analyst Agency or C Date Perfor Time Period	med	U 06/9	SAI SAI 03/12 PEAK			A Ju	rea T urisdi	ection ype ction sis Ye			CR All OC NEAR	REEI othe CEA R-TE	K Č1 er are NSIL	eas DE WITH	₹Y	
Volume an	d Timing I	nput												•		
				EB			W.				NE				SB	
			LT	TH	RT	LT	T⊦	_	RT	LT	TH		RT	LT	TH	RT
Num. of Lar	nes		2	2	0	2	2	-	1	0	1	-	1	1	1	1
Lane group			L	TR	<u> </u>	L	T		₹		LTF		R	L	LT	R
Volume (vpl			10 2	186 2	7	173 2	75 2		57 2	2	5 2	+	84 2	145 2	5 2	2
% Heavy vo	en	·	0.92	0.92	0.92	0.92	0.92	_	2 92	0.92	0.92	,	<u>2</u>).92	0.92	0.92	0.92
Actuated (P.	/A)		A	A	A	A	0.31 A	7		A	A	+	A	A	A	A
Startup lost			2.0	2.0		2.0	2.0		.0		2.0	<u> </u>	2.0	2.0	2.0	2.0
Ext. eff. gree	en		2.0	2.0		2.0	2.0		.0		2.0		2.0	2.0	2.0	2.0
Arrival type			3	3	ļ	3	3		3		3	+	3	3	3	3
Unit Extensi			3.0	3.0	ļ	3.0	3.0		.0		3.0	4	3.0	3.0	3.0	3.0
Ped/Bike/R	IOR Volum	e	5	10	0	5	10	-	2	5	10 12.0	\	0 2.0	5 12.0	10	0 12.0
Lane Width Parking/Gra	do/Porkina		12.0 N	12.0 0	N	12.0 N	12.0	_	2.0 N	N	0	' '	2.0 N	12.0 N	12.0	12.0 N
Parking/hr	ue/Farking		14		14	14	 '	+ '	V	/\	0	+	14	 '\	+	1
Bus stops/h	r		0	0	 	0	0	+	0		0	+	0	0	0	0
Unit Extensi			3.0	3.0		3.0	3.0	_	.0		3.0	+	3.0	3.0	3.0	3.0
Phasing	Excl. Left	Thru	& RT	0:0	3	04	1 0,0	_	Onl	v S	B Or		T	07		08
	G = 10.0	G =		G =		G =		G =			= 10	_	G :	-	G =	
Timing	Y = 5	Y =	5	Y =		Y =		Y =	5		= 5		Υ =		Y =	
Duration of											cle Le	engt	h C	= 70.0)	
Lane Gro	up Capa	city, C	ontro	l Dela	ay, aı	nd LO	S De	eterr	<u>nin</u> :	<u>ation</u>				_		
			EB			WB					NB				SB	
Adj. flow rat	е	11	210		188	82	1	71		7		91		158	5	4
Lane group	сар.	491	1007		491	1013	6	63		262	? .	212		248	266	218
v/c ratio		0.02	0.21		0.38	0.08	0.	26		0.03	3 (0.43	. (0.64	0.02	0.02
Green ratio	··············	0.14	0.29		0.14	0.29	0.	43		0.14	4 (0.14	(0.14	0.14	0.14
Unif. delay o	<u></u> ქ1	25.8	19.0		27.2	18.3	1.	2.8		25.8	3 /2	27.4		28.3	25.8	25.8
Delay factor	·k	0.11	0.11		0.11	0.11	0.	11		0.1	1 (0.11	7	0.22	0.11	0.11
Increm. dela	ay d2	0.0	0.1		0.5	0.0	().2		0.0		1.4		5.4	0.0	0.0
PF factor	· · · · · · · · · · · · · · · · · · ·	1.000	1.000		1.000	1.000) 1.	000		1.00	00 1	.00	0 1	.000	1.000	1.000
Control dela	ay	25.8	19.1		27.7	18.3	1.	3.1		25.9	9 /2	28.8		33.6	25.8	25.8
Lane group	LOS	С	В		С	В	十	В	T	С	\neg	С		С	С	С
Apprch. dela	ay	19	9.4			20.3	•			28.0	5				33.2	
Approach L	os	i	3	-		С				С			\neg		С	
Intersec. de	lay	23	3. <i>3</i>				Inte	rsect	ion L	os			一		С	
HCS2000 TM			C	onvriaht (• ግ 2000 ፲፱	niversity of	Florid	a A11 R	iahte l	Reserved					,	Version 4.11

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

	<u></u>				SH	ORT R	EP	ORT	•							
General Inf	ormation							forn							-	
Analyst Agency or C Date Perfor Time Period	med	U 06/0	SAI SAI 03/12 PEAK			Aı Ju	rea T urisdi	ectior ype ction sis Ye	1		C Al C NEA	REE I oth CEA R-T	EK Č ier ar ANSI	eas DE I/WITH	RY	
Volume an	d Timing I	nput														
				EB		1	W.					IB			SB	T ==
Num, of Lar			LT 2	TH 2	RT 0	LT 2	TI- 2	+	RT 1	LT O	T 1	$\overline{}$	RT 1	LT 1	TH 1	RT 1
	163		 	TR	 	+	T	-	, R	 ° -	L7	_	R		LT	R
Lane group			L	146	4	350	221		19	8	5		290	509	5	11
Volume (vpl % Heavy ve			6 2	2	2	2	2		2	2	2		290	2	2	2
PHF	J11		0.92	0.92	0.92	0.92	0.9		92	0.92	0.9	_	0.92	0.92	0.92	0.92
Actuated (P.	/A)		Α	Α	Α	Α	Α		Α	Α	Α		Α	Α	Α	Α
Startup lost			2.0	2.0		2.0	2.0		2.0		2.	_	2.0	2.0	2.0	2.0
Ext. eff. gree	en		2.0	2.0	-	2.0	2.0		2.0		2.		2.0	2.0	2.0	2.0
Arrival type Unit Extensi	ion		3 3.0	3 3.0	_	3.0	3. <i>0</i>		3 3.0	<u> </u>	3. 3.		3 3.0	3.0	3.0	3.0
Ped/Bike/R1		Α	5	10	0	5	10		0 0	5	10		25	5	10	0
Lane Width	OIT VOIGIII	<u> </u>	12.0	12.0	 	12.0	12.0	_	2.0	٦	12	$\overline{}$	12.0	12.0	12.0	12.0
Parking/Gra	de/Parking		N	0	N	N	0		<u>N</u>	N	0		N	N N	0	N N
Parking/hr							Ť	1			Ť					1
Bus stops/h	r	·····	0	0	<u> </u>	0	0		0		7	,	0	0	0	0
Unit Extensi			3.0	3.0	 	3.0	3.0) (3.0		3.	0	3.0	3.0	3.0	3.0
Phasing	Excl. Left	Thru	& RT	0:	3	04	-	NE	3 Onl	y S	SB C	nly		07	<u> </u>	08
Timing	G = 15.0	G =		G =		G =			18.0	0 G	= 3	2.0	G		G =	
	Y = 5	Y =		Y =		Y =		Y =	5		= 5		Ϋ́		Y =	
Duration of A					<i>7</i>	11.04						_eng	gth C	= 100	1.0	
Lane Gro	up Capa	city, C		Dela	ay, ar			eter	min:							
			EB			WB		 .			NB		_		SB	
Adj. flow rate		7	163		380	240	-	47	<u> </u>	15		147	_	332	226	12
Lane group	сар.	516	530		516	532	-	25	\bot	27		270	-	563	565	495
v/c ratio		0.01	0.31		0.74	0.45	-	48	\bot	0.5		0.5	-	0.59	0.40	0.02
Green ratio		0.15	0.15		0.15	0.15	0.	47		0.1	8	0.1	8	0.32	0.32	0.32
Unif. delay o	11	36.2	37.9		40.6	38.7	1.	8.1		37.	4	37.	3	28.5	26.5	23.3
Delay factor	k	0.11	0.11		0.29	0.11	0.	11		0.1	6	0.1	4	0.18	0.11	0.11
Increm. dela	y d2	0.0	0.3		5.5	0.6	0).5		2.7	7	2.3	3	1.6	0.5	0.0
PF factor		1.000	1.000		1.000	1.000	1.	000		1.0	00	1.00	00	1.000	1.000	0.686
Control dela	y	36.2	38.2		46.1	39.4	1.	8.6		40.	1	39.	6	30.1	27.0	16.0
Lane group	LOS	D	D		D	D		В		D		D		С	С	В
Apprch. dela	ay	38	3.1			<i>34</i> .6				39.	8				28. 6	
Approach Lo	os	1)			С				D					С	
Intersec. de	lay	34	1.0				Inte	rsec	tion L	OS					С	
HCS2000 TM		_	Co	nsvright @	- ኃ 2000 I Ii	niversity of	Florid	a A11 F	Rights I	Reserved					**	Version 4.1

 $HCS2000^{\rm TM}$

Copyright © 2000 University of Florida, All Rights Reserved

General Info	ormation		Site Informati	tion	
Analyst Agency/Co. Date Performe Time Period	USAI USAI d 6/7/2012 AM PEAK HOU	'R	Intersection Jurisdiction Analysis Year	MARRON RD./ST. CARLSBAL NEAR TERM PLUS)
Project Descrip					
Volume Adj	ustments				
		EB	WB	NB	SB
	Volume, veh/h	30	0	0	149
LT Traffic	PHF	0.90	0.90	0.90	0.90
	Flow rate, veh/h	33	0	0	165
راجا شي ور	Volume, veh/h	36	12	0	0
TH Traffic	PHF	0.90	0.90	0.90	0.90
	Flow rate, veh/h	40	13	0	0
	Volume, veh/h	0	52	0	10
RT Traffic	PHF	0.90	0.90	0.90	0.90
	Flow rate, veh/h	0	57	0	11
Approach F	low Computation				
Ар	proach Flow (veh/h)			Va (veh/h)	
	Vae			73	
	Vaw			70	
	Van			0	
	Vas			176	
	Flow Computation			V V V V V V V V V V V V V V V V V V V	
Ар	proach Flow (veh/h)			Vc (veh/h)	
	Vce			165 33	
	Vcw Vcn			238	
	V cn Vcs			13	
Capacity Co					
Capacity Ot	- Patation	EB	WB	NB	SB
San and	Upper bound	1217	1349	1149	1370
Capacity	Lower bound	1008	1129	947	1148
7.7.7.	Upper bound	0.06	0.05	0.00	0.13
v/c Ratio	- Pho. 200110	0.07	0.06	0.3%	0.15

 $HCS2000^{\text{TM}}$

Copyright © 2003 University of Florida, All Rights Reserved

General Info	ormation		Site Informat	ion	
Analyst Agency/Co. Date Performe	USAI USAI ed 6/7/2012		Intersection Jurisdiction Analysis Year	MARRON RD./S CARLSB, NEAR-TERM	AD PLUS
Time Period	PM PEAK HOU	IR .		PROJEC	<i>i</i> 1
Project Descrip	otion QC				
Volume Adj	justments				
		EB	WB	NB	SB
	Volume, veh/h	15	0	0	83
LT Traffic	PHF	0.90	0.90	0.90	0.90
	Flow rate, veh/h	16	0	0	92
	Volume, veh/h	18	42	0	0
TH Traffic	PHF	0.90	0.90	0.90	0.90
	Flow rate, veh/h	20	46	0	0
	Volume, veh/h	0	164	0	34
RT Traffic	PHF	0.90	0.90	0.90	0.90
	Flow rate, veh/h	0	182	0	37
Approach F	low Computation				
Ap	proach Flow (veh/h)			Va (veh/h)	
	Vae			36	
	Vaw			228	
	Van			0	
Circulation	Vas			129	
	Flow Computation proach Flow (veh/h)			Vc (veh/h)	
Ap	V _{ce}			92	
	Vcw			16	
	Vcn			128	
	Vcs			46	
Capacity Co	omputation				
		EB	WB	NB	SB
	Upper bound	1288	1367	1252	1335
Capacity	Lower bound	1073	1145	1041	1116
	Upper bound	0.03	0.17	0.00	0.10
v/c Ratio	Lower bound	0.03	0.20	0.00	0.12

 $HCS2000^{\mathrm{TM}}$

Copyright © 2003 University of Florida, All Rights Reserved

Version 4.1f

ALL VICE LOSA

FAIR-SHARE %

EL CAMINO REAL (VISTA WAY TO SR-78 WB PRIMAS)

NEAR-TERM + PROJECT

I. TOTAL VOLUME (NEAR-TERM + PROJECT)

NEAR-TERM WITH PROJECT 57,400 ADT

NEAR-TERM, WITHOUT PROJECT - 57,300 ADT

100 ADT PROJEG ONLY INCREASE =

IF. EXISTING VOLUME

EXISTING

53.859ADT

III. TOTAL INCREASE

NEAR-TERM WITH PROJECT 57, 400 ADT

EXISTING

TOTAL INCREASE -

- 53,859 ADT 3,541 ADT

II . PROJECT PERCENTAGE OF TOTAL (NOREASE

PROJECT UNIN = 100 ADT = 2,8%

TOTAL INCREASE = 3,541 ADT = 2,8%

FAIR-SHARE 70

COLLEGE BLVD (VISTAWAY TO PLAZA DR.) NEAR-TERM + PROJECT

I. TOTAL VOLUME (NEAR-TERM + PRUSECT)

NEAR-TERM WITH PROJECT

51,000 ADT

NEAR-TERM, WITHOUT PROJECT - 48,200 ADT

PROJECT ONLY INCREASE =

2,800 ADT

I. EXISTING VOLUME

EXISTING

44,884 ADT

III. TOTAL INCREASE

NEAR-TERM WITH PROJECT 51,000 ADT

TOTAL INCREASE = GIIG ADT

II . PROJECT PERCENTAGE OF TOTAL INCREASE

PROJECT UNLY = 2,800 ADT = 45,8 %

FAIR-SHARE %

VISTA WAY (COLLEGE BLVO. TO SRIBUB RMPS) NEAR-TERM + PROJECT

I. TOTAL VOLUME (NEAR-TERM + PROJECT)

NEAR-TERM WITH PROJECT

32,700 ADT -31,500 ADT

NEAR-TERM, WITHOUT PROJECT PROJEG ONLY INCREASE =

1,200 ADT

I. EXISTING VOLUME

EXISTING

28,000 ADT

III. TOTAL INCREME

NEAR-TERM WITH PROJECT 32,700 ADT

EXISTING

-28,000 AUT

TOTAL INCREASE = 4,700 ADT

II . PROJECT PERCENTAGE OF TOTAL INCREASE

PRUSECT UNLY = 1,200 ADT = 25.5%

TOTAL INCREASE = 4,700 ADT = 25.5%

FAIR-SHARE %

LAKE BLUD (THUNDER DR. TO SUNDOWN LN.)

NEAR-TERM + PROJECT

I. TOTAL VOLUME (NEAR-TERM + PROSECT)

NEAR-TERY WITH PROJECT

NEAR-TERM, WITHOUT PROJECT

PROJEG ONLY INCREASE =

15,500 APT

-15,300 ADT 200 ADT

I. EXISTING VOLUME

EXISTING

14, 800 AST

III. TOTAL INCREASE

NEAR-TERM WITH PROJECT 151500 ADT

EXISTING

TOTAL INCREASE -

- 14,800 ADT 700 ADT

II . PROJECT PERCENTAGE UF TOTAL INCREASE

PROJECT UNLY TUTAL INCREASE ARTERIAL ANALYSIS WORKSHEETS (

			EET WOF	Y	- Dr 14				
General Information			Site Info			==.:			
Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period PM PEAK HO			Urban Str Direction Jurisdiction Analysis	of Travel n	EL CAMINO REAL North-bound OCEANSIDE NEAR-TERM NO PROJECT				
Project Description: QUARRY	CREEK								
Input Parameters									
Analysis Desired(h) T = 0.25				Segmer	nts				
Analysis Period(h) T = 0.25	1	2	3	4	5	6	7	8	
Cycle length, C (s)	125.0	100.0	133.6						
Eff. green to cycle ratio, g/C	0.426	0.559	0.470						
v/c ratio for lane group, X	0.782	0.776	1.118						
Cap of lane group, c (veh/h)	2159	2836	2293						
Pct Veh on Grn., PVG									
Arrival type, AT	5	5	5						
Unit Extension, UE (sec)	3.0	3.0	3.0						
Length of segment, L (mi)	0.08	0.07	0.06						
Initial Queue, Qb (veh)	0	0	0						
Urban street class, SC	1	1	1						
Free-flow speed, FSS (mi/h)	50	50	50						
Running Time, TR (s)	8.4	7.3	6.3						
Other delay, (s)	0.0	0.0	0.0						
Delay Computation									
Uniform delay, d1 (s)	30.9	17.2	35.4	5.4	5.4	5.4	5.4	5.4	
Incremental delay adj, k	0.33	0.33	0.50	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.529	0.538				(= = =		
Incremental delay, d2 (s)	1.9	0.8	56.7	0.4			1===		
Initial queue delay, d3 (s)	0	0	0				15.00		
Progression adj factor, PF	0.506	0.155	0.408	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	17.6	3.4	71.2						
Segment LOS Determina									
Travel time, ST (s)	26.0	10.8	77.5					UV =	
Travel speed, SA (mi/h)	11.1	23.4	(2.8 //						
Segment LOS	F	D	FT						
Urban Street LOS Detern			1						
Total travel time (s)	114.2		(NO . CE	=)					
Total length (mi)	0.21		CHAPTY CH	ET)					
Total travel speed, SA (mi/h)	6.6		Chin	5					
and the second second second second	F								

 $HCS2000^{\text{TM}}$

Copyright © 2003 University of Florida, All Rights Reserved

	URBA	AN STR	EET WO	RKSHE	ET #1			
General Information			Site Inf	ormatio	n	***	-	
Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period PM PEAK H Project Description: QUARRY			Urban St Direction Jurisdiction Analysis	n Street EL CAMINO REAL tion of Travel North-bound diction OCEANSIDE				
Input Parameters	Or CELIC						· · ·	
·				Segmer	nts		The state of the s	
Analysis Period(h) $T = 0.25$	1	2	3	4	5	6	7	8
Cycle length, C (s)	125.0	100.0	133.6	<u> </u>				
Eff. green to cycle ratio, g/C	0.426	0.559	0.470					
v/c ratio for lane group, X	0.782	0.776	1.120					
Cap of lane group, c (veh/h)	2159	2836	2293		<u> </u>			
Pct Veh on Grn., PVG			<u> </u>					
Arrival type, AT	5	5	5					
Unit Extension, UE (sec)	3.0	3.0	3.0					
Length of segment, L (mi)	0.08	0.07	0.06					
Initial Queue, Qb (veh)	0	0	0					
Urban street class, SC	1	1	1	<u> </u>				
Free-flow speed, FSS (mi/h)	50	50	50					
Running Time, TR (s)	8. 4	7.3	6.3			ļ		
Other delay, (s)	0.0	0.0	0.0	<u></u>				
Delay Computation					<u>.</u>		_	
Uniform delay, d1 (s)	30.9	17.2	35.4	5. <i>4</i>	5. 4	<i>5.4</i>	5.4	5.4
Incremental delay adj, k	0.33	0.33	0.50	0.50	0.50	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000	0.529	0.538					
Incremental delay, d2 (s)	1.9	0.8	57.7	0.4				
Initial queue delay, d3 (s)	0	0	0					
Progression adj factor, PF	0.506	0.155	0.408	0.256	0.256	0.256	0.256	0.256
Control delay, d (s)	17.6	3. <i>4</i>	72.1					
Segment LOS Determina	<u> </u>			<u> </u>				<u></u>
Travel time, ST (s)	26.0	10.8	78.4				1	
Travel speed, SA (mi/h)	11.1	23.4	(2.8)	1	1			
Segment LOS	F	D	F				1	1
Urban Street LOS Deteri	mination		•	· · · · · · · · · · · · · · · · · · ·		-		
Total travel time (s)	115.1							
Total length (mi)	0.21							
Total travel speed, SA (mi/h)	6.6							
Total urban street LOS	F							
TOTAL ALBAM TOTAL TOTAL			warrity of Flori		- I			Version 4

HCS2000TM

Copyright © 2003 University of Florida, All Rights Reserved

	URBA	AN STRE	ET WO	RKSHE	ET#1			
General Information			Site Inf	ormatio	n			
Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period PM PEAK H	OUR		Jurisdicti	of Travel	EL CAMINO REAL South-bound OCEANSIDE NEAR-TERM NO PROJECT			
Project Description: QUARRY	'CREEK							
Input Parameters								
Analysis Deriod(h) T = 0.25				Segmer	nts			
Analysis Period(h) T = 0.25	1	2	3	4	5	6	7	8
Cycle length, C (s)	133.6	100.0	125.0					
Eff. green to cycle ratio, g/C	0.333	0.380	0.719					
v/c ratio for lane group, X	0.991	0.878	0.461					
Cap of lane group, c (veh/h)	1658	1928	3649					
Pct Veh on Grn., PVG								
Arrival type, AT	5	5	5					
Unit Extension, UE (sec)	3.0	3.0	3.0					
Length of segment, L (mi)	0.15	0.06	0.07			-		
Initial Queue, Qb (veh)	0	0	0					
Urban street class, SC	1	1	1			-		
Free-flow speed, FSS (mi/h)	50	50	50					
Running Time, TR (s)	15.8	6.3	7.3					
Other delay, (s)	0.0	0.0	0.0					
Delay Computation		F 800 20		1			10000	
Uniform delay, d1 (s)	44.3	28.8	7.4	5.4	5.4	5.4	5.4	5.4
Incremental delay adj, k	0.49	0.40	0.11	0.50	0.50	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000	0.112	0.359					1
Incremental delay, d2 (s)	19.9	0.6	0.0	3.9				
Initial queue delay, d3 (s)	0	0	0					12.
Progression adj factor, PF	0.667	0.591	0.000	0.256	0.256	0.256	0.256	0.256
Control delay, d (s)	49.5	17.6	0.0			1		
Segment LOS Determina	ation							Q.
Travel time, ST (s)	65.2	23.9	7.4					
Travel speed, SA (mi/h)	8.3	9.0	34.1			1		V T
Segment LOS	F	F	В					
Urban Street LOS Deteri		_		·				
Total travel time (s)	96.6							
Total length (mi)	0.28							
Total travel speed, SA (mi/h)	10.4							
Total urban street LOS	F							
regarded.		ht @ 2003 Linix	T. West.		at			Version

Copyright © 2003 University of Florida, All Rights Reserved

General Information			Site Inf	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period PM PEAK HO	OUR		Urban St Direction Jurisdiction	reet of Travel	EL CAMINO REAL South-bound OCEANSIDE				
Project Description: QUARRY	CREEK								
Input Parameters									
Assistant Desired (b) T = 0.05				Segmen	nts				
Analysis Period(h) $T = 0.25$	1 1	2	3	4	5	6	7	8	
Cycle length, C (s)	133.6	100.0	125.0						
Eff. green to cycle ratio, g/C	0.333	0.380	0.719						
v/c ratio for lane group, X	0.993	0.880	0.462					1 -	
Cap of lane group, c (veh/h)	1658	1928	3649						
Pct Veh on Grn., PVG									
Arrival type, AT	5	5	5						
Unit Extension, UE (sec)	3.0	3.0	3.0						
Length of segment, L (mi)	0.15	0.06	0.07						
Initial Queue, Qb (veh)	0	0	0			1			
Urban street class, SC	1	1	1					L The second	
Free-flow speed, FSS (mi/h)	50	50	50						
Running Time, TR (s)	15.8	6.3	7.3						
Other delay, (s)	0.0	0.0	0.0						
Delay Computation									
Uniform delay, d1 (s)	44.4	28.9	7.4	5.4	5.4	5.4	5.4	5.4	
Incremental delay adj, k	0.49	0.41	0.11	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.106	0.354			100			
Incremental delay, d2 (s)	20.5	0.6	0.0	3.9					
Initial queue delay, d3 (s)	0	0	0	Time					
Progression adj factor, PF	0.667	0.591	0.000	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	50.1	17.7	0.0						
Segment LOS Determina	tion				•				
Travel time, ST (s)	65.8	24.0	7.4	1					
Travel speed, SA (mi/h)	8.2	9.0	34.1						
Segment LOS	F	F	В						
Urban Street LOS Deterr		_							
Total travel time (s)	97.2	1	~						
Total length (mi)	0.28	(NO	THOUSE)						
		(8443)	TH vel)						
Total travel speed, SA (mi/h)	10.4	7 w	JUS ON						
Total urban street LOS	F		1						

Copyright © 2003 University of Florida, All Rights Reserved

General Information		WE - EM 13	Site Inf	ormatio	7 X X X			
Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period AM PEAK H			Urban Str Direction Jurisdiction	reet of Travel on	EL CAMINO REAL North-bound OCEANSIDE NEAR-TERM NO PROJECT			
Project Description: QUARRY	CREEK							
Input Parameters								
Analysis Period(h) T = 0.25				Segmen				
Analysis i chod(ii) i 0.20	1	2	3	4	5	6	7	8
Cycle length, C (s)	125.0	100.0	133.6					
Eff. green to cycle ratio, g/C	0.394	0.559	0.379					
v/c ratio for lane group, X	0.364	0.311	0.680					
Cap of lane group, c (veh/h)	1997	2836	1840					
Pct Veh on Grn., PVG			/					
Arrival type, AT	5	5	5					
Unit Extension, UE (sec)	3.0	3.0	3.0					-
Length of segment, L (mi)	0.08	0.07	0.06			_		_
Initial Queue, Qb (veh)	0	0	0			4		-
Urban street class, SC	1	1	50					-
Free-flow speed, FSS (mi/h)	50 8.4	50 7.3	6.3			-	+	-
Running Time, TR (s) Other delay, (s)	0.0	0.0	0.0			-		-
	0.0	0.0	0.0			1	1	1
Delay Computation	1 000	1 44 0	1 047	1 5-02	1 54	1 64	1 - 1	1 5 7
Uniform delay, d1 (s)	26.8	11.8	34.7	5.4	5.4	5.4	5.4	5.4
Incremental delay adj, k	0.11	0.11	0.25	0.50	0.50	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000	0.940	0.960	0.0	-	-		-
Incremental delay, d2 (s)	0.1	0.1	1.0	3.0				
Initial queue delay, d3 (s)	0	0	0					
Progression adj factor, PF	0.567	0.155	0.593	0.256	0.256	0.256	0.256	0.256
Control delay, d (s)	15.3	1.9	21.6				-	
Segment LOS Determina	ation							
Travel time, ST (s)	23.7	9.2	27.9					
Travel speed, SA (mi/h)	12.1	27.3	7.77		1			
Segment LOS	F	С	F					
Urban Street LOS Deterr	mination							
Total travel time (s)	60.9							
Total length (mi)	0.21							
Total travel speed, SA (mi/h)	12.4							
Total urban street LOS	F							
		on a post for	7 77 00 000073	o viera. Vi v	- A	_		- Acres 50

Copyright © 2003 University of Florida, All Rights Reserved

General Information			Site Info	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period AM PEAK He Project Description: QUARRY			Urban Str	eet of Travel n	EL CAMINO REAL North-bound OCEANSIDE NEAR-TERM WITH PROJECT				
Input Parameters	CKLLK								
A				Segmen	nts				
Analysis Period(h) T = 0.25	1	2	3	4	5	6	7	8	
Cycle length, C (s)	125.0	100.0	133.6						
Eff. green to cycle ratio, g/C	0.394	0.559	0.379	1					
v/c ratio for lane group, X	0.364	0.311	0.682						
Cap of lane group, c (veh/h)	1997	2836	1841						
Pct Veh on Grn., PVG									
Arrival type, AT	5	5	5						
Unit Extension, UE (sec)	3.0	3.0	3.0						
Length of segment, L (mi)	0.08	0.07	0.06						
Initial Queue, Qb (veh)	0	0	0			100			
Urban street class, SC	1	1	1						
Free-flow speed, FSS (mi/h)	50	50	50						
Running Time, TR (s)	8.4	7.3	6.3						
Other delay, (s)	0.0	0.0	0.0						
Delay Computation									
Uniform delay, d1 (s)	26.8	11.8	34.8	5.4	5.4	5.4	5.4	5.4	
Incremental delay adj, k	0.11	0.11	0.25	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.940	0.960	2.7					
Incremental delay, d2 (s)	0.1	0.1	1.0	3.0					
Initial queue delay, d3 (s)	0	0	0						
Progression adj factor, PF	0.567	0.155	0.593	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	15.3	1.9	21.6						
Segment LOS Determina	ation								
Travel time, ST (s)	23.7	9.2	27.9						
Travel speed, SA (mi/h)	12.1	27.3	7.7					1	
Segment LOS	F	С	FV						
Urban Street LOS Deterr									
Total travel time (s)	60.9	/		CE .	9				
Total length (mi)	0.21	(NO CHAI	onescet)				
Total travel speed, SA (mi/h)	12.4	(WITH						
Total urban street LOS	F								

Copyright © 2003 University of Florida, All Rights Reserved

0 11 (0110	AN STRE		Carried W. T.	-7107			
General Information Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period AM PEAK H	1 1 1 1 1 1 1 1		Urban St Direction Jurisdicti	of Travel	n EL CAMINO REAL South-bound OCEANSIDE NEAR-TERM NO PROJECT			
Project Description: QUARRY	CREEK							
Input Parameters								
Analysis Period(h) T = 0.25				Segmen				
Wildiyolo i Cilod(ii) i 0.20	1	2	3	4	5	6	7	8
Cycle length, C (s)	133.6	100.0	125.0					
Eff. green to cycle ratio, g/C	0.385	0.380	0.735					
v/c ratio for lane group, X	0.989	0.973	0.455					
Cap of lane group, c (veh/h)	1941	1928	3730					
Pct Veh on Grn., PVG								
Arrival type, AT	5	5	5					1
Unit Extension, UE (sec)	3.0	3.0	3.0					
Length of segment, L (mi)	0.15	0.06	0.07					
Initial Queue, Qb (veh)	0	0	0					
Urban street class, SC	1	1	1		4.55			
Free-flow speed, FSS (mi/h)	50	50	50					
Running Time, TR (s)	15.8	6.3	7.3					
Other delay, (s)	0.0	0.0	0.0			4		1
Delay Computation				_				_
Uniform delay, d1 (s)	40.8	30.5	6.6	5.4	5.4	5.4	5.4	5.4
Incremental delay adj, k	0.49	0.48	0.11	0.50	0.50	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000	0.117	0.154		,			
Incremental delay, d2 (s)	17.7	3.0	0.0	3.9				
Initial queue delay, d3 (s)	0	0	0					
Progression adj factor, PF	0.583	0.591	0.000	0.256	0.256	0.256	0.256	0.256
Control delay, d (s)	41.5	21.1	0.0					
Segment LOS Determina	ation						7	
Travel time, ST (s)	57.3	27.4	7.4				,	
Travel speed, SA (mi/h)	9.4	(7.9)	34.2	1				
Segment LOS	F	E	В	1				
Urban Street LOS Deteri					-	*		
Total travel time (s)	92.0							
Total length (mi)	0.28							
Total travel speed, SA (mi/h)	11.0							
Total urban street LOS	F							
. C.C. GIOGITOLIOU ECO								

Copyright © 2003 University of Florida, All Rights Reserved

	URB	AN STRE	ET WO	RKSHE	ΕΤ#1				
General Information			Site Inf	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period AM PEAK HO			Urban St Direction Jurisdicti Analysis	of Travel on	EL CAMINO REAL South-bound OCEANSIDE NEAR-TERM PLUS PROJECT				
Project Description: QUARRY	CREEK								
Input Parameters									
Analysis Period(h) T = 0.25				Segmer			T		
	1	2	3	4	5	6	7	8	
Cycle length, C (s)	133.6	100.0	125.0						
Eff. green to cycle ratio, g/C	0.385	0.380	0.735		1				
v/c ratio for lane group, X	0.989	0.974	0.457					AL.	
Cap of lane group, c (veh/h)	1941	1928	3730						
Pct Veh on Grn., PVG									
Arrival type, AT	5	5	5						
Unit Extension, UE (sec)	3.0	3.0	3.0						
Length of segment, L (mi)	0.15	0.06	0.07						
Initial Queue, Qb (veh)	0	0	0						
Urban street class, SC	1	1	11						
Free-flow speed, FSS (mi/h)	50	50	50					-	
Running Time, TR (s)	15.8	6.3	7.3						
Other delay, (s)	0.0	0.0	0.0					· V · · · · ·	
Delay Computation									
Uniform delay, d1 (s)	40.8	30.5	6.6	5.4	5.4	5.4	5.4	5.4	
Incremental delay adj, k	0.49	0.48	0.11	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.116	0.153						
Incremental delay, d2 (s)	17.9	3.0	0.0	3.9					
Initial queue delay, d3 (s)	0	0	0						
Progression adj factor, PF	0.583	0.591	0.000	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	41.7	21.1	0.0						
Segment LOS Determina									
Travel time, ST (s)	57.4	27.4	7.4						
Travel speed, SA (mi/h)	9.4	(7.9)	34.2		1				
Segment LOS	F	F	В						
Urban Street LOS Deterr									
Total travel time (s)	92.1	da		1					
Total length (mi)	0.28	(NO	H PROXE	15					
Total travel speed, SA (mi/h)	10.9	CHAP	H PROM						
Total urban street LOS	F	Cons	~	1					
Total dibali street LOS				NE CHESTON	C. II. T. II.			Vargio	

HCS2000TM

Copyright © 2003 University of Florida, All Rights Reserved

	UKDA	IN SIKI	ELWO	RKSHE	=1#1				
General Information			Site Inf	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period AM PEAK Ho			Urban St Direction Jurisdicti Analysis	of Travel on	North-box				
Project Description: QUARRY	CREEK							-	
Input Parameters				•					
Analysis Period(h) T = 0.25			1 0	Segmen		T 6	7	0	
	1	2	3	4	5	6	7	8	
Cycle length, C (s)	100.0	100.0	100.0	100.0	100.0		_		
Eff. green to cycle ratio, g/C	0.320	0.300	0.617	0.420	0.440				
v/c ratio for lane group, X	0.750	0.809	0.253	0.308	0.490			-	
Cap of lane group, c (veh/h)	1135	1442	4174	2131	1561		-	+	
Pct Veh on Grn., PVG	-	5	5	5	5	-	-	+	
Arrival type, AT Unit Extension, UE (sec)	5 3.0	3.0	3.0	3.0	3.0		-		
Length of segment, L (mi)	0.34	0.27	0.05	0.10	0.16			-	
Initial Queue, Qb (veh)	0.34	0.27	0.00	0.70	0.70				
Urban street class, SC	2	2	2	2	2				
Free-flow speed, FSS (mi/h)	40	40	40	40	40			r	
Running Time, TR (s)	33.9	28.8	5.8	11.5	18.4				
Other delay, (s)	0.0	0.0	0.0	0.0	0.0				
Delay Computation									
Uniform delay, d1 (s)	30.4	32.4	8.7	19.3	20.0	5.4	5.4	5.4	
Incremental delay adj, k	0.30	0.35	0.11	0.11	0.11	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.579	0.484	0.977	0.961	33.8.8		1	
Incremental delay, d2 (s)	2.8	2.1	0.0	0.1	0.2	3.8			
Initial queue delay, d3 (s)	0	0	0	0	0				
Progression adj factor, PF	0.686	0.714	0.000	0.517	0.476	0.256	0.256	0.256	
Control delay, d (s)	23.7	25.2	0.0	10.1	9.7	0,200	0.200	0.200	
Segment LOS Determina		20.2	0.0	70.7	1 0.1				
Travel time, ST (s)	57.6	54.0	5.8	21.6	28.1	1	1		
Travel speed, SA (mi/h)	21.3	18.0	31.2	16.7	20.5)			
Segment LOS	D D	D)	B	E	D				
Urban Street LOS Deterr		1				_			
Total travel time (s)	167.1		1 asta	101880	1150				
Total length (mi)	0.92	MARE	LA SE-SE	SIL	VISO	V4,			
		CLA	ZA	Also	MAR	-			
Total travel speed, SA (mi/h)	19.8								
Total urban street LOS	D								

HCS2000TM

Copyright © 2003 University of Florida, All Rights Reserved

General Information			Site Inf	ormatio	n			
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period AM PEAK HO	OUR		Urban Street COLLEGE BLVD. Direction of Travel North-bound Jurisdiction OCEANSIDE Analysis Year NEAR-TERM PLUS PROJECT					
Project Description: QUARRY	CREEK							
Input Parameters								
A				Segmer	nts			
Analysis Period(h) $T = 0.25$	1	2	3	4	5	6	7	8
Cycle length, C (s)	100.0	100.0	100.0	100.0	100.0			
Eff. green to cycle ratio, g/C	0.320	0.300	0.617	0.420	0.440			
//c ratio for lane group, X	0.764	0.893	0.291	0.331	0.516			
Cap of lane group, c (veh/h)	1135	1442	4174	2131	1561			
Pct Veh on Grn., PVG								
Arrival type, AT	5	.5	5	5	5			
Unit Extension, UE (sec)	3.0	3.0	3.0	3.0	3.0			
ength of segment, L (mi)	0.34	0.27	0.05	0.10	0.16			
nitial Queue, Qb (veh)	0	0	0	0	0			
Jrban street class, SC	2	2	2	2	2		0. =	
Free-flow speed, FSS (mi/h)	40	40	40	40	40			
Running Time, TR (s)	33.9	28.8	5.8	11.5	18.4			
Other delay, (s)	0.0	0.0	0.0	0.0	0.0			
Delay Computation								
Uniform delay, d1 (s)	30.6	33.5	8.9	19.5	20.3	5.4	5.4	5.4
ncremental delay adj, k	0.32	0.42	0.11	0.11	0.12	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000	0.558	0.329	0.967	0.953			
ncremental delay, d2 (s)	3.1	4.4	0.0	0.1	0.3	3.7		
nitial queue delay, d3 (s)	0	0	0	0	0			
Progression adj factor, PF	0.686	0.714	0.000	0.517	0.476	0.256	0.256	0.256
Control delay, d (s)	24.1	28.3	0.0	10.2	9.9			
Segment LOS Determina							1	
Travel time, ST (s)	58.0	57.1	5.8	21.7	28,3			1
Travel speed, SA (mi/h)	21.1	/17.0	31.2	16.6	20.3			
Segment LOS	D D	D	B	E	(D			
Urban Street LOS Deterr					1	\		-
Total travel time (s)	170.9		(1)	-	100	1		
Total length (mi)	0.92	MARRON		1 -	WITH.)VIS	TA TO VARING	
		OL WZA		7	Morrise	Ju	INRING	
Total travel speed, SA (mi/h)	19.4	V			Lus	0, 1		
Total urban street LOS	D				C	14/		

General Information			Site Inf	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period PM PEAK He	OUR		Urban St	reet of Travel on	COLLEGE BLVD. North-bound OCEANSIDE NEAR-TERM NO PROJECT				
Project Description: QUARRY	CREEK								
Input Parameters									
Assistant David (h) T = 0.25				Segmen	nts				
Analysis Period(h) $T = 0.25$	1	2	3	4	5	6	7	8	
Cycle length, C (s)	99.5	110.0	110.0	110.0	110.0				
Eff. green to cycle ratio, g/C	0.377	0.347	0.565	0.379	0.501				
v/c ratio for lane group, X	0.759	0.858	0.473	0.665	0.829				
Cap of lane group, c (veh/h)	1364	1721	3825	1924	1777				
Pct Veh on Grn., PVG									
Arrival type, AT	5	5	5	5	5				
Unit Extension, UE (sec)	3.0	3.0	3.0	3.0	3.0				
Length of segment, L (mi)	0.34	0.27	0.05	0.10	0.16				
Initial Queue, Qb (veh)	0	0	0	0	0				
Urban street class, SC	2	2	2	2	2				
Free-flow speed, FSS (mi/h)	40	40	40	40	40				
Running Time, TR (s)	33.9	28.8	5.8	11.5	18.4		4		
Other delay, (s)	0.0	0.0	0.0	0.0	0.0				
Delay Computation								-	
Uniform delay, d1 (s)	27.1	33.4	14.2	28.4	23.4	5.4	5.4	5.4	
Incremental delay adj, k	0.31	0.39	0.11	0.24	0.37	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.566	0.397	0.878	0.695				
Incremental delay, d2 (s)	2.5	2.7	0.0	0.8	2.4	2.0			
Initial queue delay, d3 (s)	0	0	0	0	0				
Progression adj factor, PF	0.597	0.645	0.132	0.593	0.331	0.256	0.256	0.256	
Control delay, d (s)	18.7	24.2	1.9	17.6	10.2				
Segment LOS Determina	tion								
Travel time, ST (s)	52.5	53.0	7.7	29.1	28.6				
Travel speed, SA (mi/h)	23.3	18.3	23.5	12.4	20.2				
Segment LOS	C (D	C	F	D				
Urban Street LOS Deterr				•				15	
Total travel time (s)	170.9			/	VISTA	-			
		Legal		(VISTO	(Nic)			
Total length (mi)	0.92	MARREN			7 WM	7			
Total travel speed, SA (mi/h)	19.4	PLAZ!			(~	/			
Total urban street LOS	D	1							

file://C:\Documents and Settings\skab.USAI\Local Settings\Temp\a2k29.tmp

General Information			Site Inf	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 8/31/2012 Time Period PM PEAK Ho			Urban St Direction Jurisdiction Analysis	of Travel on	COLLEGE BLVD. North-bound OCEANSIDE NEAR-TERM PLUS PROJECT				
Project Description: QUARRY	CREEK								
Input Parameters									
Analysis Period(h) T = 0.25				Segmen				_	
mayoto r orroa(n) r	1	2	3	4	5	6	7	8	
Cycle length, C (s)	99.5	110.0	110.0	110.0	110.0				
Eff. green to cycle ratio, g/C	0.377	0.347	0.565	0.379	0.501				
v/c ratio for lane group, X	0.678	0.896	0.495	0.679	0.841				
Cap of lane group, c (veh/h)	1337	1719	3825	1924	1777				
Pct Veh on Grn., PVG									
Arrival type, AT	5	5	5	5	5				
Unit Extension, UE (sec)	3.0	3.0	3.0	3.0	3.0				
ength of segment, L (mi)	0.34	0.27	0.05	0.10	0.16				
nitial Queue, Qb (veh)	0	0	0	0	0		-		
Jrban street class, SC	1	1	1	1	1				
Free-flow speed, FSS (mi/h)	50	50	50	50	50			-	
Running Time, TR (s)	31.1	26.5	5.3	10.5	16.8			-	
Other delay, (s)	0.0	0.0	0.0	0.0	0.0				
Delay Computation	1		1	T	1 202			1 - 1	
Uniform delay, d1 (s)	26.0	34.0	14.4	28.6	23.7	5.4	5.4	5.4	
Incremental delay adj, k	0.25	0.42	0.11	0.25	0.38	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.678	0.321	0.862	0.677				
ncremental delay, d2 (s)	1.4	4.7	0.0	0.8	2.6	1.9			
nitial queue delay, d3 (s)	0	0	0	0	0				
Progression adj factor, PF	0.597	0.645	0.132	0.593	0.331	0.256	0.256	0.256	
Control delay, d (s)	16.9	26.6	1.9	17.8	10.5		1		
Segment LOS Determina	ation								
Travel time, ST (s)	48.0	53.1	7.2	28.3	27.3		7		
Travel speed, SA (mi/h)	25.5	18.3	25.0	12.7	(21.1)		the second		
Segment LOS	D	Ε	D	F	(D)]		
Urban Street LOS Deterr	nination								
Total travel time (s)	163.8				N				
Total length (mi)	0.92				UF				
Total travel speed, SA (mi/h)	20.2								
Total urban street LOS	E								

 $HCS2000^{\rm TM}$

Copyright © 2003 University of Florida, All Rights Reserved

	URBA	AN STRI	EET WO	RKSHEI	ET #1	•"		
General Information			Site Inf	ormatio	n			
Analyst USAI Agency/Co. USAI Date Performed 09/03/12 Time Period AM PEAK H			Direction Jurisdicti	rban Street COLLEGE BLVD. rection of Travel South-bound urisdiction OCEANSIDE nalysis Year NEAR-TERM NO PROJECT				
Project Description: QUARRY	CREEK							
Input Parameters		4						
Analysis Period(h) $T = 0.25$			<u></u>	Segmer			<u> </u>	
. ,	1 1	2	3	4	5	6	7	8
Cycle length, C (s)	100.0	100.0	100.0	100.0	100.0			
Eff. green to cycle ratio, g/C	0.440	0.420	0.617	0.530	0.420			
v/c ratio for lane group, X	0.883	0.728	0.384	0.546	0.730			
Cap of lane group, c (veh/h)	1561	2122	5218	2676	1490	ļ		
Pct Veh on Grn., PVG							<u> </u>	
Arrival type, AT	5	5	5	5	5			
Unit Extension, UE (sec)	3.0	3.0	3.0	3.0	3.0			
ength of segment, L (mi)	0.35	0.16	0.10	0.50	0.27		ļ	
nitial Queue, Qb (veh)	0	0	0	0	0			
Urban street class, SC	2	2	2	2	2	ļ	<u> </u>	
Free-flow speed, FSS (mi/h)	40	40	40	40	40		1	
Running Time, TR (s)	34.6	18.4	11.5	46.5	28.8	 	 	ļ
Other delay, (s)	0.0	0.0	0.0	0.0	0.0	<u> </u>		
Delay Computation						,		
Uniform delay, d1 (s)	25.6	24.2	9.6	15.5	24.3	5.4	5.4	5.4
Incremental delay adj, k	0.41	0.29	0.11	0.15	0.29	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000	0.349	0.612	0.930	0.821			
incremental delay, d2 (s)	6.3	0.5	0.0	0.2	1.5	2.7		
Initial queue delay, d3 (s)	0	0	0	0	0			·
Progression adj factor, PF	0.476	0.517	0.000	0.248	0.517	0.256	0.256	0.256
Control delay, d (s)	18.5	13.0	0.0	4.1	14.1			
Segment LOS Determina	ation					•		
Travel time, ST (s)	53.2	31.4	11.5	50.6	42.9			
Travel speed, SA (mi/h)	23.7	18.4	31.2	35.6	22.7			1
Segment LOS	C C	D	В	A	C		1	
Urban Street LOS Deteri								
Total travel time (s)	189.6				· · · · · · · · · · · · · · · · · · ·			
Total length (mi)	1.38							
Total travel speed, SA (mi/h)	26.2							
Total urban street LOS	26.2 C							
rannanTM				da All Diabte		-		Version 4

Copyright © 2003 University of Florida, All Rights Reserved

			lo:	CINCLE PAR				
General Information				ormatio		E 0/1/5		
Analyst USAI Agency/Co. USAI Date Performed 09/03/12 Time Period AM PEAK HO			Urban Street COLLEGE BLVD. Direction of Travel South-bound Jurisdiction OCEANSIDE Analysis Year NEAR-TERM WITH PROJECT					T
Project Description: QUARRY	CREEK							
Input Parameters								
Analysis Period(h) T = 0.25				Segmen	nts			
Analysis Fellod(II) 1 = 0.25	1	2	3	4	5	6	7	8
Cycle length, C (s)	100.0	100.0	100.0	100.0	100.0			
Eff. green to cycle ratio, g/C	0.440	0.420	0.617	0.530	0.420			
v/c ratio for lane group, X	0.892	0.736	0.392	0.575	0.761			
Cap of lane group, c (veh/h)	1561	2123	5218	2665	1490			
Pct Veh on Grn., PVG								
Arrival type, AT	5	5	5	5	5			
Unit Extension, UE (sec)	3.0	3.0	3.0	3.0	3.0			
Length of segment, L (mi)	0.35	0.16	0.10	0.50	0.27			
Initial Queue, Qb (veh)	0	0	0	0	0			
Urban street class, SC	2	2	2	2	2			
Free-flow speed, FSS (mi/h)	40	40	40	40	40			
Running Time, TR (s)	34.6	18.4	11.5	46.5	28.8			
Other delay, (s)	0.0	0.0	0.0	0.0	0.0	J =		
Delay Computation								
Uniform delay, d1 (s)	25.8	24.3	9.7	15.9	24.7	5.4	5.4	5.4
Incremental delay adj, k	0.42	0.29	0.11	0.17	0.31	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000	0.331	0.600	0.926	0.793			
Incremental delay, d2 (s)	6.9	0.5	0.0	0.3	1.9	2.5		
Initial queue delay, d3 (s)	0	0	0	0	0			
Progression adj factor, PF	0.476	0.517	0.000	0.248	0.517	0.256	0.256	0.256
Control delay, d (s)	19.2	13.0	0.0	4.2	14.7			
Segment LOS Determina	tion							
Travel time, ST (s)	53.8	31.4	11.5	50.7	43.5			
Travel speed, SA (mi/h)	23.4	18.3	31.2	35.5	22.3			*
Segment LOS	C	D	В	A	C			
Urban Street LOS Detern					1		*	-
Total travel time (s)	191.0	WARING	2		PLAZA			
Total length (mi)	1.38	VISTAW		V	-150	لاد		
Total travel speed, SA (mi/h)	26.0		ALL !	X IN I)			
Total urban street LOS	C		NO LOS		7			
HCS2000 TM		nt © 2003 Uni		-				Versio

General Information			Site Inf	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 09/03/12 Time Period PM PEAK H	OUR		Jurisdicti	of Travel	South-bo	COLLEGE BLVD. South-bound DCEANSIDE NEAR-TERM NO PROJECT			
Project Description: QUARRY	CREEK		3 7 75						
Input Parameters									
Analysis Period(h) $T = 0.25$				Segmer	nts				
Arialysis Period(II) 1 = 0.25	1	2	3	4	5	6	7	8	
Cycle length, C (s)	110.0	110.0	110.0	110.0	99.5				
Eff. green to cycle ratio, g/C	0.364	0.283	0.565	0.504	0.377				
v/c ratio for lane group, X	0.874	0.963	0.417	0.653	0.660				
Cap of lane group, c (veh/h)	1290	1417	4782	2545	1337				
Pct Veh on Grn., PVG				_ = _					
Arrival type, AT	5	5	5	5	5			9	
Unit Extension, UE (sec)	3.0	3.0	3.0	3.0	3.0				
Length of segment, L (mi)	0.35	0.16	0.10	0.50	0.27				
Initial Queue, Qb (veh)	0	0	0	0	0				
Urban street class, SC	2	2	2	2	2				
Free-flow speed, FSS (mi/h)	40	40	40	40	40				
Running Time, TR (s)	34.6	18.4	11.5	46.5	28.8			3	
Other delay, (s)	0.0	0.0	0.0	0.0	0.0				
Delay Computation				1-2-					
Uniform delay, d1 (s)	32.7	38.9	13.6	20.2	25.7	5.4	5.4	5.4	
Incremental delay adj, k	0.40	0.47	0.11	0.23	0.24	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.365	0.177	0.913	0.710				
Incremental delay, d2 (s)	7.0	7.8	0.0	0.6	0.9	3.1			
Initial queue delay, d3 (s)	0	0	0	0	0				
Progression adj factor, PF	0.619	0.737	0.132	0.323	0.597	0.256	0.256	0.256	
Control delay, d (s)	27.2	36.5	1.8	7.1	16.2	0	0.120	3123	
Segment LOS Determina	The second second	1 00.0	1.0	1	1		-	-	
Travel time, ST (s)	61.8	54.9	13.3	53.6	45.0				
Travel speed, SA (mi/h)	20.4	10.5	27.1	33.6	21.6			-	
Segment LOS	D D	F	C C	B	D D	+	+	+	
Urban Street LOS Deterr							-	_	
Total travel time (s)	228.6	WARD	6						
Total length (mi)	1.38	MATES	wmy)						
Total travel speed, SA (mi/h)	21.7	V1570							

Copyright © 2003 University of Florida, All Rights Reserved

General Information			Site Inf	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 09/03/12 Time Period PM PEAK HO	OUR		Urban St	reet of Travel on	COLLEG South-bo OCEANS	COLLEGE BLVD. South-bound OCEANSIDE NEAR-TERM WITH PROJECT			
Project Description: QUARRY	CREEK								
Input Parameters									
Analysis Desired(b) T = 0.25	T			Segmer	nts				
Analysis Period(h) T = 0.25	1	2	3	4	5	6	7	8	
Cycle length, C (s)	110.0	110.0	110.0	110.0	99.5				
Eff. green to cycle ratio, g/C	0.364	0.283	0.565	0.504	0.377				
v/c ratio for lane group, X	0.910	1.002	0.447	0.750	0.678			-	
Cap of lane group, c (veh/h)	1290	1418	4782	2520	1337				
Pct Veh on Grn., PVG							11		
Arrival type, AT	5	5	5	5	5			2	
Unit Extension, UE (sec)	3.0	3.0	3.0	3.0	3.0				
Length of segment, L (mi)	0.35	0.16	0.10	0.50	0.27				
Initial Queue, Qb (veh)	0	0	0	0	0				
Urban street class, SC	2	2	2	2	2				
Free-flow speed, FSS (mi/h)	40	40	40	40	40				
Running Time, TR (s)	34.6	18.4	11.5	46.5	28.8	=			
Other delay, (s)	0.0	0.0	0.0	0.0	0.0				
Delay Computation									
Uniform delay, d1 (s)	33.3	39.4	13.9	21.8	26.0	5.4	5.4	5.4	
Incremental delay adj, k	0.43	0.50	0.11	0.31	0.25	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.293	0.090	0.895	0.579				
Incremental delay, d2 (s)	9.8	13.4	0.0	1.2	0.8	3.0			
Initial queue delay, d3 (s)	0	0	0	0	0				
Progression adj factor, PF	0.619	0.737	0.132	0.323	0.597	0.256	0.256	0.256	
Control delay, d (s)	30.4	42.5	1.8	8.2	16.3				
Segment LOS Determina	tion							•	
Travel time, ST (s)	65.0	60.9	13.3	54.7	45.1			1	
Travel speed, SA (mi/h)	19.4	9.5	27.0	32.9	21.5				
Segment LOS	D	F	C ,	B A	DA		1		
Urban Street LOS Detern			~	1	1		-		
Total travel time (s)	239.1	6.100	Ni6	1	/				
Total length (mi)	1.38	10	WAY	7 /		7			
Total travel speed, SA (mi/h)	20.8	1.01		2 (NOTE !	(=)			
Total urban street LOS	D	-110	ot signifi	(ا تلای)	hos =				

	URB	AN STR	EET WO	RKSHE	ET #1					
General Information			Site Inf	ormatio	n					
Analyst USAI Agency/Co. USAI Date Performed 9/3/2012 Time Period AM PEAK HO	OUR		Urban St Direction Jurisdicti Analysis	of Travel on	OCEANS	nd	PROJECT	8 8		
Project Description: QUARRY	CREEK									
Input Parameters										
Analysis Period(h) T = 0.25				Segmer	nts					
Analysis i eriod(ii) i = 0.25	1	2	3	4	5	6	7	8		
Cycle length, C (s)	70.0									
Eff. green to cycle ratio, g/C	0.429							/ -		
v/c ratio for lane group, X	0.186									
Cap of lane group, c (veh/h)	1518						1	45-		
Pct Veh on Grn., PVG							1			
Arrival type, AT	3		11							
Unit Extension, UE (sec)	3.0									
Length of segment, L (mi)	0.36		100							
Initial Queue, Qb (veh)	0									
Urban street class, SC	3				1					
Free-flow speed, FSS (mi/h)	35									
Running Time, TR (s)	38.4						4			
Other delay, (s)	0.0									
Delay Computation										
Uniform delay, d1 (s)	12.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4		
Incremental delay adj, k	0.11	0.50	0.50	0.50	0.50	0.50	0.50	0.50		
Upstream filtering adj factor, I	1.000									
Incremental delay, d2 (s)	0.1	4.3								
Initial queue delay, d3 (s)	0			V	The second					
Progression adj factor, PF	1.000	0.256	0.256	0.256	0.256	0.256	0.256	0.256		
Control delay, d (s)	12.5		Y -		7	1				
Segment LOS Determina										
Travel time, ST (s)	50.9									
Travel speed, SA (mi/h)	25.5				1					
Segment LOS	В									
Urban Street LOS Deterr					*					
Total travel time (s)	50.9	W.								
Total length (mi)	0.36	01								
Total travel speed, SA (mi/h)	25.5									
Total urban street LOS	BV									

HCS2000TM

Copyright © 2003 University of Florida, All Rights Reserved

	URB	AN STR	EET WO	RKSHE	ET #1	. ,		
General Information			Site In	ormatio	n			
Analyst USAI Agency/Co. USAI Date Performed 9/3/2012 Time Period AM PEAK HO	Urban St Direction Jurisdicti Analysis	of Travel on	OCEANS	nd	H PROJEC	5.4 0.50		
Project Description: QUARRY Input Parameters	CREEK							
input raiameters	1		,					
Analysis Period(h) T = 0.25	1	T 2	3	Segmer 4	1 5	6	7	T 0
Cycle length (C.(a)	70.0	 	<u> </u>	+	<u> </u>	0	'	0
Cycle length, C (s)	<u> </u>	-	-	+			<u> </u>	
Eff. green to cycle ratio, g/C	0.429	- -				<u> </u>		
v/c ratio for lane group, X	0.198			-		<u> </u>	<u> </u>	
Cap of lane group, c (veh/h)	1518	-		<u> </u>		<u> </u>		
Pct Veh on Grn., PVG	3	+		 			- 	
Arrival type, AT Unit Extension, UE (sec)	3.0	 			1	<u> </u>		-
Length of segment, L (mi)	0.36	+			<u> </u>	<u> </u>	<u> </u>	
Initial Queue, Qb (veh)	0.30		-					
Urban street class, SC	3	<u> </u>			 			1
Free-flow speed, FSS (mi/h)	35							
Running Time, TR (s)	38.4	·-				<u> </u>		
Other delay, (s)	0.0			†			1	1
Delay Computation			•					
Uniform delay, d1 (s)	12.5	5.4	5.4	5.4	5.4	5.4	5.4	5.4
Incremental delay adj, k	0.11	0.50	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	1	1 0.00			1	-	
Incremental delay, d2 (s)	0.1	4.3						
Initial queue delay, d3 (s)	0	7.0						
Progression adj factor, PF	1.000	0.256	0.256	0.256	0.256	0.256	0.256	0.256
Control delay, d (s)	12.6	0.200	0,200	0.200	0.200	0.200	0.200	0.200
Segment LOS Determina				<u>l</u> , .			<u>. I</u>	
Travel time, ST (s)	50.9	1	T					1
Travel speed, SA (mi/h)	25.4	 			-	<u> </u>		
Segment LOS	B	+		+		+		
Urban Street LOS Detern		l		<u> </u>		1		<u> </u>
Total travel time (s)	50.9	<u>'</u>					.	
• •	0.36	ok						
Total length (mi)		V*						
Total travel speed, SA (mi/h)	25.4							
Total urban street LOS	в℃							

Copyright © 2003 University of Florida, All Rights Reserved

	URBA	AN STR	EET WO	RKSHE	ET #1			
General Information			Site Inf	ormatio	n			
Analyst USAI Agency/Co. USAI Date Performed 9/3/2012 Time Period PM PEAK HO Project Description: QUARRY			Urban Street LAKE BLVD. Direction of Travel East-bound Jurisdiction OCEANSIDE Analysis Year NAER-TERM NO PROJECT					
Input Parameters	U. (LL)							
Analysis Deris d/h) T = 0.05				Segmer	nts			
Analysis Period(h) $T = 0.25$	1	2	3	4	5	6	7	8
Cycle length, C (s)	80.0							
Eff. green to cycle ratio, g/C	0.375							
v/c ratio for lane group, X	0.444							
Cap of lane group, c (veh/h)	1328							
Pct Veh on Grn., PVG								
Arrival type, AT	3							
Unit Extension, UE (sec)	3.0							
Length of segment, L (mi)	0.36							
Initial Queue, Qb (veh)	0			<u> </u>				
Urban street class, SC	3						<u> </u>	
Free-flow speed, FSS (mi/h)	35							
Running Time, TR (s)	38.4			ļ				
Other delay, (s)	0.0							
Delay Computation			_					,
Uniform delay, d1 (s)	18.7	5.4	5.4	5.4	5.4	5.4	5. <i>4</i>	5.4
Incremental delay adj, k	0.11	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000							
Incremental delay, d2 (s)	0.2	3.9						
Initial queue delay, d3 (s)	0							
Progression adj factor, PF	1.000	0.256	0.256	0.256	0.256	0.256	0.256	0.256
Control delay, d (s)	19.0			1				
Segment LOS Determina	tion		•		•			-
Travel time, ST (s)	57.4			1	T			1
Travel speed, SA (mi/h)	22.6							
Segment LOS	С					•		
Urban Street LOS Detern	nination							
Total travel time (s)	57.4						· ·	
Total length (mi)	0.36							
Total travel speed, SA (mi/h)	22.6	-u/						
Total urban street LOS	22.6 C 🗸	9/-						

HCS2000TM

Copyright © 2003 University of Florida, All Rights Reserved

	URB	AN STR	EET WO	RKSHE	ET #1				
General Information			Site Inf	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 9/3/2012 Time Period PM PEAK HOUR Project Description: QUARRY CREEK			Urban St Direction Jurisdicti Analysis	of Travel on	OCEANS	nd SIDE	d		
Input Parameters	CREEK	·							
	1	,		Segmer	nte				
Analysis Period(h) T = 0.25	1	2	3	4	5	T 6	7	8	
Cycle length, C (s)	80.0	 	 	 		<u> </u>	 	 	
Eff. green to cycle ratio, g/C	0.375	 			<u> </u>		*		
v/c ratio for lane group, X	0.452	-			-	1			
Cap of lane group, c (veh/h)	1328	1	 	1					
Pct Veh on Grn., PVG									
Arrival type, AT	3								
Unit Extension, UE (sec)	3.0								
Length of segment, L (mi)	0.36								
Initial Queue, Qb (veh)	0								
Urban street class, SC	3								
Free-flow speed, FSS (mi/h)	35								
Running Time, TR (s)	38.4	<u> </u>						1	
Other delay, (s)	0.0								
Delay Computation	1	T		T	1	T = ;	7	1 - 1	
Uniform delay, d1 (s)	18.8	5.4	5.4	5.4	5.4				
Incremental delay adj, k	0.11	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, l	1.000	ļ	ļ		<u> </u>				
Incremental delay, d2 (s)	0.2	3.9							
Initial queue delay, d3 (s)	0	<u> </u>							
Progression adj factor, PF	1.000	0.256	0.256	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	19.1	,					<u> </u>		
Segment LOS Determina	ation								
Travel time, ST (s)	57.4								
Travel speed, SA (mi/h)	22.6								
Segment LOS	С								
Urban Street LOS Deterr	nination	<u> </u>							
Total travel time (s)	57.4								
Total length (mi)	0.36								
Total travel speed, SA (mi/h)	22.6	_							
Total urban street LOS	CV	OK							
				ida All Diahta				Vorsion 4	

Copyright © 2003 University of Florida, All Rights Reserved

	URB	AN STR	EET WO	RKSHEI	ET #1				
General Information			Site Inf	formatio	n				
Analyst USAI Agency/Co. USAI Date Performed 9/3/2012 Time Period AM PEAK HOUR Project Description: QUARRY CREEK			Urban St Direction Jurisdicti	reet of Travel	LAKE BL West-bou OCEANS	ind SIDE	7 8		
Input Parameters	UREEK								
Analysis Beriad/h) T = 0.05									
Analysis Period(h) T = 0.25		7 2	3	3eginer 4	5	T 6	7	T 8	
Cycle length, C (s)	70.0	 	 	-	+ -	 	 '	۱	
Eff. green to cycle ratio, g/C	0.429			 	+				
//c ratio for lane group, X	0.430	+	+	+	 		 	-	
Cap of lane group, c (veh/h)	1482	<u> </u>	+	1					
Pct Veh on Grn., PVG							-		
Arrival type, AT	3					·			
Jnit Extension, UE (sec)	3.0								
_ength of segment, L (mi)	0.65								
nitial Queue, Qb (veh)	0								
Jrban street class, SC	3						_		
Free-flow speed, FSS (mi/h)	35	<u> </u>				<u> </u>			
Running Time, TR (s)	66.9								
Other delay, (s)	0.0						<u> </u>		
Delay Computation								_	
Jniform delay, d1 (s)	14.0	5.4	5.4	5.4	5.4	5.4	5.4	5.4	
ncremental delay adj, k	0.11	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Jpstream filtering adj factor, I	1.000								
ncremental delay, d2 (s)	0.2	4.0							
nitial queue delay, d3 (s)	0								
Progression adj factor, PF	1.000	0.256	0.256	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	14.2								
Segment LOS Determina	tion								
Γravel time, ST (s)	81.2								
Fravel speed, SA (mi/h)	28.8		:						
Segment LOS	В								
Jrban Street LOS Detern	nination								
Fotal travel time (s)	81.2								
Total length (mi)	0.65								
Fotal travel speed, SA (mi/h)	28.8	;							
Fotal urban street LOS	B ~	ok							

Copyright © 2003 University of Florida, All Rights Reserved

	URB	AN STR	EET WO	RKSHE	ET #1			
General Information			Site Inf	ormatio	n			
Analyst USAI Agency/Co. USAI Date Performed 9/3/2012 Time Period AM PEAK HO		Jurisdicti	of Travel	OCEANS	ind SIDE	i PROJEC	T	
Project Description: QUARRY	CREEK					-		· · · · · · ·
Input Parameters								
Analysis Period(h) T = 0.25	1	2	3	Segmer 4	nts 5	6	7	8
Cycle length, C (s)	70.0							
Eff. green to cycle ratio, g/C	0.429							
v/c ratio for lane group, X	0.434							
Cap of lane group, c (veh/h)	1482							
Pct Veh on Grn., PVG		1					ļ	
Arrival type, AT	3							
Unit Extension, UE (sec)	3.0			<u> </u>				<u> </u>
Length of segment, L (mi)	0.65	ļ						
Initial Queue, Qb (veh)	0							
Urban street class, SC	3							
Free-flow speed, FSS (mi/h)	35	<u> </u>		 			-	
Running Time, TR (s)	66.9 0.0					<u>. </u>	 	
Other delay, (s)	0.0							
Delay Computation	1 446	1 = 4	T = 4	Τ = 4	T = 4	T F 4	1 5 4	- A
Uniform delay, d1 (s)	14.0	5.4	5.4	5.4	5.4	5.4	5.4	5.4
Incremental delay adj, k	0.11	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000		<u> </u>					-
Incremental delay, d2 (s)	0.2	4.0	<u> </u>					
Initial queue delay, d3 (s)	0							
Progression adj factor, PF	1.000	0.256	0.256	0.256	0.256	0.256	0.256	0.256
Control delay, d (s)	14.2							
Segment LOS Determina	tion							
Travel time, ST (s)	81.2							
Travel speed, SA (mi/h)	28.8							
Segment LOS	В							
Urban Street LOS Detern	<u>ninatio</u> n							
Total travel time (s)	81.2							
Total length (mi)	0.65							
Total travel speed, SA (mi/h)	28.8	oK						
Total urban street LOS	В ✔	UF-						

Copyright © 2003 University of Florida, All Rights Reserved

	URB	AN STR	EET WO	RKSHE	ET #1				
General Information			Site Inf	ormatio	n				
Analyst USAI Agency/Co. USAI Date Performed 9/3/2012 Time Period PM PEAK HOUR Project Description: QUARRY CREEK			Jurisdicti	of Travel	OCEANS	ınd			
Input Parameters	CREEK								
input Parameters	1			0	.1.				
Analysis Period(h) T = 0.25	1	2	Т 3	Segmer 4	1 5	6	7	8	
Cycle length, C (s)	80.0							1	
Eff. green to cycle ratio, g/C	0.375					†			
v/c ratio for lane group, X	0.343				-				
Cap of lane group, c (veh/h)	1272								
Pct Veh on Grn., PVG									
Arrival type, AT	3								
Unit Extension, UE (sec)	3.0								
Length of segment, L (mi)	0.65				<u> </u>				
Initial Queue, Qb (veh)	0			ļ					
Urban street class, SC	3					ļ		ļ	
Free-flow speed, FSS (mi/h)	35					ļ			
Running Time, TR (s)	66.9	<u> </u>							
Other delay, (s)	0.0	1.							
Delay Computation		· · · · · · · · · · · · · · · · · · ·			•				
Uniform delay, d1 (s)	17.9	5.4	5.4	5.4	5.4	5.4	5.4	5.4	
Incremental delay adj, k	0.11	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, l	1.000								
Incremental delay, d2 (s)	0.2	4.2							
Initial queue delay, d3 (s)	0								
Progression adj factor, PF	1.000	0.256	0.256	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	18.1								
Segment LOS Determina	tion	,							
Travel time, ST (s)	85.0					·			
Travel speed, SA (mi/h)	27.5								
Segment LOS	В								
Urban Street LOS Detern	nination								
Total travel time (s)	85.0								
Total length (mi)	0.65								
Total travel speed, SA (mi/h)	27.5	·							
Total urban street LOS	В	oK							

 $HCS2000^{\rm TM}$

Copyright © 2003 University of Florida, All Rights Reserved

	URBA	N STR	EET WO	RKSHEI	ET #1				
General Information			Site Inf	ormatio	n				
Analyst <i>USAI</i> Agency/Co. <i>USAI</i> Date Performed <i>9/3/2012</i> Time Period <i>PM PEAK H</i> C		Jurisdicti	of Travel on	OCEANS	und SIDE	1			
Project Description: QUARRY	CREEK			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
Input Parameters							,		
Analysis Period(h) T = 0.25			·	Segmer	_				
	1	2	3	4	5	6	7	8	
Cycle length, C (s)	80.0								
Eff. green to cycle ratio, g/C	0.375								
v/c ratio for lane group, X	0.356								
Cap of lane group, c (veh/h)	1274						 		
Pct Veh on Grn., PVG									
Arrival type, AT	3								
Unit Extension, UE (sec)	3.0			ļ	ļ	ļ			
Length of segment, L (mi)	0.65								
Initial Queue, Qb (veh)	0					<u> </u>	<u> </u>		
Urban street class, SC	3								
Free-flow speed, FSS (mi/h)	35		 					-	
Running Time, TR (s)	66.9	ļ		<u> </u>		 	 		
Other delay, (s)	0.0				<u> </u>			<u> </u>	
Delay Computation						T	T	<u> </u>	
Uniform delay, d1 (s)	18.0	5.4	5.4	5.4	5.4	5.4	5.4	5.4	
Incremental delay adj, k	0.11	0.50	0.50	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000					<u> </u>			
Incremental delay, d2 (s)	0.2	4.1							
Initial queue delay, d3 (s)	0								
Progression adj factor, PF	1.000	0.256	0.256	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	18.2								
Segment LOS Determina	tion					,			
Travel time, ST (s)	85.2								
Travel speed, SA (mi/h)	27.5		1		1				
Segment LOS	В		i				İ		
Urban Street LOS Determ			· · · · ·		-		·		
Total travel time (s)	85.2								
Total length (mi)	0.65	. #							
Total travel speed, SA (mi/h)	27.5	of							
Total urban street LOS	B								

Copyright © 2003 University of Florida, All Rights Reserved

General Information		Site Information							
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period AM PEAK HOUR			Urban Street Direction of Travel Jurisdiction		VISTA WAY				
Project Description: QUARRY Input Parameters	CREEK								
mpat i arameters		_		Segmer	nte				
Analysis Period(h) $T = 0.25$	1	2	3	J 4	T 5	6	7	8	
Cycle length, C (s)	100.0	100.0			-		1		
Eff. green to cycle ratio, g/C	0.070	0.260							
//c ratio for lane group, X	0.621	0.711							
Cap of lane group, c (veh/h)	248	922							
Pct Veh on Grn., PVG									
Arrival type, AT	5	5				12 = = =			
Jnit Extension, UE (sec)	3.0	3.0							
ength of segment, L (mi)	0.20	0.10							
nitial Queue, Qb (veh)	0	0						1	
Jrban street class, SC	2	2				1			
ree-flow speed, FSS (mi/h)	40	40						1	
Running Time, TR (s)	23.0	11.5				1 1			
Other delay, (s)	0.0	0.0							
Delay Computation									
Jniform delay, d1 (s)	45.2	33.6	5.4	5.4	5.4	5.4	5.4	5.4	
ncremental delay adj, k	0.20	0.27	0.50	0.50	0.50	0.50	0.50	0.50	
Jpstream filtering adj factor, I	1.000	0.746				1		1 = -	
ncremental delay, d2 (s)	4.7	1.9	2.8						
nitial queue delay, d3 (s)	0	0							
Progression adj factor, PF	0.950	0.766	0.256	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	47.7	27.7				17			
Segment LOS Determina	tion								
Travel time, ST (s)	70.7	39.2							
Travel speed, SA (mi/h)	(10.2)	(9.2)							
Segment LOS	F	F							
Urban Street LOS Detern	nination								
Fotal travel time (s)	109.8								
Total length (mi)	0.30								
	9.8								
Total travel speed, SA (mi/h)	9.0								

Copyright © 2003 University of Florida, All Rights Reserved

General Information			Site Information							
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period AM PEAK HOUR			Urban Street Direction of Travel Jurisdiction		VISTA WAY					
Project Description: QUARRY	CREEK									
Input Parameters										
Analysis Period(h) T = 0.25				Segmen						
Trialy 515 1 Criod(11) 1 = 0.20	1	2	3	4	5	6	7	8		
Cycle length, C (s)	100.0	100.0						-		
Eff. green to cycle ratio, g/C	0.070	0.260						4		
v/c ratio for lane group, X	0.621	0.722					-			
Cap of lane group, c (veh/h)	248	922								
Pct Veh on Grn., PVG										
Arrival type, AT	5	5								
Unit Extension, UE (sec)	3.0	3.0						1		
Length of segment, L (mi)	0.20	0.10						4		
Initial Queue, Qb (veh)	0	0						4.5		
Urban street class, SC	2	2								
Free-flow speed, FSS (mi/h)	40	40								
Running Time, TR (s)	23.0	11.5		-						
Other delay, (s)	0.0	0.0								
Delay Computation	1	90.5			1 - 2	1	1	1		
Uniform delay, d1 (s)	45.2	33.7	5.4	5.4	5.4	5.4	5.4	5.4		
Incremental delay adj, k	0.20	0.28	0.50	0.50	0.50	0.50	0.50	0.50		
Upstream filtering adj factor, I	1.000	0.746								
Incremental delay, d2 (s)	4.7	2.1	2.7							
Initial queue delay, d3 (s)	0	0								
Progression adj factor, PF	0.950	0.766	0.256	0.256	0.256	0.256	0.256	0.256		
Control delay, d (s)	47.7	27.9								
Segment LOS Determina	tion				1					
Travel time, ST (s)	70.7	39.4						4		
Travel speed, SA (mi/h)	10.2	9.1 V	15							
Segment LOS	F	F								
Urban Street LOS Detern	nination	-	1	M						
Total travel time (s)	110.1	10	1.2 -	9.1 0)					
Total length (mi)	0.30)						
Total travel speed, SA (mi/h)	9.8	7	NOT S	16.						

Copyright © 2003 University of Florida, All Rights Reserved

Company Information			C:4- 1-4	- was -41 -				
General Information Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period PM PEAK HO		Urban St Direction Jurisdicti	of Travel on	VISTA WAY East-bound OCEANSIDE NEAR-TERM NO PROJECT				
Project Description: QUARRY	CREEK							
Input Parameters								
Analysis Period(h) T = 0.25				Segmen	nts			
Allalysis Fellou(II) F = 0.25	1	2	3	4	5	6	7	8
Cycle length, C (s)	110.0	110.0						
Eff. green to cycle ratio, g/C	0.091	0.164						
v/c ratio for lane group, X	0.764	0.993						
Cap of lane group, c (veh/h)	322	580						
Pct Veh on Grn., PVG						1		
Arrival type, AT	5	5						
Unit Extension, UE (sec)	3.0	3.0						
Length of segment, L (mi)	0.20	0.10				-		
nitial Queue, Qb (veh)	0	0						
Urban street class, SC	2	2						
Free-flow speed, FSS (mi/h)	40	40						
Running Time, TR (s)	23.0	11.5						
Other delay, (s)	0.0	0.0					_	
Delay Computation	1 10 0	150		1 - 4	1 - 4	1 5 4	1 54	1 54
Uniform delay, d1 (s)	48.8	45.9	5.4	5.4	5.4	5.4	5.4	5.4
ncremental delay adj, k	0.32	0.49	0.50	0.50	0.50	0.50	0.50	0.50
Upstream filtering adj factor, I	1.000	0.558						
ncremental delay, d2 (s)	10.4	26.2	0.5					
nitial queue delay, d3 (s)	0	0				1		
Progression adj factor, PF	0.933	0.869	0.256	0.256	0.256	0.256	0.256	0.256
Control delay, d (s)	56.0	66.1						1 -
Segment LOS Determina	tion							
Travel time, ST (s)	79.0	77.6						
Travel speed, SA (mi/h)	(9.1)	(4.6)						
Segment LOS	F	F						
Urban Street LOS Detern	nination							
Total travel time (s)	156.6							
Total length (mi)	0.30							
Total travel speed, SA (mi/h)	6.9							
rotal travel speed, SA (IIII/II)	0.5							

HCS2000TM

Copyright © 2003 University of Florida, All Rights Reserved

General Information			Site Information							
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period PM PEAK HOUR			Urban Street Direction of Travel Jurisdiction Analysis Year		VISTA WAY East-bound OCEANSIDE					
Project Description: QUARRY	CREEK						- 845 / 1			
Input Parameters										
				Segmer	nts					
Analysis Period(h) T = 0.25	1	2	3	4	5	6	7	8		
Cycle length, C (s)	110.0	110.0								
Eff. green to cycle ratio, g/C	0.091	0.164		y						
v/c ratio for lane group, X	0.764	1.003								
Cap of lane group, c (veh/h)	322	580				1				
Pct Veh on Grn., PVG										
Arrival type, AT	5	5								
Unit Extension, UE (sec)	3.0	3.0								
Length of segment, L (mi)	0.20	0.10								
Initial Queue, Qb (veh)	0	0		1						
Urban street class, SC	2	2		314						
Free-flow speed, FSS (mi/h)	40	40								
Running Time, TR (s)	23.0	11.5						7.5		
Other delay, (s)	0.0	0.0								
Delay Computation										
Uniform delay, d1 (s)	48.8	46.0	5.4	5.4	5.4	5.4	5.4	5.4		
Incremental delay adj, k	0.32	0.50	0.50	0.50	0.50	0.50	0.50	0.50		
Upstream filtering adj factor, I	1.000	0.558								
Incremental delay, d2 (s)	10.4	28.7	0.4							
Initial queue delay, d3 (s)	0	0			1					
Progression adj factor, PF	0.933	0.869	0.256	0.256	0.256	0.256	0.256	0.256		
Control delay, d (s)	56.0	68.7								
Segment LOS Determina	tion									
Travel time, ST (s)	79.0	80.2						-		
Travel speed, SA (mi/h)	(9.1)	4.5 9								
Segment LOS	F	F					14			
Urban Street LOS Detern	nination	/			7					
Total travel time (s)	159.2		1.6-	4.5						
Total length (mi)	0.30	>	OK		7					
Total travel speed, SA (mi/h)	6.8		NOTSI	G. HAN 1.0						
Total urban street LOS	F		hatter !							

8/30/2012

General Information			Site Information							
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period AM PEAK HOUR Project Description: QUARRY CREEK			Urban Street Direction of Travel Jurisdiction Analysis Year		VISTA WAY West-bound OCEANSIDE					
Input Parameters	CALLA									
Analysis Period(h) $T = 0.25$		Segments								
Analysis Period(II) 1 = 0.25	1	2	3	4	5	6	7	8		
Cycle length, C (s)	100.0	100.0	1 1 1							
Eff. green to cycle ratio, g/C	0.260	0.206								
v/c ratio for lane group, X	0.321	0.651								
Cap of lane group, c (veh/h)	898	654								
Pct Veh on Grn., PVG) —							
Arrival type, AT	5	5								
Unit Extension, UE (sec)	3.0	3.0	1							
Length of segment, L (mi)	0.10	0.10								
Initial Queue, Qb (veh)	0	0								
Urban street class, SC	2	2					1			
Free-flow speed, FSS (mi/h)	40	40								
Running Time, TR (s)	11.5	11.5								
Other delay, (s)	0.0	0.0								
Delay Computation										
Uniform delay, d1 (s)	29.9	36.4	5.4	5.4	5.4	5.4	5.4	5.4		
Incremental delay adj, k	0.11	0.23	0.50	0.50	0.50	0.50	0.50	0.50		
Upstream filtering adj factor, I	1.000	0.957								
Incremental delay, d2 (s)	0.2	2.2	3.1							
Initial queue delay, d3 (s)	0	0	17.3							
Progression adj factor, PF	0.766	0.827	0.256	0.256	0.256	0.256	0.256	0.256		
Control delay, d (s)	23.1	32.3								
Segment LOS Determina					-					
Travel time, ST (s)	34.6	43.8		T		1				
Travel speed, SA (mi/h)	(10.4)	8.2								
Segment LOS	F	F								
Urban Street LOS Deteri				-		-	*	7		
Total travel time (s)	78.4									
Total length (mi)	0.20									
Total travel speed, SA (mi/h)	9.2									
Total urban street LOS	F									
TOTAL ALCOHOL ST		L. @ 2002 IT		da All Diabta	Dansarad			Version		

Copyright © 2003 University of Florida, All Rights Reserved

General Information			Site In	formatio	n				
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period AM PEAK HOUR Project Description: QUARRY CREEK			Urban Street Direction of Travel Jurisdiction Analysis Year		VISTA WAY West-bound OCEANSIDE				
Input Parameters	CKLLK								
Analysis Dariad(h) T = 0.25	12.			Segmer	nts				
Analysis Period(h) T = 0.25	1	2	3	4	5	6	7	8	
Cycle length, C (s)	100.0	100.0				7-3-			
Eff. green to cycle ratio, g/C	0.260	0.206							
v/c ratio for lane group, X	0.326	0.651							
Cap of lane group, c (veh/h)	899	654		16-	2			1	
Pct Veh on Grn., PVG				/					
Arrival type, AT	5	5			h T				
Unit Extension, UE (sec)	3.0	3.0							
Length of segment, L (mi)	0.10	0.10			2				
Initial Queue, Qb (veh)	0	0							
Urban street class, SC	2	2						1	
Free-flow speed, FSS (mi/h)	40	40							
Running Time, TR (s)	11.5	11.5							
Other delay, (s)	0.0	0.0							
Delay Computation									
Uniform delay, d1 (s)	29.9	36.4	5.4	5.4	5.4	5.4	5.4	5.4	
Incremental delay adj, k	0.11	0.23	0.50	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.955		1111					
Incremental delay, d2 (s)	0.2	2.2	3.1	No.					
Initial queue delay, d3 (s)	0	0			T				
Progression adj factor, PF	0.766	0.827	0.256	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	23.1	32.3							
Segment LOS Determina	ation								
Travel time, ST (s)	34.6	43.8							
Travel speed, SA (mi/h)	(10.4)	(8.2)							
Segment LOS	F	F				/			
Urban Street LOS Deterr	nination								
Total travel time (s)	78.4	the							
Total length (mi)	0.20	> Post	JUE 3						
Total travel speed, SA (mi/h)	9.2	(CE.	18						
		2							

Copyright © 2003 University of Florida, All Rights Reserved

General Information			Site Information							
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period PM PEAK HOUR			Urban Street VISTA WAY Direction of Travel West-bound Jurisdiction OCEANSIDE Analysis Year NEAR-TERM NO PROJECT							
Project Description: QUARRY	CREEK									
Input Parameters										
Analysis Period(h) T = 0.25				Segmen						
	1	2	3	4	5	6	7	8		
Cycle length, C (s)	110.0	110.0								
Eff. green to cycle ratio, g/C	0.282	0.287								
v/c ratio for lane group, X	0.601	0.909								
Cap of lane group, c (veh/h)	987	932								
Pct Veh on Grn., PVG										
Arrival type, AT	5	5								
Unit Extension, UE (sec)	3.0	3.0								
Length of segment, L (mi)	0.10	0.10								
Initial Queue, Qb (veh)	0	0								
Urban street class, SC	2	2								
Free-flow speed, FSS (mi/h)	40	40								
Running Time, TR (s)	11.5	11.5								
Other delay, (s)	0.0	0.0						1		
Delay Computation						-				
Uniform delay, d1 (s)	34.2	37.8	5.4	5.4	5.4	5.4	5.4	5.4		
Incremental delay adj, k	0.19	0.43	0.50	0.50	0.50	0.50	0.50	0.50		
Upstream filtering adj factor, I	1.000	0.768								
Incremental delay, d2 (s)	1.0	10.2	1.3							
Initial queue delay, d3 (s)	0	0								
Progression adj factor, PF	0.738	0.731	0.256	0.256	0.256	0.256	0.256	0.256		
Control delay, d (s)	26.2	37.8	36.15.3.3.							
Segment LOS Determina										
Travel time, ST (s)	37.Z	49.3				1				
Travel speed, SA (mi/h)	(9.5)	7.3								
Segment LOS	F	F								
Urban Street LOS Deter						1		-		
	87.0									
Total travel time (s)										
Total length (mi)	0.20									
Total travel speed, SA (mi/h)	8.3									
Total urban street LOS	F									

Copyright © 2003 University of Florida, All Rights Reserved

	URBA	AN STR	EET WO	RKSHE	ET #1				
General Information			Site Information						
Analyst USAI Agency/Co. USAI Date Performed 8/30/2012 Time Period PM PEAK HOUR			Urban Street Direction of Travel Jurisdiction		VISTA WAY West-bound OCEANSIDE				
Project Description: QUARRY	CREEK								
Input Parameters									
Analysis Period(h) T = 0.25				Segmer		_			
	1	2	3	4	5	6	7	8	
Cycle length, C (s)	110.0	110.0							
Eff. green to cycle ratio, g/C	0.282	0.287							
v/c ratio for lane group, X	0.612	0.909						114	
Cap of lane group, c (veh/h)	987	932							
Pct Veh on Grn., PVG									
Arrival type, AT	5	5							
Unit Extension, UE (sec)	3.0	3.0							
Length of segment, L (mi)	0.10	0.10							
Initial Queue, Qb (veh)	0	0							
Urban street class, SC	2	2							
Free-flow speed, FSS (mi/h)	40	40							
Running Time, TR (s)	11.5	11.5							
Other delay, (s)	0.0	0.0							
Delay Computation									
Uniform delay, d1 (s)	34.3	37.8	5.4	5.4	5.4	5.4	5.4	5.4	
Incremental delay adj, k	0.20	0.43	0.50	0.50	0.50	0.50	0.50	0.50	
Upstream filtering adj factor, I	1.000	0.756							
Incremental delay, d2 (s)	1.1	10.0	1.3	7			-		
Initial queue delay, d3 (s)	0	0		in no	7				
Progression adj factor, PF	0.738	0.731	0.256	0.256	0.256	0.256	0.256	0.256	
Control delay, d (s)	26.4	37.7							
Segment LOS Determina			-1						
Travel time, ST (s)	37.9	49.2						1	
Travel speed, SA (mi/h)	(9.5)	(7.3)							
Segment LOS	F	F				100			
Urban Street LOS Deterr		4		•					
Total travel time (s)	87.1								
Total length (mi)	0.20	NO.	6						
Total travel speed, SA (mi/h)	8.3	(SHY)	(F)						
Total urban street LOS	6.3 F	(WIP	7						
Total urban street LOS	F	1							

Copyright © 2003 University of Florida, All Rights Reserved

APPENDIX D - ALTERNATIVE 1

- SANDAG SERIES 11 COMBINED NORTH COUNTY MODEL FORECAST ADT VOLUME PLOT (MCMILLIN -1 / 4-25-11)
- INTERSECTION LOS WORKSHEETS WITHOUT AND WITH PROJECT
- FAIR SHARE CALCULATIONS
- ARTERIAL ANALYSIS WORKSHEETS

SANDAG Series 11 Combined North County Model 2030 Highway Metwork Daily Traffic Volumes

City of CARLSBAD

Model Run 04/25/11 McMillin 1 - Base Circulation Element

Functional Classifications:

Freeway

Prime

Major

~~~ Collector

Local Collector

Rural Collector

Local

~>>>> Freeway Connector

Ramp

Zone Connector Light & Commuter Rail Zone Boundary

Adjusted Volume

Unadjusted Volume

Traffic Analysis Zone





|                                                      | <u> </u>                          |                     |                             |                                       | S              | HORT       | R                   | EPC                                 | R          | RT            |      |               |                 |                        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------|-----------------------------------|---------------------|-----------------------------|---------------------------------------|----------------|------------|---------------------|-------------------------------------|------------|---------------|------|---------------|-----------------|------------------------|-----------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Inf                                          | ormation                          |                     |                             |                                       |                |            | S                   | ite In                              | fo         | rmati         | on   |               |                 |                        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med                               | U.<br>08/1          | SAI<br>SAI<br>15/12<br>PEAK |                                       |                |            | A                   | nterse<br>rea T<br>urisdio<br>nalys | yp<br>ctic | e<br>on       |      | c             | All ot<br>OCEAN | WAY<br>her ar<br>SIDE- |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Volume an                                            | ıd Timing In                      | put                 |                             | · · · · · · · · · · · · · · · · · · · | -              |            |                     |                                     |            |               |      |               |                 |                        |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                      |                                   |                     |                             | EΒ                                    |                |            |                     | WB                                  |            |               | I    |               | NB              |                        |           | SB         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                      |                                   |                     | LT                          | TH                                    | R              | _          |                     | TH                                  | 4          | RT            | _    | <u>.T</u>     | TH              | RT                     | LT        | TH         | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Num. of Lar                                          | nes                               |                     | 1                           | 2                                     | 1              | 2          |                     | 2                                   | 4          | 0             | +    | 2             | 3               | 0                      | 2         | 3          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane group                                           |                                   |                     | L                           | Τ                                     | R              |            |                     | TR                                  |            |               |      |               | TR              |                        | L         | TR         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Volume (vpl                                          |                                   |                     | 35                          | 70                                    | 95             |            |                     | 150                                 | 4          | 95            | 18   |               | 1000            | 310                    | 150       | 1725       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| % Heavy vo                                           | eh                                |                     | 2<br>0.92                   | 2<br>0.92                             | 0.9.           | 2<br>2 0.9 |                     | 2<br>0.92                           | 4          | 2<br>0.92     | _    | 2<br>92       | 2<br>0.92       | 2<br>0.92              | 2<br>0.92 | 2<br>0.92  | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Actuated (P                                          | /Δ)                               |                     | 0.92<br>A                   | 0.92<br>A                             | 0.9.<br>A      | 2 0.9<br>A |                     | 0.92<br>A                           | ┥          | 0.92<br>A     | 10.  |               | 0.92<br>A       | 0.92<br>A              | 0.92<br>A | 0.92<br>A  | 0.92<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Startup lost                                         |                                   |                     | 3.0                         | 3.0                                   | 3.0            |            | <del></del>         | 3.0                                 | $\dashv$   |               |      | 0             | 3.0             |                        | 3.0       | 3.0        | +~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ext. eff. gre                                        |                                   |                     | 3.0                         | 2.0                                   | 1.2            |            |                     | 2.0                                 | 7          |               | 1.   |               | 5.0             |                        | 0.8       | 5.8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Arrival type                                         | ''                                |                     | 3                           | 3                                     | 3              | 3          |                     | 3                                   |            |               |      | 5             | 5               |                        | 5         | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Unit Extensi                                         |                                   |                     | 3.0                         | 3.0                                   | 3.0            |            | )                   | 3.0                                 |            |               |      | .0            | 3.0             |                        | 3.0       | 3.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ped/Bike/R                                           | TOR Volume                        | )                   | 5<br>12.0                   | 10                                    | 0              | 5          |                     | 10                                  | 4          | 0             |      |               | 10              | 0                      | 5         | 10         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane Width                                           | ane Width<br>arking/Grade/Parking |                     |                             | 12.0                                  | 12.            |            |                     | 12.0                                | 4          |               |      | 2.0           | 12.0            |                        | 12.0      | 12.0       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                      | ide/Parking                       |                     | Ν                           | 0                                     | Ν              | N          |                     | 0                                   |            | N             | /    | <u> </u>      | 0               | Ν                      | N         | 0          | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parking/hr                                           |                                   |                     |                             |                                       |                |            |                     | ļ                                   | _          |               |      |               |                 |                        |           |            | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |
| Bus stops/h                                          | r                                 |                     | 0                           | 0                                     | 0              | 0          |                     | 0                                   | ┙          |               |      | 0             | 0               |                        | 0         | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Unit Extensi                                         | ion                               |                     | 3.0                         | 3.0                                   | 3.0            | 3.0        | )                   | 3.0                                 |            |               | 3    | .0            | 3.0             |                        | 3.0       | 3.0        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Phasing                                              | Excl. Left                        | _                   | Only                        | Thru                                  |                |            | 04                  |                                     |            | xcl. L        |      |               | ru & R          |                        | 07        |            | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Timing                                               | G = 10.3<br>Y = 5.2               | G =<br>Y = :        |                             | G = 1<br>Y = 5                        |                | G =<br>Y = |                     |                                     |            | = 15<br>= 5.2 |      |               | = 48.6<br>= 6.3 | G =                    |           | G =<br>Y = |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Duration of                                          |                                   |                     |                             | Y = 5                                 | 0.0            | Y =        |                     |                                     | Y          | = 5.2         |      | _             |                 |                        | = 133.    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                      | up Capac                          |                     |                             | I Dol                                 | 21/            | and I      | $\overline{\Omega}$ | s Da                                | to         | rmi           | aati |               | JE LEII         | gui C                  | - 155.    | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lane Gio                                             | up Capac                          | liy, C              | EB                          | i Dei                                 | а <b>у</b> , , | anu L      |                     | VB                                  | ıc         |               | Iati | OII           | NB              |                        | 1         | SB         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Adj. flow rat                                        | ^                                 | 38                  | 76                          | 103                                   |                | 413        |                     | 66                                  | Т          | $\overline{}$ | 201  | Т             | 1424            | Т                      | 163       | 1913       | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                      |                                   | <del></del>         | <del> </del>                |                                       | -              |            | ┿                   |                                     | ╀          | -             |      | $\rightarrow$ | _               | +                      | +         | +          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane group                                           | cap.                              | 136                 | 446                         | 426                                   | -              | 720        | ┿                   | 89                                  | ╀          |               | 352  |               | 1844            | <del> </del>           | 342       | 1946       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| v/c ratio                                            |                                   | 0.28                | 0.17                        | 0.24                                  | -+             | 0.57       | -                   | 30                                  | Ļ          |               | 0.57 |               | 0.77            | <del> </del>           | 0.48      | 0.98       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Green ratio                                          |                                   | 0.08                | 0.13                        | 0.28                                  |                | 0.21       | +-                  | 27                                  | ┞          | -             | 0.10 |               | 0.38            | <u> </u>               | 0.10      | 0.38       | ┿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Unif. delay o                                        | <u> </u>                          | 58.1                | 52.2                        | 37.4                                  | <del></del>    | 47.4       | 38                  | 3.8                                 | L          |               | 57.1 |               | 36.4            | _                      | 56.9      | 40.7       | ┷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Delay factor                                         | ·k                                | 0.11                | 0.11                        | 0.11                                  | (              | 0.17       | 0.                  | 11                                  | L          |               | 0.17 |               | 0.32            |                        | 0.11      | 0.49       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Increm. dela                                         | ay d2                             | 1.1                 | 0.2                         | 0.3                                   |                | 1.1        | 0                   | .2                                  | L          |               | 2.2  |               | 2.1             |                        | 1.0       | 16.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PF factor                                            |                                   | 1.000               | 1.000                       | 1.00                                  | 0 1            | 1.000      | 1.0                 | 000                                 | Γ          | (             | ).92 | 4             | 0.594           |                        | 0.926     | 0.583      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Control dela                                         | ıy                                | 59.3                | 52.4                        | 37.7                                  | 2 4            | 48.6       | 39                  | 9.0                                 | Γ          | ,             | 55.0 | ,             | 23.7            |                        | 53.7      | 40.2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lane group                                           | LOS                               | Ε                   | D                           | D                                     |                | D          | 1                   | D                                   | T          |               | Е    | $\neg$        | С               |                        | D         | D          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                      |                                   |                     | 6.6                         | <u> </u>                              | 十              | 4          | 4.8                 |                                     | _          |               |      | 27            | 7.6             |                        | †         | 41.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Approach L                                           |                                   | D D                 |                             | $\dashv$                              |                | D          |                     |                                     | 一十         |               | (    |               |                 | 1                      | D         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Intersec. de                                         |                                   | <del>-</del><br>7.2 |                             | $\dashv$                              |                | ·          | ln:                 | †er                                 | rsecti     | on I          |      |               |                 | +                      | D         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HCS2000 <sup>TM</sup>                                | ·~ <i>j</i>                       | L                   |                             |                                       | 2000           | Universi   | br a 6              |                                     |            |               |      |               |                 |                        | 1         |            | ersion 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      | <del></del>          |              |                             |            | SI             | HOR          | TR             | REPO                                  | R            | T                                      |             | _           |                 |                          |                |          |               |
|------------------------------------------------------|----------------------|--------------|-----------------------------|------------|----------------|--------------|----------------|---------------------------------------|--------------|----------------------------------------|-------------|-------------|-----------------|--------------------------|----------------|----------|---------------|
| General Inf                                          | ormation             |              |                             |            |                |              | s              | ite In                                | for          | rmati                                  | on          |             |                 |                          |                |          |               |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                  | U<br>08/     | SAI<br>SAI<br>15/12<br>PEAK |            |                |              | A<br>Ji        | nterse<br>krea T<br>urisdik<br>knalys | ype<br>ctic  | e<br>on                                |             | C           | All ot<br>OCEAN | WAY<br>her are<br>SIDE-I |                |          |               |
| Volume an                                            | d Timing In          | put          |                             |            |                |              |                |                                       |              |                                        |             |             |                 |                          |                |          |               |
|                                                      |                      |              |                             | EB         | T 5-           |              | <del>-</del> - | WB                                    |              |                                        | <u> </u>    |             | NB              | I 55-                    | ļ.,_           | SB       | LST           |
| Num. of Lar                                          | 105                  |              | LT<br>1                     | TH<br>2    | R <sup>-</sup> | _            | <u>.T</u><br>2 | TH<br>2                               | +            | RT<br>0                                |             |             | TH<br>3         | RT<br>0                  | <u>LT</u><br>2 | TH<br>3  | RT<br>0       |
|                                                      | 103                  |              | L                           | T          | R              | _            | <u>-</u><br>L  | TR                                    | +            |                                        |             |             | TR              | ľ                        | L              | TR       | <del>اٽ</del> |
| Lane group<br>Volume (vpl                            | ۵)                   |              | 35                          | 72         | 95             |              | 30             | 157                                   | +            | 104                                    | 185         | =           | 1000            | 310                      | 153            | 1725     | 35            |
| % Heavy v                                            |                      |              | 2                           | 2          | 2              |              | 2              | 2                                     | +            | 2                                      | 2           |             | 2               | 2                        | 2              | 2        | 2             |
| PHF                                                  | <u> </u>             |              | 0.92                        | 0.92       | 0.9            |              | 92             | 0.92                                  | +            | 0.92                                   | 0.9         | 2           | 0.92            | 0.92                     | 0.92           | 0.92     | 0.92          |
| Actuated (P                                          |                      |              | Α                           | Α          | Α              | 1            |                | Α                                     |              | Α                                      | Α           |             | Α               | Α                        | Α              | Α        | Α             |
| Startup lost                                         |                      |              | 3.0                         | 3.0        | 3.0            |              | .0             | 3.0                                   | ightharpoons |                                        | 3.0         |             | 3.0             |                          | 3.0            | 3.0      |               |
| Ext. eff. gre                                        | en                   |              | 3.0                         | 2.0        | 1.2            |              | .0             | 2.0                                   | 4            |                                        | 1.2         | <u> </u>    | 5.0             |                          | 0.8            | 5.8      | <u> </u>      |
| Arrival type<br>Unit Extens                          |                      |              | 3<br>3.0                    | 3<br>3.0   | 3.0            |              | 3              | 3.0                                   | +            |                                        | 5<br>3.0    | <del></del> | 5<br>3.0        |                          | <i>5</i>       | 5<br>3.0 | <del> </del>  |
|                                                      | ΓOR Volume           |              | 5                           | 10         | 0              |              | 5              | 10                                    | +            | 0                                      | 5           |             | 10              | 0                        | 5              | 10       | 0             |
| Lane Width                                           | TON Volume           | <del>,</del> | 12.0                        | 12.0       | 12.0           |              | 2.0            | 12.0                                  | +            |                                        | 12.0        | 2           | 12.0            | . V                      | 12.0           | 12.0     | 1             |
|                                                      | arking/Grade/Parking |              |                             | 0          | N              | -            | V              | 0                                     | 十            | N                                      | N           |             | 0               | N                        | N              | 0        | N             |
| Parking/hr                                           |                      |              |                             |            |                |              |                |                                       | 十            | ·                                      |             |             |                 |                          |                |          |               |
| Bus stops/h                                          | r                    |              | 0                           | 0          | 0              | (            | )              | 0                                     | 十            |                                        | 0           |             | 0               |                          | 0              | 0        |               |
| Unit Extens                                          | on                   |              | 3.0                         | 3.0        | 3.0            | 3.           | .0             | 3.0                                   | T            |                                        | 3.0         | )           | 3.0             |                          | 3.0            | 3.0      |               |
| Phasing                                              | Excl. Left           | WB           | Only                        | Thru       | & R1           |              | 04             |                                       | E            | xcl. L                                 | .eft        | Τ'n         | ru & R          | T                        | 07             | (        | 08            |
| Timing                                               | G = 10.3             | G =          |                             | G = 1      |                | G :          |                |                                       |              | = 15                                   |             |             | = 48.6          |                          |                | G =      |               |
|                                                      | Y = 5.2              | Y = .        |                             | Y = 5      | 5.6            | <u> </u>     | :              |                                       | <u>Y</u> :   | = 5.2                                  |             | _           | = 6.3           | Y =                      |                | Y =      |               |
|                                                      | Analysis (hr         |              |                             | l Dal      |                | o m d        |                | e Da                                  | <u></u>      | rma i s                                |             | _           | de Len          | gin C =                  | = 133.         | 0        |               |
| Lane Gro                                             | up Capac             | ity, C       | EB                          | n Dei      | ay,            | anu          |                | VB                                    | <u>te</u>    | rmir                                   | iauc        | 7[]         | NB              |                          | 1              | SB       |               |
| Adj. flow rat                                        |                      | 38           | 78                          | 103        | ,              | 413          | _              | 84                                    | т            | $\dashv$                               | 201         | _           | 1424            | 1                        | 166            | 1913     | $\overline{}$ |
| Lane group                                           |                      | 136          | 446                         | 426        | <del></del>    | 720          | +              | 87                                    | ╁            | -+                                     | 352         | -           | 1844            |                          | 342            | 1946     | +             |
| v/c ratio                                            | сар.                 | 0.28         | 0.17                        | 0.24       |                | 7.20<br>0.57 | +-             | .32                                   | ╁            |                                        | 0.57        |             | 0.77            | <del> </del>             | 0.49           | 0.98     | <del> </del>  |
| Green ratio                                          |                      | 0.08         | 0.17                        | 0.28       | -              | 0.21         | +              | .27                                   | ╁            | -                                      | 0.10        | -+          | 0.38            | 1                        | 0.10           | 0.38     |               |
| Unif. delay                                          |                      | 58.1         | 52.2                        | 37.4       | -              | 47.4         |                | 9.1                                   | 十            | -+                                     | 57.1        | $\dashv$    | 36.4            | 1                        | 56.9           | 40.7     | +-            |
| Delay factor                                         |                      | 0.11         | 0.11                        | 0.11       |                | ).17         |                | .11                                   | ╁╴           | -+                                     | 0.17        | $\dashv$    | 0.32            | $\vdash$                 | 0.11           | 0.49     | +             |
| Increm. dela                                         | <del></del>          | 1.1          | 0.77                        | 0.7        |                | 1.1          |                | ).2                                   | ╁            |                                        | 2.2         | -           | 2.1             | <del> </del>             | 1.1            | 16.5     | +             |
| PF factor                                            | 4y U.Z.              | 1.000        | 1.000                       |            | -              | 1.000        | -              | 000                                   | 十            |                                        | 0.924       | $\dashv$    | 0.594           | ╁                        | 0.926          | 0.583    | +-            |
| Control dela                                         | ıv                   | 59.3         | 52.4                        | 37.7       | _              | 48.6         | +-             | 9.3                                   | +            | -                                      | 55.0        | -           | 23.7            | +                        | 53.8           | 40.2     | +             |
|                                                      | <u> </u>             | E            | D                           | D          | $\dashv$       | D            | ┿              | D                                     | 十            | <del></del>                            | E           | ᅥ           | C               | †                        | D              | D        | +             |
|                                                      |                      |              |                             |            | $\dashv$       |              | 14.8           |                                       | 1_           | $\dashv$                               | <del></del> | <u> </u>    | <del> </del>    | <u> </u>                 | <del></del>    | 41.3     |               |
| Approach L                                           |                      | 6.7<br>D     |                             | $\dashv$   |                | <i>D</i>     | <u> </u>       |                                       | $\dashv$     | ······································ |             |             |                 |                          | D              |          |               |
| Intersec. de                                         |                      | 7.3          |                             | $\dashv$   |                | <u>-</u>     | ln             | ter                                   | section      | on LC                                  |             |             |                 |                          | D              |          |               |
| HCS2000 <sup>TM</sup>                                | · • · J              |              |                             | opvright © | 3000           | Thirms       | -itu o l       |                                       |              |                                        |             |             |                 |                          | <u> </u>       |          | ersion 4.     |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                       |           |                                                            |                                              | S             | HC    | RT         | REP                      | OI                      | RT           |           | •    |                 |                      |                  |              |            |              |
|------------------------------------------------------|---------------------------------------|-----------|------------------------------------------------------------|----------------------------------------------|---------------|-------|------------|--------------------------|-------------------------|--------------|-----------|------|-----------------|----------------------|------------------|--------------|------------|--------------|
| General Inf                                          | ormation                              |           |                                                            |                                              |               |       |            | Site I                   | nfo                     | ormat        |           |      |                 |                      |                  |              |            |              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                                   | U<br>08/1 | SAI<br>SAI<br>15/12<br>PEAK                                |                                              |               |       | . ,        | Inters<br>Area<br>Juriso | Ty <sub>l</sub><br>lict | pe<br>tion   |           | (    | All ot<br>DCEAN | WAY<br>her a<br>SIDI | /<br>are<br>E-li | eas<br>NT.#1 |            |              |
| 34-1                                                 | -1 Time! 1                            | 4.        |                                                            | ,                                            |               |       |            | Anaiy                    | SIS                     | Year         |           | ВО   | -ALT-1,         | NU                   | Pr               | ROJEC        | <u> </u>   |              |
| Volume an                                            | id Timing In                          | put       |                                                            | EB                                           |               |       | I          | W                        | B.                      |              | T         |      | NB              |                      |                  | T.           | SB         |              |
| ļ.                                                   |                                       |           | LT                                                         | TH                                           | R             | Т     | LΤ         | ΤĦ                       |                         | RT           | L         | T    | TH              | R                    | Т                | LT           | TH         | RT           |
| Num. of Lar                                          | nes                                   |           | 1                                                          | 2                                            | 1             |       | 2          | 2                        | _                       | 0            | 2         | )    | 3               | 0                    |                  | 2            | 3          | 0            |
| Lane group                                           |                                       |           | L                                                          | Т                                            | F             | ~     | L          | TE                       |                         |              | L         |      | TR              |                      |                  | L            | TR         |              |
| Volume (vpl                                          |                                       |           | 225                                                        | 295                                          | 40            |       | 310        | 270                      |                         | 170          | 47        |      | 1845            | 413                  | 5                | 170          | 1465       | 95           |
| % Heavy v                                            |                                       |           | 2                                                          | 2                                            | 2             | •     | 2          | 2                        |                         | 2            | 2         | )    | 2               | 2                    |                  | 2            | 2          | 2            |
| PHF                                                  |                                       |           | 0.92                                                       | 0.92                                         | 0.9           |       | 0.92       | 0.9                      | 2                       | 0.92         | 0.9       |      | 0.92            | 0.9                  | 2                | 0.92         | 0.92       | 0.92         |
| Actuated (P                                          |                                       |           | <u>A</u>                                                   | <u>A</u>                                     | A             |       | A          | A                        | _                       | A            | A         |      | A               | Α                    |                  | A            | A          | I A          |
| Startup lost                                         |                                       |           | 3.0<br>3.0                                                 | 3.0<br>2.0                                   | 3.<br>1.      |       | 3.0<br>2.0 | 3.0<br>2.0               |                         |              | 3.<br>1.  |      | 3.0<br>5.0      |                      |                  | 3.0<br>0.8   | 3.0<br>5.8 | <del> </del> |
| Ext. eff. gre<br>Arrival type                        | en en                                 |           | 3.0                                                        | 3                                            | 3             |       | 3          | 3                        | <u>'</u>                |              | - 1.<br>5 |      | 5.0             |                      |                  | 5            | 5          |              |
| Unit Extens                                          | ion                                   |           | 3.0                                                        | 3.0                                          | 3.0           |       | 3.0        | 3.0                      | <del>_</del>            |              | 3.        | _    | 3.0             |                      | _                | 3.0          | 3.0        | 1            |
|                                                      | TOR Volume                            | <u>,</u>  | 5                                                          | 10                                           | 0             |       | 5          | 10                       |                         | 0            | 5.        |      | 10              | 0                    |                  | 5            | 10         | 0            |
| Lane Width                                           |                                       |           | 12.0                                                       | 12.0                                         | 12            |       | 12.0       | 12.                      |                         | <u> </u>     | 12        |      | 12.0            | Ť                    |                  | 12.0         | 12.0       |              |
| Parking/Gra                                          | de/Parking                            |           | N                                                          | 0                                            | ٨             | /     | N          | 0                        | _                       | Ν            | ٨         | Ī    | 0               | Ν                    |                  | N            | 0          | Ν            |
| Parking/hr                                           |                                       |           |                                                            |                                              |               |       |            |                          |                         |              |           |      |                 |                      |                  |              |            |              |
| Bus stops/h                                          | r                                     |           | 0                                                          | 0                                            | 0             | )     | 0          | 0                        |                         |              | (         | )    | 0               |                      |                  | 0            | 0          |              |
| Unit Extens                                          | ion                                   |           | 3.0                                                        | 3.0                                          | 3.            | 0.    | 3.0        | 3.0                      | )                       |              | 3.        | 0    | 3.0             |                      |                  | 3.0          | 3.0        |              |
| Phasing                                              | Excl. Left                            | Thru      | & RT                                                       | 0                                            | 3             |       | 04         | 4                        |                         | Exçl. L      | _eft      | _    | NB Only         | <u> </u>             | Γhr              | u & RT       |            | 08           |
| Timing                                               | G = 16.0                              | G =       |                                                            | G =                                          |               | _     | G =        |                          |                         | 3 = 12       |           |      | = 12.8          |                      |                  | 41.7         | G =        |              |
|                                                      | Y = 5.2                               | Y =       |                                                            | Y =                                          |               | Ш`    | Y =        |                          | ĮΥ                      | <b>/</b> = 5 | 2         |      | = 6.3           | _                    |                  | 6.3          | Y =        |              |
|                                                      | Analysis (hr                          |           |                                                            | <u>                                     </u> |               |       | 416        | <u> </u>                 |                         |              | 4         | _    | cle Len         | gin                  | <del>-</del> ب   | - 133.       | O          |              |
| Lane Gro                                             | up Capac                              | ity, C    |                                                            |                                              | ay,           | an    |            |                          | eu                      | ermi         | nau       | OH   |                 |                      |                  | ı            | CD         |              |
|                                                      | · · · · · · · · · · · · · · · · · · · |           | EB                                                         |                                              |               |       |            | WB                       | _                       |              | - / -     |      | NB              | Т                    |                  | 40.5         | SB         |              |
| Adj. flow rat                                        |                                       | 245       | 321                                                        | 435                                          | $\rightarrow$ | 337   |            | 478                      | $\dashv$                |              | 516       |      | 2456            | ┿                    |                  | 185          | 1695       |              |
| Lane group                                           | cap.                                  | 212       | 566                                                        | 650                                          | )             | 386   | 6          | 525                      | ightharpoons            |              | 731       |      | 2311            |                      |                  | 257          | 1672       |              |
| v/c ratio                                            |                                       | 1.16      | 0.57                                                       | 0.67                                         | 7             | 0.8   | 7 (        | 0.91                     | ╝                       |              | 0.71      |      | 1.06            |                      |                  | 0.72         | 1.01       |              |
| Green ratio                                          |                                       | 0.12      | 0.16                                                       | 0.42                                         | 2             | 0.1   | 1          | 0.16                     |                         |              | 0.21      |      | 0.47            |                      |                  | 0.07         | 0.33       |              |
| Unif. delay                                          | d1                                    | 58.8      | 51.9                                                       | 31.                                          | 1             | 58.   | 4          | 55.2                     | T                       |              | 48.7      |      | 35.4            |                      |                  | 60.4         | 44.6       |              |
| Delay factor                                         | r k                                   | 0.50      | 0.16                                                       | 0.24                                         | 4             | 0.4   | 0 (        | 0.43                     | T                       | Ī            | 0.27      |      | 0.50            | Τ                    |                  | 0.28         | 0.50       | -            |
| Increm. dela                                         | ay d2                                 | 110.1     | 1.3                                                        | 2.7                                          |               | 19.   | 2 2        | 20.0                     | 7                       |              | 3.1       |      | 38.0            |                      |                  | 9.4          | 25.5       |              |
| PF factor                                            |                                       |           |                                                            | 1.00                                         | 00            | 1.00  | 00 1       | 1.000                    | 7                       |              | 0.820     | )    | 0.409           | 1                    |                  | 0.946        | 0.667      | 7            |
| Control dela                                         | Control delay 168.                    |           |                                                            | 33.8                                         | 3             | 77.   | 6          | 75.2                     | 7                       |              | 43.1      |      | 52.5            | 1                    |                  | 66.6         | 55.2       |              |
| Lane group                                           | ane group LOS F                       |           |                                                            |                                              |               | Е     |            | Ε                        | T                       |              | D         |      | D               |                      |                  | Ε            | Ε          |              |
| Apprch. del                                          | ay                                    | 3.1       | · ····· <del>*</del> · · · · · · · · · · · · · · · · · · · |                                              |               | 76.   | 2          |                          |                         |              | 50        | 0.9  |                 |                      |                  | 56.3         |            |              |
| Approach L                                           | Approach LOS E                        |           |                                                            |                                              |               |       | Ε          |                          |                         |              |           | i    | D               |                      |                  |              | Ε          |              |
| Intersec. de                                         | lay                                   | 8.8       |                                                            |                                              |               |       | l          | nte                      | ersect                  | ion L        | os        | ,    |                 |                      |                  | E            |            |              |
| HCS2000 <sup>TM</sup>                                |                                       | •         | C                                                          | opyright (                                   | 200           | 0 Un: | iversity   | of Florio                |                         | All Right    | ts Rese   | rved |                 |                      |                  | •            | •          | Jersion 4.1  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                        |                        |        |            |           | SH        | IORT             | RE           | PO      | RT                     |       |          |                          |                  |                             |                                        |            |
|------------------------|------------------------|--------|------------|-----------|-----------|------------------|--------------|---------|------------------------|-------|----------|--------------------------|------------------|-----------------------------|----------------------------------------|------------|
| General Inf            | formation              |        |            |           |           |                  | Site         | Infe    | ormat                  | ion   |          |                          |                  |                             |                                        |            |
| Analyst<br>Agency or ( | <b>C</b> o             |        | SAI<br>SAI |           |           |                  | Inter        |         |                        | E     | L C      | 1                        | WAY              |                             | STA                                    |            |
| Date Perfor            | med                    | 08/    | 15/12      |           |           |                  | Area         |         | /pe<br>tion            |       | ,        | All of                   |                  | areas<br>E-INT.#1           |                                        |            |
| Time Period            | t                      | PM.    | PEAK       |           |           |                  |              |         | s Year                 |       |          |                          |                  | !INT.#T<br>I PROJE          | CT                                     |            |
| Volume ar              | nd Timing Ir           | put    |            |           |           |                  | <u>'</u>     |         |                        |       |          |                          |                  |                             |                                        |            |
|                        |                        |        |            | EB        |           |                  |              | NΒ      | ···                    |       |          | NB                       |                  |                             | SB                                     |            |
|                        |                        |        | LT         | TH        | RT        | LT               | _            | TH_     | RT                     | _     | Τ        | TH                       | RI               |                             | TH                                     | RT         |
| Num. of Lar            | nes                    |        | 1          | 2         | 1         | 2                |              | 2       | 0                      | 2     | ?        | 3                        | 0                | 2                           | 3                                      | 0          |
| Lane group             |                        |        | L          | T         | R         | L                |              | R       |                        |       |          | TR                       |                  | L                           | TR                                     |            |
| Volume (vp             |                        |        | 225        | 303       | 400       |                  | _            | 74      | 175                    | 47    |          | 1845                     | 415              |                             | 1465                                   | 95         |
| % Heavy v<br>PHF       | en                     | _      | 2<br>0.92  | 2<br>0.92 | 2<br>0.92 | 2 0.92           |              | 2<br>92 | 2<br>0.92              | 0.9   |          | 2<br>0.92                | 2<br>0.92        | 2 0.92                      | 2<br>0.92                              | 2<br>0.92  |
| Actuated (P            | /Δ)                    |        | 0.92<br>A  | 0.92<br>A | 0.92<br>A | 0.9 <sub>2</sub> | _            | 92<br>A | 0.92                   | O.S   |          | 0.92<br>A                | 0.9 <sub>2</sub> | 2 0.92<br>A                 | 0.92<br>A                              | 0.92<br>A  |
| Startup lost           |                        |        | 3.0        | 3.0       | 3.0       | 3.0              |              | .0      | 1                      | 3.    |          | 3.0                      |                  | 3.0                         | 3.0                                    | -          |
| Ext. eff. gre          |                        |        | 3.0        | 2.0       | 1.2       | 2.0              |              | 2.0     |                        | 1.    |          | 5.0                      |                  | 0.8                         | 5.8                                    |            |
| Arrival type           |                        |        | 3          | 3         | _3        | 3                | _            | 3       |                        | 5     | 5        | 5                        |                  | 5                           | 5                                      |            |
| Unit Extens            |                        |        | 3.0        | 3.0       | 3.0       | 3.0              |              | 3.0     |                        | 3.    |          | 3.0                      |                  | 3.0                         | 3.0                                    |            |
|                        | TOR Volume             | 9      | 5          | 10        | 0         | 5                | _            | 10      | 0                      |       |          | 10                       | 0                | 5                           | 10                                     | 0          |
| Lane Width             |                        |        | 12.0       | 12.0      | 12.0      |                  | -            | 2.0     | <u> </u>               | 12    |          | 12.0                     |                  | 12.0                        | 12.0                                   | ļ          |
| Parking/Gra            | ade/Parking            |        | Ν          | 0         | N         | N                | _ _          | 0       | N                      | ^     | <u> </u> | 0                        | N                | N                           | 0                                      | N          |
| Parking/hr             |                        |        | _          |           | _         |                  | +            |         |                        | _     |          |                          | _                |                             |                                        |            |
| Bus stops/h            |                        |        | 0          | 0         | 0         | 0                | -            | 0       |                        | (     |          | 0                        |                  | 0                           | 0                                      |            |
| Unit Extens            |                        | Т      | 3.0        | 3.0       | 3.0       | 3.0              |              | 3.0     | <u> </u>               | 3.    |          | 3.0                      | <u> </u>         | 3.0                         | 3.0                                    |            |
| Phasing                | Excl. Left<br>G = 16.0 | G =    | & RT       | 03<br>G = | 3         | G =              | )4           |         | $\frac{Excl.I}{G} = 1$ |       |          | IB Only<br>= <i>12.8</i> | _                | hru & R7<br>6 = <i>41.7</i> | G =                                    | 08         |
| Timing                 | Y = 5.2                | Y =    |            | - Y =     |           | Y =              |              | _       | Y = 5.                 |       |          | - 12.6<br>= 6.3          | _                | = 6.3                       | Y =                                    |            |
| Duration of            | Analysis (hr:          |        |            |           |           | <u> </u>         | <del>^</del> |         |                        |       |          |                          |                  | c = 133.                    |                                        |            |
| Lane Gro               | up Capac               | ity, C | ontro      | l Dela    | ay, a     | and L            | os I         | Det     | ermi                   | nati  | on       |                          |                  |                             |                                        |            |
|                        |                        | 1      | EB         |           |           |                  | WB           |         |                        |       |          | NB                       |                  |                             | SB                                     |            |
| Adj. flow rat          | e                      | 245    | 329        | 435       | 3         | 37               | 488          |         |                        | 516   |          | 2456                     |                  | 195                         | 1695                                   |            |
| Lane group             | cap.                   | 212    | 566        | 650       | 3         | 886              | 525          |         |                        | 731   |          | 2311                     |                  | 257                         | 1672                                   |            |
| v/c ratio              |                        | 1.16   | 0.58       | 0.67      | 0         | .87              | 0.93         | .       |                        | 0.71  |          | 1.06                     |                  | 0.76                        | 1.01                                   |            |
| Green ratio            |                        | 0.12   | 0.16       | 0.42      | 0         | .11              | 0.16         |         |                        | 0.21  | 一        | 0.47                     |                  | 0.07                        | 0.33                                   |            |
| Unif. delay            | d1                     | 58.8   | 52.0       | 31.1      | 5         | 8.4              | 55.4         |         |                        | 48.7  |          | 35.4                     | Π                | 60.6                        | 44.6                                   |            |
| Delay factor           | - k                    | 0.50   | 0.17       | 0.24      | 0         | .40              | 0.45         |         |                        | 0.27  |          | 0.50                     | T                | 0.31                        | 0.50                                   |            |
| increm, dela           | ay d2                  | 110.1  | 1.5        | 2.7       | 1         | 9.2              | 23.2         | _       |                        | 3.1   | $\neg$   | 38.0                     | Τ                | 12.3                        | 25.5                                   |            |
| PF factor              |                        |        |            | 1.00      | 0 1.      | 000              | 1.000        | 0       |                        | 0.820 | ,        | 0.409                    |                  | 0.946                       | 0.667                                  |            |
| Control dela           | ontrol delay 168.      |        | 53.5       | 33.8      | 7         | 7.6              | 78.6         |         |                        | 43.1  |          | 52.5                     |                  | 69.7                        | 55.2                                   |            |
| Lane group             | ane group LOS F        |        |            | С         |           | E                | Ε            |         |                        | D     |          | D                        |                  | E                           | E                                      |            |
| Apprch. del            | ay                     |        |            | 78        | .2        |                  |              |         | 50                     | 0.9   |          |                          | 56.7             |                             |                                        |            |
| Approach L             | os                     |        |            | Ε         |           |                  |              |         | Ĺ                      | )     |          |                          | Е                |                             |                                        |            |
| Intersec. de           | lay                    | 5      | 9.2        | •         |           |                  |              | Inte    | ersect                 | ion L | os       |                          |                  |                             | Ε                                      |            |
| HCS2000TM              |                        | •      |            | nvright © | 2000 1    | r T !            | CTI          |         | 4.11.75° 1             | . D   |          |                          |                  | -                           | ······································ | ergion 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

WITH MITIGATION/ADD NB PILANE

|                                                      |                                   |          |                                |            | SH                                               | ORT I       | REPO                                  | OR   | T       |          |      |                     |           |                             | HOP/     |       |           |
|------------------------------------------------------|-----------------------------------|----------|--------------------------------|------------|--------------------------------------------------|-------------|---------------------------------------|------|---------|----------|------|---------------------|-----------|-----------------------------|----------|-------|-----------|
| General Inf                                          | ormation                          |          |                                |            |                                                  |             | Site Ir                               | ıfor | matio   | _        |      |                     |           |                             |          |       |           |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                               | U<br>08/ | ISAI<br>ISAI<br>'22/12<br>PEAK |            |                                                  |             | nterse<br>Area T<br>Iurisdi<br>Analys | ype  | e<br>on | (        | OCE  | All o<br>EANSI<br>M | the<br>DE | AY<br>er are<br>-INT<br>GAT | .#1/WI   | ТН    |           |
| Volume an                                            | d Timing I                        | nput     |                                |            |                                                  |             |                                       |      |         | 10       |      |                     |           |                             |          |       |           |
|                                                      |                                   |          | LT                             | EB         | RT                                               | LT          | T TH                                  | _    | RT      | Ľ        | Т    | NB<br>TH            | Т         | RT                          | LT       | SB    | RT        |
| Num, of Lar                                          | nes                               |          | 1                              | 2          | 1                                                | 2           | 2                                     | +    | 0       | 2        |      | 3                   | t         | 1                           | 2        | 3     | 0         |
| Lane group                                           |                                   |          | L                              | T          | R                                                | L           | TR                                    |      |         | L        |      | Т                   | +         | R                           | L        | TR    |           |
| Volume (vpl                                          | 1)                                |          | 35                             | 70         | 95                                               | 380         | 150                                   |      | 95      | 18       |      | 1000                | _         | 310                         | 150      | 1725  | 35        |
| % Heavy ve                                           |                                   |          | 2                              | 2          | 2                                                | 2           | 2                                     |      | 2       | 2        | _    | 2                   | Ť         | 2                           | 2        | 2     | 2         |
| PHF                                                  |                                   |          | 0.92                           | 0.92       | 0.92                                             | 0.92        | 0.92                                  | ? (  | 0.92    | 0.9      | 2    | 0.92                | 0         | .92                         | 0.92     | 0.92  | 0.92      |
| Actuated (P.                                         |                                   |          | Α                              | Α          | Α                                                | Α           | Α                                     |      | Α       | A        | _    | Α                   | _         | Α                           | Α        | Α     | Α         |
| Startup lost                                         |                                   |          | 3.0                            | 3.0        | 3.0                                              | 3.0         | 3.0                                   |      |         | 3.0      | _    | 3.0                 | _         | 2.0                         | 3.0      | 3.0   |           |
| Ext. eff. gree                                       | en                                |          | 3.0                            | 2.0        | 1.2                                              | 2.0         | 2.0                                   | 4    |         | 1.2      |      | 5.0                 | 12        | 2.0                         | 0.8      | 5.8   |           |
| Arrival type                                         | 461                               |          | 3                              | 3          | 3                                                | 3           | 3                                     |      | _       | 5        | _    | 5                   | +         | 5                           | 5        | 5     | -         |
| Unit Extensi                                         |                                   | ^        | 3.0<br>5                       | 3.0        | 3.0                                              | 3.0         | 3.0                                   |      | 0       | 3.       |      | 3.0<br>10           |           | 3.0<br>0                    | 3.0<br>5 | 3.0   | _         |
|                                                      | ed/Bike/RTOR Volume<br>ane Width  |          | 12.0                           | 10<br>12.0 | 12.0                                             | 12.0        | 12.0                                  |      | 0       | 12.      | _    | 12.0                | -         | 2.0                         | 12.0     | 12.0  | 0         |
|                                                      | ane Width<br>arking/Grade/Parking |          | N                              | 0          | N                                                | N           | 0                                     | +    | N       | 12.<br>N | _    | 0                   | -         | N.                          | N        | 0     | N         |
| Parking/hr                                           |                                   |          |                                |            | <del>                                     </del> |             | 1                                     | t    |         |          |      | 0                   | +         |                             |          |       | 1         |
| Bus stops/h                                          | r                                 |          | 0                              | 0          | 0                                                | 0           | 0                                     | 1    | -       | 0        |      | 0                   | t         | 0                           | 0        | 0     |           |
| Unit Extensi                                         |                                   |          | 3.0                            | 3.0        | 3.0                                              | 3.0         | 3.0                                   |      |         | 3.       | 0    | 3.0                 | 1         | 3.0                         | 3.0      | 3.0   |           |
| Phasing                                              | Excl. Left                        | WB       | Only                           | Thru       | & RT                                             | 04          |                                       | E    | xcl. Le | eft      | Th   | ru & R              | T.        |                             | 07       | 1.10  | 08        |
| Timing                                               | G = 10.3                          |          | 13.5                           | G = '      |                                                  | G=          |                                       |      | = 15.   |          |      | = 48.6              | 3         | G=                          |          | G=    |           |
| Duration of                                          | Y = 5.2                           | Y =      |                                | Y = 5      | 0.6                                              | Y =         |                                       | Υ :  | = 5.2   |          |      | = 6.3               | adt       | Y =                         | = 133.   | Y =   | -         |
| Lane Gro                                             |                                   |          |                                | I Del      | av a                                             | nd I O      | S De                                  | te   | rmin    |          | _    | JIC LCI             | gu        | 10                          | 700.     | 0     |           |
| Lanc Olo                                             | ир Сири                           | Jity, C  | EB                             | Den        | l ay, a                                          |             | /B                                    | ,    | T       | ativ     |      | NB                  |           |                             |          | SB    |           |
| Adj. flow rat                                        | ο.                                | 38       | 76                             | 103        | 41.                                              |             | 66                                    |      | 20      | 01       | -    | 087                 | 33        | 27                          | 163      | 1913  |           |
| Lane group                                           | _                                 | 136      | 446                            | 426        | 72                                               |             | 39                                    |      | -       | 52       | -    | 922                 | 56        | -                           | 342      | 1946  | -         |
| v/c ratio                                            |                                   | 0.28     | 0.17                           | 0.24       | _                                                |             | 30                                    |      | -       | 57       | -    | .57                 | 0.6       | _                           | 0.48     | 0.98  | -         |
| Green ratio                                          |                                   | 0.08     | 0.13                           | 0.28       | -                                                | _           | 27                                    |      | -       | 10       | -    | .38                 | 0.3       | _                           | 0.10     | 0.38  | _         |
| Unif. delay o                                        | 11                                | 58.1     | 52.2                           | 37.4       | _                                                | _           | 3.8                                   |      | 57      | -        | +-   | 2.8                 | 34        |                             | 56.9     | 40.7  | _         |
| Delay factor                                         | k                                 | 0.11     | 0.11                           | 0.11       | 0.1                                              | 7 0.        | 11                                    |      | 0.      | 17       | -    | .16                 | 0.        |                             | 0.11     | 0.49  | 7         |
| Increm. dela                                         | ıy d2                             | 1.1      | 0.2                            | 0.3        | 1.1                                              | 0           | .2                                    |      | 2.      | 2        | 0    | 0.4                 | 1.        | 8                           | 1.0      | 16.5  |           |
| PF factor                                            |                                   | 1.000    | 1.000                          | 1.000      | 1.00                                             | 00 1.0      | 000                                   |      | 0.9     | 24       | 0.   | 594                 | 0.6       | 319                         | 0.926    | 0.583 | 3         |
| Control dela                                         | у                                 | 59.3     | 52.4                           | 37.7       | 48.                                              | 6 39        | 0.0                                   |      | 55      | 5.0      | 1.   | 9.9                 | 23        | .2                          | 53.7     | 40.2  |           |
| Lane group                                           | LOS                               | Ε        | D                              | D          | D                                                |             | )                                     |      | E       |          | Į.   | В                   | C         | )                           | D        | D     |           |
| Apprch. dela                                         | ay                                | 40       | 6.6                            |            |                                                  | 44.8        |                                       |      |         | 2        | 24.9 | )                   |           |                             |          | 41.3  |           |
| Approach LOS D                                       |                                   |          | D                              |            |                                                  | D           |                                       |      |         |          | С    |                     |           |                             |          | D     |           |
| ntersec. delay                                       |                                   |          | 6.3                            |            |                                                  |             | In                                    | ters | sectio  | n LC     | os   |                     |           |                             |          | D     |           |
| MTogggggg                                            |                                   |          |                                |            |                                                  | niversity o | 0 mt . 1 d                            |      |         | 2        |      |                     |           |                             |          |       | Jarcian . |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

MITIGATION/ADD NB RT LANE

|                                                      |                                                      |           |                                |           | SH        | ORT       | REP                                  | OR'          | T      |          |      |                 |                                  |                                    |       |      |
|------------------------------------------------------|------------------------------------------------------|-----------|--------------------------------|-----------|-----------|-----------|--------------------------------------|--------------|--------|----------|------|-----------------|----------------------------------|------------------------------------|-------|------|
| General In                                           | formation                                            |           |                                |           |           |           | Site Ir                              | ıfor         | matio  | _        |      |                 |                                  |                                    | 14    |      |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                                                  | 08/       | ISAI<br>ISAI<br>'22/12<br>PEAK |           |           |           | nterse<br>Area 1<br>Jurisd<br>Analys | ype<br>ictio | en     | C        | OCE  | All o<br>EANSII | WAY<br>ther ar<br>DE-INT<br>MIT. | L@ VIS<br>eas<br>T.#1/WI<br>PROJE( | TH    |      |
| Volume ar                                            | nd Timing                                            | Input     |                                |           |           |           |                                      |              | -      |          |      |                 |                                  |                                    |       |      |
|                                                      |                                                      |           |                                | EB        |           | A T       | WE                                   | 3            |        |          |      | NB              |                                  |                                    | SB    |      |
|                                                      |                                                      |           | LT                             | TH        | RT        | LT        | TH                                   |              | RT     | Ľ        | _    | TH              | RT                               | LT                                 | TH    | RT   |
| Num. of La                                           | nes                                                  |           | 1                              | 2         | 1         | 2         | 2                                    |              | 0      | 2        |      | 3               | 1                                | 2                                  | 3     | 0    |
| Lane group                                           |                                                      |           | L                              | T         | R         | L         | TR                                   |              |        | L        |      | T               | R                                | L                                  | TR    |      |
| Volume (vp                                           |                                                      |           | 35                             | 72        | 95        | 380       | 157                                  |              | 104    | 18       | _    | 1000            | 310                              | 153                                | 1725  | 35   |
| % Heavy v                                            | eh                                                   |           | 2                              | 2         | 2         | 2         | 2                                    |              | 2      | 2        | _    | 2               | 2                                | 2                                  | 2     | 2    |
| PHF<br>Actuated (P                                   | 0/Λ)                                                 |           | 0.92<br>A                      | 0.92<br>A | 0.92<br>A | 0.92<br>A | 0.92<br>A                            | 2 (          | 0.92   | 0.9<br>A | _    | 0.92<br>A       | 0.92                             | 0.92                               | 0.92  | 0.92 |
| Startup lost                                         |                                                      |           | 3.0                            | 3.0       | 3.0       | 3.0       | 3.0                                  |              | Α      | 3.0      |      | 3.0             | A 2.0                            | 3.0                                | 3.0   | A    |
| Ext. eff. gre                                        |                                                      |           | 3.0                            | 2.0       | 1.2       | 2.0       | 2.0                                  |              |        | 1.2      | _    | 5.0             | 2.0                              | 0.8                                | 5.8   |      |
| Arrival type                                         |                                                      |           | 3                              | 3         | 3         | 3         | 3                                    |              |        | 5        | _    | 5               | 5                                | 5                                  | 5     |      |
| Unit Extens                                          |                                                      | 1         | 3.0                            | 3.0       | 3.0       | 3.0       | 3.0                                  | Ţ            |        | 3.       | 0    | 3.0             | 3.0                              | 3.0                                | 3.0   |      |
| Ped/Bike/R                                           |                                                      | ne        | 5                              | 10        | 0         | 5         | 10                                   |              | 0      | 5        | _    | 10              | 0                                | 5                                  | 10    | 0    |
| Lane Width                                           |                                                      |           | 12.0                           | 12.0      | 12.0      | 12.0      | 12.0                                 | )            |        | 12.      | 0    | 12.0            | 12.0                             | 12.0                               | 12.0  |      |
| Parking/Gra                                          | ade/Parking                                          | )         | Ν                              | 0         | N         | N         | 0                                    |              | N      | N        |      | 0               | N                                | N                                  | 0     | N    |
| Parking/hr                                           |                                                      |           |                                |           |           |           |                                      |              |        |          |      |                 |                                  |                                    |       | -    |
| Bus stops/h                                          |                                                      |           | 0                              | 0         | 0         | 0         | 0                                    |              |        | 0        |      | 0               | 0                                | 0                                  | 0     |      |
| Unit Extens                                          | ion                                                  |           | 3.0                            | 3.0       | 3.0       | 3.0       | 3.0                                  |              |        | 3.       | 0    | 3.0             | 3.0                              | 3.0                                | 3.0   |      |
| Phasing                                              | Excl. Lef                                            | _         | Only                           | Thru      |           | 04        | L.                                   | _            | cl. Le |          | _    | ru & R          |                                  | 07                                 | _     | 08   |
| Timing                                               | G = 10.3                                             |           | 13.5                           | G = 1     |           | G =       |                                      | _            | = 15.  |          | G    |                 |                                  |                                    | G =   |      |
| Duration of                                          | Y = 5.2                                              | Y =       |                                | Y = 5     | 0.6       | Y =       |                                      | Υ =          | 5.2    |          | Y =  |                 | Y =                              | = 133.                             | Y =   |      |
| Lane Gro                                             |                                                      |           |                                | I Dol     | 3V 3      | 2010      | S D                                  | to           | rmin   |          |      | JIC LCI         | igui o                           | - 100.                             | Ů.    |      |
| Lane Gro                                             | up Capa                                              | T City, C | EB                             | Dela      | ay, a     |           | /B                                   | tei          | 1      | aut      |      | NB              |                                  |                                    | SB    |      |
| Adj. flow rat                                        | 0                                                    | 38        | 78                             | 103       | 41.       |           | 84                                   |              | 20     | 14       | -    |                 | 337                              | 166                                | 1913  | 1    |
|                                                      |                                                      | _         |                                | -         |           |           |                                      | -            | _      |          | +    | -               |                                  | 166                                | _     | -    |
| Lane group                                           | cap.                                                 | 136       | 446                            | 426       | 720       | _         | 87                                   |              | 35     |          | +    | 922             | 563                              | 342                                | 1946  |      |
| v/c ratio                                            |                                                      | 0.28      | 0.17                           | 0.24      | 0.5       | _         | 32                                   |              | 0.8    | 57       | 0.   | 57              | 0.60                             | 0.49                               | 0.98  |      |
| Green ratio                                          |                                                      | 0.08      | 0.13                           | 0.28      | 0.2       | 1 0.      | 27                                   |              | 0.1    | 10       | 0.   | 38              | 0.36                             | 0.10                               | 0.38  |      |
| Unif. delay                                          | d1                                                   | 58.1      | 52.2                           | 37.4      | 47.       | 4 39      | 9.1                                  |              | 57     | .1       | 3.   | 2.8             | 34.6                             | 56.9                               | 40.7  |      |
| Delay factor                                         | rk                                                   | 0.11      | 0.11                           | 0.11      | 0.1       | 7 0.      | 11                                   |              | 0.     | 17       | 0.   | 16              | 0.19                             | 0.11                               | 0.49  |      |
| Increm. dela                                         | ay d2                                                | 1.1       | 0.2                            | 0.3       | 1.1       | 1 0       | .2                                   |              | 2.     | 2        | 0    | 0.4             | 1.8                              | 1.1                                | 16.5  |      |
| PF factor                                            |                                                      | 1.000     | 1.000                          | 1.000     | 1.00      | 00 1.0    | 000                                  |              | 0.9    | 24       | 0.   | 594             | 0.619                            | 0.926                              | 0.583 | 3    |
| Control dela                                         | ay                                                   | 59.3      | 52.4                           | 37.7      | 48.       |           | 9.3                                  |              | 55     |          | +    |                 | 23.2                             | 53.8                               | 40.2  |      |
| Lane group                                           |                                                      | E         | D                              | D         | D         |           | )                                    |              | E      |          | +    | В               | C                                | D                                  | D     | +    |
| Apprch. dela                                         |                                                      | _         | 6.7                            | 1         | +         | 44.8      |                                      |              | +      |          | 24.9 |                 | -                                | -                                  | 41.3  |      |
| Approach LOS D                                       |                                                      |           |                                |           | +         | D         |                                      |              | +      |          | C    |                 |                                  | 1                                  | D D   |      |
| ntersec. delay 36.3                                  |                                                      |           |                                |           |           | D         | (i)                                  | <b>.</b>     | no.    | -10      | -    |                 |                                  | -                                  |       | _    |
| mersec. de                                           | tersec. delay 36.3  S22000 <sup>TM</sup> Copyright © |           |                                |           |           |           | ın                                   | ters         | ectio  | II LC    | 15   |                 |                                  |                                    | D     |      |

WITH MITIGATION

|                                                      | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                |                | SH        | ORT F       | REPO                                 | OR           | T              |               |        |                 |                                  |                                   | NITH      |         |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|----------------|-----------|-------------|--------------------------------------|--------------|----------------|---------------|--------|-----------------|----------------------------------|-----------------------------------|-----------|---------|
| General Inf                                          | formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                |                |           | 5           | Site Ir                              | ıfor         | matic          | on            |        |                 |                                  |                                   |           |         |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U<br>08/    | ISAI<br>ISAI<br>'22/12<br>PEAK |                |           | J           | nterse<br>Area 7<br>Iurisd<br>Analys | ype<br>ictio | e<br>on        | c             | OCE    | All o           | WAY<br>ther ar<br>DE-INT<br>MIT. | L@ VIS<br>eas<br>「.#1/WI<br>ROJEC | ТН        |         |
| Volume ar                                            | nd Timing I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nput        |                                |                |           |             |                                      |              |                |               |        |                 |                                  |                                   |           |         |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.1         |                                | EB             |           | 100         | WE                                   | -            |                |               |        | NB              |                                  |                                   | SB        |         |
| 10.00 000 0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | LT                             | TH             | RT        | LT          | TH                                   | +            | RT             | L             |        | TH              | RT                               | LT                                | TH        | RT      |
| Num. of Lar                                          | District Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 1                              | 2              | 1         | 2           | 2                                    | 4            | 0              | 2             |        | 3               | 1                                | 2                                 | 3         | 0       |
| Lane group                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | L                              | T              | R         | L           | TR                                   | 1            |                | L             |        | T               | R                                | L                                 | TR        |         |
| Volume (vp                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 225                            | 295            | 400       | 310         | 270                                  | +            | 170            | 47            |        | 1845            | 415                              | 170                               | 1465      | 95<br>2 |
| % Heavy v                                            | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 2<br>0.92                      | 2<br>0.92      | 2<br>0.92 | 2<br>0.92   | 0.92                                 | ,            | 2              | 2<br>0.9      |        | 2<br>0.92       | 0.92                             | 0.92                              | 2<br>0.92 | 0.92    |
| Actuated (P                                          | P/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 0.92<br>A                      | 0.92<br>A      | 0.92<br>A | 0.92<br>A   | A                                    | - 1          | A              | A.            | _      | A               | A                                | A                                 | A         | A       |
| Startup lost                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 3.0                            | 3.0            | 3.0       | 3.0         | 3.0                                  | 1            |                | 3.0           | )      | 3.0             | 2.0                              | 3.0                               | 3.0       |         |
| Ext. eff. gre                                        | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 3.0                            | 2.0            | 1.2       | 2.0         | 2.0                                  |              |                | 1.2           | ?      | 5.0             | 2.0                              | 0.8                               | 5.8       |         |
| Arrival type                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 3                              | 3              | 3         | 3           | 3                                    | 1            |                | 5             |        | 5               | 5                                | 5                                 | 5         |         |
| Unit Extens                                          | - Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 3.0                            | 3.0            | 3.0       | 3.0         | 3.0                                  |              |                | 3.0           | )      | 3.0             | 3.0                              | 3.0                               | 3.0       |         |
| The Control of the Control of                        | TOR Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e           | 5                              | 10             | 0         | 5           | 10                                   |              | 0              | 5             |        | 10              | 0                                | 5                                 | 10        | 0       |
| Lane Width                                           | And the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |             | 12.0                           | 12.0           | 12.0      | 12.0        | 12.0                                 | 1            | 175            | 12.           |        | 12.0            | 12.0                             | 12.0                              | 12.0      | -       |
|                                                      | rking/Grade/Parking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | N                              | 0              | N         | N           | 0                                    | 4            | Ν              | N             |        | 0               | N                                | N                                 | 0         | N       |
| Parking/hr                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                |                |           |             |                                      | 4            |                |               | Ш      |                 |                                  |                                   |           |         |
| Bus stops/h                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0                              | 0              | 0         | 0           | 0                                    | 1            |                | 0             | _      | 0               | 0                                | 0                                 | 0         |         |
| Unit Extens                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 3.0                            | 3.0            | 3.0       | 3.0         | 3.0                                  |              |                | 3.0           | _      | 3.0             | 3.0                              | 3.0                               | 3.0       |         |
| Phasing                                              | Excl. Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | & RT                           | 0:             | 3         | 04          |                                      |              | xcl. Le        | $\overline{}$ | _      | IB Only         |                                  | ru & RT                           |           | 80      |
| Timing                                               | G = 16.0<br>Y = 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G =         | 22.3                           | G =<br>Y =     |           | G =<br>Y =  |                                      |              | = 12.<br>= 5.2 |               | G<br>V | = 12.8<br>= 6.3 |                                  | = <i>41.7</i><br>= <i>6.3</i>     | G =       |         |
| Duration of                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                | 10 L A = 0 - 1 |           |             | _                                    | 1            | - 0.2          |               |        |                 |                                  | = 133.                            |           | _       |
|                                                      | up Capa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                | l Dela         | av aı     | nd I O      | S De                                 | te           | rmin           |               |        | oro Lor         | igui o                           | 700.                              |           |         |
| Lanc Oro                                             | ир опри                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jity, C     | EB                             |                | 1         |             | /B                                   | ,            | Ť              | uiii          | _      | NB              |                                  |                                   | SB        | _       |
| Adj. flow rat                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 245         | 321                            | 435            | 337       |             | 78                                   |              | 51             | 16            | _      | 005             | 451                              | 185                               | 1695      |         |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                | 650            |           |             |                                      | -            |                | _             | +      | 385             | 706                              |                                   | 1672      |         |
| Lane group                                           | сар.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 212<br>1.16 | 566<br>0.57                    | 0.67           | 0.8       |             | 25<br>91                             |              | 0.7            | _             | -      | .84             | 0.64                             | 257<br>0.72                       | 1.01      |         |
| v/c ratio                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3333        |                                | 19.97          |           |             |                                      | -            |                |               | -      |                 |                                  | 12.00                             | 0.33      | +       |
| Green ratio                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.12        | 0.16                           | 0.42           |           |             | 16                                   | _            | 0.2            |               | +      | .47             | 0.46                             | 0.07                              |           | -       |
| Unif. delay                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58.8        | 51.9                           | 31.1           | 58.       |             | 5.2                                  | _            | 48             |               | +      | 1.0             | 28.0                             | 60.4                              | 44.6      | _       |
| Delay factor                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50        | 0.16                           | 0.24           | -         |             | 43                                   |              | 0.2            |               | -      | .38             | 0.22                             | 0.28                              | 0.50      | _       |
| Increm. dela                                         | ay d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.1       | 1.3                            | 2.7            | 19.       |             | 0.0                                  |              | 3.             | -             | -      | 2.9             | 1.9                              | 9.4                               | 25.5      | -       |
| PF factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000       | 1.000                          | 1.000          | 1.00      | 00 1.0      | 000                                  |              | 0.8            | 320           | 0.     | 409             | 0.443                            | 0.946                             | 0.667     | 7       |
| Control dela                                         | ау                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 168.9       | 53.2                           | 33.8           | 77.       | 6 75        | 5.2                                  |              | 43             | .1            | 1      | 5.6             | 14.3                             | 66.6                              | 55.2      |         |
| Lane group                                           | LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F           | D                              | С              | E         | I           | =                                    |              | E              | )             |        | В               | В                                | E                                 | E         |         |
| Apprch. del                                          | pprch. delay 73.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 3.1                            |                | 1         | 76.2        |                                      |              |                | 2             | 20.    | 1               |                                  |                                   | 56.3      |         |
| Approach LOS E                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                | +              | E         |             |                                      |              |                | С             |        |                 |                                  | Ε                                 |           |         |
|                                                      | itersec. delay 45.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                |                | _         |             | Ir                                   | iter         | sectio         | n LC          | os     |                 |                                  |                                   | D         |         |
|                                                      | ersec. delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                | and other fi   | 2000 11   | niversity o |                                      |              |                |               | -      |                 |                                  | 1                                 |           | /ersion |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

MITIGATION ADD NB RT LAWE

|                                                      |                      |         |                                |            | SHO         | ORT F      | REPC                                    | RT            |       |            |                                  |                          |                              | CA (IC)       | 1          |          |
|------------------------------------------------------|----------------------|---------|--------------------------------|------------|-------------|------------|-----------------------------------------|---------------|-------|------------|----------------------------------|--------------------------|------------------------------|---------------|------------|----------|
| General Inf                                          | ormation             |         |                                |            |             | 5          | Site In                                 | form          | atio  | _          |                                  |                          |                              |               |            |          |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                  | 08/     | ISAI<br>ISAI<br>'22/12<br>PEAK |            |             | J          | nterse<br>Area T<br>Jurisdio<br>Analysi | ype<br>ction  |       | 0          | CAMII<br>AII<br>CEANS<br>D-ALT-1 | Wi<br>othe<br>SIDE<br>Mi | AY<br>er are<br>I-INT<br>IT. | eas<br>:#1/WI | ТН         |          |
| Volume ar                                            | nd Timing Ir         | nput    |                                |            |             |            |                                         |               |       |            |                                  |                          |                              |               |            |          |
|                                                      |                      |         |                                | EB         |             |            | WB                                      |               |       |            | NE                               | _                        |                              |               | SB         |          |
|                                                      |                      |         | LT                             | TH         | RT          | LT         | TH                                      | $\rightarrow$ | XT.   | LT         | TH                               |                          | RT                           | LT            | TH         | RT       |
| Num. of Lar                                          | nes                  |         | 1                              | 2          | 1           | 2          | 2                                       | (             | )     | 2          | 3                                | 4                        | 1                            | 2             | 3          | 0        |
| Lane group                                           |                      |         | L                              | T          | R           | L          | TR                                      |               |       | L          | T                                | _                        | R                            | L             | TR         |          |
| Volume (vp                                           |                      |         | 225                            | 303        | 400         | 310        | 274                                     | 17            |       | 475        | 1845                             |                          | 115                          | 179           | 1465       | 95       |
| % Heavy v                                            | eh                   |         | 2                              | 2          | 2           | 2          | 2                                       | 2             |       | 2          | 2                                | _                        | 2                            | 2             | 2          | 2        |
| PHF                                                  | (4)                  |         | 0.92                           | 0.92       | 0.92        | 0.92       | 0.92                                    | 0.9           | _     | 0.92       |                                  | _                        | .92                          | 0.92          | 0.92       | 0.92     |
| Actuated (P                                          |                      |         | A 2.0                          | A 2.0      | A 2.0       | A 2.0      | A 2.0                                   | 1             | 1     | A 2.0      | A 2.0                            | _                        | A                            | A 2.0         | A 2.0      | Α        |
| Startup lost<br>Ext. eff. gre                        |                      |         | 3.0                            | 3.0<br>2.0 | 3.0         | 3.0<br>2.0 | 3.0<br>2.0                              | +             |       | 3.0<br>1.2 | 3.0<br>5.0                       | _                        | 2.0                          | 3.0<br>0.8    | 3.0<br>5.8 | +        |
| Arrival type                                         | CII                  |         | 3.0                            | 3          | 3           | 3          | 3                                       | +             |       | 5          | 5.0                              | _                        | 5                            | 5             | 5.6        |          |
| Unit Extens                                          | ion                  | _       | 3.0                            | 3.0        | 3.0         | 3.0        | 3.0                                     | +             | -     | 3.0        |                                  | _                        | 3.0                          | 3.0           | 3.0        | $\vdash$ |
| The second second                                    | TOR Volume           | e       | 5                              | 10         | 0           | 5          | 10                                      | -             | )     | 5          | 10                               | _                        | 0                            | 5             | 10         | 0        |
|                                                      | ane Width            |         | 12.0                           | 12.0       | 12.0        | 12.0       | 12.0                                    |               |       | 12.0       | _                                | _                        | 2.0                          | 12.0          | 12.0       | Ť        |
|                                                      | arking/Grade/Parking |         | N                              | 0          | N           | N          | 0                                       | 1             | ٧     | N          | 0                                | _                        | N                            | N             | 0          | N        |
| Parking/hr                                           |                      |         |                                |            |             | 1          |                                         |               |       |            |                                  | 1                        |                              |               |            |          |
| Bus stops/h                                          | ŕ                    |         | 0                              | 0          | 0           | 0          | 0                                       |               |       | 0          | 0                                |                          | 0                            | 0             | 0          |          |
| Unit Extens                                          |                      |         | 3.0                            | 3.0        | 3.0         | 3.0        | 3.0                                     |               |       | 3.0        | 3.0                              |                          | 3.0                          | 3.0           | 3.0        |          |
| Phasing                                              | Excl. Left           | Thru    | & RT                           | 0          | 3           | 04         |                                         | Exc           | I. Le | eft        | NB Or                            | nly                      | Thr                          | u & RT        |            | 08       |
|                                                      | G = 16.0             | G =     | 22.3                           | G =        |             | G =        | -51                                     | G =           | 12.   | 2          | G = 12                           | .8                       | G=                           | 41.7          | G =        |          |
| Timing                                               | Y = 5.2              | Y =     |                                | Y =        |             | Y =        |                                         | Y =           | 5.2   | _          | Y = 6.3                          | _                        | _                            | 6.3           | Y =        |          |
| Duration of                                          |                      |         |                                |            |             |            |                                         |               |       |            | cycle Le                         | engt                     | h C =                        | = 133.        | 6          |          |
| Lane Gro                                             | up Capac             | city, C | ontro                          | l Del      | ay, ar      | nd LO      | S De                                    | terr          | nin   | atio       | n                                |                          |                              |               |            |          |
|                                                      |                      | 10.00   | EB                             |            |             | W          | /B                                      |               |       |            | NB                               |                          |                              |               | SB         |          |
| Adj. flow rat                                        | :e                   | 245     | 329                            | 435        | 337         | 48         | 38                                      | 4             | 51    | 6          | 2005                             | 45                       | 51                           | 195           | 1695       | 4715     |
| Lane group                                           | сар.                 | 212     | 566                            | 650        | 386         | 5 52       | 25                                      |               | 73    | 1          | 2385                             | 70                       | 06                           | 257           | 1672       |          |
| v/c ratio                                            |                      | 1.16    | 0.58                           | 0.67       | 0.87        | 7 0.5      | 93                                      |               | 0.7   | 71         | 0.84                             | 0.6                      | 64                           | 0.76          | 1.01       |          |
| Green ratio                                          |                      | 0.12    | 0.16                           | 0.42       | 0.1         | 1 0.       | 16                                      |               | 0.2   | 21         | 0.47                             | 0.4                      | 46                           | 0.07          | 0.33       | di.      |
| Unif. delay                                          | d1                   | 58.8    | 52.0                           | 31.1       | 58.4        | 4 55       | 5.4                                     |               | 48.   | .7         | 31.0                             | 28                       | 8.0                          | 60.6          | 44.6       |          |
| Delay factor                                         | rk                   | 0.50    | 0.17                           | 0.24       | 0.40        | 0.4        | 45                                      |               | 0.2   | 27         | 0.38                             | 0.2                      | 22                           | 0.31          | 0.50       |          |
| Increm. dela                                         | ay d2                | 110.1   | 1.5                            | 2.7        | 19.2        | 2 23       | 3.2                                     |               | 3.    | 1          | 2.9                              | 1.                       | 9                            | 12.3          | 25.5       |          |
| PF factor                                            |                      | 1.000   | 1.000                          | 1.000      |             |            | 000                                     |               | 0.8   |            | 0.409                            | 1                        | 143                          | 0.946         |            | -        |
| Control dela                                         | ay                   | 168.9   | 53.5                           | 33.8       | 77.0        | 3 78       | 3.6                                     |               | 43.   |            | 15.6                             | 14                       | .3                           | 69.7          | 55.2       |          |
| Lane group                                           |                      | F       | D                              | С          | E           |            |                                         |               | D     | _          | В                                | E                        | _                            | E             | E          | 1        |
| Apprch. dela                                         |                      |         | 3.1                            |            |             | 78.2       |                                         |               |       | _          | 0.1                              |                          |                              |               | 56.7       |          |
|                                                      |                      |         | E                              |            |             | E          |                                         |               |       | _          | C                                |                          |                              |               | E          |          |
|                                                      |                      |         | 5.6                            |            |             |            | Int                                     | terse         | ctio  | -          | _                                |                          |                              |               | D          |          |
| HCS2000 <sup>TM</sup>                                |                      |         |                                | 9 2000 II. | niversity o |            |                                         |               |       |            |                                  |                          | I                            |               | /ersion 4  |          |

 $HCS2000^{TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      | <u> </u>       |                          |               |                | SH           | ORT F      | REP                           | OR'            | T               |             |            |                 |                         |                    |             |             |
|------------------------------------------------------|----------------|--------------------------|---------------|----------------|--------------|------------|-------------------------------|----------------|-----------------|-------------|------------|-----------------|-------------------------|--------------------|-------------|-------------|
| General Inf                                          | ormation       |                          |               |                |              | S          | ite I                         | nfor           | matic           | n           |            |                 |                         |                    |             |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med            | US<br>US<br>08/1<br>AM F | 5AI<br>5/12   |                |              | J          | nters<br>rea<br>urisc<br>naly | Type<br>lictio | •               |             | All        | WB<br>oth<br>NS | RAM<br>er are<br>IDE-li | PS<br>eas<br>NT.#2 |             |             |
| Volume an                                            | d Timing In    | out                      | ******        |                |              |            |                               |                |                 |             |            |                 |                         |                    |             |             |
|                                                      |                |                          |               | EB             | T            |            | W                             |                |                 | <u> </u>    | NE         |                 |                         | <u> </u>           | SB          | <del></del> |
| Num. of Lar                                          | nes            |                          | LT<br>0       | TH<br>0        | RT 0         | LT<br>1    | Th                            | +              | RT<br>1         | L. 2        | T TH       | 1               | RT<br>0                 | LT<br>0            | TH<br>3     | RT<br>1     |
| Lane group                                           |                |                          |               |                | 1            | L          | LTI                           | 2              | R               | L           | T          | ┪               |                         |                    | Т           | R           |
| Volume (vpl                                          | h)             |                          |               | 1              | $\vdash$     | 610        | 5                             |                | 560             | 14          | 0 935      | <del>,  </del>  |                         |                    | 1750        | 450         |
| % Heavy v                                            |                |                          |               |                |              | 2          | 2                             |                | 2               | 2           | 2          |                 |                         |                    | 2           | 2           |
| PHF                                                  |                |                          |               |                |              | 0.92       | 0.9                           | 2 (            | 0.92            | 0.9         |            | 2               |                         |                    | 0.92        | 0.92        |
| Actuated (P                                          |                |                          |               | <u> </u>       |              | A          | A                             | $\perp$        | <u>A</u>        | A           | A          | $\perp$         |                         |                    | A           | A           |
| Startup lost                                         |                |                          |               | <b> </b>       | <del> </del> | 3.0<br>2.0 | 3.0<br>2.0                    |                | 3.0<br>2.0      | 3.0<br>2.0  |            |                 |                         |                    | 3.0<br>2.0  | 3.0         |
| Ext. eff. gred<br>Arrival type                       | en             |                          |               | $\vdash$       | +            | 3          | 3                             | +              | <u>2.0</u><br>3 | <u>∠.</u> 0 | ) 2.0<br>5 | +               |                         |                    | 5           | 2.0<br>5    |
| Unit Extensi                                         | ion            |                          |               | <u> </u>       |              | 3.0        | 3.0                           | 2              | 3.0             | 3,          |            | <del>,  </del>  |                         |                    | 3.0         | 3.0         |
|                                                      | TOR Volume     |                          | 10            |                |              | 10         | -                             |                | 75              | 1           | 0,0        | $\dashv$        |                         | 10                 | 5           | 250         |
| Lane Width                                           |                |                          |               |                | 1            | 12.0       | 12.                           | _              | 12.0            | 12.         | 0 12.0     | 5               |                         |                    | 12.0        | 12.0        |
| Parking/Gra                                          | de/Parking     |                          | Ν             |                | N            | N          | 0                             | ,              | N               | N           | 0          | 寸               | N                       | N                  | 0           | N           |
| Parking/hr                                           |                |                          |               |                |              |            |                               |                |                 |             |            | T               |                         |                    |             |             |
| Bus stops/h                                          | r              |                          |               |                |              | 0          | 0                             |                | 0               | 0           | 0          | 一               |                         |                    | 0           | 0           |
| Unit Extensi                                         | ion            |                          |               |                |              | 3.0        | 3.0                           | )              | 3.0             | 3.          | 0 3.0      | 7               |                         |                    | 3.0         | 3.0         |
| Phasing                                              | WB Only        | 02                       | 2             | 0:             | 3            | 04         |                               | N              | B Onl           | у           | Thru &     | RT              |                         | 07                 |             | 08          |
| Timing                                               | G = 31.0       | G =                      |               | G =            |              | G =        |                               |                | = 13.           |             | G = 39     | .0              | G =                     |                    | G =         |             |
|                                                      | Y = 5.1        | Y =                      |               | Y =            |              | Y =        |                               | Υ =            | 4.2             |             | Y = 7      |                 | Y =                     |                    | Y =         |             |
| -                                                    | Analysis (hrs  |                          |               | 1.5.1          |              |            | <u> </u>                      | - 4            |                 |             | Cycle Le   | eng             | tn C =                  | = 100              | .0          |             |
| Lane Gro                                             | up Capaci      | ty, Co                   |               | Dei            | ay, aı       |            |                               | etei           | rmin            | atic        |            |                 |                         |                    | 00          |             |
|                                                      |                |                          | EB            | ·              |              | WB         |                               |                |                 |             | NB         |                 |                         |                    | SB          | Γ           |
| Adj. flow rat                                        | <del></del>    |                          |               |                | 464          | 362        |                               | 369            |                 | 52          | 1016       |                 |                         |                    | 1902        | 217         |
| Lane group                                           | сар.           |                          |               |                | 531          | 508        |                               | 475            | 43              |             | 2836       | $\perp$         |                         |                    | 1928        | <i>5</i> 88 |
| v/c ratio                                            |                |                          |               |                | 0.87         | 0.71       | C                             | ).78           | 0.              | 35          | 0.36       |                 |                         |                    | 0.99        | 0.37        |
| Green ratio                                          |                |                          |               |                | 0.30         | 0.30       |                               | ).30           | 0.              | 13          | 0.56       | [               |                         |                    | 0.38        | 0.38        |
| Unif. delay o                                        | <del>1</del> 1 |                          |               |                | 33.2         | 31.2       | 3                             | 31.9           | 39              | 9.9         | 12.2       |                 |                         |                    | 30.7        | 22.4        |
| Delay factor                                         | k              |                          |               |                | 0.40         | 0.28       |                               | ).33           | 0.              | 11          | 0.11       |                 |                         |                    | 0.49        | 0.11        |
| Increm. dela                                         | ay d2          |                          |               |                | 14.9         | 4.7        |                               | 8.0            | 0.              | .5          | 0.1        |                 |                         |                    | 17.3        | 0.4         |
| PF factor                                            |                |                          |               |                | 1.000        | 1.000      | ) 1                           | .000           | 0.9             | 903         | 0.155      |                 |                         |                    | 0.591       | 0.591       |
| Control dela                                         | ıy             |                          |               |                | 48.1         | 35.8       | [3                            | 39.9           | 36              | 5.5         | 2.0        |                 |                         |                    | 35.5        | 13.6        |
| Lane group                                           | LOS            |                          |               |                | D            | D          |                               | D              |                 | )           | Α          |                 |                         |                    | D           | В           |
| Apprch. dela                                         | Apprch. delay  |                          |               |                |              | 41.9       |                               |                |                 |             | 6.5        |                 |                         |                    | 33.3        |             |
| Approach L                                           |                |                          |               | D              |              |            | $\top$                        | •              | Α               |             |            |                 | С                       |                    |             |             |
| Intersec. de                                         | lay            | 8.6                      | ····          |                | <del></del>  | Int        | erse                          | ction          | LOS             | }           |            |                 |                         | С                  |             |             |
| HCS2000TM                                            |                |                          | and other for | •<br>• ኃስለስ TE | niversity of | Florid     | la All                        | Diahta         | Dagar           | rad         |            |                 |                         |                    | Version 4.1 |             |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                 |                          |             |                                                  | SH            | ORT F       | REP            | ORT                                |                   |           |                    |                            |                    |           |              |
|------------------------------------------------------|---------------------------------|--------------------------|-------------|--------------------------------------------------|---------------|-------------|----------------|------------------------------------|-------------------|-----------|--------------------|----------------------------|--------------------|-----------|--------------|
| General Inf                                          | ormation                        |                          |             |                                                  |               | S           | ite Ir         | nform                              | natio             |           |                    |                            |                    |           |              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                             | US<br>US<br>08/1<br>AM F | SAI<br>5/12 |                                                  |               | A<br>J      | rea T<br>urisd | ection<br>Type<br>iction<br>sis Ye |                   |           |                    | 3 RAM<br>her are<br>SIDE-I | PS<br>eas<br>NT.#2 |           |              |
| Volume an                                            | ıd Timing İnj                   | out                      |             |                                                  |               | и           |                | • •                                |                   |           |                    |                            |                    |           |              |
|                                                      |                                 |                          |             | EB                                               |               |             | W              |                                    |                   |           | NB                 |                            |                    | SB        |              |
|                                                      |                                 |                          | LT          | TH                                               | RT            | LT          | <u> </u>       | l F                                | ₹T                | LT        |                    | RT                         | LT                 | TH        | RT           |
| Num, of Lar                                          | nes                             |                          | 0           | 0                                                | 0             | 1           | 1              |                                    | 1                 | 2         | 3                  | 0                          | 0                  | 3         | 1            |
| Lane group                                           |                                 |                          |             |                                                  |               | L           | LTF            |                                    | R                 | L         | T                  |                            |                    | T         | R            |
| Volume (vpl                                          |                                 |                          |             |                                                  |               | 610         | 5              |                                    | 60                | 140       |                    |                            | ļ                  | 1750      | 450          |
| % Heavy von                                          | eh                              |                          |             | ļ                                                | -             | 2           | 2              |                                    | 2                 | 2         | 2                  | ├─-                        | <del> </del>       | 2         | 2            |
| PHF<br>Actuated (P                                   | /Δ\                             |                          |             | -                                                | <u> </u>      | 0.92<br>A   | 0.92<br>A      |                                    | 92<br>4           | 0.92<br>A | 2 0.92<br>A        | ┢                          | <del> </del>       | 0.92<br>A | 0.92<br>A    |
| Startup lost                                         |                                 |                          |             | <del>                                     </del> | +             | 3.0         | 3.0            | _                                  | .0                | 3.0       |                    | 1                          | +                  | 3.0       | 3.0          |
| Ext. eff. gre                                        |                                 |                          |             |                                                  |               | 2.0         | 2.0            | _                                  | .0                | 2.0       |                    |                            | 1                  | 2.0       | 2.0          |
| Arrival type                                         |                                 |                          |             |                                                  |               | 3           | 3              | ,                                  | 3                 | 5         | 5                  |                            |                    | 5         | 5            |
| Unit Extens                                          | ion                             |                          |             |                                                  |               | 3.0         | 3.0            | 3                                  | 3.0               | 3.0       | 3.0                |                            |                    | 3.0       | 3.0          |
| Ped/Bike/R                                           | TOR Volume                      |                          | 10          |                                                  |               | 10          |                | 7                                  | '5                |           |                    |                            | 10                 | 5         | 250          |
| Lane Width                                           |                                 |                          |             |                                                  |               | 12.0        | 12.0           | ) 12                               | 2.0               | 12.0      | ) 12.0             |                            |                    | 12.0      | 12.0         |
| Parking/Gra                                          | ade/Parking                     |                          | Ν           |                                                  | N             | Ν           | 0              |                                    | N                 | Ν         | 0                  | N                          | N                  | 0         | N            |
| Parking/hr                                           |                                 |                          |             |                                                  |               |             |                |                                    |                   |           |                    |                            |                    |           | <u> </u>     |
| Bus stops/h                                          | r                               |                          |             |                                                  |               | 0           | 0              |                                    | 0                 | 0         | 0                  |                            |                    | 0         | 0            |
| Unit Extens                                          | ion                             |                          |             |                                                  |               | 3.0         | 3.0            | ) 3                                | 3.0               | 3.0       | 3.0                |                            |                    | 3.0       | 3.0          |
| Phasing                                              | WB Only                         | 02                       | 2           | 0                                                | 3             | 04          |                |                                    | Only              | _         | Thru & R           | _                          | 07                 |           | 08           |
| Timing                                               | G = 31.0                        | G =                      |             | G =                                              |               | G =         |                | G =                                |                   |           | G = 39.0           | G =                        |                    | G =       | -            |
|                                                      | Y = <i>5.1</i><br>Analysis (hrs | Y = 0.2                  | 5           | Y =                                              |               | Y =         |                | Y =                                | 4.2               |           | Y = 7<br>Cycle Len | Y =                        |                    |           |              |
|                                                      | up Capaci                       |                          |             | I Dal                                            | 21/ 21        | 2410        | פ ח            | atorr                              | nin               |           |                    | gui O -                    | - 700              | .0        |              |
| Lane Gro                                             | up Capaci                       | iy, Co                   | EB          | Dei                                              | ay, ai        | WE          |                | eterr                              | <del>111111</del> | aut       | NB                 |                            |                    | SB        |              |
| A -1:                                                |                                 |                          | ED          | 1                                                | 404           |             |                | 200                                | 1                 |           |                    |                            | т                  |           | 247          |
| Adj. flow rat                                        |                                 |                          |             |                                                  | 464           | 362         | _              | 369                                | 15                |           | 1016               |                            |                    | 1902      | 217          |
| Lane group                                           | cap.                            |                          |             |                                                  | 531           | 508         |                | 75                                 | 43                |           | 2836               |                            |                    | 1928      | 588          |
| v/c ratio                                            |                                 |                          |             |                                                  | 0.87          | 0.71        | 0              | .78                                | 0.3               | 35        | 0.36               |                            |                    | 0.99      | 0.37         |
| Green ratio                                          |                                 |                          |             |                                                  | 0.30          | 0.30        | 0              | .30                                | 0.1               | 13        | 0.56               |                            |                    | 0.38      | 0.38         |
| Unif. delay o                                        | d1                              |                          |             |                                                  | 33.2          | 31.2        | 3              | 1.9                                | 39                | .9        | 12.2               |                            |                    | 30.7      | 22.4         |
| Delay factor                                         | rk                              |                          |             |                                                  | 0.40          | 0.28        | 0              | .33                                | 0.1               | 11        | 0.11               |                            |                    | 0.49      | 0.11         |
| Increm. dela                                         |                                 |                          |             |                                                  | 14.9          | 4.7         | 1              | 3.0                                | 0.                | 5         | 0.1                |                            |                    | 17.3      | 0.4          |
| PF factor                                            |                                 |                          |             |                                                  | 1.000         |             | 0 1.           | 000                                | 0.9               | 03        | 0.155              |                            |                    | 0.591     | 0.591        |
| Control dela                                         | <br>ay                          |                          |             |                                                  | 48.1          | 35.8        | -              | 9.9                                | 36                |           | 2.0                |                            |                    | 35.5      | 13.6         |
|                                                      | ane group LOS                   |                          |             |                                                  | D             | D           | $\neg \vdash$  | D                                  | E                 | )         | Α                  |                            |                    | D         | В            |
| Apprch. dela                                         |                                 |                          |             |                                                  | 41.9          |             |                | <b>T</b>                           | (                 | 5.5       |                    | •                          | 33.3               |           |              |
| Approach L                                           |                                 |                          | •           |                                                  | D             |             |                |                                    |                   | A         |                    |                            | С                  |           |              |
| Intersec. de                                         | lay                             | 2                        | 28.6        |                                                  |               | ·           | Int            | ersec                              | tion              | LOS       | ı                  |                            |                    | С         |              |
| HCS2000 <sup>TM</sup>                                |                                 |                          | C           | nvright (                                        | •<br>© 2000 H | niversity o | f Florid       | a A11 R                            | iohts I           | Reserv    | ed                 |                            |                    |           | Version 4.1: |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |               |                          |            |              | SH           | ORT F       | REP                       | ORT                                 | •               |           |             |                                                  |                     |             |             |
|------------------------------------------------------|---------------|--------------------------|------------|--------------|--------------|-------------|---------------------------|-------------------------------------|-----------------|-----------|-------------|--------------------------------------------------|---------------------|-------------|-------------|
| General Inf                                          | ormation      |                          | =          |              |              | S           | ite lı                    | nforn                               | natio           | n         |             |                                                  |                     |             |             |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med           | US<br>US<br>08/1<br>PM F | AI<br>5/12 |              |              | ۵<br>J      | rea <sup>-</sup><br>urisd | ection<br>Type<br>liction<br>sis Yo | 1               |           |             | 3 RAM<br>her are<br>SIDE-I                       | IPS<br>eas<br>NT.#2 |             |             |
| Volume ar                                            | ıd Timing Inj | out                      |            |              |              |             |                           |                                     |                 |           |             |                                                  |                     |             |             |
|                                                      |               |                          |            | EB           |              |             | W                         |                                     |                 |           | NB          |                                                  |                     | SB          |             |
|                                                      |               |                          | LT         | TH           | RT           | LT          | T⊦                        | 1                                   | RT              | <u>רו</u> |             | RT                                               | LT                  | TH          | RT          |
| Num. of Lar                                          | nes           |                          | 0          | 0            | 0            | 1           | 1                         |                                     | 1               | 2         | 3           | 0                                                | 0                   | 3           | 1           |
| Lane group                                           |               |                          |            |              |              | L           | LTF                       |                                     | R               | L         | T           | <u> </u>                                         |                     | T 12/7      | R           |
| Volume (vp                                           |               |                          |            | -            | +            | 695<br>2    | 10<br>2                   |                                     | 50<br>2         | 338<br>2  | 5 2045<br>2 | ├                                                | -                   | 1615<br>2   | 560<br>2    |
| % Heavy v                                            | en            |                          |            | +            | ╁            | 0.92        | 0.92                      |                                     | <u>-</u><br>.92 | 0.9       |             | -                                                |                     | 0.92        | 0.92        |
| Actuated (P                                          | 2/A)          |                          |            |              | †            | A           | A                         |                                     | A               | A         | A           | <del>                                     </del> |                     | A           | A           |
| Startup lost                                         |               |                          |            |              |              | 3.0         | 3.0                       |                                     | 3.0             | 3.0       |             |                                                  |                     | 3.0         | 3.0         |
| Ext. eff. gre                                        | en            |                          |            |              |              | 2.0         | 2.0                       |                                     | 2.0             | 2.0       |             |                                                  |                     | 2.0         | 2.0         |
| Arrival type                                         | ,             |                          |            | _            |              | 3           | 3                         |                                     | 3               | 5         | 5           | <u> </u>                                         | _                   | 5           | 5           |
| Unit Extens                                          |               |                          |            | _            | <u> </u>     | 3.0         | 3.0                       |                                     | 3.0             | 3.0       | 3.0         | <u> </u>                                         | 10                  | 3.0         | 3.0         |
|                                                      | TOR Volume    |                          | 10         |              |              | 10          | 40.4                      | _                                   | 0               | 40        | 100         | -                                                | 10                  | 5           | 0<br>12.0   |
| Lane Width                                           | de/Dorlána    |                          | N          |              | l N          | 12.0<br>N   | 12.0                      | <del>-</del>                        | 2.0<br>N        | 12.0<br>N | 0 12.0      | N                                                | l <sub>N</sub>      | 12.0        | 12.0<br>N   |
| Parking/Gra                                          | ide/Parking   |                          | //         |              | 1 //         | /V          | 0                         | +                                   | /1              | IN        | 10          | //                                               | 10                  | U           | 1//         |
| Parking/hr                                           |               |                          |            | <del> </del> | <del> </del> | 0           | 0                         | +                                   | 0               | 0         | 0           | ╁                                                | -                   | 0           | 0           |
| Bus stops/h<br>Unit Extens                           |               |                          |            | -            | <del> </del> | 3.0         | 3.0                       | ,                                   | 3.0             | 3.0       |             | $\vdash$                                         |                     | 3.0         | 3.0         |
|                                                      | WB Only       | 02                       | <u> </u>   | 0            | 2            | 04          |                           |                                     | 3 Onl           |           | Thru & R    | <u> I</u><br>г I                                 | 07                  | <del></del> | 08          |
| Phasing                                              | G = 31.0      | G =                      |            | G =          | ა            | G =         |                           |                                     | 13.             | —اسسست    | G = 39.0    | G =                                              |                     | G =         |             |
| Timing                                               | Y = 5.1       | Y =                      |            | Y =          |              | Y =         |                           |                                     | 4.2             |           | Y = 7       | Y =                                              |                     | Y =         |             |
| Duration of                                          | Analysis (hrs | ) = 0.2                  | 5          |              |              |             |                           |                                     |                 |           | Cycle Len   | gth C :                                          | = 100               | .0          |             |
| Lane Gro                                             | up Capaci     | ty, Co                   | ontro      | l Del        | ay, aı       | nd LO       | S D                       | eter                                | min             | atic      | n           |                                                  |                     |             | ·           |
|                                                      |               |                          | EB         |              |              | WE          | 3                         |                                     |                 |           | NB          |                                                  |                     | SB          |             |
| Adj. flow rat                                        | e             |                          |            |              | 559          | 451         | - [                       | 571                                 | 36              | 34        | 2223        |                                                  |                     | 1755        | 609         |
| Lane group                                           | cap.          |                          |            |              | 531          | 502         | 4                         | <b>1</b> 75                         | 43              | 36        | 2836        |                                                  |                     | 1928        | 588         |
| v/c ratio                                            |               |                          |            |              | 1.05         | 0.90        | 1                         | .20                                 | 0.8             | <br>83    | 0.78        |                                                  |                     | 0.91        | 1.04        |
| Green ratio                                          |               |                          |            |              | 0.30         | 0.30        |                           | 0.30                                | 0.              |           | 0.56        |                                                  |                     | 0.38        | 0.38        |
| Unif. delay                                          | d1            |                          |            |              | 35.0         | 33.5        | 3                         | 35.0                                | 42              | 2.6       | 17.3        |                                                  |                     | 29.4        | 31.0        |
| Delay factor                                         | r k           |                          |            |              | 0.50         | 0.42        | 7                         | .50                                 | 0.3             | 37        | 0.33        |                                                  |                     | 0.43        | 0.50        |
| Increm. dela                                         | ay d2         |                          |            |              | 53.7         | 18.9        | 1                         | 09.6                                | 13              | 3.2       | 1.5         |                                                  |                     | 6.9         | 46.7        |
| PF factor                                            |               |                          |            |              | 1.000        | 1.000       | 0 1                       | .000                                | 0.8             | 903       | 0.155       |                                                  |                     | 0.591       | 0.591       |
| Control dela                                         | ay            |                          |            |              | 88.7         | 52.4        | 1                         | 44.6                                | 51              | .7        | 4.2         |                                                  |                     | 24.3        | 65.0        |
| Lane group                                           | ane group LOS |                          |            |              | F            | D           |                           | F                                   |                 | 2         | Α           |                                                  |                     | С           | Ε           |
| Apprch. del                                          | ay            |                          |            |              |              | 98.5        |                           |                                     |                 | 1         | 0.9         |                                                  |                     | 34.8        |             |
| Approach L                                           | os            |                          |            |              |              | F           |                           |                                     |                 |           | В           |                                                  |                     | С           |             |
| Intersec. de                                         | lay           | 4                        | 0.7        |              |              |             | Int                       | ersed                               | ction           | LOS       |             |                                                  |                     | D           |             |
| HCS2000 <sup>TM</sup>                                |               |                          | Co         | myright 9    | @ 2000 H     | niversity o | f Florid                  | la. All I                           | ?iohts          | Reserv    | red         |                                                  |                     |             | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                  | ·                        |         |              | SH                                               | ORT F                                            | REP                              | ORT           | T       |      |                          |                            |                     |         |         |
|------------------------------------------------------|----------------------------------|--------------------------|---------|--------------|--------------------------------------------------|--------------------------------------------------|----------------------------------|---------------|---------|------|--------------------------|----------------------------|---------------------|---------|---------|
| General Inf                                          | ormation                         |                          |         |              |                                                  |                                                  |                                  |               | matic   | n    |                          |                            |                     |         |         |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                              | US<br>US<br>08/1<br>PM F | 5/12    |              |                                                  | J<br>J                                           | nterso<br>rea<br>urisd<br>inalys | Type<br>ictio | e<br>n  |      |                          | 3 RAM<br>her are<br>SIDE-I | IPS<br>eas<br>NT.#2 |         |         |
| Volume an                                            | d Timing In                      | out                      |         |              |                                                  |                                                  |                                  |               |         |      |                          |                            |                     |         |         |
|                                                      |                                  |                          | LT      | EB           | l n=                                             | <del>                                     </del> | W                                |               | D-T     | LT   | NB<br>· I <del>T</del> U | Lot                        | LT                  | SB      | Lor     |
| Num. of Lar                                          | nes                              |                          | 0       | TH<br>0      | RT<br>0                                          | LT<br>1                                          | T⊦<br>  1                        | +             | RT<br>1 | 2    | . TH<br>3                | RT<br>0                    | 0                   | TH<br>3 | RT<br>1 |
| Lane group                                           |                                  |                          | ۰       | · · · · ·    | <del>                                     </del> | 1.                                               | LTF                              | ,             | R       |      | T                        | Ť                          | <del>Ť</del>        | T       | R       |
| Volume (vpl                                          | h)                               |                          |         |              |                                                  | 695                                              | 10                               |               | 750     | 335  |                          | -                          | ļ                   | 1615    | 560     |
| % Heavy v                                            |                                  |                          |         |              |                                                  | 2                                                | 2                                | +             | 2       | 2    | 2040                     | -                          | ┼──                 | 2       | 2       |
| PHF                                                  | GII.                             |                          |         | <del> </del> |                                                  | 0.92                                             | 0.92                             | 2 0           | 0.92    | 0.9  |                          |                            |                     | 0.92    | 0.92    |
| Actuated (P                                          | /A)                              |                          |         |              |                                                  | A                                                | A                                | _             | A       | A    | A                        |                            |                     | A       | A       |
| Startup lost                                         |                                  |                          |         |              |                                                  | 3.0                                              | 3.0                              |               | 3.0     | 3.0  |                          |                            |                     | 3.0     | 3.0     |
| Ext. eff. gre                                        | en                               |                          |         |              |                                                  | 2.0                                              | 2.0                              |               | 2.0     | 2.0  | 2.0                      |                            |                     | 2.0     | 2.0     |
| Arrival type                                         |                                  | ·                        |         |              |                                                  | 3                                                | 3                                |               | 3       | 5    | 5                        |                            |                     | 5       | 5       |
| Unit Extensi                                         |                                  |                          |         |              |                                                  | 3.0                                              | 3.0                              | ) .           | 3.0     | 3.0  | 3.0                      |                            |                     | 3.0     | 3.0     |
|                                                      | ΓOR Volume                       |                          | 10      |              |                                                  | 10                                               |                                  |               | 0       |      |                          |                            | 10                  | 5       | 0       |
| Lane Width                                           |                                  |                          |         |              |                                                  | 12.0                                             | 12.0                             | ) 1           | 2.0     | 12.0 | 12.0                     |                            |                     | 12.0    | 12.0    |
| Parking/Gra                                          | de/Parking                       |                          | Ν       |              | N                                                | N                                                | 0                                |               | Ν       | N    | 0                        | N                          | N                   | 0       | N       |
| Parking/hr                                           |                                  |                          |         |              |                                                  |                                                  |                                  |               |         |      |                          | <u> </u>                   |                     |         |         |
| Bus stops/h                                          | r                                |                          |         |              |                                                  | 0                                                | 0                                |               | 0       | 0    | 0                        |                            |                     | 0       | 0       |
| Unit Extensi                                         | ion                              |                          |         |              |                                                  | 3.0                                              | 3.0                              | ) .           | 3.0     | 3.0  | 3.0                      |                            |                     | 3.0     | 3.0     |
| Phasing                                              | WB Only                          | 0:                       | 2       | 0;           | 3                                                | 04                                               |                                  | NE            | B Onl   | у    | Thru & R                 | Γ                          | 07                  |         | 08      |
| Timing                                               | G = 31.0                         | G =                      |         | G =          |                                                  | G =                                              |                                  |               | = 13.   |      | G = 39.0                 | G =                        |                     | G =     |         |
|                                                      | Y = 5.1                          | Y =                      |         | Y =          |                                                  | Y =                                              |                                  | Υ=            | 4.2     |      | Y = 7                    | Y =                        |                     | Y =     |         |
|                                                      | Analysis (hrs                    |                          |         |              | <del></del> :                                    |                                                  |                                  |               |         |      | Cycle Len                | gth C =                    | = 100               | .0      |         |
| Lane Gro                                             | up Capaci                        | ty, Co                   |         | l Dela       | ay, ar                                           | <del></del>                                      |                                  | eter          | min     | atio |                          |                            |                     |         |         |
|                                                      |                                  |                          | EB      |              |                                                  | WE                                               | <u> </u>                         |               |         |      | NB                       |                            |                     | SB      |         |
| Adj. flow rat                                        | e                                |                          |         |              | 559                                              | 451                                              | 5                                | 71            | 36      | 54   | 2223                     |                            |                     | 1755    | 609     |
| Lane group                                           | сар.                             |                          |         |              | 531                                              | 502                                              | 4                                | 75            | 43      | 36   | 2836                     |                            |                     | 1928    | 588     |
| v/c ratio                                            |                                  |                          |         |              | 1.05                                             | 0.90                                             | 1                                | .20           | 0.8     | 83   | 0.78                     |                            |                     | 0.91    | 1.04    |
| Green ratio                                          |                                  |                          |         |              | 0.30                                             | 0.30                                             | 0                                | .30           | 0.      | 13   | 0.56                     |                            |                     | 0.38    | 0.38    |
| Unif. delay o                                        | <del>1</del> 1                   |                          |         |              | 35.0                                             | 33.5                                             | 3                                | 5.0           | 42      | 2.6  | 17.3                     |                            |                     | 29.4    | 31.0    |
| Delay factor                                         | ·k                               |                          |         |              | 0.50                                             | 0.42                                             | 0                                | .50           | 0.3     | 37   | 0.33                     |                            |                     | 0.43    | 0.50    |
| Increm. dela                                         | ay d2                            |                          |         |              | 53.7                                             | 18.9                                             | 10                               | 9.6           | 13      | 3.2  | 1.5                      |                            |                     | 6.9     | 46.7    |
| PF factor                                            |                                  |                          |         |              | 1.000                                            | 1.000                                            | ) 1.                             | 000           | 0.9     | 903  | 0.155                    |                            | •                   | 0.591   | 0.591   |
| Control dela                                         |                                  |                          |         |              | 88.7                                             | 52.4                                             | 1.                               | <i>14</i> .6  | 51      | .7   | 4.2                      |                            |                     | 24.3    | 65.0    |
| Lane group                                           | ane group LOS                    |                          |         |              | F                                                | D                                                |                                  | F             |         | )    | Α                        |                            |                     | С       | Е       |
| Apprch. dela                                         | pprch. delay                     |                          |         |              |                                                  | 98.5                                             |                                  |               |         | 1    | 0.9                      |                            |                     | 34.8    |         |
| Approach Lo                                          | pproach LOS  ntersec. delay 40.7 |                          |         |              |                                                  | F                                                |                                  |               |         |      | В                        |                            |                     | С       |         |
| Intersec. de                                         | lay                              |                          |         |              | Inte                                             | erse                                             | ction                            | LOS           |         |      |                          | D                          |                     |         |         |
| HCC22000TM                                           |                                  |                          | 0000 TI | níversity of | . 1771 2 4                                       | - A 11                                           | Distant                          | D             |         |      |                          |                            | Version 4.1         |         |         |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |               |                           |            |                                       | SH          | IOI                                            | RT RI      | EPC                            | )R1         |              |              |                        |                    |                           |                                                  |       |                                              |
|------------------------------------------------------|---------------|---------------------------|------------|---------------------------------------|-------------|------------------------------------------------|------------|--------------------------------|-------------|--------------|--------------|------------------------|--------------------|---------------------------|--------------------------------------------------|-------|----------------------------------------------|
| General Inf                                          | ormation      |                           |            |                                       |             |                                                |            |                                |             | natio        | n            |                        |                    |                           |                                                  |       |                                              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med           | US<br>US<br>08/11<br>AM P | AI<br>7/12 |                                       |             |                                                | Ar<br>Ju   | erse<br>ea T<br>risdi<br>nalys | ype<br>ctio | n            |              | 78<br>Al<br>OCEA       | BEE<br>I ot<br>AN: | 3 RAN<br>her ar<br>SIDE-: |                                                  |       |                                              |
| Volume ar                                            | nd Timing In  | out                       |            |                                       |             |                                                |            |                                |             |              |              |                        |                    |                           |                                                  |       |                                              |
|                                                      |               |                           | <u> </u>   | EB                                    |             | _                                              |            | W                              |             |              | 1 7          | N                      |                    | F 67                      | <del>                                     </del> | SB    |                                              |
| Num, of Lar                                          | nes           |                           | LT<br>2    | TH<br>0                               | R           | <u> </u>                                       | LT<br>O    | TI-                            | ╬           | RT<br>0      | LT<br>O      | TH<br>3                |                    | RT<br>1                   | LT<br>2                                          | TH_   | RT<br>0                                      |
| Lane group                                           | 100           |                           | L          | +                                     | R           |                                                | <u> </u>   | Ľ                              | +           |              | _            | $+\frac{\sigma}{\tau}$ |                    | R                         |                                                  | T     | <del>Ľ</del>                                 |
| Volume (vp                                           | h)            |                           | 340        | +-                                    | 170         |                                                |            |                                | $\dashv$    |              |              | 738                    |                    | 440                       | 615                                              | 1745  | <u> </u>                                     |
| % Heavy v                                            |               |                           | 2          |                                       | 2           | ,                                              |            |                                | +           |              |              | 2                      | ,                  | 2                         | 2                                                | 2     |                                              |
| PHF                                                  | •             |                           | 0.92       |                                       | 0.9         | 2                                              |            |                                |             |              |              | 0.9                    | 2                  | 0.92                      | 0.92                                             | 0.92  | ·-···                                        |
| Actuated (P                                          | /A)           |                           | Α          |                                       | Α           |                                                |            |                                |             |              |              | Α                      |                    | Α                         | Α                                                | Α     |                                              |
| Startup lost                                         |               |                           | 3.0        |                                       | 3.0         |                                                |            |                                |             |              |              | 3.0                    |                    | 3.0                       | 3.0                                              | 3.0   |                                              |
| Ext. eff. gre                                        | en            |                           | 2.0        |                                       | 2.0         |                                                |            |                                | _           |              |              | 2.0                    | )                  | 2.0                       | 2.0                                              | 2.0   |                                              |
| Arrival type Unit Extens                             | ion           |                           | 3.0        |                                       | 3           | -                                              |            |                                | +           |              |              | 5                      | <u> </u>           | 5                         | 5                                                | 5     |                                              |
|                                                      | TOR Volume    |                           | 5.0<br>5   |                                       | 3.0         |                                                | 5          |                                | +           |              | 5            | 3.0<br>10              |                    | 3.0<br>0                  | 3.0                                              | 3.0   |                                              |
| Lane Width                                           | TOR Volume    |                           | 12.0       |                                       | 12.         | 0                                              |            | 1                              | 十           |              | 3            | 12.                    |                    | 12.0                      | 12.0                                             | 12.0  |                                              |
| Parking/Gra                                          | de/Parking    |                           | N          | 0                                     | N           |                                                | N          |                                | +           | N            | N            | 0                      |                    | N                         | N N                                              | 0     | N                                            |
| Parking/hr                                           |               |                           |            |                                       | Ì           |                                                |            |                                |             |              |              | † <u> </u>             |                    |                           |                                                  |       |                                              |
| Bus stops/h                                          | r             |                           | 0          |                                       | 0           |                                                |            |                                | 1           |              |              | 0                      |                    | 0                         | 0                                                | 0     |                                              |
| Unit Extens                                          | ion           |                           | 3.0        |                                       | 3.0         | <u>,                                      </u> |            |                                |             |              |              | 3.0                    | )                  | 3.0                       | 3.0                                              | 3.0   |                                              |
| Phasing                                              | EB Only       | 02                        | 2          | 03                                    |             | Т                                              | 04         | -                              | SE          | 3 Only       | /  -         | Thru 8                 | ı R                | Τ                         | 07                                               | 0     | 8                                            |
| Timing                                               | G = 20.0      | G =                       |            | G =                                   |             | G                                              |            |                                |             | 38.0         |              | 3 = 50                 | 0.2                | G:                        |                                                  | G =   |                                              |
|                                                      | Y = 5.1       | Y =                       |            | Y =                                   |             | Υ                                              | =          |                                | Y =         | 4.7          |              | /= 7                   |                    | Y =                       |                                                  | Y =   |                                              |
|                                                      | Analysis (hrs |                           |            | L D . L .                             |             |                                                | 1.00       |                                | 4           |              |              | *                      | .en                | gth C                     | = 125.                                           | 0     |                                              |
| Lane Gro                                             | up Capaci     | ty, Co                    |            |                                       | <u>у, а</u> | na                                             |            |                                | ter         | mina         | atio         |                        |                    |                           |                                                  |       |                                              |
| A al: 61 a 4                                         |               | 070                       | EB         | · · · · · · · · · · · · · · · · · · · |             |                                                | WE         | 3                              |             |              | Т-           | NB<br>'99              | Т.                 | 70                        | 000                                              | SB    | _                                            |
| Adj. flow rat                                        |               | 370                       | +          | 185                                   |             |                                                | -          | +                              |             | +            | -            |                        | +-                 | 78                        | 668                                              | 1897  |                                              |
| Lane group                                           | cap.          | 522                       | _          | 241                                   | +           |                                                | +          | +                              |             | +            | <del>-</del> | 997                    | ╂                  | 10                        | 1017                                             | 3730  |                                              |
| v/c ratio                                            |               | 0.71                      | +          | 0.77                                  | -           |                                                | +          | +                              |             | -            | <del>-</del> | .40                    | +-                 | 78                        | 0.66                                             | 0.51  |                                              |
| Green ratio                                          |               | 0.15                      | +          | 0.15                                  |             |                                                |            |                                |             | -            | -            | .39                    | +-                 | 39                        | 0.30                                             | 0.74  |                                              |
| Unif. delay                                          |               | 50.4                      |            | 50.9                                  |             |                                                | _          | +                              |             | +-           | +            | 7.3                    | ┿                  | 3.2                       | 38.5                                             | 7.0   | -                                            |
| Delay factor                                         |               | 0.27                      |            | 0.32                                  | -           |                                                |            | +                              |             | +            | <del></del>  | .11                    | ┿                  | 33                        | 0.23                                             | 0.12  | ļ                                            |
| Increm. dela                                         | ay d2         | 4.4                       | -          | 13.9                                  | -           |                                                | -          | $\bot$                         |             | <del> </del> | <del></del>  | ).1                    | -                  | .6                        | 1.6                                              | 0.1   |                                              |
| PF factor                                            |               | 1.000                     | 4          | 1.000                                 | _           |                                                | _          | _ _                            |             | $\bot$       | +            | 567                    | +                  | 567                       | 0.720                                            | 0.189 | ļ                                            |
| Control dela                                         | -             | 54.8                      | —          | 64.8                                  | _           |                                                | <u> </u>   |                                |             | -            | +            | 5.6                    | ╆                  | 5.5                       | 29.2                                             | 1.4   | <u> </u>                                     |
| Lane group                                           |               | D                         |            | E                                     | $\bot$      |                                                |            |                                |             | _            |              | В                      | (                  | <u> </u>                  | С                                                | Α     | <u>                                     </u> |
| Apprch. dela                                         |               | 5                         | 58.1       |                                       | _           |                                                |            |                                |             | _            | 19           | .3                     |                    |                           |                                                  | 8.7   |                                              |
| Approach L                                           | OS            | <u> </u>                  | E          |                                       | $\bot$      |                                                |            |                                |             |              | E            | 3                      |                    |                           |                                                  | Α     |                                              |
| Intersec. de                                         | lay           | 1                         | 8.0        |                                       |             |                                                |            | In                             | ters        | ectior       | ı LO         | S                      |                    |                           |                                                  | В     |                                              |
| HCS2000 <sup>TM</sup>                                |               |                           | Cor        | pyright © 2                           | 2000 T      | Inive                                          | rsity of F | lorida                         | A11 1       | Rights R     | eserve       | ٠d<br>-                |                    |                           |                                                  | Ve    | rsion 4.1                                    |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                 |                | SH               | 101         | RT RI       | EPC                           | R            | Γ              |      |              |                      |                    |                       |          |          |                                                  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|----------------|------------------|-------------|-------------|-------------------------------|--------------|----------------|------|--------------|----------------------|--------------------|-----------------------|----------|----------|--------------------------------------------------|
| General Inf                                          | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                 |                |                  |             |             |                               |              | natio          | n    |              |                      |                    |                       |          |          |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | US<br>US<br>08/11<br>AM P | AI<br>7/12      |                |                  |             | Ar<br>Ju    | erse<br>ea T<br>risdi<br>alys | ype<br>ctior |                |      | C            | 78E<br>All c<br>CEAN | B I<br>othe<br>VSI | RAM<br>er are<br>DE-= |          |          |                                                  |
| Volume an                                            | d Timing In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | put                       |                 |                |                  |             |             |                               |              |                |      |              |                      |                    |                       |          |          | •                                                |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | LT              | EB<br>TH       | R                | <del></del> | LT          | WI                            |              | RT             | L    | <del>-</del> | NB<br>TH             | _                  | RT                    |          | SB<br>TH | RT                                               |
| Num. of Lar                                          | nes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 2               | 0              | 1                | _           | 0           | 0                             | +            | 0              | 0    | _            | 3                    | +                  | 1                     | 2        | 3        | 0                                                |
| Lane group                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                 | <del>  -</del> | R                |             |             | <del></del>                   | +            |                |      |              | T                    | $\dagger$          | R                     |          | T        |                                                  |
| Volume (vpl                                          | h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 340             |                | 17               |             |             |                               | +            |                |      |              | 735                  | +                  | 140                   | 615      | 1745     |                                                  |
| % Heavy v                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2               |                | 2                |             |             |                               | $^{\dagger}$ |                |      |              | 2                    | Ť                  | 2                     | 2        | 2        | <del>                                     </del> |
| PHF                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 0.92            | 1              | 0.9              |             |             |                               | 寸            |                |      |              | 0.92                 | C                  | .92                   | 0.92     | 0.92     |                                                  |
| Actuated (P                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Α               |                | Α                |             |             |                               |              |                |      |              | Α                    |                    | Α                     | Α        | Α        |                                                  |
| Startup lost                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 3.0             |                | 3.0              |             |             |                               |              |                |      |              | 3.0                  | _                  | 3.0                   | 3.0      | 3.0      |                                                  |
| Ext. eff. gre                                        | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 2.0<br>3        | <u> </u>       | 2.0              |             |             | _                             | +            |                |      |              | 2.0<br>5             | +                  | 2.0<br>5              | 2.0      | 2.0<br>5 |                                                  |
| Arrival type                                         | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 3.0             |                | 3,0              | _           |             |                               | +            |                |      |              | 3.0                  | +                  | <u>5</u><br>3.0       | 3.0      | 3.0      |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 5               |                | 0                | _           | 5           |                               | +            |                | 5    | :            | 10                   | ╀                  | 0                     | 3.0      | 3.0      |                                                  |
| Lane Width                                           | TOR Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 12.0            |                | 12.              | 0           |             |                               | +            |                |      |              | 12.0                 | 1                  | 2.0                   | 12.0     | 12.0     |                                                  |
|                                                      | ide/Parking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | N               | 0              | N                |             | N           |                               | +            | N              | Ν    | ,            | 0                    | +                  | N                     | N        | 0        | N                                                |
| Parking/hr                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                 |                |                  |             |             |                               | 十            |                |      |              |                      | 1                  |                       |          |          |                                                  |
| Bus stops/h                                          | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | 0               |                | 0                |             |             |                               | 十            |                |      |              | 0                    |                    | 0                     | 0        | 0        |                                                  |
| Unit Extensi                                         | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 3.0             |                | 3.0              | )           |             |                               |              |                |      |              | 3.0                  | T                  | 3.0                   | 3.0      | 3.0      |                                                  |
| Phasing                                              | EB Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02                        | 2               | 03             |                  | T           | 04          |                               | SE           | 3 Only         |      |              | ıru & F              |                    |                       | 07       |          | 8                                                |
| Timing                                               | G = 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G =                       |                 | G =            |                  | _           | =           | _                             |              | 38.0           |      |              | = 50.2               | 2                  | G=                    |          | G =      |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y =                       |                 | Y =            |                  | Υ           | =           |                               | <u>Y =</u>   | 4.7            |      |              | = 7                  |                    | Y =                   |          | Y =      | <del></del>                                      |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                 | I Dala         |                  | لم جد       | 1.00        | <u> </u>                      | 40-          | i              |      | _            | cie Lei              | ngt                | n Ç -                 | = 125.   | 0        |                                                  |
| Lane Gro                                             | up Capaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ity, Co                   | ntro<br>EB      |                | <u>у, а</u><br>Т | ına         | WE          |                               | ter          | mina<br>T      | atic |              | NB                   |                    |                       | ,        | SB       |                                                  |
| Adi flow rat                                         | Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 370                       |                 | 185            | -                | <u>-</u>    | 771         | <u> </u>                      |              | +              | 1    | 79:          |                      | 478                | ,                     | 668      | 1897     | ŀ                                                |
| •                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 522                       | <del>- </del> - | 241            |                  |             |             |                               |              | +              |      | 199          | _                    | 610                | _                     | 1017     | 3730     |                                                  |
| v/c ratio                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.71                      | +               | 0.77           | -                |             | +           | +                             |              | +              | -    | 0.4          |                      | 2.7                |                       | 0.66     | 0.51     | <del>                                     </del> |
| Green ratio                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11                      | +               | 0.17           | +                | •           | +           | +                             |              | +              | -    | 0.4          | <del></del>          | ). <i>(</i> . ).   | -                     | 0.30     | 0.74     |                                                  |
| Unif. delay                                          | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.4                      | +               | 50.9           | -                |             |             | +                             |              | +              | -    | 27.          |                      | 33                 | -                     | 38.5     | 7.0      |                                                  |
| Delay factor                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.27                      |                 | 0.32           |                  |             |             |                               | ······       | <del>-  </del> | -    | 0.1          | -                    | 0,3                | -                     | 0.23     | 0.12     |                                                  |
| <u>.</u>                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4                       |                 | 13.9           | _                |             | +           | +                             |              | +              | -    | 0.1          | $\overline{}$        | 6.6                |                       | 1.6      | 0.12     |                                                  |
| PF factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000                     | +               | 1.000          | -                |             | +           | +                             |              | +              | -    | 0.5          | -                    | 0.56               | -                     | 0.720    | 0.189    |                                                  |
| Control dela                                         | ay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.8                      | +-              | 64.8           |                  |             | +           | $\dashv$                      |              | +              | -+   | 15.          | _                    | 25.                |                       | 29.2     | 1.4      | 1                                                |
| Lane group                                           | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                         | 1               | E              | 十                |             |             | $\dashv$                      |              | <del>-  </del> | 十    | В            | _                    | С                  |                       | С        | Α        |                                                  |
| Apprch. dela                                         | ted (P/A) ap lost time aff. green al type Extension Bike/RTOR Volume Width ag/Grade/Parking ag/hr Extension ag EB Only A = 5.1 aion of Analysis (hrs) a Group Capacit  a Group Capacit  b Group Capacit  a Group Capacit  a Group Capacit  b Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group Capacit  c Group C |                           | 58.1            | <u> </u>       | $\dagger$        |             |             |                               |              | +              | 1    | 9.3          |                      |                    |                       |          | 8.7      | <u>.l</u>                                        |
| Approach L                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | †                         | E               |                | $\dashv$         |             |             |                               |              | T              |      | В            | **                   |                    |                       |          | Α        |                                                  |
| Intersec. de                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                         | 18.0            |                | 十                |             |             | ln                            | ters         | ection         | n L( |              |                      |                    |                       |          | В        |                                                  |
| HCS2000 <sup>TM</sup>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                 | pyright © 1    | 2000 1           | Inive       | ereity of I |                               |              |                |      |              |                      |                    |                       | <u> </u> |          | ersion 4.1                                       |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |              |                                                  | SH     | IOF           | RT RI      | EPC                             | )R          | Τ             |     |           |                    |                  |                        |           |       |              |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--------------------------------------------------|--------|---------------|------------|---------------------------------|-------------|---------------|-----|-----------|--------------------|------------------|------------------------|-----------|-------|--------------|
| General Inf                                          | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |              |                                                  |        |               | Si         | te In                           | for         | matic         | on  |           |                    |                  |                        |           |       |              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | US,<br>US,<br>08/17<br>PM P, | AI<br>7/12   |                                                  |        |               | Ar<br>Ju   | terse<br>ea T<br>risdi<br>nalys | ype<br>ctio | e<br>n        |     | C         | 781<br>All<br>OCEA | ∃B<br>oth<br>NS: | RAM<br>er ard<br>IDE-= |           |       |              |
| Volume an                                            | nd Timing Inp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | out                          |              |                                                  |        |               |            |                                 |             |               |     |           |                    |                  |                        |           |       |              |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |              | EB                                               |        |               |            | W                               |             |               |     |           | NE                 | }                |                        |           | SB    |              |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | <u>LT</u>    | TH                                               | R      | Γ             | LT         | T⊦                              | 4           | RT            | +   | <u>_T</u> | TH                 | 4                | RT                     | LT        | TH    | RT           |
| Num. of Lar                                          | nes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 2            | 0                                                | 1      |               | 0          | 0                               |             | 0             | Ľ   | 0         | 3                  | _                | 1                      | 2         | 3     | 0            |
| Lane group                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | L            |                                                  | R      |               |            |                                 |             |               | L.  |           | T                  |                  | R                      | L         | T     |              |
| Volume (vpl                                          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 650          |                                                  | 210    | )             |            |                                 | _           |               | _   |           | 1730               | 4                | 775                    | 660       | 1650  |              |
|                                                      | eh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 2            |                                                  | 2      |               |            | ļ                               | _           |               | ╄   |           | 2                  | 4                | 2                      | 2         | 2     | <u> </u>     |
| PHF                                                  | rey or Co. Performed Period  Imme and Timing Input  of Lanes group me (vph) eavy veh  ated (P/A) up lost time eff. green at type Extension Bike/RTOR Volume Width mg/Grade/Parking mg/hr extension ing EB Only Ty = 5.1 Yetion of Analysis (hrs) =  Group Capacity  Iow rate group cap. Atio m ratio delay d1 y factor k m. delay d2 group LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | 0.92         |                                                  | 0.9    | 2             |            |                                 | $\dashv$    |               | ╀   |           | 0.92               | - (              | ).92<br>^              | 0.92<br>A | 0.92  | <del> </del> |
| ·                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | <i>A</i> 3.0 | +                                                | 3.0    | $\dashv$      |            | $\vdash$                        | +           |               | ╁   |           | 3.0                | +                | <u>A</u><br>3.0        | 3.0       | 3.0   | -            |
| Ext. eff. gre                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 2.0          | <del>                                     </del> | 2.0    |               |            | <b> </b>                        | $\dashv$    |               | ╁   |           | 2.0                |                  | 2.0                    | 2.0       | 2.0   |              |
| Arrival type                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 3            |                                                  | 3      |               | *******    |                                 |             |               | T   |           | 5                  | 1                | 5                      | 5         | 5     |              |
| Unit Extens                                          | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 3.0          |                                                  | 3.0    | $\overline{}$ | ·          |                                 |             |               | Γ   |           | 3.0                | T                | 3.0                    | 3.0       | 3.0   |              |
| Ped/Bike/R                                           | TOR Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 5            |                                                  | 0      |               | 5          |                                 |             |               |     | 5         | 10                 |                  | 80                     |           |       |              |
| Lane Width                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 12.0         |                                                  | 12.    | 0             |            |                                 |             |               |     |           | 12.0               | ŀ                | 12.0                   | 12.0      | 12.0  |              |
| Parking/Gra                                          | de/Parking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | Ν            | 0                                                | Ν      |               | Ν          |                                 |             | Ν             | 1   | ٧         | 0                  |                  | Ν                      | N         | 0     | Ν            |
| Parking/hr                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |              |                                                  |        |               |            |                                 |             |               |     |           |                    |                  |                        |           |       |              |
| Bus stops/h                                          | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | 0            |                                                  | 0      |               |            |                                 |             |               |     |           | 0                  |                  | 0                      | 0         | 0     |              |
| Unit Extens                                          | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 3.0          |                                                  | 3.0    | )             |            |                                 |             |               |     |           | 3.0                |                  | 3.0                    | 3.0       | 3.0   |              |
| Phasing                                              | e Performed e Period  ume and Timing Input  n. of Lanes e group Ime (vph) Heavy veh  stated (P/A) tup lost time eff. green //al type Extension //Bike/RTOR Volume e Width sing/Grade/Parking sing/hr stops/hr Extension sing EB Only ng G = 23.0 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = 5.1 ( Y = |                              |              | 03                                               |        |               | 04         |                                 | Ş           | B On          | ly  | _         | ıru &              |                  |                        | 07        | _     | 8            |
| Timing                                               | e group  Jume (vph)  Heavy veh  Justed (P/A)  Itup lost time  eff. green  Val type  Extension  /Bike/RTOR Volume  e Width  king/Grade/Parking  king/hr  stops/hr  Extension  sing  G = 23.0  Y = 5.1  Y  Ation of Analysis (hrs) =  The Group Capacity  Flow rate  e group cap.  Tatio  en ratio  den ratio  den delay d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |              | G =                                              |        | G             |            |                                 |             | = 31.         |     |           | = 54.              | .2               | G =                    |           | G =   |              |
|                                                      | e Width  king/Grade/Parking  king/hr stops/hr  Extension  sing EB Only ing G = 23.0 G  Y = 5.1 Y  ation of Analysis (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |              | Y =                                              |        | Υ             | =          |                                 | Y =         | = <i>4</i> .7 |     | _         | = 7                |                  | Y =                    |           | Y =   |              |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |              | I Dala                                           |        |               | 1.00       | <u> </u>                        | 4           | "             | - 4 |           |                    | eng              | in C                   | = 125.    | 0     |              |
| Lane Gro                                             | up Capaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ty, Co                       |              |                                                  | y, a   | na            |            |                                 | tei         | rmin          | at  |           |                    |                  |                        |           |       |              |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                 | EE           |                                                  | +      |               | WI         | B                               |             |               |     | _         | NB                 |                  |                        |           | SB    | 1            |
| Adj. flow rat                                        | <u>e</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 707                          |              | 228                                              | 4      |               |            | _                               |             | _             |     | 188       |                    | 75               |                        | 717       | 1793  | <u> </u>     |
| Lane group                                           | cap.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 605                          |              | 279                                              |        |               |            | $\perp$                         |             |               |     | 215       | 59                 | 66               | 0                      | 825       | 3609  |              |
| v/c ratio                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.17                         | <u> </u>     | 0.82                                             |        |               |            |                                 |             |               |     | 0.8       | 37                 | 1.1              | 4                      | 0.87      | 0.50  |              |
| Green ratio                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.18                         |              | 0.18                                             |        |               |            |                                 |             |               |     | 0.4       | 13                 | 0.4              | :3                     | 0.24      | 0.71  |              |
| Unif. delay                                          | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51.5                         |              | 49.6                                             |        | •             |            | 十                               |             | 十             |     | 32.       | .8                 | 35.              | 9                      | 45.6      | 8.1   |              |
| Delay factor                                         | ·k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                         | 1            | 0.36                                             | $\top$ |               |            | 十                               |             | 十             |     | 0.4       | 10                 | 0.5              | i0                     | 0.40      | 0.11  |              |
| Increm. dela                                         | ay d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.7                         |              | 17.1                                             | T      |               |            | 十                               |             | $\top$        |     | 4.        | 2                  | 81.              | 9                      | 9.9       | 0.1   |              |
| PF factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000                        |              | 1.000                                            | ,      |               |            | 十                               |             | <u> </u>      |     | 0.5       | 06                 | 0.5              | 06                     | 0.789     | 0.173 |              |
| Control dela                                         | ıy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 144.2                        | T            | 66.6                                             | 十      |               |            | 十                               |             | $\top$        |     | 20.       | .8                 | 100              | ),1                    | 45.9      | 1.5   |              |
| Lane group                                           | LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                            |              | E                                                | $\top$ |               |            | 十                               |             | $\top$        |     | C         | ;                  | F                |                        | D         | Α     |              |
| Apprch. dela                                         | ay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1:                           | 25.3         |                                                  | 十      |               | •          | •                               |             | $\top$        |     | 43.5      | 5                  |                  |                        |           | 14.2  |              |
| Approach L                                           | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | F            |                                                  |        |               |            |                                 |             |               |     | D         |                    |                  |                        |           | В     |              |
| Intersec. de                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                            | 4.0          |                                                  |        |               |            | ln                              | ters        | section       | n L | os        |                    |                  |                        |           | D     | A            |
| raceananTM                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                            |              | nvright ©                                        | 2000 I | Inima         | voitu of I |                                 |             |               |     |           |                    |                  |                        | l         | 17.   | ersion 4.1   |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                   |                              |            |                                                  | SH       | OR'            | TRE             | EPO                              | RI           | Γ       |     |      |                      |                    |                       | •                                                |               |                   |
|------------------------------------------------------|-------------------|------------------------------|------------|--------------------------------------------------|----------|----------------|-----------------|----------------------------------|--------------|---------|-----|------|----------------------|--------------------|-----------------------|--------------------------------------------------|---------------|-------------------|
| General Inf                                          | ormation          |                              |            |                                                  |          |                | Sit             | te In                            | forr         | natio   | n   |      |                      |                    |                       |                                                  |               |                   |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med               | US.<br>US.<br>08/17<br>PM P. | AI<br>7/12 |                                                  |          |                | Are<br>Jui      | erse<br>ea Ty<br>risdic<br>alysi | ype<br>ction |         |     | 0    | 78E<br>All c<br>CEAN | B I<br>othe<br>VSI | RAM<br>er are<br>DE-= |                                                  |               |                   |
| Volume an                                            | d Timing Inp      | out                          |            |                                                  |          |                |                 |                                  |              |         |     |      |                      |                    |                       | Ţ-                                               |               |                   |
|                                                      |                   |                              | 1 =        | EB                                               | 1 5-     |                |                 | WE                               |              |         |     | - 1  | NB                   | _                  |                       | + , -                                            | SB            | l DT              |
| Num. of Lar                                          | 200               |                              | LT<br>2    | TH<br>0                                          | RT<br>1  | +              | LT<br>0         | TH<br>0                          | +            | RT<br>0 | L'  |      | TH<br>3              | ╁                  | RT<br>1               | LT<br>2                                          | TH<br>3       | RT<br>0           |
|                                                      | 103               |                              |            | <del>                                     </del> | R        | +              |                 | -                                | +            |         |     |      | T                    | ╁                  | <del>,</del><br>R     | L                                                | $\frac{3}{T}$ | ۲                 |
| Lane group<br>Volume (vpl                            | h)                |                              | L<br>650   | <b>-</b>                                         | 210      | +              |                 |                                  | +            |         |     |      | 1730                 | +                  | 775                   | 660                                              | 1650          |                   |
| % Heavy ve                                           |                   |                              | 2          |                                                  | 210      | +              |                 |                                  | +            |         |     |      | 2                    | +                  | 2                     | 2                                                | 2             | <del> </del>      |
| PHF                                                  |                   | -                            | 0.92       |                                                  | 0.92     | ?              |                 |                                  | 十            |         |     |      | 0.92                 | 0                  | .92                   | 0.92                                             | 0.92          |                   |
| Actuated (P.                                         | /A)               |                              | Α          |                                                  | Α        | 工              |                 |                                  | 1            |         |     |      | Α                    | _                  | Α                     | Α                                                | Α             |                   |
| Startup lost                                         |                   |                              | 3.0        |                                                  | 3.0      |                |                 |                                  | $oxed{\bot}$ |         |     |      | 3.0                  |                    | 3.0                   | 3.0                                              | 3.0           |                   |
| Ext. eff. gree                                       | en                |                              | 2.0        | <u> </u>                                         | 2.0      | _              |                 |                                  | 4            |         |     |      | 2.0                  | 1                  | 2.0                   | 2.0                                              | 2.0           |                   |
| Arrival type                                         | •                 |                              | 3          | <u> </u>                                         | 3        | +              |                 |                                  | +            |         |     |      | 5                    | +                  | 5                     | 5                                                | 5             |                   |
| Unit Extensi                                         | ion<br>TOR Volume |                              | 3.0<br>5   |                                                  | 3.0<br>0 | +              | 5               |                                  | +            |         | - 5 |      | 3.0<br>10            |                    | 3.0<br>80             | 3.0                                              | 3.0           |                   |
| Lane Width                                           | TOR Volume        |                              | 12.0       |                                                  | 12.0     | <del>,  </del> | 0               | <u> </u>                         | +            |         | _ 5 |      | 12.0                 | _                  | 2.0                   | 12.0                                             | 12.0          |                   |
| Parking/Gra                                          | de/Parking        |                              | N          | 0                                                | N        |                | N               |                                  | $^{+}$       | N       | N   |      | 0                    |                    | N.                    | N N                                              | 0             | N                 |
| Parking/hr                                           |                   |                              |            | † <u> </u>                                       | · ·      | 十              |                 |                                  | +            |         |     |      |                      | t                  |                       | <del>                                     </del> |               | <del>  ``  </del> |
| Bus stops/h                                          | r                 |                              | 0          |                                                  | 0        | 十              |                 |                                  | _            |         |     |      | 0                    | Ť                  | 0                     | 0                                                | 0             |                   |
| Unit Extensi                                         | ion               |                              | 3.0        |                                                  | 3.0      | 1              |                 |                                  | T            |         |     |      | 3.0                  | ١.                 | 3.0                   | 3.0                                              | 3.0           |                   |
| Phasing                                              | EB Only           | 02                           | 2          | 03                                               |          |                | 04              |                                  | SE           | 3 Onl   | /   | Th   | ru & F               | रा                 |                       | 07                                               |               | 8                 |
| Timing                                               | G = 23.0          | G =                          |            | G =                                              |          | G<br>G         |                 |                                  |              | : 31.0  |     |      | = 54.2               | 2                  | G =                   |                                                  | G =           |                   |
|                                                      | Y = 5.1           | Y =                          |            | Y =                                              |          | Υ =            |                 |                                  | Y =          | 4.7     |     |      | = 7                  | n at               | Y =                   | =<br>= 125.                                      | Y =           |                   |
|                                                      | Analysis (hrs     |                              |            | l Dolo                                           | · ·      | مطا            | 00              | Da                               | tor          | min     |     |      | le Lei               | ngı                | n C -                 | - 125.                                           | U             |                   |
| Lane Gro                                             | up Capaci         | ly, Co                       | EB         |                                                  | y, a     | iu i           | _ <u></u><br>WE |                                  | ter          | T       | auc |      | NB                   |                    |                       |                                                  | SB            | •                 |
| Adj. flow rat                                        |                   | 707                          | 7          | 228                                              | -        | <del></del>    | VVL             | <del>,</del> —                   |              | ╁       | Τ.  | 188  |                      | 755                |                       | 717                                              | 1793          | 1                 |
| _                                                    |                   | <del></del>                  | <u></u>    |                                                  |          |                |                 |                                  |              | +       | -   | 215  |                      | 660                |                       |                                                  | 3609          |                   |
| Lane group                                           | cap.              | 605                          | +          | 279                                              | +        |                |                 | -                                |              | ┿       |     |      | _                    |                    |                       | 825                                              |               | <u> </u>          |
| v/c ratio                                            |                   | 1.17                         | -          | 0.82                                             | -        |                | _               | _                                |              | +       |     | 0.8  | <u>-</u> -           | 1.1                |                       | 0.87                                             | 0.50          | 1                 |
| Green ratio                                          |                   | 0.18                         |            | 0.18                                             |          |                |                 |                                  |              | _       | +   | 0.4  | -                    | 0.4                |                       | 0.24                                             | 0.71          |                   |
| Unif. delay o                                        | <u> </u>          | 51.5                         | _          | 49.6                                             |          |                | <u></u>         |                                  |              |         | +   | 32.  | -                    | 35.                |                       | 45.6                                             | 8.1           |                   |
| Delay factor                                         | ·k                | 0.50                         |            | 0.36                                             |          |                |                 |                                  |              |         | '   | 0.4  | 0 (                  | 0.5                | 0                     | 0.40                                             | 0.11          |                   |
| Increm. dela                                         | ay d2             | 92.7                         |            | 17.1                                             |          |                |                 |                                  |              |         |     | 4.2  | 2 8                  | 81.                | 9                     | 9.9                                              | 0.1           |                   |
| PF factor                                            |                   | 1.000                        |            | 1.000                                            |          |                |                 |                                  |              |         | _[a | 0.50 | 06 0                 | 0.50               | 26                    | 0.789                                            | 0.173         |                   |
| Control dela                                         | ny                | 144.2                        |            | 66.6                                             |          |                |                 |                                  |              |         |     | 20.  | 8 1                  | 100                | .1                    | 45.9                                             | 1.5           |                   |
| Lane group                                           | LOS               | F                            |            | E                                                |          |                |                 |                                  |              |         |     | С    |                      | F                  |                       | D                                                | Α             |                   |
| Apprch. dela                                         | ay                | 1.                           | 25.3       | •                                                | $\top$   |                |                 |                                  |              |         | 4   | 3.5  | <u> </u>             |                    |                       |                                                  | 14.2          | •                 |
| Approach L                                           |                   | 1                            | F          |                                                  | T        |                |                 |                                  |              | $\top$  |     | D    |                      |                    |                       |                                                  | В             |                   |
| Intersec. de                                         | <del></del>       |                              | 14.0       |                                                  | $\dashv$ |                |                 | Inf                              | ters         | ectio   |     |      |                      |                    |                       |                                                  | D             | ·                 |
| HCS2000 <sup>TM</sup>                                | J                 | <u> </u>                     |            | рутight © :                                      | 2000 11  | nivers         | ity of E        |                                  |              |         |     |      |                      |                    |                       |                                                  |               | ersion 4.1        |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                |              |       |                |          | SH      | ORT    | REP               | ORT         |          |        |                       |                |          |          |            |
|--------------------------------|--------------|-------|----------------|----------|---------|--------|-------------------|-------------|----------|--------|-----------------------|----------------|----------|----------|------------|
| General Inf                    | ormation     |       |                |          |         |        | Site I            | nformat     | ion      |        |                       |                |          |          |            |
| Analyst                        |              | U     | SAI            |          |         |        | Inters            | ection      | E        | L C    | AMINO                 |                | .@ PLA   | \ZA      |            |
| Agency or C                    |              | U     | SAI            |          |         |        | Area <sup>·</sup> |             |          |        | All of                | DR.<br>her are | as       |          |            |
| Date Perfor<br>Time Period     |              |       | 29/12<br>PEAK  |          |         |        | Jurisc            | liction     |          |        | CAL                   | RLSBA          | .D       |          |            |
|                                |              |       | rcan           |          |         |        | Analy             | sis Yea     | -        | BO.    | .ALT1                 | /NO PI         | ROJEC    | T        |            |
| Volume an                      | d Timing I   | nput  |                |          |         |        |                   |             | <u> </u> |        |                       |                |          |          |            |
|                                |              |       | LT             | EB<br>TH | RT      | LT     | W<br>TH           |             | + [      | Τ_     | NB<br>TH              | RT             | LT       | SB<br>TH | RT         |
| Num. of Lar                    | nes          |       | 1              | 1        | 1       | 1      | 1                 | 1           | 1 2      | _      | 3                     | 0              | 2        | 3        | 0          |
| Lane group                     |              |       | L              | LT       | R       | L      | LT                | . R         | 1        |        | TR                    |                | L        | TR       |            |
| Volume (vpl                    | h)           |       | <u>-</u><br>15 | 5        | 5       | 45     | 10                |             | 30       |        | 1075                  | 46             | 220      | 1475     | 170        |
| % Heavy ve                     |              |       | 1              | 1        | 1       | 1      | 1                 | 1           | 1        |        | 2                     | 1              | 1        | 2        | 1          |
| PHF                            |              |       | 0.95           | 0.95     | 0.95    | 0.95   | 0.9               | 5 0.95      | 0.9      | 5      | 0.95                  | 0.95           | 0.95     | 0.95     | 0.95       |
| Actuated (P                    |              |       | Α              | Α        | Α       | Α      | Α                 | Α           | Α        |        | Α                     | Α              | Α        | Α        | Α          |
| Startup lost                   |              |       | 2.0            | 2.0      | 2.0     | 2.0    | 2.0               |             | 2.0      |        | 2.0                   | <u> </u>       | 2.0      | 2.0      |            |
| Ext. eff. gree<br>Arrival type | en           |       | 2.0<br>4       | 2.0<br>4 | 2.0     | 2.0    | 2.0<br>4          | 2.0         | 2.0      |        | 2.0<br>5              |                | 2.0<br>5 | 2.0<br>5 | ļ          |
| Unit Extensi                   | ion          |       | 3.0            | 3.0      | 3.0     | 3.0    | 3.0               |             | 3.       |        | 3.0                   |                | 3.0      | 3.0      |            |
| Ped/Bike/R                     |              | e     | 5              | 5        | 0       | 5      | 5                 | 0.0         | 5        |        | 5                     | 0              | 5        | 5        | 0          |
| Lane Width                     | · Ort Column |       | 12.0           | 12.0     | 12.0    | 12.0   |                   |             | _        |        | 12.0                  |                | 12.0     | 12.0     |            |
| Parking/Gra                    | de/Parking   |       | Ν              | 0        | N       | N      | 0                 | N           | Ν        |        | 0                     | Ν              | N        | 0        | N          |
| Parking/hr                     |              |       |                |          |         |        |                   |             |          |        |                       |                |          |          |            |
| Bus stops/h                    | r            |       | 0              | 0        | 0       | 0      | 0                 | 0           | C        | }      | 0                     |                | 0        | 0        |            |
| Unit Extensi                   | ion          |       | 3.0            | 3.0      | 3.0     | 3.0    | 3.0               | 3.0         | 3.       | 0      | 3.0                   |                | 3.0      | 3.0      |            |
| Phasing                        | EB Only      | WB    | Only           | 03       | 3       | 0      | 4                 | Excl.       |          |        | ıru & R               | _              | 07       |          | 08         |
| Timing                         | G = 10.0     | G =   |                | G =      |         | G =    |                   | G = 1       | 4.0      |        | = 65.0                |                |          | G =      |            |
| Duration of                    | Y = 5        | Y =   |                | Y =      | :       | Y =    |                   | Y = 5       |          |        | = <i>6</i><br>cle Len | Y =            |          | Y =      |            |
| Lane Gro                       |              |       |                | I Dala   |         | ad I C | ח פר              | otormi      | nati     |        |                       | giii C -       | - 120.   | U        |            |
| Lane GIO                       | up Capa      | l     | EB             | Dela     |         |        | WB                | CLCIIII     | lau      | 011    | NB                    |                | T        | SB       |            |
| Adj. flow rat                  | е.           | 16    | 5              | 5        | 40      |        | 18                | 89          | 32       |        | 1180                  | <u> </u>       | 232      | 1732     |            |
| Lane group                     |              | 149   | 157            | 309      | 149     | -+     | 54                | 373         | 405      |        | 2731                  | +              | 405      | 2704     |            |
| v/c ratio                      |              | 0.11  | 0.03           | 0.02     | 0.2     | -+     | .12               | 0.24        | 0.08     |        | 0.43                  | 1              | 0.57     | 0.64     |            |
| Green ratio                    |              | 0.08  | 0.08           | 0.20     | 0.0     | 8 0    | .08               | 0.24        | 0.12     | <br>?  | 0.54                  |                | 0.12     | 0.54     |            |
| Unif. delay                    | <br>d1       | 50.9  | 50.6           | 38.5     | 51.     | 6 5    | 0.9               | 36.6        | 47.3     | }      | 16.5                  |                | 50.2     | 19.3     |            |
| Delay factor                   | ·k           | 0.11  | 0.11           | 0.11     | 0.1     | 1 0    | .11               | 0.11        | 0.11     | ſ      | 0.11                  | 1              | 0.17     | 0.22     |            |
| Increm. dela                   | ay d2        | 0.3   | 0.1            | 0.0      | 1.0     | ) (    | 0.3               | 0.3         | 0.1      |        | 0.1                   |                | 2.0      | 0.5      |            |
| PF factor                      |              | 1.000 | 1.000          | 1.000    | 1.00    | 00 1.  | 000               | 1.000       | 0.91     | 2      | 0.212                 |                | 0.912    | 0.212    | ?          |
| Control dela                   | яy           | 51.2  | 50.6           | 38.5     | 52.     | 5 5    | 1.3               | 36.9        | 43.2     | ?      | 3.6                   |                | 47.7     | 4,6      |            |
| Lane group                     | LOS          | D     | D              | D        | D       |        | D                 | D           | D        |        | Α                     |                | D        | Α        |            |
| Apprch. dela                   | ay           | 48    | 3.7            |          |         | 42.9   | )                 |             |          | 4      | 1.6                   |                |          | 9.7      |            |
| Approach L                     | os           | ı     | D              |          |         | D      |                   |             |          |        | Α                     |                |          | Α        |            |
| Intersec. de                   | lay          | 9     | .6             |          |         |        | lı                | ntersect    | ion L    | os     |                       |                |          | Α        |            |
| ттопромТМ                      |              | -     |                |          | 2000 11 | _::    | - C E1            | la All Righ | D        | <br>al |                       |                |          |          | ersion 4 1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |             |           |                             |           | SH                     | ORT         | REP            | ORT                                 |               |          |          |                         |                                                  |          |            |
|------------------------------------------------------|-------------|-----------|-----------------------------|-----------|------------------------|-------------|----------------|-------------------------------------|---------------|----------|----------|-------------------------|--------------------------------------------------|----------|------------|
| General Inf                                          | formation   |           |                             |           |                        |             | Site I         | nform                               | atio          | n        |          |                         |                                                  |          |            |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med         | U<br>04/: | SAI<br>SAI<br>29/12<br>PEAK |           |                        |             | Area<br>Juriso | ection<br>Type<br>diction<br>sis Ye |               |          | All of   | DR.<br>her are<br>RLSBA | eas<br>ID                                        |          |            |
| Volume ar                                            | nd Timing I | nput      |                             |           |                        |             |                |                                     |               |          |          |                         |                                                  |          |            |
|                                                      |             |           |                             | EB        |                        | +           | W              |                                     |               |          | NB       | DT                      | <del>                                     </del> | SB       | l n-       |
| Num, of Lar                                          | nes         |           | LT<br>1                     | TH 1      | RT<br>1                | LT<br>1     | Th             | H R                                 | _             | LT<br>2  | TH<br>3  | RT<br>0                 | LT<br>2                                          | TH<br>3  | RT<br>0    |
| Lane group                                           |             |           | L                           | LT        | R                      |             | $\frac{1}{L7}$ |                                     | ,             |          | TR       | Ů                       |                                                  | TR       | -          |
| Volume (vp                                           |             |           | 15                          | 5         | 6                      | 46          | 10             |                                     | _             | 31       | 1075     | 46                      | 220                                              | 1475     | 170        |
| % Heavy v                                            |             |           | 1                           | 1         | 1                      | 1           | 1              | 1                                   | -             | 1        | 2        | 1                       | 1                                                | 2        | 1          |
| PHF                                                  | <u> </u>    |           | 0.95                        |           | 0.95                   | 0.95        | 0.9            | 5 0.9                               | 5             | 0.95     | 0.95     | 0.95                    | 0.95                                             | 0.95     | 0.95       |
| Actuated (P                                          |             |           | Α                           | Α         | Α                      | Α           | Α              | Α                                   |               | Α        | Α        | Α                       | Α                                                | Α        | Α          |
| Startup lost                                         |             |           | 2.0                         | 2.0       | 2.0                    | 2.0         | 2.0            |                                     | _             | 2.0      | 2.0      |                         | 2.0                                              | 2.0      |            |
| Ext. eff. gre                                        | en          |           | 2.0                         | 2.0       | 2.0                    | 2.0         | 2.0            |                                     |               | 2.0      | 2.0      |                         | 2.0                                              | 2.0      |            |
| Arrival type<br>Unit Extens                          |             |           | 4                           | 4         | <i>4</i><br><i>3.0</i> | 3.0         | 4              | 4                                   |               | 5<br>3.0 | <i>5</i> |                         | 5<br>3.0                                         | 5<br>3.0 |            |
| Ped/Bike/R                                           |             |           | 3.0<br>5                    | 3.0<br>5  | 0                      | 5           | 3.0<br>5       | ) 3.<br>0                           |               | 5        | 5.0      | 0                       | 5                                                | 5        | 0          |
| Lane Width                                           | TOR VOIUITI | e         | 12.0                        | 12.0      | 12.0                   | 12.0        | 12.            |                                     | $\overline{}$ | 12.0     | 12.0     | -                       | 12.0                                             | 12.0     | <u> </u>   |
| Parking/Gra                                          | ade/Parking |           | N                           | 0         | N                      | N N         | 0              | <del></del>                         | -             | N        | 0        | N                       | N                                                | 0        | N          |
| Parking/hr                                           | <u> </u>    |           |                             |           |                        |             | ╁              |                                     |               |          |          |                         |                                                  |          |            |
| Bus stops/h                                          | ır          |           | 0                           | 0         | 0                      | 0           | 0              | 0                                   | )             | 0        | 0        |                         | 0                                                | 0        |            |
| Unit Extens                                          | ion         |           | 3.0                         | 3.0       | 3.0                    | 3.0         | 3.0            | 3.                                  | 0             | 3.0      | 3.0      |                         | 3.0                                              | 3.0      |            |
| Phasing                                              | EB Only     | WB        | Only                        | 03        |                        | 04          | 4              | Excl                                | . Le          | ft Th    | ru & R   | Т                       | 07                                               | (        | )8         |
| Timing                                               | G = 10.0    | G =       |                             | G =       |                        | G =         |                | G =                                 |               |          | = 65.0   | G =                     |                                                  | G =      |            |
| Ū                                                    | Y = 5       | Y =       | _                           | Y =       |                        | Y =         |                | Y = :                               | 5             | ,        | = 6      | Y =                     |                                                  | Y =      |            |
| Duration of                                          |             |           |                             |           |                        |             | <u> </u>       |                                     |               |          | cle Len  | gth C =                 | = 120.                                           | 0        |            |
| Lane Gro                                             | up Capa     | city, C   |                             | Dela      | <u>у, а</u><br>Т       |             |                | etern                               | nina<br>T     | ation    | ND       |                         | г                                                |          |            |
|                                                      |             |           | EB                          | 1 .       | +-                     |             | WB             | 1                                   | +             |          | NB       | <u> </u>                |                                                  | SB       | 1          |
| Adj. flow rat                                        |             | 16        | 5                           | 6         | 41                     |             | 18             | 89                                  | -             | 33       | 1180     | -                       | 232                                              | 1732     |            |
| Lane group                                           | cap.        | 149       | 157                         | 309       | 14                     |             | 54             | 373                                 |               | 105      | 2731     |                         | 405                                              | 2704     |            |
| v/c ratio                                            |             | 0.11      | 0.03                        | 0.02      | 0.2                    |             | 12             | 0.24                                | <del>-</del>  | 0.08     | 0.43     |                         | 0.57                                             | 0.64     |            |
| Green ratio                                          |             | 0.08      | 0.08                        | 0.20      | 0.0                    |             | .08            | 0.24                                | 0             | ).12     | 0.54     |                         | 0.12                                             | 0.54     |            |
| Unif. delay                                          | d1          | 50.9      | 50.6                        | 38.5      | 51.                    | 6 50        | 0.9            | 36.6                                | 4             | 7.3      | 16.5     | <u> </u>                | 50.2                                             | 19.3     |            |
| Delay factor                                         | r k         | 0.11      | 0.11                        | 0.11      | 0.1                    | 1 0.        | 11             | 0.11                                | 0             | ).11     | 0.11     |                         | 0.17                                             | 0.22     |            |
| Increm. dela                                         | ay d2       | 0.3       | 0.1                         | 0.0       | 1.0                    | ) (         | 0.3            | 0.3                                 | (             | 0.1      | 0.1      |                         | 2.0                                              | 0.5      |            |
| PF factor                                            |             | 1.000     | 1.000                       | 1.000     | 1.0                    | 00 1.       | 000            | 1.000                               | 0.            | .912     | 0.212    |                         | 0.912                                            | 0.212    | !          |
| Control dela                                         | ay          | 51.2      | 50.6                        | 38.6      | 52.                    | 6 5         | 1.3            | 36.9                                | 4             | 3.2      | 3.6      |                         | 47.7                                             | 4.6      |            |
| Lane group                                           | LOS         | D         | D                           | D         | D                      |             | D              | D                                   |               | D        | Α        |                         | D                                                | Α        |            |
| Apprch. dela                                         | ay          | 48        | 3.3                         |           |                        | 43.0        | )              |                                     |               | 4        | 1.7      |                         |                                                  | 9.7      |            |
| Approach L                                           | os          | - 1       | כ                           |           |                        | D           |                |                                     |               |          | A        |                         |                                                  | Α        |            |
| Intersec. de                                         | lay         | 9         | .7                          |           |                        |             | li             | ntersed                             | ction         | ı LOS    |          |                         |                                                  | Α        |            |
| HC52000 <sup>TM</sup>                                |             |           | Co                          | pyright © | 2000 II                | Iniversity. | of Floric      | la All Di                           | ahta D        | Decerred |          |                         |                                                  | ₹7       | ersion 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                      |                   |             |                             |               | SH          | OR1           | ۲R            | EP        | OF           | ₹T         |          |          |                                |                  |           |           |            |                  |
|------------------------------------------------------|-------------------|-------------|-----------------------------|---------------|-------------|---------------|---------------|-----------|--------------|------------|----------|----------|--------------------------------|------------------|-----------|-----------|------------|------------------|
| General Inf                                          | ormation          |             |                             |               |             |               | Si            | ite Ir    | nfo          | rmati      |          |          |                                |                  |           |           |            |                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med               | U<br>04/    | SAI<br>SAI<br>29/12<br>PEAK |               |             |               | Ar<br>Ju      |           | Тур<br>licti |            |          |          | AMINC<br>All of<br>CAF<br>ALT1 | DR<br>her<br>RLS | are<br>BA | eas<br>D  |            |                  |
| Volume an                                            | d Timing I        | nput        |                             |               |             |               | -             |           |              |            | 11       |          |                                |                  |           |           |            |                  |
|                                                      |                   |             |                             | EB            |             |               |               | W         | _            |            |          |          | NB                             |                  |           |           | SB         |                  |
|                                                      |                   |             | LT                          | TH            | RT          | L.            | $\overline{}$ | Tŀ        | Щ            | RT         | L'       |          | TH                             | R                |           | LT        | TH         | RT               |
| Num. of Lar                                          | ies               |             | 1                           | 1             | 1           | 1             | _             | 1         | _            | 1          | 2        |          | 3                              | 0                |           | 2         | 3          | 0                |
| Lane group                                           |                   |             | L                           | LT            | R           | L             |               | LT        |              | R          | L        |          | TR                             |                  |           | L         | TR         |                  |
| Volume (vpl                                          |                   |             | 330                         | 85            | 125         | 14            | _             | 70        |              | 205        | 16       | 5        | 1825                           | 75               |           | 360       | 1295       | 170              |
| % Heavy v                                            | eh                |             | 1                           | 1             | 1           | 1             |               | 1         | _            | 1          | 1        | _        | 2                              | 1                |           | 1         | 2          | 1                |
| PHF<br>Actuated (P                                   |                   |             | 0.95<br>A                   | 0.95<br>A     | 0.95<br>A   | 0.9<br>A      | _             | 0.95<br>A | ᅴ            | 0.95<br>A  | 0.9<br>A | 5        | 0.95<br>A                      | 0.9<br>A         |           | 0.95<br>A | 0.95<br>A  | 0.95<br>A        |
| Startup lost                                         |                   |             | 2.0                         | 2.0           | 2.0         | 2.0           |               | 2.0       | $\vdash$     | 2.0        | 2.0      | )        | 2.0                            | ┝                |           | 2.0       | 2.0        | <del>  ^ -</del> |
| Ext. eff. gre                                        |                   |             | 2.0                         | 2.0           | 2.0         | 2.0           |               | 2.0       |              | 2.0        | 2.0      |          | 2.0                            | <u> </u>         |           | 2.0       | 2.0        |                  |
| Arrival type                                         |                   |             | 4                           | 4             | 4           | 4             |               | 4         |              | 4          | 5        |          | 5                              |                  |           | 5         | 5          |                  |
| Unit Extens                                          | ion               |             | 3.0                         | 3.0           | 3.0         | 3.0           | )             | 3.0       | )            | 3.0        | 3.0      | )        | 3.0                            |                  |           | 3.0       | 3.0        |                  |
| Ped/Bike/R                                           | ΓOR Volum         | е           | 5                           | 5             | 0           | 5             |               | 5         |              | 0          | 5        |          | 5                              | 0                | )         | 5         | 5          | 0                |
| Lane Width                                           |                   |             | 12.0                        | 12.0          | 12.0        | 12.           | 0             | 12.0      | )            | 12.0       | 12.      | 0        | 12.0                           |                  |           | 12.0      | 12.0       |                  |
| Parking/Gra                                          | de/Parking        |             | Ν                           | 0             | N           | Ν             | _             | 0         |              | Ν          | Ν        |          | 0                              | ٨                | <u> </u>  | N         | 0          | N                |
| Parking/hr                                           |                   |             |                             |               |             |               |               |           |              |            | <u> </u> |          |                                |                  |           |           |            |                  |
| Bus stops/h                                          | r                 |             | 0                           | 0             | 0           | 0             |               | 0         | _            | 0          | 0        |          | 0                              |                  |           | 0         | 0          |                  |
| Unit Extensi                                         | ion               |             | 3.0                         | 3.0           | 3.0         | 3.0           | 2             | 3.0       | )            | 3.0        | 3.0      | )        | 3.0                            |                  |           | 3.0       | 3.0        |                  |
| Phasing                                              | EB Only           | _           | Only                        | 03            | }           |               | 04            |           |              | xcl. L     |          |          | iru & R                        |                  |           | 07        |            | 08               |
| Timing                                               | G = 25.0<br>Y = 5 | G =         |                             | G =           |             | G =           |               |           | _            | 16         |          |          | = <i>50.0</i><br>= <i>6</i>    | _                | G =       |           | G =<br>Y = |                  |
| Duration of                                          | <u> </u>          | Y = 0 :     |                             | Y =           |             | Y =           |               |           | Y            | = 5        |          |          | = o<br>cle Leng                |                  | Y =       |           |            |                  |
| Lane Gro                                             |                   |             |                             | l Dal         | W 2         | nd I          | <u> </u>      | : D       |              | rmir       |          | _        | Ole Len                        | gui              | <u> </u>  | - 100.    | <u> </u>   |                  |
| Laile GIO                                            | up Capa           | l           | EB                          | i Deia        | iy, a       | IIU L         | W             |           | <u> </u>     | <u> </u>   | iaui     | <i>)</i> | NB                             |                  |           | Π         | SB         |                  |
| Adj. flow rat                                        |                   | 215         | 221                         | 132           | 10          | 7             | 120           |           | 2            | 16         | 174      |          | 2000                           | Т                |           | 379       | 1542       | Т                |
| Lane group                                           |                   | 344         | 351                         | 493           | 24          | -             | 256           | _         | ⊢            | 67         | 427      |          | 1939                           | ╁                |           | 427       | 1916       |                  |
|                                                      | cap.              | -           |                             | <del>- </del> | <del></del> |               |               |           | ├            |            | 0.41     |          | 1.03                           | +                |           | 0.89      | 0.80       | _                |
| v/c ratio                                            |                   | 0.63        | 0.63                        | 0.27          | 0.4         |               | 0.4           |           | -            |            |          |          |                                | +                |           | 0.09      | 0.80       |                  |
| Green ratio                                          | 14                | 0.19        | 0.19                        | 0.32          | 0.1         | -             | 0.1           |           | ₩            | -          | 0.12     |          | 0.38                           | +-               |           | ├──       | 35.7       |                  |
| Unif. delay o                                        |                   | 48.2        | 48.2                        | 33.3          | 51.         | _             | 51.           |           | ⊢            |            | 52.6     |          | 40.0                           | +                |           | 56.1      |            | -                |
| Delay factor                                         |                   | 0.21        | 0.21                        | 0.11          | 0.1         | $\rightarrow$ | 0.1           |           | ├            |            | 0.11     |          | 0.50                           | +                |           | 0.41      | 0.35       | _                |
| Increm. dela                                         | ay d2             | 3.5         | 3.6                         | 0.3           | 1.2         | $\overline{}$ | 1.4           |           |              | .7         | 0.6      | _        | 29.0                           | +                |           | 19.7      | 2.6        | +                |
| PF factor                                            | ·                 | 1.000       | 1.000                       | 0.973         | +-          | -             | 1.00          |           | ⊢            |            | 0.90     |          | 0.583                          | ╀                |           | 0.906     | 0.583      |                  |
| Control dela                                         | <del>-</del>      | <i>51.7</i> | 51.8                        | 32.7          | 52.         | $\overline{}$ | 53.0          | _         | ⊢            | _          | 48.3     |          | 52.3                           | +                |           | 70.6      | 23.4       |                  |
| Lane group                                           |                   | D           | D                           | C             | D           |               | D             | ····      |              |            | D        |          | D                              |                  |           | E         | С          | [                |
| Apprch. dela                                         | •                 | -           | 7.4                         |               | $\perp$     | 45            |               |           |              |            |          |          | 2.0                            |                  |           |           | 32.7       |                  |
| Approach L                                           | os                | ı           | 0                           |               |             | E.            |               |           |              |            |          |          | D                              |                  |           | <u> </u>  | С          |                  |
| Intersec. de                                         | lay               | 43          | 3.6                         |               |             |               |               | Ir        | ıteı         | rsectio    | on LC    | S        |                                |                  |           |           | D          |                  |
| HCS2000 <sup>TM</sup>                                |                   |             | Co                          | pyright ©     | 2000 U      | niversi       | ty of         | Florid    | la. A        | All Rights | Reser    | ved      | <u></u>                        |                  |           |           | 7          | ersion 4.1       |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                            |                   |            |                |            | SH        | ORT         | REP             | OR       | RT           |           |               |                           |           |            |                                                  |
|----------------------------|-------------------|------------|----------------|------------|-----------|-------------|-----------------|----------|--------------|-----------|---------------|---------------------------|-----------|------------|--------------------------------------------------|
| General Inf                | ormation          |            |                |            |           |             |                 |          | rmati        | on        |               |                           |           |            |                                                  |
| Analyst<br>Agency or C     |                   | U          | ISAI<br>ISAI   |            |           |             | Inters<br>Area  |          |              | EL        | CAMINO        | D REAL<br>DR.<br>ther are |           | AZA        |                                                  |
| Date Perfor<br>Time Period |                   |            | '29/12<br>PEAK |            |           |             | Juriso<br>Analy | dictio   | on           | ВО        |               | RLSBA                     | D         | СТ         |                                                  |
| Volume an                  | d Timing I        | nput       |                |            |           |             |                 |          |              |           |               |                           |           |            |                                                  |
|                            |                   |            |                | EB         |           |             | W               |          |              |           | NB            |                           |           | SB         |                                                  |
| Num. of Lar                | 205               |            | LT<br>1        | TH<br>1    | RT<br>1   | LT 1        | T1-             | -        | RT<br>1      | LT<br>2   | TH<br>3       | RT<br>0                   | LT<br>2   | TH<br>3    | RT<br>0                                          |
|                            | 100               |            | <del> </del>   |            |           |             | <del>-</del>    | _        |              | +         | +             | 0                         | -         |            | ┼┷                                               |
| Lane group                 | `                 |            | L              | LT         | R         | L           | L7              |          | R            | L         | TR            |                           | L         | TR         | 1                                                |
| Volume (vpl                |                   |            | 330            | 85         | 126       | 145         | 70              |          | 205          | 166       | 1825          | 76                        | 360       | 1295       | 170                                              |
| % Heavy vo                 | en                |            | 1<br>0.95      | 1<br>0.95  | 1<br>0.95 | 0.95        | 0.9             | 5        | 1<br>0.95    | 1<br>0.95 | 2<br>0.95     | 1<br>0.95                 | 1<br>0.95 | 2<br>0.95  | 0.95                                             |
| Actuated (P                | /Δ)               |            | 0.93<br>A      | 0.95<br>A  | 0.95<br>A | 0.95<br>A   | 0.9.            | 7        | 0.95<br>A    | 0.95<br>A | 0.95<br>A     | 0.95<br>A                 | 0.95<br>A | 0.95<br>A  | 0.95<br>A                                        |
| Startup lost               |                   |            | 2.0            | 2.0        | 2.0       | 2.0         | 2.0             | 7        | 2.0          | 2.0       | 2.0           |                           | 2.0       | 2.0        |                                                  |
| Ext. eff. gre              |                   |            | 2.0            | 2.0        | 2.0       | 2.0         | 2.0             | _        | 2.0          | 2.0       | 2.0           |                           | 2.0       | 2.0        | <del>                                     </del> |
| Arrival type               |                   |            | 4              | 4          | 4         | 4           | 4               |          | 4            | 5         | 5             |                           | 5         | 5          |                                                  |
| Unit Extensi               | on                |            | 3.0            | 3.0        | 3.0       | 3.0         | 3.0             | )        | 3.0          | 3.0       | 3.0           |                           | 3.0       | 3.0        |                                                  |
| Ped/Bike/R                 | ΓOR Volum         | e          | 5              | 5          | 0         | 5           | 5               |          | 0            | 5         | 5             | 0                         | 5         | 5          | 0                                                |
| Lane Width                 |                   |            | 12.0           | 12.0       | 12.0      | 12.0        | 12.             | 0        | 12.0         | 12.0      | 12.0          |                           | 12.0      | 12.0       |                                                  |
| Parking/Gra                | de/Parking        |            | Ν              | 0          | N         | N           | 0               |          | Ν            | N         | 0             | Ν                         | N         | 0          | N                                                |
| Parking/hr                 |                   |            |                |            |           |             |                 |          |              |           |               |                           |           |            |                                                  |
| Bus stops/h                | Γ                 |            | 0              | 0          | 0         | 0           | 0               | $\perp$  | 0            | 0         | 0             |                           | 0         | 0          |                                                  |
| Unit Extensi               | on                |            | 3.0            | 3.0        | 3.0       | 3.0         | 3.0             | 2        | 3.0          | 3.0       | 3.0           |                           | 3.0       | 3.0        |                                                  |
| Phasing                    | EB Only           |            | Only           | 03         | 3         | 04          | 1               |          | xcl. L       |           | hru & R       |                           | 07        |            | 80                                               |
| Timing                     | G = 25.0<br>Y = 5 | G =<br>Y = |                | G =<br>Y = |           | G =<br>Y =  |                 | _        | = 16.<br>= 5 |           | = 50.0<br>= 6 | G =<br>Y =                |           | G =<br>Y = |                                                  |
| Duration of                |                   |            |                | •          |           |             |                 | <u> </u> |              |           | /cle Len      |                           |           |            |                                                  |
| Lane Gro                   | · · · · ·         |            |                | l Dela     | av, ar    | nd LC       | S D             | ete      | rmir         |           |               |                           |           |            |                                                  |
|                            | <u> </u>          |            | EB             |            | Ť         |             | WB              |          |              |           | NB            |                           |           | SB         |                                                  |
| Adj. flow rat              | e                 | 215        | 221            | 133        | 10        | 7 1.        | 20              | 21       | 6            | 175       | 2001          |                           | 379       | 1542       |                                                  |
| Lane group                 | сар.              | 344        | 351            | 493        | 247       | 7 2         | 56              | 46       | 7            | 427       | 1939          |                           | 427       | 1916       |                                                  |
| v/c ratio                  |                   | 0.63       | 0.63           | 0.27       | 0.4       | 3 <i>0.</i> | 47              | 0.4      | 16           | 0.41      | 1.03          |                           | 0.89      | 0.80       |                                                  |
| Green ratio                | ٠                 | 0.19       | 0.19           | 0.32       | 0.1       | 4 0.        | 14              | 0.3      | 30           | 0.12      | 0.38          |                           | 0.12      | 0.38       |                                                  |
| Unif. delay o              | 11                | 48.2       | 48.2           | 33.3       | 51        | 3 51        | 1.6             | 37.      | .0           | 52.6      | 40.0          |                           | 56.1      | 35.7       |                                                  |
| Delay factor               | k                 | 0.21       | 0.21           | 0.11       | 0.1       | 1 0.        | 11              | 0.1      | 11           | 0.11      | 0.50          |                           | 0.41      | 0.35       |                                                  |
| Increm. dela               | ıy d2             | 3.5        | 3.6            | 0.3        | 1,2       | ? 1         | .4              | 0.       | 7            | 0.6       | 29.2          |                           | 19.7      | 2.6        |                                                  |
| PF factor                  |                   | 1.000      | 1.000          | 0.973      | 1.00      | 00 1.0      | 000             | 0.9      | 86           | 0.906     | 0.583         |                           | 0.906     | 0.583      | ;                                                |
| Control dela               | У                 | 51.7       | 51.8           | 32.7       | 52.       | 5 53        | 3.0             | 37.      | .2           | 48.4      | 52.5          |                           | 70.6      | 23.4       |                                                  |
| Lane group                 | LOS               | D          | D              | С          | D         |             | ס               | D        | ) ]          | D         | D             |                           | E         | С          |                                                  |
| Apprch. dela               | ay                | 47         | 7.3            |            |           | 45.2        |                 |          |              |           | 52.2          |                           |           | 32.7       |                                                  |
| Approach Lo                | os                | I          | 0              |            |           | D           |                 |          |              |           | D             |                           |           | С          |                                                  |
| Intersec. del              | ay                | 43         | 3.7            |            |           |             | lr              | nter     | sectio       | n LOS     |               |                           |           | D          |                                                  |
| MINOCESTA                  |                   |            | _              |            | 3000 TT   | nivercity ( | 0.774           |          |              | -         |               |                           |           |            | areion 4.1                                       |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

|                                                      |                         |            |                             |            | SH             | ORT F       | REP                                  | <u></u>      | RT        |        |            |                      |                           |        |                                              |            |
|------------------------------------------------------|-------------------------|------------|-----------------------------|------------|----------------|-------------|--------------------------------------|--------------|-----------|--------|------------|----------------------|---------------------------|--------|----------------------------------------------|------------|
| General Inf                                          | ormation                |            |                             |            |                |             | Site Ir                              | ιfo          | rmati     | on     |            |                      |                           |        |                                              |            |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                     | U<br>04/2  | SAI<br>SAI<br>29/12<br>PEAK |            |                | 4           | nterse<br>Area 1<br>Jurisd<br>Analys | Гур<br>ictic | e<br>on   | E      |            | MAR<br>All of<br>CAl | RON I<br>her are<br>RLSBA | eas    | e <b>T</b>                                   |            |
| Volume an                                            | d Timing In             | put        |                             |            |                | I           |                                      |              |           |        |            |                      |                           |        |                                              |            |
|                                                      |                         |            |                             | EB         |                |             | WI                                   | 3            |           | T      |            | NB                   |                           |        | SB                                           |            |
|                                                      |                         |            | ĻΤ                          | TH         | RT             | LT          | TH                                   |              | RT        | Lī     |            | TH                   | RT                        | LT     | TH                                           | RT         |
| Num. of Lar                                          | nes                     |            | 1                           | 2          | 0              | 1           | 2                                    |              | 0         | 2      |            | 3                    | 0                         | 2      | 3                                            | 0          |
| Lane group                                           |                         |            | L                           | TR         |                | L           | TR                                   |              |           | L      |            | TR                   |                           | L      | TR                                           |            |
| Volume (vpl                                          |                         |            | 55                          | 60         | 50             | 105         | 45                                   |              | 115       | 50     |            | 980                  | 35                        | 95     | 1330                                         | 100        |
| % Heavy v                                            | eh                      |            | 1                           | 1          | 1              | 1           | 1                                    | _            | 1         | 1      | _          | 2                    | 1                         | 1      | 2                                            | 1          |
| PHF<br>Actuated (P                                   | /A\                     |            | 0.95                        | 0.95       | 0.95           | 0.95        | 0.98                                 | 긔            | 0.95      | 0.9    |            | 0.95<br>A            | 0.95                      | 0.95   | 0.95                                         | 0.95       |
| Startup lost                                         | <del>'</del>            |            | A<br>2.0                    | 2.0        | Α              | 2.0         | 2.0                                  | $\dashv$     | Α         | 2.0    | $\dashv$   | 2.0                  | <u> </u>                  | 2.0    | 2.0                                          | Α          |
| Ext. eff. gre                                        |                         |            | 2.0                         | 2.0        |                | 2.0         | 2.0                                  | _            |           | 2.0    | _          | 2.0                  |                           | 2.0    | 2.0                                          |            |
| Arrival type                                         |                         |            | 4                           | 4          |                | 4           | 4                                    | 寸            |           | 5      |            | 5                    |                           | 5      | 5                                            |            |
| Unit Extens                                          | ion                     |            | 3.0                         | 3.0        |                | 3.0         | 3.0                                  |              |           | 3.0    | )          | 3.0                  |                           | 3.0    | 3.0                                          |            |
| Ped/Bike/R                                           | TOR Volume              |            | 5                           |            | 0              | 5           |                                      |              | 0         | 5      |            | 5                    | 0                         | 5      | 5                                            | 0          |
| Lane Width                                           |                         |            | 12.0                        | 12.0       |                | 12.0        | 12.0                                 | )            |           | 12.0   | )          | 12.0                 |                           | 12.0   | 12.0                                         |            |
| Parking/Gra                                          | de/Parking              |            | N                           | 0          | N              | N           | 0                                    |              | N         | N      |            | 0                    | Ν                         | N      | 0                                            | Ν          |
| Parking/hr                                           |                         |            |                             |            |                |             |                                      |              |           |        | _          |                      |                           |        |                                              |            |
| Bus stops/h                                          |                         |            | 0                           | 0          |                | 0           | 0                                    |              |           | 0      |            | 0                    |                           | 0      | 0                                            |            |
| Unit Extensi                                         | ion                     |            | 3.0                         | 3.0        |                | 3.0         | 3.0                                  |              |           | 3.0    | )          | 3.0                  |                           | 3.0    | 3.0                                          |            |
| Phasing                                              | Excl. Left              |            | & RT                        | 00         | 3              | 04          | ,                                    | -            | xcl. L    |        |            | u & R                |                           | 07     |                                              | )8         |
| Timing                                               | G = 12.0<br>Y = 5       | G =<br>Y = |                             | G =<br>Y = |                | G =         |                                      |              | = 14      |        | G =<br>Y = | 61.0                 | G =<br>Y =                |        | G =<br>Y =                                   |            |
| Duration of                                          | Lτ = ο<br>Analysis (hrs |            |                             | Υ -        |                | Y =         |                                      | Ţ            | = 5       |        | -          |                      |                           | = 120. |                                              |            |
|                                                      | up Capac                |            |                             | l Del:     | av a           | nd I O      | S Da                                 | te           | rmir      |        | _          | ic con               | 9.110                     | 720.   | <u>.                                    </u> |            |
| Lanc Olo                                             | up Cupuc                | lty, O     | EB                          | or DCI     | 1 <b>y</b> , a |             | VB                                   | <u>, (C</u>  | <u> </u>  | iatic  |            | NB                   |                           | 1      | SB                                           |            |
| Adj. fl <i>o</i> w rat                               | <u> </u>                | 58         | 116                         |            | 11             |             | 68                                   | Г            | _         | 53     | _          | 069                  |                           | 100    | 1505                                         | 1          |
| Lane group                                           |                         | 179        | 334                         |            | 17             | <del></del> | 20                                   | 十            |           | 105    |            | 566                  | -                         | 405    | 2551                                         |            |
| v/c ratio                                            | •                       | 0.32       | 0.35                        | 5          | 0.6            | <del></del> | 52                                   | T            |           | 0.13   | +          | .42                  |                           | 0.25   | 0.59                                         |            |
| Green ratio                                          |                         | 0.10       | 0.10                        | ,          | 0.1            | o o.        | 10                                   | T            | 0         | ).12   | 0          | .51                  |                           | 0.12   | 0.51                                         |            |
| Unif. delay                                          | d1                      | 50.2       | 50.3                        | 3          | 51.            | 8 51        | 1.3                                  |              | 4         | 7.5    | 1          | 8.4                  |                           | 48.2   | 20.7                                         |            |
| Delay factor                                         | ·k                      | 0.11       | 0.11                        |            | 0.2            | 0.          | 13                                   |              | 0         | ).11   | 0          | .11                  |                           | 0.11   | 0.18                                         |            |
| Increm. dela                                         | ay d2                   | 1.1        | 0.6                         |            | 6.4            | 4 1         | .6                                   |              | (         | 0.1    |            | 0.1                  |                           | 0.3    | 0.4                                          | :          |
| PF factor                                            |                         | 1.000      | 1.00                        | 0          | 1.0            | 00 1.0      | 000                                  |              | 0.        | .912   | 0.         | .311                 |                           | 0.912  | 0.311                                        |            |
| Control dela                                         | ıy                      | 51.3       | 51.0                        |            | 58.            | 3 52        | 2.9                                  |              | 4         | 3.5    |            | 5.8                  |                           | 44.3   | 6.8                                          |            |
| Lane group                                           | LOS                     | D          | D                           |            | E              |             | )                                    |              |           | D      |            | Α                    |                           | D      | Α                                            |            |
| Apprch. dela                                         | ay                      |            | 51.1                        |            |                | 55.0        |                                      |              |           |        | 7.6        |                      |                           |        | 9.1                                          |            |
| Approach L                                           | os                      |            | D                           |            |                | Ε           |                                      |              |           |        | Α          |                      |                           |        | Α                                            |            |
| Intersec. de                                         | lay                     | ,          | 14.9                        |            |                |             | In                                   | ter          | sectio    | n LO   | S          |                      |                           |        | В                                            |            |
| WCC22000TM                                           |                         |            | -                           |            | . 2000 1       | niversity o | £ [1]                                | - A1         | 1 Diefete | Dacom. |            |                      | <u> </u>                  |        |                                              | ersion 4.1 |

 $HCS2000^{\text{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                         |                 |                             |                 | SH                  | ORT I  | REP                              | OF           | RT             |         |              |                      |                           |           |          |                                                  |
|------------------------------------------------------|-------------------------|-----------------|-----------------------------|-----------------|---------------------|--------|----------------------------------|--------------|----------------|---------|--------------|----------------------|---------------------------|-----------|----------|--------------------------------------------------|
| General Inf                                          | ormation                |                 |                             |                 |                     |        |                                  | _            | rmati          | ion     |              |                      |                           |           |          |                                                  |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med<br>1                | U<br>04/2<br>AM | SAI<br>SAI<br>29/12<br>PEAK |                 |                     |        | nters<br>Area<br>Jurisd<br>Analy | Гур<br>licti | е              | В       |              | MAR<br>All of<br>CAI | RON F<br>her are<br>RLSBA | as        | CT       |                                                  |
| Volume an                                            | d Timing In             | put             |                             |                 |                     |        |                                  |              |                |         |              |                      | _                         |           |          |                                                  |
|                                                      |                         |                 | LT                          | EB<br>TH        | RT                  | LT     | W:                               | _            | RT             | ╁       | <del>-</del> | NB<br>TH             | RT                        | l<br>I LT | SB<br>TH | RT                                               |
| Num. of Lar                                          | nes                     |                 | 1                           | 2               | 0                   | 1      | 2                                | _            | 0              |         |              | 3                    | 0                         | 2         | 3        | 0                                                |
| Lane group                                           |                         |                 | L                           | TR              | <del>ٺ</del>        | L      | TR                               | ,            | Ů              |         |              | TR                   | -                         | L         | TR       | +                                                |
| Volume (vpl                                          | h)                      |                 | 55                          | 63              | 50                  | 114    | 55                               |              | 117            | 50      |              | 980                  | 39                        | 97        | 1330     | 100                                              |
| % Heavy v                                            |                         |                 | 1                           | 1               | 1                   | 1      | 1                                |              | 1              | 1       |              | 2                    | 1                         | 1         | 2        | 1                                                |
| PHF                                                  |                         |                 | 0.95                        | 0.95            | 0.95                | 0.95   | 0.9                              | 5            | 0.95           | 0.9     | 5            | 0.95                 | 0.95                      | 0.95      | 0.95     | 0.95                                             |
| Actuated (P                                          |                         |                 | Α                           | Α               | Α                   | Α      | Α                                |              | Α              | Α       |              | Α                    | Α                         | Α         | Α        | Α                                                |
| Startup lost                                         |                         |                 | 2.0                         | 2.0             |                     | 2.0    | 2.0                              |              |                | 2.      |              | 2.0                  |                           | 2.0       | 2.0      |                                                  |
| Ext. eff. gre                                        | en                      |                 | 2.0                         | 2.0             |                     | 2.0    | 2.0                              | •            |                | 2.      |              | 2.0                  | <u> </u>                  | 2.0       | 2.0      |                                                  |
| Arrival type Unit Extens                             | ion                     |                 | <i>4</i><br>3.0             | <i>4</i><br>3.0 |                     | 3.0    | 3.0                              | ,            |                | 5<br>3. | _            | 5<br>3.0             |                           | 5<br>3.0  | 5<br>3.0 | $\vdash$                                         |
|                                                      | ΓOR Volume              |                 | 5                           | 3.0             | 0                   | 5.0    | 3.0                              | -            | 0              | 5       |              | 5.0                  | 0                         | 5         | 5        | 0                                                |
| Lane Width                                           | . Or volumo             |                 | 12.0                        | 12.0            | Ť                   | 12.0   | 12.0                             | )            | <u> </u>       | 12.     |              | 12.0                 | Ť                         | 12.0      | 12.0     | <del>l                                    </del> |
| Parking/Gra                                          | de/Parking              |                 | N                           | 0               | N                   | N      | 0                                |              | N              | ٨       | 1            | 0                    | Ν                         | N         | 0        | N                                                |
| Parking/hr                                           |                         |                 |                             |                 |                     |        |                                  |              |                |         |              |                      |                           |           |          |                                                  |
| Bus stops/h                                          | r                       |                 | 0                           | 0               |                     | 0      | 0                                |              |                | C       | )            | 0                    |                           | 0         | 0        |                                                  |
| Unit Extensi                                         | ion                     |                 | 3.0                         | 3.0             |                     | 3.0    | 3.0                              | )            |                | 3.      | 0            | 3.0                  |                           | 3.0       | 3.0      |                                                  |
| Phasing                                              | Excl. Left              |                 | & RT                        | 03              | 3                   | 04     |                                  |              | xcl. L         |         |              | ru & R               |                           | 07        |          | 08                                               |
| Timing                                               | G = 12.0<br>Y = 5       | G =             |                             | G =             |                     | G =    |                                  |              | = 14           | .0      |              | = 61.0               |                           |           | G =      |                                                  |
| Duration of                                          | Γγ = ο<br>Analysis (hrs | Y = 0.2         |                             | Υ =             |                     | Y =    |                                  | Υ            | = 5            |         |              | = 6                  | Y =                       | = 120.    | Y =      |                                                  |
|                                                      | up Capac                |                 |                             | l Dela          | av. aı              | nd I O | S D                              | e te         | rmir           |         |              | JIC LOT              | gui                       | 120.      |          |                                                  |
|                                                      | ap oupuo                | <del>.,</del>   | EB                          |                 | 1, <del>,, u.</del> |        | VB                               | -            | <u> </u>       | 16411   | <u> </u>     | NB                   |                           |           | SB       |                                                  |
| Adj. flow rat                                        | e                       | 58              | 119                         | · -             | 120                 |        | 81                               | Ī            |                | 53      | 1            | 073                  |                           | 102       | 1505     | Т                                                |
| Lane group                                           | <del></del>             | 179             | 334                         | <del></del>     | 179                 |        | 22                               |              | -+             | 405     | -            | 2564                 |                           | 405       | 2551     | +                                                |
| v/c ratio                                            |                         | 0.32            | 0.36                        | _               | 0.6                 |        | 56                               | <del></del>  |                | 0.13    | -            | 0.42                 |                           | 0.25      | 0.59     |                                                  |
| Green ratio                                          |                         | 0.10            | 0.10                        |                 | 0.1                 |        | 10                               |              |                | ).12    | -            | 0. <i>51</i>         |                           | 0.12      | 0.51     |                                                  |
| Unif. delay                                          | 11                      | 50.2            | 50.4                        | _               | 52.                 |        | 1.5                              | ┢            | <del></del>    | 7.5     | -            | 18.4                 |                           | 48.2      | 20.7     | 1                                                |
| Delay factor                                         |                         | 0.11            | 0.11                        | _               | 0.2                 |        | 16                               | t            |                | ).11    |              | 0.11                 |                           | 0.11      | 0.18     |                                                  |
| Increm. dela                                         | <del>.</del>            | 1.1             | 0.7                         | <del></del>     | 9.3                 |        | .2                               | $\vdash$     |                | 0.1     | -            | 0.1                  |                           | 0.3       | 0.4      |                                                  |
| PF factor                                            | <u>,</u>                | 1.000           | -                           |                 | 1.00                |        | 200                              | $\vdash$     | <del></del>    | .912    | -            | 0.311                |                           | 0.912     | 0.311    |                                                  |
| Control dela                                         | ıy                      | 51.3            | 51.1                        | _               | 61.                 |        | 3.7                              | T            |                | 3.5     | -            | 5.8                  |                           | 44.3      | 6.8      | 1                                                |
| Lane group                                           | LOS                     | D               | D                           |                 | E                   |        | )                                | T            |                | D       | +            | Α                    |                           | D         | Α        |                                                  |
| Apprch. dela                                         |                         |                 | 51.1                        |                 |                     | 56.8   | <del></del>                      |              |                |         | 7.6          |                      |                           |           | 9.2      |                                                  |
| Approach L                                           | ·                       |                 | D                           |                 | 1                   | Е      |                                  |              | $\neg \dagger$ |         | Α            |                      |                           |           | Α        |                                                  |
| Intersec. de                                         |                         |                 | 15.4                        |                 | $\dagger$           |        | In                               | ter          | section        | n LC    |              |                      |                           |           | В        |                                                  |
| HC52000TM                                            |                         | <u> </u>        |                             | nvright ©       | 2000 TT             |        |                                  |              |                |         |              |                      |                           | L         |          | ersion 4 1                                       |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

|                                                      |                   |            |                             |            | SH                                               | ORT        | REP                               | OF          | ₹T             |           |            |                      |                          |           |            |            |
|------------------------------------------------------|-------------------|------------|-----------------------------|------------|--------------------------------------------------|------------|-----------------------------------|-------------|----------------|-----------|------------|----------------------|--------------------------|-----------|------------|------------|
| General Inf                                          | ormation          | •          |                             |            |                                                  |            | Site I                            | nfc         | rmat           | ion       |            |                      |                          |           |            |            |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med               | U<br>04/.  | SAI<br>SAI<br>29/12<br>PEAK |            |                                                  |            | Inters<br>Area<br>Juriso<br>Analy | Typ<br>lict | oe<br>ion      | - Е       |            | MAR<br>All ot<br>CAl | RON I<br>her ar<br>RLSB/ | eas       | ST.        |            |
| Volume an                                            | d Timing In       | put        |                             |            |                                                  |            | <u></u>                           |             |                | ,         |            |                      |                          |           | ,          |            |
|                                                      | <del></del>       |            |                             | EB         |                                                  |            | W                                 | В           |                |           |            | NB                   |                          |           | SB         |            |
|                                                      | ,                 |            | LT                          | TH         | RT                                               | LT         | Th                                | 1           | RT             | LT        |            | TH                   | RT                       | LT        | TH         | RT         |
| Num. of Lar                                          | nes               | ,          | 1                           | 2          | 0                                                | 1          | 2                                 |             | 0              | 2         | $\bot$     | 3                    | 0                        | 2         | 3          | 0          |
| Lane group                                           |                   |            | L                           | TR         |                                                  | L          | TF                                | ?           |                | L         |            | TR                   |                          | L         | TR         |            |
| Volume (vpl                                          |                   |            | 330                         | 280        | 110                                              | 150        | 118                               | 5           | 190            | 180       | ) 1        | 545                  | 105                      | 265       | 1100       | 200        |
| % Heavy vo<br>PHF                                    | eh                |            | 1                           | 1          | 1<br>0.95                                        | 1          | 0.9                               | 5           | 0.05           | 0.93      | = +,       | 2<br>).95            | 1<br>0.95                | 0.95      | 2<br>0.95  | 1<br>0.95  |
| Actuated (P                                          | /Δ \              |            | 0.95<br>A                   | 0.95<br>A  | 0.95<br>A                                        | 0.95<br>A  | 0.9                               | 5           | 0.95<br>A      | 0.90<br>A | 2          | ).95<br>A            | 0.95<br>A                | 0.95<br>A | 0.95<br>A  | 0.95<br>A  |
| Startup lost                                         | <del>/ </del>     | · · · · ·  | 2.0                         | 2.0        | <del>                                     </del> | 2.0        | 2.0                               | )           | ⊢←             | 2.0       | +          | 2.0                  |                          | 2.0       | 2.0        |            |
| Ext. eff. gre                                        |                   |            | 2.0                         | 2.0        |                                                  | 2.0        | 2.0                               |             |                | 2.0       |            | 2.0                  |                          | 2.0       | 2.0        |            |
| Arrival type                                         | •                 |            | 4                           | 4          |                                                  | 4          | 4                                 |             |                | 5         |            | 5                    |                          | 5         | 5          |            |
| Unit Extens                                          |                   |            | 3.0                         | 3.0        |                                                  | 3.0        | 3.0                               | )           |                | 3.0       | )          | 3.0                  |                          | 3.0       | 3.0        |            |
|                                                      | ΓΟR Volume        |            | 5                           |            | 0                                                | 5          |                                   |             | 0              | 5         | $\perp$    | 5                    | 0                        | 5         | 5          | 0          |
| Lane Width                                           |                   |            | 12.0                        | 12.0       |                                                  | 12.0       |                                   |             |                | 12.0      | ) 1        | 12.0                 |                          | 12.0      | 12.0       |            |
| Parking/Gra                                          | ide/Parking       |            | N                           | 0          | N                                                | N          | 0                                 |             | Ν              | N         | _          | 0                    | N                        | N         | 0          | N          |
| Parking/hr                                           |                   |            |                             |            |                                                  |            |                                   |             |                |           | _          |                      |                          |           |            |            |
| Bus stops/h                                          |                   |            | 0                           | 0          |                                                  | 0          | 0                                 |             |                | 0         | 4          | 0                    |                          | 0         | 0          |            |
| Unit Extensi                                         |                   | ,          | 3.0                         | 3.0        |                                                  | 3.0        | 3.0                               | _           |                | 3.0       |            | 3.0                  | <u> </u>                 | 3.0       | 3.0        | <u> </u>   |
| Phasing                                              | Excl. Left        |            | & RT                        | 0:         | 3                                                | 04         | 4                                 | _           | Excl. I        |           |            | u & R                |                          | 07        |            | )8         |
| Timing                                               | G = 28.0<br>Y = 5 | G =<br>Y = |                             | G =<br>Y = |                                                  | G =<br>Y = |                                   | _           | i = 18 $i = 5$ |           | G =<br>Y = | 51.0                 | G =                      |           | G =<br>Y = |            |
| Duration of                                          | Analysis (hrs     |            |                             |            |                                                  | <u> </u>   |                                   | <u> </u>    |                |           |            |                      |                          | = 135.    |            |            |
|                                                      | up Capac          |            |                             | l Dela     | av. aı                                           | nd LC      | )S D                              | ete         | ermi           |           | _          |                      |                          |           |            | ***        |
|                                                      |                   |            | EB                          |            | 1                                                |            | WB                                |             | T              |           |            | NB                   |                          |           | SB         |            |
| Adj. flow rat                                        | <del></del> е     | 347        | 411                         |            | 15                                               | 8 3        | 321                               | Τ           |                | 189       | 17         | 737                  |                          | 279       | 1369       |            |
| Lane group                                           |                   | 371        | 508                         | _          | 37                                               |            | 181                               | ╁           |                | 386       |            | 398                  |                          | 386       | 1870       |            |
| v/c ratio                                            |                   | 0.94       | 0.81                        |            | 0.4                                              | 3 0        | .67                               | T           | -              | 0.49      | 0.         | 92                   |                          | 0.72      | 0.73       |            |
| Green ratio                                          |                   | 0.21       | 0.15                        | ;          | 0.2                                              | 1 0        | .15                               | T           |                | 0.11      | 0.         | 38                   |                          | 0.11      | 0.38       |            |
| Unif. delay o                                        | <u></u>           | 52.6       | 55.7                        | ,          | 46.                                              | 5 5        | 4.4                               | T           |                | 56.4      | 39         | 9.9                  |                          | 58.0      | 36.1       |            |
| Delay factor                                         | ·k                | 0.45       | 0.35                        | 5          | 0.1                                              | 1 0        | .24                               | 1           |                | 0.11      | 0.         | 43                   |                          | 0.28      | 0.29       |            |
| Increm. dela                                         | ay d2             | 30.7       | 9.5                         |            | 0.8                                              | 3 3        | 3.5                               |             |                | 1.0       | 7          | .4                   |                          | 6.6       | 1.5        |            |
| PF factor                                            | •                 | 1.000      | 1.00                        | 0          | 1.0                                              | 00 1.      | .000                              |             | (              | 0.917     | 0.         | 595                  |                          | 0.917     | 0.595      |            |
| Control dela                                         | ıy                | 83.3       | 65.1                        | ī          | 47.                                              | 3 5        | 7.9                               |             | ,              | 52.7      | 3          | 1.2                  |                          | 59.7      | 23.0       |            |
| Lane group                                           | LOS               | F          | E                           |            | D                                                |            | E                                 |             |                | D         |            | С                    |                          | Ε         | С          |            |
| Apprch. dela                                         | ау                |            | 73.5                        |            |                                                  | 54.4       | !                                 |             |                | •         | 33.3       |                      |                          |           | 29.2       |            |
| Approach L                                           | os                |            | E                           |            |                                                  | D          |                                   |             |                |           | С          |                      |                          |           | С          |            |
| Intersec. de                                         | lay               |            | 40.3                        |            |                                                  |            | Ir                                | nter        | rsecti         | on LO     | S          |                      |                          |           | D          |            |
| resonaTM                                             |                   |            |                             |            | 2000                                             | niversity  |                                   | 1 4         | II DiaL        | ta Dagas  |            |                      |                          |           |            | ersion 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                             |              |                                                  |             | SH                                               | ORT I        | REPO                                   | DRT          |          |                  |              |                                                  |                  |              |              |
|-------------------------------------------------------|-----------------------------|--------------|--------------------------------------------------|-------------|--------------------------------------------------|--------------|----------------------------------------|--------------|----------|------------------|--------------|--------------------------------------------------|------------------|--------------|--------------|
| General Inf                                           | ormation                    |              |                                                  |             |                                                  |              | Site Ir                                | form         | atio     | n                |              |                                                  |                  |              |              |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med                         | U<br>04/2    | SAI<br>SAI<br>29/12<br>PEAK                      |             |                                                  |              | Interse<br>Area T<br>Jurisdi<br>Analys | ype<br>ction |          |                  | All of       | RON F<br>ther are<br>RLSBA                       | RD.<br>eas<br>.D | ст           |              |
| Volume an                                             | d Timing In                 | put          |                                                  |             |                                                  |              |                                        |              |          |                  |              |                                                  |                  |              |              |
|                                                       |                             |              |                                                  | EB          |                                                  | <b>—</b>     | WE                                     |              |          |                  | NB           |                                                  | <u> </u>         | SB           |              |
| Num. of Lar                                           | 100                         |              | <u>L</u> T<br>1                                  | TH<br>2     | RT<br>0                                          | LT<br>1      | TH<br>2                                | +            | <u>Υ</u> | LT<br>2          | TH<br>3      | RT<br>0                                          | LT<br>2          | TH<br>3      | RT<br>0      |
|                                                       |                             |              | L                                                | TR          | H                                                |              | TR                                     | +            |          | L                | TR           |                                                  |                  | TR           | <del>Ľ</del> |
| Lane group<br>Volume (vpl                             | 2)                          | -            | 330                                              | 1K<br>291   | 110                                              | 155          | 121                                    | 19           | 12       | 180              | 1545         | 116                                              | 267              | 1100         | 200          |
| % Heavy ve                                            |                             |              | 1                                                | 1           | 1                                                | 100          | 1                                      | 18           |          | 100              | 2            | 1                                                | 1                | 2            | 1            |
| PHF                                                   | <u> </u>                    |              | 0.95                                             | 0.95        | 0.95                                             | 0.95         | 0.95                                   |              |          | 0.95             | 0.95         | 0.95                                             | 0.95             | 0.95         | 0.95         |
| Actuated (P                                           | /A)                         |              | Α                                                | Α           | Α                                                | Α            | A                                      | 1            |          | Α                | Α            | Α                                                | Α                | Α            | Α            |
| Startup lost                                          |                             |              | 2.0                                              | 2.0         |                                                  | 2.0          | 2.0                                    |              |          | 2.0              | 2.0          |                                                  | 2.0              | 2.0          |              |
| Ext. eff. gree                                        | en                          |              | 2.0                                              | 2.0         | <u> </u>                                         | 2.0          | 2.0                                    | _            |          | 2.0              | 2.0          |                                                  | 2.0              | 2.0          |              |
| Arrival type                                          | ·                           |              | 4                                                | 4           |                                                  | 4            | 4                                      | +            |          | 5                | 5            |                                                  | 5                | 5            |              |
| Unit Extensi                                          |                             |              | 3.0                                              | 3.0         | _                                                | 3.0          | 3.0                                    | +-           |          | 3.0              | 3.0          |                                                  | 3.0              | 3.0          |              |
| Ped/Bike/Ri<br>Lane Width                             | ΓOR Volume                  |              | 5<br>12.0                                        | 12.0        | 0                                                | 5<br>12.0    | 12.0                                   |              | ,        | 5<br>12.0        | 5<br>12.0    | 0                                                | 5<br>12.0        | 5<br>12.0    | 0            |
| Parking/Gra                                           | de/Parking                  |              | 12.0<br>N                                        | 0           | N                                                | N 12.0       | 0                                      | _            | V        | 12.0<br>N        | 0            | N                                                | N                | 0            | N            |
| Parking/hr                                            | a or arming                 |              | <del>-                                    </del> |             | <del>                                     </del> | + :-         | <del>  </del>                          | <u> </u>     | -        | <u> </u>         | <u> </u>     | <u> </u>                                         | † · ·            |              |              |
| Bus stops/h                                           | r                           |              | 0                                                | 0           |                                                  | 0            | 0                                      | $\top$       |          | 0                | 0            |                                                  | 0                | 0            |              |
| Unit Extensi                                          |                             |              | 3.0                                              | 3.0         |                                                  | 3.0          | 3.0                                    | 1            |          | 3.0              | 3.0          |                                                  | 3.0              | 3.0          |              |
| Phasing                                               | Excl. Left                  | Thru         | & RT                                             | 03          | 3                                                | 04           | 1                                      | Exc          | l. Le    | eft T            | hru & R      | Т                                                | 07               |              | )8           |
| Timing                                                | G = 28.0                    | G=           |                                                  | G =         |                                                  | G =          |                                        | G =          |          |                  | = 51.0       |                                                  |                  | G =          |              |
| Ū                                                     | Y = 5                       | Y =          | _                                                | Y =         |                                                  | Y =          |                                        | Y =          | 5        |                  | = 6          | Y =                                              |                  | Y =          |              |
|                                                       | Analysis (hrs               |              |                                                  | <u> </u>    |                                                  |              | <u> </u>                               |              |          |                  | /cle Len     | gtn C =                                          | = 735.           | 0            |              |
| Lane Gro                                              | up Capac                    | ity, C       |                                                  | ol Dela     | ay, a                                            |              |                                        | terr         | nin      | atior            |              |                                                  |                  | CD.          |              |
| A 12 (II                                              |                             | 0.47         | EB                                               |             | -                                                |              | VB                                     | Γ            | +        | 00               | NB           | Ι                                                | 004              | SB           |              |
| Adj. flow rat                                         |                             | 347          | 422                                              | <del></del> | 16                                               | -            | 29                                     |              | +        | 89               | 1748         |                                                  | 281              | 1369         | <u> </u>     |
| Lane group                                            | cap.                        | 371          | 509                                              | _           | 37                                               |              | 82                                     |              | +-       | 86               | 1896         |                                                  | 386              | 1870         |              |
| v/c ratio                                             | "."                         | 0.94         | 0.83                                             | _           | 0.4                                              |              | .68                                    |              |          | 49               | 0.92         |                                                  | 0.73             | 0.73<br>0.38 | +            |
| Green ratio                                           | J.4                         | 0.21         | 0.15                                             | <del></del> | 0.2                                              |              | .15                                    |              |          | 11               | 0.38         |                                                  | 0.11<br>58.0     | 36.1         |              |
|                                                       |                             | 52.6         | _                                                | <del></del> | 46.                                              | <del></del>  | 4.5                                    |              | +        | 5.4              | 40.1         |                                                  | 0.29             | 0.29         | -            |
| •                                                     |                             | 0.45<br>30.7 |                                                  | -           | 0.1                                              |              | .25<br>3.9                             |              | +-       | 11<br>.0         | 0.44<br>8.0  | ╂                                                | 6.8              | 1.5          |              |
| PF factor                                             | ay factor k<br>em. delay d2 |              |                                                  | _           | 1.0                                              |              | 000                                    |              | +-       |                  | 0.595        | 1                                                | 0.8              | 0.595        | +            |
| Control dela                                          |                             | 1.00<br>66.8 | _                                                | 47.         | -+                                               | 8. <i>4</i>  | $\vdash$                               | ┿            | 2.7      | 31.9             | <del> </del> | 60.0                                             | 23.0             |              |              |
| Lane group                                            | -                           | 83.3<br>F    | E                                                | <u> </u>    | D D                                              |              | 6.4<br>E                               |              | +        | <u>2.7</u><br>D  | C C          | <del> </del>                                     | E                | C            | +            |
| Apprch. dela                                          |                             | -            | 74.3                                             |             | +-                                               | 54.8         | _                                      | <u> </u>     | +        |                  | 3.9          | 1                                                |                  | 29.3         |              |
| Approach Lo                                           |                             |              |                                                  | ╁           | D D                                              |              |                                        |              |          | <del></del><br>C |              |                                                  | C                |              |              |
| Intersec. de                                          |                             |              |                                                  |             | <u>.</u>                                         | In           | terse                                  | ctio         | n LOS    |                  |              | <del>                                     </del> | D                |              |              |
| HCS2000 <sup>TM</sup>                                 | ı w y                       | <u> </u>     | 40.9                                             | onunioht @  | 3000 1                                           | niversity of |                                        |              |          |                  |              |                                                  | <u> </u>         |              | ersion 4.1   |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                 |            |                             |            | SH        | ORT        | RE               | PO                               | RT              |                |                 |                                             |                             |                       |                                       |                |
|------------------------------------------------------|-----------------|------------|-----------------------------|------------|-----------|------------|------------------|----------------------------------|-----------------|----------------|-----------------|---------------------------------------------|-----------------------------|-----------------------|---------------------------------------|----------------|
| General Inf                                          | ormation        |            |                             |            |           |            | Site             | e Inf                            | orma            | itio           | n               |                                             |                             |                       | · · · · · · · · · · · · · · · · · · · |                |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med             | U-<br>04/2 | SAI<br>SAI<br>29/12<br>PEAK |            |           |            | Are:<br>Juri:    | ersec<br>a Ty<br>isdic<br>alysis | /ре             | ar             |                 | EL CAM<br>CARLS<br>All ot<br>CARLS<br>.ALT1 | SBAD \<br>her are<br>BAD-II | VILL.<br>eas<br>NT.#6 | :T                                    |                |
| Volume an                                            | d Timing In     | put        |                             |            |           |            |                  |                                  |                 |                | •               |                                             |                             |                       |                                       |                |
|                                                      |                 |            | —                           | EB         |           | +          |                  | WB                               | 1               | _              | 1 =             | NB                                          |                             | <b> </b>              | SB                                    | _ <del></del>  |
| Num. of Lar                                          |                 |            | LT                          | TH<br>2    | RT<br>0   | LT<br>1    | ╬                | TH<br>2                          | R               | _              | <u>L</u> T<br>1 | TH<br>3                                     | RT<br>0                     | LT<br>1               | TH<br>3                               | RT<br>0        |
|                                                      |                 |            | 1                           |            | "         |            | -                |                                  | + "             | $\dashv$       |                 |                                             |                             | <del></del>           |                                       |                |
| Lane group                                           |                 |            | L                           | TR         | 00        | L 70       |                  | TR                               | 4.4             | _              | L               | TR                                          | 00                          | L 405                 | TR                                    | 0.5            |
| Volume (vpl<br>% Heavy v                             |                 |            | 130                         | 110        | 60        | 70<br>1    | +                | 550<br>1                         | 140             | <del>'  </del> | 40<br>1         | 895<br>2                                    | 20<br>1                     | 105<br>1              | 1315<br>2                             | 65<br>1        |
| PHF                                                  | CII             |            | 0.95                        | 0.95       | 0.95      | 0.95       | 5 0              | ).95                             | 0.9             | 5              | 0.95            | 0.95                                        | 0.95                        | 0.95                  | 0.95                                  | 0.95           |
| Actuated (P                                          | /A)             |            | A                           | A          | A         | A          | _                | A                                | A               | _              | A               | A                                           | Α                           | A                     | A                                     | A              |
| Startup lost                                         | time            |            | 2.0                         | 2.0        |           | 2.0        | 2                | 2.0                              |                 |                | 2.0             | 2.0                                         |                             | 2.0                   | 2.0                                   |                |
| Ext. eff. gre                                        | en              |            | 2.0                         | 2.0        |           | 2.0        |                  | 2.0                              |                 | 耳              | 2.0             | 2.0                                         |                             | 2.0                   | 2.0                                   |                |
| Arrival type                                         |                 |            | 4                           | 4          | <u> </u>  | 4          | -                | 4                                | +               | 4              | 5               | 5                                           |                             | 5                     | 5                                     | <u> </u>       |
| Unit Extens                                          |                 |            | 3.0                         | 3.0        |           | 3.0        | 1                | 3.0                              | <u> </u>        | _              | 3.0             | 3.0                                         |                             | 3.0                   | 3.0                                   |                |
|                                                      | TOR Volume      |            | 5<br>12.0                   | 12.0       | 0         | 5<br>12,0  | +                | 2.0                              | 0               | -              | 5<br>12.0       | 5<br>12.0                                   | 0                           | 5<br>12.0             | 5<br>12.0                             | 0              |
| Lane Width<br>Parking/Gra                            | do/Darkina      |            | 12.0<br>N                   | 0          | N         | 12.0<br>N  | <del>'   '</del> | 0                                | $\frac{1}{N}$   |                | 12.0<br>N       | 0                                           | N                           | 12.0<br>N             | 0                                     | N              |
|                                                      | de/Parking      |            | 14                          | -0         | /V        | - /v       | ┿                | U                                | <del>  /v</del> | $\dashv$       | /1              | 10                                          | /\                          | 1 /                   | U                                     | 174            |
| Parking/hr                                           |                 |            | 0                           | 0          |           | 0          | ╬                | 0                                | +               | ┥              | 0               | 0                                           |                             | 0                     | 0                                     |                |
| Unit Extens                                          | ıs stops/hr     |            |                             | 3.0        |           | 3.0        | _                | 3.0                              | +-              | -              | 3.0             | 3.0                                         |                             | 3.0                   | 3.0                                   | <del> </del>   |
| Phasing                                              | Excl. Left      | Thru       | 3.0<br>& RT                 | 3.0        | <u></u>   |            | <u> </u>         |                                  | Excl.           | Lof            |                 | iru & R                                     | <u> </u><br>T               | 07                    | <u> </u>                              | 1<br>08        |
| Ť                                                    | G = 17.0        | G =        |                             | G =        | )         | G =        | ) <del>'4</del>  | _                                | G = '           |                |                 | = 48.0                                      |                             |                       | G =                                   | <del>/</del> 0 |
| Timing                                               | Y = 5           | Y =        |                             | Y =        |           | Y =        |                  |                                  | $Y = \xi$       |                |                 | = 6                                         | Y =                         |                       | Y =                                   |                |
| Duration of                                          | Analysis (hrs   | (0.2)      | 25                          |            |           |            |                  |                                  |                 |                | Су              | cle Len                                     | gth C =                     | = 130.                | 0                                     |                |
| Lane Gro                                             | up Capaci       | ity, C     | ontro                       | l Dela     | ay, a     | nd L0      | OS               | Det                              | term            | iina           | ation           |                                             |                             |                       |                                       | •              |
|                                                      |                 |            | EB                          |            |           |            | WB               |                                  |                 |                |                 | NB                                          |                             |                       | SB                                    |                |
| Adj. flow rat                                        | :e              | 137        | 179                         |            | 74        | 1          | 726              |                                  |                 | 42             | 2               | 963                                         |                             | 111                   | 1452                                  |                |
| Lane group                                           | cap.            | 234        | 783                         |            | 23        | 4          | 801              |                                  |                 | 19             | 2               | 1867                                        |                             | 192                   | 1859                                  | 1              |
| v/c ratio                                            |                 | 0.59       | 0.23                        |            | 0.3       | 2 (        | 0.91             | $\dashv$                         |                 | 0.2            | 22              | 0.52                                        | 1                           | 0.58                  | 0.78                                  | $\top$         |
| Green ratio                                          |                 | 0.13       | 0.23                        | 3          | 0.1       | 3 (        | 0.23             |                                  |                 | 0.1            | 11              | 0.37                                        |                             | 0.11                  | 0.37                                  | 1              |
| Unif. delay                                          | d1              | 53.2       | 40.6                        | ;          | 51.       | 2 4        | 18.6             | 一                                |                 | 53.            | .0              | 31.9                                        |                             | 55.2                  | 36.3                                  | 1              |
| Delay factor                                         | r k             | 0.18       | 0.11                        | ,          | 0.1       | 1 (        | 0.43             |                                  |                 | 0.1            | 11              | 0.12                                        |                             | 0.17                  | 0.33                                  | 1              |
| Increm. dela                                         | ay d2           | 3.8        | 0.1                         |            | 0.8       | 3 3        | 14.0             |                                  |                 | 0.             | 6               | 0.3                                         |                             | 4.3                   | 2.2                                   |                |
| PF factor                                            |                 | 1.000      | 1.00                        | 0          | 1.0       | 00 1       | .000             | 0                                |                 | 0.9            | 20              | 0.610                                       |                             | 0.920                 | 0.610                                 |                |
| Control dela                                         | эy              | 56.9       | 40.8                        | 3          | 52.       | 0 6        | 62.6             |                                  |                 | 49             | .3              | 19.7                                        |                             | 55.0                  | 24.4                                  |                |
| Lane group                                           | ane group LOS E |            | D                           |            | D         |            | Ε                |                                  |                 | D              | )               | В                                           |                             | E                     | С                                     |                |
| Apprch. del                                          | pprch. delay    |            |                             |            |           | 61.        | 6                |                                  |                 |                | 21              | .0                                          |                             |                       | 26.6                                  |                |
| Approach L                                           | os              |            | D                           |            |           | Ε          |                  |                                  |                 |                | C               | )                                           |                             |                       | С                                     |                |
| Intersec. de                                         | lay             | ,          | 34.5                        |            |           |            |                  | Inte                             | ersec           | tion           | LOS             |                                             |                             |                       | С                                     |                |
| HC52000TM                                            |                 |            | C                           | opyright © | √ 2000 T. | Iniversity | of Eld           | orida                            | All Die         | thte P         | acerted.        |                                             |                             |                       | v                                     | ersion 4.      |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |            |                             |            | SH               | ORT        | REP                               | OF              | ₹T        |            |           |                          |                      |             |           |             |
|------------------------------------------------------|------------------------|------------|-----------------------------|------------|------------------|------------|-----------------------------------|-----------------|-----------|------------|-----------|--------------------------|----------------------|-------------|-----------|-------------|
| General Inf                                          | ormation               |            | •                           |            |                  |            | Site I                            | nfc             | ormat     | tion       |           |                          |                      |             |           |             |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                    | U<br>04/2  | SAI<br>SAI<br>29/12<br>PEAK |            |                  |            | Inters<br>Area<br>Juriso<br>Analy | Ty <sub>l</sub> | pe<br>ion | r <i>E</i> | į         | CARLS<br>All of<br>CARLS | SBAD<br>her a<br>BAD |             |           |             |
| Volume an                                            | ıd Timing İn           | put        |                             |            |                  |            |                                   |                 |           |            |           |                          |                      |             |           |             |
|                                                      |                        |            |                             | EB         |                  |            | W                                 |                 |           |            |           | NB                       |                      |             | SB        |             |
|                                                      |                        |            | LT                          | TH         | RT               | LT         | TI                                |                 | RT        | _          | <u>.T</u> | TH                       | RT                   | LT          | TH        | RT          |
| Num. of Lar                                          | nes                    |            | 1                           | 2          | 0                | 1          | 2                                 |                 | 0         |            |           | 3                        | 0                    | 1           | 3         | 0           |
| Lane group                                           |                        |            | L                           | TR         |                  | L          | TF                                |                 |           | L          |           | TR                       |                      | L           | TR        |             |
| Volume (vpl                                          |                        |            | 131                         | 110        | 60               | 71         | 55                                | 1               | 141       | 4          |           | 797                      | 27                   | 106         | 1320      | 69          |
| % Heavy vo                                           | eh                     |            | 1                           | 1<br>0.95  | 1<br>0.95        | 0.95       | 0.9                               | E               | 0.95      | 0.9        |           | 2<br>0.95                | 1<br>0.95            | 1<br>5 0.95 | 2<br>0.95 | 0.95        |
| Actuated (P                                          | /Δ)                    |            | 0.95<br>A                   | 0.95<br>A  | 0.95<br>A        | 0.95<br>A  | 0.9<br>A                          |                 | 0.90<br>A | /          |           | 0.95<br>A                | 0.90<br>A            | 0.95<br>A   | 0.95<br>A | 0.95<br>A   |
| Startup lost                                         |                        |            | 2.0                         | 2.0        | <del>  ^ -</del> | 2.0        | 2.0                               |                 | 1         | 2.         |           | 2.0                      |                      | 2.0         | 2.0       | +~-         |
| Ext. eff. gre                                        |                        |            | 2.0                         | 2.0        |                  | 2.0        | 2.0                               |                 |           | 2.         |           | 2.0                      |                      | 2.0         | 2.0       |             |
| Arrival type                                         |                        | ·          | 4                           | 4          |                  | 4          | 4                                 |                 |           | Ę          | 5         | 5                        |                      | 5           | 5         |             |
| Unit Extens                                          | ion                    |            | 3.0                         | 3.0        |                  | 3.0        | 3.                                | 0               |           | 3.         | 0         | 3.0                      |                      | 3.0         | 3.0       |             |
|                                                      | TOR Volume             |            | 5                           |            | 0                | 5          |                                   |                 | 0         | Ę          |           | 5                        | 0                    | 5           | 5         | 0           |
| Lane Width                                           |                        |            | 12.0                        | 12.0       |                  | 12.0       | 12.                               | 0               |           | 12         |           | 12.0                     |                      | 12.0        | 12.0      |             |
| Parking/Gra                                          | de/Parking             |            | N                           | 0          | N                | N          |                                   | )               | Ν         | ^          |           | 0                        | Ν                    | N           | 0         | N           |
| Parking/hr                                           |                        |            |                             |            |                  |            |                                   |                 |           |            |           |                          |                      |             |           |             |
| Bus stops/h                                          | r                      |            | 0                           | 0          |                  | 0          | 0                                 |                 | L         | (          | )         | 0                        |                      | 0           | 0         |             |
| Unit Extens                                          | ion                    |            | 3.0                         | 3.0        |                  | 3.0        | 3.                                | 0               | <u> </u>  | 3.         | .0        | 3.0                      |                      | 3.0         | 3.0       |             |
| Phasing                                              | Excl. Left             |            | & RT                        | 03         | 3                | 0          | 4                                 | _               | Excl.     |            | _         | ıru & R                  |                      | 07          | _         | 80          |
| Timing                                               | G = 17.0               | G =        |                             | G =        |                  | G =        |                                   | _               | 6 = 1     |            |           | = 48.0                   |                      | =           | G =       |             |
| ·                                                    | Y = 5<br>Analysis (hrs | Y =        |                             | Υ=         |                  | Y =        |                                   | ΙY              | ′ = 5     |            | _         | = 6                      |                      | =<br>= 130  | Y =       |             |
|                                                      |                        |            |                             | l Dale     |                  | - d   C    | 16 D                              |                 | o vma i   | noti       |           |                          | gurc                 | , - 130     | .0        |             |
| Lane Gro                                             | up Capac               | πy, υ<br>Γ |                             |            | ay, a            |            |                                   | eu              | erini     | mau        | OH        |                          |                      | <del></del> | ĆD.       |             |
|                                                      |                        |            | EB                          |            |                  |            | WB                                | _               |           |            |           | NB                       | т—                   | 110         | SB        | 1           |
| Adj. flow rat                                        |                        | 138        | 179                         |            | 75               | _          | 728                               | +               |           | 42         | -         | 867                      |                      | 112         | 1462      |             |
| Lane group                                           | cap.                   | 234        | 783                         |            | 23               | 4 8        | 301                               |                 |           | 192        |           | 1864                     |                      | 192         | 1859      |             |
| v/c ratio                                            |                        | 0.59       | 0.23                        | 3          | 0.3              | 2 0        | ).91                              |                 |           | 0.22       |           | 0.47                     |                      | 0.58        | 0.79      |             |
| Green ratio                                          |                        | 0.13       | 0.23                        | 3          | 0.1              | 3 0        | ).23                              |                 |           | 0.11       |           | 0.37                     |                      | 0.11        | 0.37      |             |
| Unif. delay o                                        | <u>1</u> 1             | 53.2       | 40.6                        | 3          | 51.              | 3 4        | 8.7                               |                 |           | 53.0       |           | 31.2                     |                      | 55.2        | 36.4      |             |
| Delay factor                                         | ·k                     | 0.18       | 0.11                        |            | 0.1              | 1 0        | ).43                              |                 |           | 0.11       |           | 0.11                     |                      | 0.17        | 0.33      |             |
| Increm. dela                                         | ay d2                  | 3.9        | 0.1                         |            | 0.8              | 3 1        | 4.3                               | T               |           | 0.6        |           | 0.2                      |                      | 4.5         | 2.3       |             |
| PF factor                                            | ·                      | 1.000      | 1.00                        | 0          | 1.0              | 00 1.      | .000                              |                 |           | 0.920      | )         | 0.610                    |                      | 0.920       | 0.610     |             |
| Control dela                                         | ay                     | 57.1       | 40.8                        | 3          | 52.              | 1 6        | 32.9                              |                 |           | 49.3       |           | 19.2                     |                      | 55.3        | 24.5      |             |
| Lane group                                           | ane group LOS E        |            |                             |            | D                |            | Ε                                 |                 |           | D          |           | В                        |                      | E           | С         |             |
| Apprch. dela                                         | ay                     |            | 47.9                        |            |                  | 61.9       | )                                 |                 |           |            | 20        | .6                       |                      |             | 26.7      |             |
| Approach L                                           | os                     |            | D                           |            |                  | E          |                                   |                 |           |            | С         | }                        |                      |             | С         |             |
| Intersec. de                                         | lay                    | ,          | 34.9                        |            |                  |            | l:                                | nte             | rsecti    | ion L      | os        |                          |                      |             | С         |             |
| HCS2000 <sup>TM</sup>                                |                        |            | Co                          | opyright © | 2000 I           | Iniversity | of Flori                          | da. A           | All Righ  | its Rese   | rved      |                          |                      |             | 7         | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |           |                             |            | SH               | ORT           | REF                            | O             | RT             |        |           |               |                           |              |            |                                                  |
|------------------------------------------------------|------------------------|-----------|-----------------------------|------------|------------------|---------------|--------------------------------|---------------|----------------|--------|-----------|---------------|---------------------------|--------------|------------|--------------------------------------------------|
| General Inf                                          | ormation               |           |                             |            |                  |               | Site                           | Infe          | orma           | tion   | )         |               |                           |              |            |                                                  |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                    | U<br>04/2 | SAI<br>SAI<br>29/12<br>PEAK |            |                  |               | Inter<br>Area<br>Juris<br>Anal | Ty<br>dict    | ре             | r      |           | CARLS         | SBAD<br>her are<br>BAD-li | VILL.<br>eas | :T         |                                                  |
| Volume an                                            | d Timing In            | put       |                             |            |                  |               |                                |               |                |        |           |               |                           |              |            |                                                  |
|                                                      |                        |           |                             | EB         |                  |               |                                | /B            |                |        |           | NB            |                           |              | SB         |                                                  |
|                                                      |                        |           | LT                          | TH         | RT               | LT            | _                              | <u>H</u>      | RT             | 4      | LT        | TH            | RT                        | LT           | TH         | RT                                               |
| Num. of Lar                                          | nes                    |           | 1                           | 2          | 0                | 1             | 2                              |               | 0              | 4      | 1         | 3             | 0                         | 1            | 3          | 0                                                |
| Lane group                                           |                        |           | L                           | TR         |                  | L             | Tı                             |               | ļ              |        | L         | TR            |                           | L            | TR         |                                                  |
| Volume (vpl                                          |                        |           | 155                         | 280        | 65               | 40            | 22                             |               | 145            | 1      | 110       | 1530          | 65                        | 195          | 1035       | 130                                              |
| % Heavy v                                            | eh<br>                 |           | 1                           | 1          | 1                | 1             | 1                              |               | 1              | +      | 1         | 2             | 1                         | 1            | 2          | 1<br>0.95                                        |
| PHF<br>Actuated (P                                   | /Δ\                    |           | 0.95<br>A                   | 0.95<br>A  | 0.95<br>A        | 0.95<br>A     | 0.9                            | _             | 0.95<br>A      |        | ).95<br>A | 0.95<br>A     | 0.95<br>A                 | 0.95<br>A    | 0.95<br>A  | 0.95<br>A                                        |
| Startup lost                                         |                        |           | 2.0                         | 2.0        | +~               | 2.0           | 2.                             |               | +~             |        | 2.0       | 2.0           | <del>  ^ -</del>          | 2.0          | 2.0        | <del>                                     </del> |
| Ext. eff. gre                                        |                        |           | 2.0                         | 2.0        |                  | 2.0           | 2.                             |               | <b>†</b>       | _      | 2.0       | 2.0           |                           | 2.0          | 2.0        |                                                  |
| Arrival type                                         |                        |           | 4                           | 4          |                  | 4             | 4                              | !             |                |        | 5         | 5             |                           | 5            | 5          |                                                  |
| Unit Extens                                          |                        |           | 3.0                         | 3.0        |                  | 3.0           | 3.                             | 0             |                |        | 3.0       | 3.0           |                           | 3.0          | 3.0        |                                                  |
| Ped/Bike/R                                           | TOR Volume             |           | 5                           |            | 0                | 5             | _                              |               | 0              | _      | 5         | 5             | 0                         | 5            | 5          | 0                                                |
| Lane Width                                           |                        |           | 12.0                        | 12.0       |                  | 12.0          | 12                             | .0            |                | _      | 2.0       | 12.0          |                           | 12.0         | 12.0       |                                                  |
| Parking/Gra                                          | de/Parking             |           | N                           | 0          | N                | N             |                                | 0             | N              |        | N         | 0             | Ν                         | N            | 0          | N                                                |
| Parking/hr                                           |                        |           |                             |            |                  |               |                                |               |                |        |           |               |                           | <u> </u>     |            |                                                  |
| Bus stops/h                                          | r                      |           | 0                           | 0          |                  | 0             | (                              | )             |                |        | 0         | 0             |                           | 0            | 0          |                                                  |
| Unit Extens                                          | ion                    |           | 3.0                         | 3.0        |                  | 3.0           | 3.                             | 0             |                |        | 3.0       | 3.0           |                           | 3.0          | 3.0        |                                                  |
| Phasing                                              | Excl. Left             |           | & RT                        | 0          | 3                |               | 4                              | _             | Excl.          |        |           | ru & R        | _                         | 07           |            | 08                                               |
| Timing                                               | G = 17.0               | G =       |                             | G =        |                  | G =           |                                | _             | 3 = 1<br>( = 5 |        |           | = 48.0<br>= 6 | G =<br>Y =                |              | G =<br>Y = |                                                  |
| Duration of                                          | Y = 5<br>Analysis (hrs | ) = 0 ·   |                             | Y =        |                  | Y =           |                                | <u> </u>      | r = 5          |        | -         |               |                           | = 130.       |            |                                                  |
|                                                      | up Capaci              |           |                             | l Dal      | 3V 3             | nd I (        | 76 L                           | ) o t         | orm            | ina    |           |               | gui O -                   | - 100.       | <u> </u>   |                                                  |
| Laile Gio                                            | up Capaci              | lty, C    | EB                          | n Dei      | <u>ау, а</u><br> |               | WB                             | ,et           | em             | IIIa   | uon       | NB            |                           |              | SB         |                                                  |
| Aut fla mai                                          |                        | 400       |                             |            | -                |               |                                | $\overline{}$ |                | 440    | - L       |               | T                         | 005          |            | <del></del>                                      |
| Adj. flow rat                                        |                        | 163       | 363                         | -          | 42               |               | 385                            | ∔             |                | 116    |           | 1679          |                           | 205          | 1226       | _                                                |
| Lane group                                           | cap.                   | 234       | 803                         |            | 23               |               | 777                            | 4             |                | 192    |           | 1861          |                           | 192          | 1840       |                                                  |
| v/c ratio                                            |                        | 0.70      | 0.45                        | 5          | 0.1              | 8 (           | 0.50                           |               |                | 0.6    | 0         | 0.90          |                           | 1.07         | 0.67       |                                                  |
| Green ratio                                          |                        | 0.13      | 0.23                        | }          | 0.1              | 3 (           | 0.23                           |               |                | 0.1    | 1         | 0.37          |                           | 0.11         | 0.37       |                                                  |
| Unif. delay                                          | d1                     | 54.0      | 42.9                        | )          | 50.              | 3 4           | 13.4                           |               |                | 55.4   | 4         | 38.8          |                           | 58.0         | 34.3       |                                                  |
| Delay factor                                         | · k                    | 0.26      | 0.11                        | '          | 0.1              | 1 (           | ).11                           |               |                | 0.1    | 9         | 0.42          |                           | 0.50         | 0.24       |                                                  |
| Increm. dela                                         | ay d2                  | 8.7       | 0.4                         |            | 0.               | 4             | 0.5                            |               |                | 5.3    | 3         | 6.6           |                           | 84.1         | 0.9        |                                                  |
| PF factor                                            |                        | 1.000     | 1.00                        | 0          | 1.0              | 00 1          | .000                           |               |                | 0.92   | 20 (      | 0.610         |                           | 0.920        | 0.610      |                                                  |
| Control dela                                         | ay                     | 62.8      | 43.3                        |            | 50.              | 7 4           | 13.9                           |               |                | 56.    | 2         | 30.2          |                           | 137.4        | 21.8       |                                                  |
| Lane group                                           | ane group LOS E        |           |                             |            | D                |               | D                              |               |                | Ε      |           | С             |                           | F            | С          |                                                  |
| Apprch. dela                                         | pprch. delay           |           |                             |            |                  | 44.6          | 5                              |               |                |        | 31        | .9            |                           |              | 38.4       |                                                  |
| Approach L                                           | os                     |           | D                           |            |                  | D             |                                |               |                |        | С         | ;             |                           |              | D          |                                                  |
| Intersec. de                                         | lay                    |           | 37.6                        |            |                  |               |                                | nte           | ersect         | ion    | LOS       |               |                           |              | D          |                                                  |
| HCC22000TM                                           |                        |           | C                           | opyright ( | ∌ 2000 T         | Indianoeodtus | of Flor                        | ida           | A 11 Diel      | hta Da | agerrad   |               |                           |              | 32         | ersion 4.                                        |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                     |           | -                           |           | SH             | ORT         | REP                                              | ŌF           | RT                                               | <u></u>  |               |                                              |                 |                        |                       |           |                  |
|------------------------------------------------------|---------------------|-----------|-----------------------------|-----------|----------------|-------------|--------------------------------------------------|--------------|--------------------------------------------------|----------|---------------|----------------------------------------------|-----------------|------------------------|-----------------------|-----------|------------------|
| General Inf                                          | ormation            |           |                             |           |                |             | Site I                                           | _            |                                                  | ion      |               |                                              |                 |                        |                       |           |                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med                 | U<br>04/2 | SAI<br>SAI<br>29/12<br>PEAK |           |                |             | Interse<br>Area <sup>-</sup><br>Jurisd<br>Analys | Гур<br>licti | e<br>ion                                         | · E      | (             | EL CAM<br>CARLS<br>All ot<br>CARLS<br>ALT1/A | SB/<br>he<br>BA | AD \<br>r are<br>\D-II | /ILL.<br>eas<br>VT.#6 | ст        |                  |
| Volume an                                            | ıd Timing inj       | put       |                             |           |                |             |                                                  |              |                                                  |          |               |                                              |                 |                        |                       |           |                  |
|                                                      |                     |           |                             | EB        |                |             | W                                                | _            |                                                  |          |               | NB                                           | _               |                        |                       | SB        |                  |
|                                                      |                     |           | LT                          | TH        | RT             | LT          | TH                                               | Ц            | RT                                               | ┵        |               | TH                                           | -               | ₹T                     | LT                    | TH        | RT               |
| Num. of Lar                                          | nes                 |           | 1                           | 2         | 0              | 1           | 2                                                | _            | 0                                                | 1        |               | 3                                            |                 | 0                      | 1                     | 3         | 0                |
| Lane group                                           |                     |           | L                           | TR        |                | L           | TR                                               |              |                                                  | L        |               | TR                                           |                 |                        | L                     | TR        |                  |
| Volume (vpl                                          |                     |           | 159                         | 280       | 65             | 41          | 221                                              |              | 146                                              | 11       |               | 1536                                         | _               | 6                      | 196                   | 1038      | 132              |
| % Heavy v                                            | eh                  |           | 1                           | 1         | 1              | 1           | 1                                                |              | 1                                                | 1        |               | 2                                            | _               | 1                      | 1                     | 2         | 1                |
| PHF<br>Actuated (P                                   | ///                 |           | 0.95<br>A                   | 0.95<br>A | 0.95<br>A      | 0.95<br>A   | 0.98<br>A                                        | 2            | 0.95<br>A                                        | 0.9<br>A |               | 0.95<br>A                                    | _               | 95<br>4                | 0.95<br>A             | 0.95<br>A | 0.95<br>A        |
| Startup lost                                         |                     |           | 2.0                         | 2.0       | <del>  ^</del> | 2.0         | 2.0                                              |              | А                                                | 2.       |               | 2.0                                          | H               |                        | 2.0                   | 2.0       | <del>  ^ -</del> |
| Ext. eff. gre                                        |                     |           | 2.0                         | 2.0       |                | 2.0         | 2.0                                              | _            |                                                  | 2.       |               | 2.0                                          | ┢               |                        | 2.0                   | 2.0       |                  |
| Arrival type                                         |                     |           | 4                           | 4         |                | 4           | 4                                                |              |                                                  | 5        | j             | 5                                            |                 |                        | 5                     | 5         |                  |
| Unit Extens                                          | ion                 |           | 3.0                         | 3.0       |                | 3.0         | 3.0                                              | )            |                                                  | 3.       | 0             | 3.0                                          |                 |                        | 3.0                   | 3.0       |                  |
|                                                      | TOR Volume          |           | 5                           |           | 0              | 5           |                                                  |              | 0                                                | 5        |               | 5                                            |                 | 0                      | 5                     | 5         | 0                |
| Lane Width                                           |                     |           | 12.0                        | 12.0      |                | 12.0        | 12.0                                             | )            |                                                  | 12       | .0            | 12.0                                         |                 |                        | 12.0                  | 12.0      |                  |
| Parking/Gra                                          | de/Parking          |           | Ν                           | 0         | N              | N           | 0                                                |              | N                                                | ٨        | <u> </u>      | 0                                            | 1               | V                      | N                     | 0         | N                |
| Parking/hr                                           |                     |           |                             |           |                |             |                                                  |              |                                                  |          |               |                                              |                 |                        |                       |           |                  |
| Bus stops/h                                          | r                   |           | 0                           | 0         |                | 0           | 0                                                |              |                                                  | (        | )             | 0                                            |                 |                        | 0                     | 0         |                  |
| Unit Extens                                          | ion                 |           | 3.0                         | 3.0       |                | 3.0         | 3.0                                              | )            |                                                  | 3.       | 0             | 3.0                                          |                 |                        | 3.0                   | 3.0       |                  |
| Phasing                                              | Excl. Left          |           | & RT                        | 03        | 3              | 04          | 4                                                |              | xcl. l                                           |          |               | ıru & R                                      | Т               |                        | 07                    |           | 08               |
| Timing                                               | G = 17.0            | G =       |                             | G =       |                | G =         |                                                  |              | = 14                                             | 4.0      |               | = 48.0                                       |                 | G=                     |                       | G =       |                  |
|                                                      | Y = 5 Analysis (hrs | Y =       |                             | Y =       |                | Y =         |                                                  | Y            | = 5                                              |          | ı.            | = 6<br>cle Len                               | oth             | Y =                    |                       | Y =       |                  |
|                                                      | up Capaci           |           |                             | l Dal     | 31/ 21         |             | )S D                                             | nt.          | rmi                                              |          |               | JIE LEII                                     | yu              | 10-                    | - 750.                | <u></u>   |                  |
| Lane Gro                                             | up Capaci           | ity, C    | EB                          | n Dei     | ay, a          |             | MB                                               | ett          | <del>=                                    </del> | Hati     | UII           | NB                                           |                 |                        |                       | SB        |                  |
| a II 51 /                                            |                     | 40-       |                             |           | +              |             |                                                  | 1            |                                                  |          |               |                                              | _               |                        | 000                   |           | T                |
| Adj. flow rat                                        |                     | 167       | 363                         | -         | 43             | <del></del> | 887                                              | ╀            | -+                                               | 116      | -             | 1686                                         | L               |                        | 206                   | 1232      |                  |
| Lane group                                           | cap.                | 234       | 803                         |           | 23             | 4 7         | 77                                               | <u> </u>     |                                                  | 192      | $\rightarrow$ | 1861                                         | L               |                        | 192                   | 1840      |                  |
| v/c ratio                                            |                     | 0.71      | 0.45                        | 5         | 0.1            | 8 0         | .50                                              |              | (                                                | 0.60     |               | 0.91                                         |                 |                        | 1.07                  | 0.67      |                  |
| Green ratio                                          | ,                   | 0.13      | 0.23                        | 3         | 0.1            | 3 0         | .23                                              |              | 6                                                | 0.11     |               | 0.37                                         |                 |                        | 0.11                  | 0.37      |                  |
| Unif. delay                                          | <b>d</b> 1          | 54.2      | 42.9                        | ,         | 50.            | 3 4         | 3.5                                              |              |                                                  | 55.4     |               | 38.9                                         |                 |                        | 58.0                  | 34.4      |                  |
| Delay factor                                         | k                   | 0.28      | 0.11                        | r         | 0.1            | 1 0         | .11                                              |              | (                                                | 0.19     |               | 0.43                                         |                 |                        | 0.50                  | 0.24      |                  |
| Increm. dela                                         | ay d2               | 9.9       | 0.4                         |           | 0.4            | 4 (         | 0.5                                              |              |                                                  | 5.3      |               | 6.8                                          |                 |                        | 85.7                  | 1.0       |                  |
| PF factor                                            |                     | 1.000     | 1.00                        | 0         | 1.0            | 00 1.       | 000                                              |              | (                                                | 0.920    | (             | 0.610                                        |                 |                        | 0.920                 | 0.610     |                  |
| Control dela                                         | Control delay 64.0  |           | 43.3                        |           | 50.            | 7 4         | 4.0                                              |              |                                                  | 56.2     |               | 30.5                                         |                 |                        | 139.0                 | 21.9      |                  |
| Lane group                                           | ane group LOS E     |           |                             |           | D              |             | D                                                |              |                                                  | Е        |               | С                                            |                 |                        | F                     | С         |                  |
| Apprch. dela                                         | Apprch. delay       |           |                             |           |                | 44.6        | 3                                                |              |                                                  |          | 32.           | 2                                            |                 |                        |                       | 38.7      |                  |
| Approach L                                           | os                  |           | D                           |           |                | D           |                                                  |              |                                                  |          | C             |                                              |                 |                        |                       | D         |                  |
| Intersec. de                                         | lay                 | ,         | 37.9                        |           |                |             | Ir                                               | iter         | secti                                            | on L     | วร            |                                              |                 |                        |                       | D         |                  |
| rrceanonTM                                           |                     |           | -                           |           | - 2000 TI      | niversity   | - 0.101 1.4                                      | ا ما         | II Diak                                          | D        | - د ـ ـ ـ ـ ـ |                                              |                 |                        |                       | X :       | ersion 4.1       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                 |               |                             |             | SH       | ORT                                              | RE           | ΡO                                 | RT         | •        | <u> </u>      |          |                                        |                      |                  |               |              |              |
|------------------------------------------------------|-----------------|---------------|-----------------------------|-------------|----------|--------------------------------------------------|--------------|------------------------------------|------------|----------|---------------|----------|----------------------------------------|----------------------|------------------|---------------|--------------|--------------|
| General Inf                                          | ormation        |               |                             |             |          | •                                                |              | e Info                             |            |          | n             |          |                                        |                      |                  |               |              |              |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med             | U<br>04/      | SAI<br>SAI<br>29/12<br>PEAK |             |          |                                                  | Are<br>Juri  | ersec<br>ea Ty<br>isdict<br>alysis | pe<br>tion |          |               |          | WAYO<br>OR<br>All oth<br>OCE<br>ALT-1/ | O Ri<br>ner a<br>ANS | D.<br>rea<br>IDE | s<br>E        |              |              |
| Volume an                                            | d Timing I      | nput          |                             |             |          |                                                  |              |                                    |            |          |               |          |                                        |                      |                  |               |              |              |
|                                                      |                 |               | <u> </u>                    | EB          |          | <u> </u>                                         |              | WB                                 | ٠.         |          | <u> </u>      |          | NB                                     |                      | _                |               | SB           | Loz          |
| Num. of Lar                                          | 168             |               | LT<br>1                     | TH<br>2     | RT<br>1  | LT<br>2                                          | +            | TH<br>2                            | _          | RT       | L7<br>1       |          | TH<br>2                                | RT<br>0              | ╅                | LT<br>1       | TH<br>2      | RT<br>1      |
|                                                      | 100             |               | L                           | T           | R        |                                                  | $\dashv$     | TR                                 | ╁          |          | L             |          | TR                                     |                      | ┪                |               | T            | R            |
| Lane group<br>Volume (vp                             | h)              |               | 10                          | 40          | 150      | 235                                              | _            | 70                                 | +          | 75       | 200           |          | 500                                    | 200                  | +                | 40            | 1390         | 40           |
| % Heavy v                                            |                 |               | 2                           | 2           | 2        | 2                                                | +            | 2                                  | _          | 2        | 2             | -        | 2                                      | 2                    | $\dashv$         | 2             | 2            | 2            |
| PHF                                                  | <u> </u>        |               | 0.92                        | 0.92        | 0.92     | 0.9                                              | 2 0          | 0.92                               |            | 92       | 0.9.          | 2        | 0.92                                   | 0.92                 | ?                | 0.92          | 0.92         | 0.92         |
| Actuated (P                                          | /A)             |               | Α                           | A           | Α        | Α                                                |              | Α                                  |            | Ā        | Α             |          | Α                                      | Α                    |                  | Α             | Α            | Α            |
| Startup lost                                         | time            |               | 2.0                         | 2.0         | 2.0      | 2.0                                              |              | 2.0                                |            |          | 2.0           | )        | 2.0                                    |                      |                  | 2.0           | 2.0          | 2.0          |
| Ext. eff. gre                                        | en              |               | 2.0                         | 2.0         | 2.0      | 2.0                                              |              | 2.0                                | $\perp$    |          | 2.0           | _        | 2.0                                    |                      | 4                | 2.0           | 2.0          | 2.0          |
| Arrival type                                         |                 |               | 5                           | 5           | 5        | 5                                                | +            | 5                                  | +          |          | 4             | $\dashv$ | 4                                      |                      | 4                | 4             | 4            | 4            |
| Unit Extens<br>Ped/Bike/R                            |                 |               | 3.0<br>5                    | 3.0<br>10   | 3.0<br>0 | 3.0<br>5                                         |              | 3.0<br>10                          | +          | 0        | 3.0<br>5      | _        | 3.0<br>10                              | 0                    | 4                | 3.0<br>5      | 3.0<br>10    | 3.0<br>0     |
| Lane Width                                           | I OR Volum      | е             | 12.0                        | 12.0        | 12.0     | 12.0                                             |              | 12.0                               |            | <i>U</i> | 12.           | 2        | 12.0                                   | 0                    | +                | 12.0          | 12.0         | 12.0         |
| Parking/Gra                                          | de/Parking      | · ··· • · · • | Ν                           | 0           | N        | N                                                |              | 0                                  |            | N        | Ν             |          | 0                                      | N                    | 7                | N             | 0            | N            |
| Parking/hr                                           |                 |               |                             | -           |          | <del>                                     </del> | $\top$       |                                    |            |          |               |          |                                        |                      | †                |               | 1            |              |
| Bus stops/h                                          | r               |               | 0                           | 0           | 0        | 0                                                | 十            | 0                                  | 1          |          | 0             |          | 0                                      |                      | ┪                | 0             | 0            | 0            |
| Unit Extens                                          |                 |               | 3.0                         | 3.0         | 3.0      | 3.0                                              | +            | 3.0                                | 1          |          | 3.0           | ,        | 3.0                                    |                      | 7                | 3.0           | 3.0          | 3.0          |
| Phasing                                              | Excl. Left      | Thru          | & RT                        | 03          | }        | (                                                | )4           |                                    | Exc        | d. Le    | eft           | Th       | ru & R                                 | Γ                    |                  | 07            |              | 08           |
| Timing                                               | G = 9.0         | G =           |                             | G =         |          | G =                                              |              |                                    |            | 17.      |               |          | = 46.0                                 |                      | i =              |               | G =          |              |
|                                                      | Y = 5           | Y =           | -                           | Y =         |          | Y =                                              |              |                                    | <b>Y</b> = | 5        | $\overline{}$ |          | : 5                                    |                      | =                | 400           | Y =          |              |
| Duration of                                          |                 |               |                             | <u> </u>    |          |                                                  | ~~           | D - 4                              |            |          |               |          | le Len                                 | gtn C                | ,=               | 100.          | .U           |              |
| Lane Gro                                             | up Capa         | CITY, C       |                             | Dela        | ay, aı   |                                                  |              |                                    | eri        | min      | atic          |          | 10                                     |                      | 1                |               | - OD         |              |
| A .!! . £!                                           |                 | 44            | EB                          | T400        | 105      |                                                  | WB           |                                    |            | -        |               | _        | IB                                     |                      | $\vdash$         | , I           | SB           | 40           |
| Adj. flow rat                                        |                 | 11            | 43                          | 163         | 25       | -                                                | 158          | -                                  |            | 21       |               | +        | 60                                     |                      | <del> </del>     |               | 1511<br>1632 | 43<br>714    |
| Lane group                                           | cap.            | 159<br>0.07   | 284<br>0.15                 | 457<br>0.36 | 0.8      |                                                  | 254<br>0.62  |                                    |            | 0.7      |               | ⊢        | 553<br>49                              |                      | ⊢                | _             | 0.93         | 0.06         |
| v/c ratio<br>Green ratio                             |                 | 0.07          | 0.13                        | 0.30        | 0.0      |                                                  | 0.02<br>0.08 |                                    |            | 0.7      |               | ┿        | 49<br>46                               |                      | ⊢                | -             | 0.46         | 0.46         |
| Unif. delay                                          | -11             | 41.7          | 42.8                        | 27.4        | 44.      | -                                                | 3.00<br>44.5 | -                                  |            | 39.      |               | ╄        | 3.8                                    |                      | ╄                |               | 25.4         | 15.0         |
| Delay factor                                         |                 | 0.11          | 0.11                        | 0.11        | 0.3      | -+                                               | 9.21         | -                                  |            | 0.2      |               | ┿        | 11                                     |                      | ├                |               | 0.44         | 0.11         |
| Increm. dela                                         |                 | 0.11          | 0.77                        | 0.5         | 16.      | -                                                | 4.7          |                                    |            | 8.2      |               | ╄        | .2                                     |                      | ⊢                | .2            | 9.5          | 0.0          |
| PF factor                                            | .y uz           | 0.934         | 0.942                       | 0.714       |          | -                                                | ).94         |                                    |            | 1.0      |               | +        | 823                                    |                      | ⊢                | $\rightarrow$ | 0.823        | 0.823        |
| Control dela                                         | av              | 39.1          | 40.6                        | 20.1        | 58.      | -+                                               | 46.6         | <del>-</del>                       |            | 47.      |               | +        | 5.7                                    |                      | ╄┈               |               | 30.4         | 12.4         |
|                                                      | ane group LOS D |               |                             | C           | E        | -+                                               | D            | $\dashv$                           |            | D        |               | ╄        | В                                      |                      | ╀┈               | )             | С            | В            |
| Apprch. dela                                         |                 |               | D<br>5.1                    | <u>.l.,</u> | $\top$   | <u> </u>                                         |              |                                    | •          | T        |               | 2.8      |                                        |                      | Г                |               | 30.0         |              |
| Approach L                                           |                 |               | С                           | <del></del> | 1        | D                                                |              |                                    |            | T        |               | С        |                                        |                      |                  |               | С            |              |
| Intersec. de                                         |                 | 30            | 0.6                         |             | $\top$   |                                                  |              | Inte                               | rse        | ction    | LOS           | 3        |                                        |                      |                  |               | С            |              |
| treesonoTM                                           |                 | 1,            | C-                          | nvright @   | 2000 11  | المستحدث                                         | CT1          | nadda                              | A 11 T     | 11-1-4-1 | n             | 1        |                                        |                      | J                |               | ,            | Jersion 4 11 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

|                                                      |                  |              |                             |                | SH              | ORT F         | REP                                  | OR1            | Γ            |          |      |                      |                       |            |                 |             |
|------------------------------------------------------|------------------|--------------|-----------------------------|----------------|-----------------|---------------|--------------------------------------|----------------|--------------|----------|------|----------------------|-----------------------|------------|-----------------|-------------|
| General Inf                                          | ormation         |              |                             |                |                 | S             | ite In                               | forr           | natio        |          |      |                      |                       |            |                 |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med              | U<br>04/.    | SAI<br>SAI<br>29/12<br>PEAK |                |                 | <u>م</u><br>ل | nterse<br>Area T<br>Urisdi<br>Analys | ype<br>ctior   | 1            |          |      | OR<br>All oti<br>OCE | RO RI<br>her a<br>ANS | reas       |                 |             |
| Volume an                                            | d Timing I       | nput         |                             |                |                 |               |                                      |                |              |          |      |                      |                       |            |                 |             |
|                                                      |                  |              |                             | EB             |                 | <b>-</b>      | W                                    |                |              | L.,      | _    | NB                   |                       | 1.=        | SB              | l pr        |
| Num. of Lar                                          | nes              |              | LT<br>1                     | TH<br>2        | RT<br>1         | LT<br>2       | TH                                   |                | RT<br>0      | L'<br>1  |      | TH<br>2              | RT<br>0               | <u>LT</u>  | TH<br>2         | RT 1        |
| Lane group                                           |                  |              | L                           |                | R               |               | TR                                   | +              |              | L        | _    | TR                   | Ť                     | 1          | T               | R           |
| Volume (vpl                                          | n)               |              | 10                          | 40             | 158             | 235           | 70                                   | +              | 75           | 22       |      | 514                  | 200                   | 40         | 1394            | 40          |
| % Heavy ve                                           |                  | <del>.</del> | 2                           | 2              | 2               | 2             | 2                                    | _              | 2            | 2        |      | 2                    | 2                     | 2          | 2               | 2           |
| PHF                                                  |                  |              | 0.92                        | 0.92           | 0.92            | 0.92          | 0.92                                 | 2 0            | .92          | 0.9      | _    | 0.92                 | 0.92                  | 0.92       | 0.92            | 0.92        |
| Actuated (P                                          |                  |              | Α                           | Α              | Α               | Α             | Α                                    | T              | Α            | Α        |      | Α                    | Α                     | Α          | Α               | Α           |
| Startup lost                                         |                  |              | 2.0                         | 2.0            | 2.0             | 2.0           | 2.0                                  | +              |              | 2.0      |      | 2.0                  | <u> </u>              | 2.0        | 2.0             | 2.0         |
| Ext. eff. gree<br>Arrival type                       | <u>en</u>        |              | 2.0<br>5                    | 2.0<br>5       | 2.0<br>5        | 2.0<br>5      | 2.0<br>5                             | +              |              | 2.0<br>4 |      | 2.0<br>4             |                       | 2.0        | 2.0             | 2.0         |
| Unit Extensi                                         | on               |              | 3.0                         | 3.0            | 3.0             | 3.0           | 3.0                                  | $\dashv$       |              | 3.       | -    | 3.0                  |                       | 3.0        | 3.0             | 3.0         |
| Ped/Bike/R                                           |                  | e            | 5                           | 10             | 0.0             | 5             | 10                                   | ╬              | 0            | 5        |      | 10                   | 0                     | 5          | 10              | 0.0         |
| Lane Width                                           |                  |              | 12.0                        | 12.0           | 12.0            | 12.0          | 12.0                                 | <del>,</del> † | <u> </u>     | 12.      |      | 12.0                 | Ť                     | 12.0       | 12.0            | 12.0        |
| Parking/Gra                                          | de/Parking       |              | N                           | 0              | Ν               | N             | 0                                    |                | N            | Ν        | '    | 0                    | Ν                     | N          | 0               | N           |
| Parking/hr                                           |                  |              |                             |                |                 |               |                                      |                |              |          |      |                      |                       |            |                 |             |
| Bus stops/h                                          | <b>r</b>         |              | 0                           | 0              | 0               | 0             | 0                                    |                |              | 0        |      | 0                    |                       | 0          | 0               | 0           |
| Unit Extensi                                         | on               |              | 3.0                         | 3.0            | 3.0             | 3.0           | 3.0                                  |                |              | 3.       | 0    | 3.0                  |                       | 3.0        | 3.0             | 3.0         |
| Phasing                                              | Excl. Left       |              | & RT                        | 03             | 3               | 04            |                                      |                | cl. Le       | -        |      | ru & R               |                       | 07         |                 | 80          |
| Timing                                               | G = 9.0<br>Y = 5 | G =          |                             | G =            |                 | G =           |                                      |                | = <u>17.</u> | 0        |      | = 46.0<br>= 5        | G<br>Y                | =          | G =<br>Y =      | ·           |
| Duration of                                          |                  | Y =          |                             | Y =            |                 | Y =           |                                      | Y =            | 5            | $\dashv$ | -    |                      |                       | =<br>= 100 |                 |             |
| Lane Gro                                             |                  |              |                             | l Dela         | av aı           | nd I O        | S De                                 | ter            | min          |          |      | AC LON               | gare                  | 700        | ,. <del>.</del> |             |
| Lanc Gro                                             | ир Сири          |              | EB                          | Deic           | 1 <b>5</b> , u, |               | /B                                   | , (()          | T            | uur      |      | <br>ИВ               |                       |            | SB              |             |
| Adj. flow rat                                        | <br>e            | 11           | 43                          | 172            | 25              |               | 58                                   |                | 24           | 1        | _    | 76                   | •••                   | 43         | 1515            | 43          |
| Lane group                                           | cap.             | 159          | 284                         | 457            | 30              | 9 28          | 54                                   |                | 30           | 1        | 15   | 554                  | -                     | 301        | 1632            | 714         |
| v/c ratio                                            |                  | 0.07         | 0.15                        | 0.38           | 0.8             | 3 0.          | 62                                   |                | 0.8          | 30       | 0.   | .50                  |                       | 0.14       | 0.93            | 0.06        |
| Green ratio                                          |                  | 0.09         | 0.08                        | 0.30           | 0.0             | 9 0.          | 08                                   |                | 0.1          | 7        | 0.   | 46                   |                       | 0.17       | 0.46            | 0.46        |
| Unif. delay o                                        | l1               | 41.7         | 42.8                        | 27.6           | 44.             | 7 44          | 1.5                                  |                | 39           | .9       | 18   | 8.9                  |                       | 35.3       | 25.4            | 15.0        |
| Delay factor                                         | k                | 0.11         | 0.11                        | 0.11           | 0.3             | 6 0           | 21                                   |                | 0.3          | 34       | 0.   | 11                   |                       | 0.11       | 0.44            | 0.11        |
| Increm. dela                                         | ıy d2            | 0.2          | 0.2                         | 0.5            | 16.             | 5 4.          | .7                                   |                | 14           | .3       | C    | ).3                  |                       | 0.2        | 9.7             | 0.0         |
| PF factor                                            |                  | 0.934        | 0.942                       | 0.714          | 0.93            | 34 0.9        | 942                                  |                | 1.0          | 00       | 0.   | 823                  |                       | 1.000      | 0.823           | 0.823       |
| Control dela                                         | у                | 39.1         | 40.6                        | 20.2           | 58.             | 3 46          | 3.6                                  |                | 54           | 2        | 18   | 5.8                  |                       | 35.5       | 30.7            | 12.4        |
| ane group LOS D                                      |                  |              | D                           | С              | Ε               |               | )                                    |                | E            | )        |      | В                    |                       | D          | С               | В           |
| Apprch. dela                                         | ау               | 25           | 5.0                         |                |                 | 53.8          |                                      |                |              | 2        | 24.9 | )                    |                       |            | 30.3            |             |
| Approach Lo                                          | os               | (            | 0                           | -              |                 | D             |                                      |                |              |          | С    |                      |                       |            | С               |             |
| Intersec. del                                        | ay               | 31           | 1.3                         |                |                 |               | Int                                  | erse           | ction        | LO       | S    |                      |                       |            | С               |             |
| HCS200aTM                                            |                  |              | Co                          | ۔۔<br>ھیا۔۔۔۔۔ | 2000 I          | niversity o   | £Tiorid                              | - A 11         | Diahta       | Daam     | <br> |                      |                       |            |                 | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                    |             |                             |           | SH       | ORT            | R             | EPC                           | )R            | Т      |          |     |                                         |                     |                    |               |             |              |
|------------------------------------------------------|--------------------|-------------|-----------------------------|-----------|----------|----------------|---------------|-------------------------------|---------------|--------|----------|-----|-----------------------------------------|---------------------|--------------------|---------------|-------------|--------------|
| General Inf                                          | ormation           |             |                             |           |          |                | Sit           | te In                         | forr          | natio  |          |     |                                         |                     |                    |               |             |              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                | U<br>04/    | SAI<br>SAI<br>29/12<br>PEAK |           |          |                | Ard<br>Jui    | erse<br>ea T<br>risdi<br>alys | ype<br>ctio   | n      |          |     | A WAY<br>OR<br>All oth<br>OCE<br>ALT-1/ | O R<br>ner a<br>ANS | D.<br>irea<br>IIDE | as<br>E       |             |              |
| Volume an                                            | nd Timing I        | nput        |                             |           |          |                |               |                               |               |        |          |     |                                         |                     |                    |               |             |              |
|                                                      |                    |             |                             | EB        |          |                |               | WE                            | 3             |        |          |     | NB                                      |                     |                    |               | SB          |              |
|                                                      |                    |             | LT                          | TH        | RT       | Ľ              | _             | Ħ                             | ightharpoonup | RT     | L        | Γ   | TH                                      | R                   | Γ                  | LT            | TH          | RT           |
| Num. of Lar                                          | nes                | · · · · · · | 1                           | 2         | 1        | 2              |               | 2                             |               | 0      | 1        |     | 2                                       | 0                   |                    | 1             | 2           | 1            |
| Lane group                                           |                    |             | L                           | T         | R        | L              |               | TR                            |               |        | Ĺ        |     | TR                                      |                     |                    | L             | T           | R            |
| Volume (vp                                           |                    |             | 70                          | 130       | 460      | 400            | 0             | 115                           |               | 185    | 130      | 0   | 1280                                    | 200                 | )                  | 20            | 735         | 60           |
| % Heavy v                                            | eh                 |             | 2                           | 2         | 2        | 2              |               | 2                             | 4             | 2      | 2        | _   | 2                                       | 2                   |                    | 2             | 2           | 2            |
| PHF                                                  | /A\                |             | 0.92                        | 0.92      | 0.92     | 0.9            | 2             | 0.92                          |               | 0.92   | 0.9      | 2   | 0.92                                    | 0.9                 | 2                  | 0.92          | 0.92        | 0.92         |
| Actuated (P<br>Startup lost                          |                    |             | A<br>2.0                    | A<br>2.0  | A<br>2.0 | 2.0            | ,             | A<br>2.0                      | +             | Α      | 2.0      | )   | A<br>2.0                                | Α                   | $\dashv$           | 2.0           | 2.0         | 2.0          |
| Ext. eff. gre                                        |                    |             | 2.0                         | 2.0       | 2.0      | 2.0            | _             | 2.0                           | +             |        | 2.0      | _   | 2.0                                     |                     | $\dashv$           | 2.0           | 2.0         | 2.0          |
| Arrival type                                         |                    |             | 5                           | 5         | 5        | 5              |               | 5                             | 十             |        | 4        |     | 4                                       | ,                   |                    | 4             | 4           | 4            |
| Unit Extens                                          | ion                |             | 3.0                         | 3.0       | 3.0      | 3.0            | $\overline{}$ | 3.0                           | Т             |        | 3,0      | )   | 3.0                                     |                     |                    | 3.0           | 3.0         | 3.0          |
| Ped/Bike/R                                           | TOR Volum          | ie          | 5                           | 10        | 0        | 5              |               | 10                            |               | 0      | 5        |     | 10                                      | 0                   |                    | 5             |             | 0            |
| Lane Width                                           |                    |             | 12.0                        | 12.0      | 12.0     | 12.            | 0             | 12.0                          |               |        | 12.      | 0   | 12.0                                    |                     |                    | 12.0          | 12.0        | 12.0         |
| Parking/Gra                                          | ide/Parking        |             | N                           | 0         | N        | N              |               | 0                             |               | Ν      | N        |     | 0                                       | Ν                   |                    | N             | 0           | Ν            |
| Parking/hr                                           |                    |             |                             |           |          |                |               |                               |               |        |          |     |                                         |                     |                    |               |             |              |
| Bus stops/h                                          | r                  |             | 0                           | 0         | 0        | 0              |               | 0                             | $\Box$        |        | 0        |     | 0                                       |                     |                    | 0             | 0           | 0            |
| Unit Extens                                          | ion                |             | 3.0                         | 3.0       | 3.0      | 3.0            | 7             | 3.0                           |               |        | 3.0      | )   | 3.0                                     |                     |                    | 3.0           | 3.0         | 3.0          |
| Phasing                                              | Excl. Left         | t WB        | Only                        | Thru 8    | ₹ RT     |                | 04            |                               | Ex            | cl. L  | eft      | N   | B Only                                  | _                   |                    | i & R1        |             | 08           |
| Timing                                               | G = 9.0            | G =         |                             | G = 2     |          | G =            |               |                               |               | = 9.0  |          |     | = 9.0                                   |                     |                    | 44.0          | G =         |              |
|                                                      | Y = 5              | Y =         | _                           | Y = 5     |          | Υ =            |               |                               | Y =           | = 5    |          |     | = 5                                     |                     | <u> </u>           |               | Y =         |              |
| Duration of                                          |                    |             |                             | l Dala    |          | المد           | ~             | <u> </u>                      | 4             |        | _        |     | le Len                                  | gun C               | <i>,</i> =         | 130.          | .0          |              |
| Lane Gro                                             | up Capa            | City, C     |                             | Dela      | ıy, aı   | na L           |               |                               | ter           | mir    | iatic    |     | ID.                                     |                     | Т                  |               | CD.         |              |
| Adj. flow rat                                        |                    | 76          | EB<br>141                   | 500       | 43.      | <sub>-</sub> 1 | WΕ<br>326     |                               |               | 1      | 41       |     | NB<br>608                               |                     | +                  | 22            | SB<br>799   | 65           |
|                                                      |                    | 123         | 546                         | 569       | 60       |                | 828           |                               |               | +      | 13       | ┿   | 546                                     |                     | ┿                  |               | 199<br>1201 | 536          |
| Lane group                                           | сар.               | <b>+</b>    | 1                           | +         | +        | -              |               |                               |               | -      |          | ┿   | <del></del>                             |                     | ┿                  | -             |             |              |
| v/c ratio                                            |                    | 0.62        | 0.26                        | 0.88      | 0.7      |                | 0.39          |                               |               | _      | 45<br>18 | ┿   | .04                                     |                     | ┿                  | -             | 0.67        | 0.12         |
| Green ratio                                          | J.4                | 0.07        | 0.15                        | 0.37      | 0.1      | -              | 0.20          | _                             |               |        |          | +   | .45                                     |                     | ┿                  |               | 0.34        | 0.34         |
| Unif. delay o                                        |                    | 58.8        | 48.5                        | 38.3      | 50.      | -              | 39.6          |                               |               | +      | 7.8      | ┿   | 6.0                                     |                     | ┿                  |               | 36.7        | 29.7         |
| Delay factor                                         |                    | 0.20        | 0.11                        | 0.41      | 0.2      |                | 0.1           |                               |               | -      | 11       | +   | .50                                     |                     | ┿                  | -             | 0.24        | 0.11         |
| Increm. dela                                         | ay d2              | 9.1         | 0.3                         | 14.7      | 4.0      |                | 0.3           | _                             |               | -      | .0       | +   | 4.1                                     |                     | ┿                  | .7            | 1.4         | 0.1          |
|                                                      | F factor 0.950     |             | 0.879<br>42.8               | 0.610     | +        | -              | 0.76          | _                             |               |        | 000      | +   | 841                                     |                     | ┿                  | <del></del> - | 0.954       | 0.954        |
|                                                      | Control delay 65.0 |             |                             | 38.0      | 47.      | -              | 30.8          | _                             |               | +      | 3.9      | ┿   | 4.3                                     |                     | ┿                  |               | 36.4        | 28.4         |
| Lane group                                           | •                  | E           | D                           | D         | D        |                | С             |                               |               | 1      | )        |     | E                                       |                     | 1                  | E             | D           | С            |
| Apprch. dela                                         |                    |             | 1.8                         |           | 4        | 40.            |               |                               |               |        |          | 3.1 | 1                                       |                     | ┞                  | 3             | 36.4        |              |
| Approach L                                           | os                 | I           | כ                           |           |          | D              | )             |                               |               |        |          | Ε   |                                         |                     | L                  |               | D           |              |
| Intersec. de                                         | lay                | 49          | 9.4                         |           |          |                |               | Inte                          | erse          | ection | LO:      | S   |                                         |                     |                    |               | D           |              |
| HCS2000 <sup>TM</sup>                                |                    |             | Co                          | pyright © | 2000 H   | niversit       | v of I        | Florida                       | A11           | Rights | Reser    | ved | -                                       |                     |                    |               |             | Version 4.1f |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                 |             |                                |           | SH        | OR       | ۲R       | EP                               | <u> </u>    | T         |                     |    |                                          |                     |                     |           |           |              |
|------------------------------------------------------|-----------------|-------------|--------------------------------|-----------|-----------|----------|----------|----------------------------------|-------------|-----------|---------------------|----|------------------------------------------|---------------------|---------------------|-----------|-----------|--------------|
| General Inf                                          | ormation        |             |                                |           |           |          | Si       | te In                            | for         | mati      |                     |    |                                          |                     |                     |           |           |              |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med             | U<br>04/    | ISAI<br>ISAI<br>129/12<br>PEAK |           |           |          | Ar<br>Ju | terse<br>ea T<br>irisdi<br>nalys | ype<br>ctic | е         |                     |    | A WAYO<br>OR<br>All otl<br>OCE<br>LT-1/M | O R<br>ner a<br>ANS | RD.<br>area<br>SID: | as<br>E   |           |              |
| Volume an                                            | d Timing I      | nput        |                                |           |           |          |          |                                  |             |           |                     |    |                                          |                     |                     |           |           |              |
|                                                      |                 |             |                                | EB        |           |          |          | W                                |             |           |                     |    | NB                                       |                     |                     |           | SB        |              |
|                                                      |                 |             | LT                             | TH        | RT        | L        |          | T⊦                               | <u> </u>    | RT        | _                   | T  | TH                                       | R                   |                     | LT        | TH        | RT           |
| Num. of Lar                                          | nes             |             | 1                              | 2         | 1         | 2        | ?        | 2                                | $\Box$      | 0         | 1                   |    | 2                                        | 0                   |                     | 1         | 2         | 1            |
| Lane group                                           |                 |             | L                              | Τ         | R         | L        |          | TR                               |             |           | L                   |    | TR                                       |                     |                     | L         | T         | R            |
| Volume (vpl                                          |                 |             | 70                             | 130       | 484       | 40       |          | 115                              | ;           | 185       | 14                  |    | 1289                                     | 20                  |                     | 20        | 748       | 60           |
| % Heavy v                                            | <u>eh</u>       |             | 2                              | 2         | 2         | 2        |          | 2                                | $\dashv$    | 2         | 2                   |    | 2                                        | 2                   |                     | 2         | 2         | 2            |
| PHF<br>Actuated (P                                   | / <b>/</b> / \  |             | 0.92<br>A                      | 0.92<br>A | 0.92<br>A | 0.9<br>A |          | 0.92<br>A                        | Ή           | 0.92<br>A | 0.9                 |    | 0.92<br>A                                | 0.9<br>A            | 2                   | 0.92<br>A | 0.92<br>A | 0.92<br>A    |
| Startup lost                                         |                 |             | 2.0                            | 2.0       | 2.0       | 2.0      |          | 2.0                              | $\dashv$    |           | 2.                  |    | 2.0                                      | _                   |                     | 2.0       | 2.0       | 2.0          |
| Ext. eff. gre                                        |                 |             | 2.0                            | 2.0       | 2.0       | 2.0      |          | 2.0                              | _           |           | 2.                  |    | 2.0                                      |                     |                     | 2.0       | 2.0       | 2.0          |
| Arrival type                                         |                 |             | 5                              | 5         | 5         | 5        |          | 5                                |             |           | 4                   | !  | 4                                        |                     |                     | 4         | 4         | 4            |
| Unit Extens                                          | ion             |             | 3.0                            | 3.0       | 3.0       | 3.6      | 0        | 3.0                              |             |           | 3.                  | 0  | 3.0                                      |                     |                     | 3.0       | 3.0       | 3.0          |
| Ped/Bike/R                                           | TOR Volum       | e           | 5                              | 10        | 0         | 5        |          | 10                               |             | 0         | Ę                   | 5  | 10                                       | 0                   |                     | 5         |           | 0            |
| Lane Width                                           |                 |             | 12.0                           | 12.0      | 12.0      | 12.      | .0       | 12.0                             | )           |           | 12                  | .0 | 12.0                                     |                     |                     | 12.0      | 12.0      | 12.0         |
| Parking/Gra                                          | de/Parking      |             | Ν                              | 0         | N         | Ν        | I        | 0                                |             | Ν         | ٨                   | /  | 0                                        | Ν                   |                     | Ν         | 0         | N            |
| Parking/hr                                           |                 |             |                                |           |           |          |          |                                  |             |           |                     |    |                                          |                     |                     |           |           |              |
| Bus stops/h                                          | r               |             | 0                              | 0         | 0         | 0        |          | 0                                |             |           | (                   |    | 0                                        |                     |                     | 0         | 0         | 0            |
| Unit Extens                                          | ion             |             | 3.0                            | 3.0       | 3.0       | 3.0      | 0        | 3.0                              |             |           | 3.                  | 0  | 3.0                                      |                     |                     | 3.0       | 3.0       | 3.0          |
| Phasing                                              | Excl. Lef       |             | Only                           | Thru 8    |           |          | 04       |                                  |             | xcl. L    |                     | _  | B Only                                   |                     |                     | u & R1    |           | 80           |
| Timing                                               | G = 9.0         | G =         |                                | G = 2     |           | G =      |          |                                  | _           | = 9.0     | <u> </u>            |    | = 9.0                                    | _                   |                     | 44.0      | G =       |              |
| Duration of                                          | Y = 5           | Y =         |                                | Y = 5     |           | Y =      |          |                                  | Y           | = 5       |                     |    | = 5<br>de Leng                           | _                   | <u> </u>            |           | Y =       |              |
|                                                      | up Capa         |             |                                | I Dola    | W 3       | ad I     | 0        | 2 D/                             | ot o        | rmi       | sati                |    | JC LCII                                  | gurv                | <u> </u>            | 150       | .0        |              |
| Lane Gio                                             | up Capa         | l           | EB                             | I Dela    | iy, ai    | iu L     | WI       |                                  | ; LC        | <u> </u>  | iau                 |    | NB                                       |                     | Т                   |           | SB        |              |
| Adj. flow rat                                        |                 | 76          | 141                            | 526       | 43        | 5        | 32       |                                  | _           | 1         | 54                  | _  | 618                                      |                     | +,                  | 22        | 813       | 65           |
| Lane group                                           |                 | 123         | 546                            | 569       | 60        |          | 82       |                                  | <u> </u>    |           | 13                  |    | 546                                      |                     | +                   |           | 1201      | 536          |
| v/c ratio                                            | cap.            | 0.62        | 0.26                           | 0.92      | 0.7       |          | 0.3      |                                  | $\vdash$    | -         | 49                  | +  | .05                                      |                     |                     | .18       | 0.68      | 0.12         |
| Green ratio                                          |                 | 0.07        | 0.15                           | 0.37      | 0.1       | -        | 0.2      |                                  | $\vdash$    | -         | <del>43</del><br>18 | +  | .45                                      |                     | -                   | .07       | 0.34      | 0.34         |
| Unif. delay                                          | <del></del>     | 58.8        | 48.5                           | 39.3      | 50.       |          | 39.      |                                  |             |           | 3.2                 | _  | 6.0                                      |                     | +                   | 7.0       | 36.9      | 29.7         |
| Delay factor                                         |                 | 0.20        | 0.11                           | 0.44      | 0.2       |          | 0.1      |                                  |             |           | 11                  |    | .50                                      |                     | +                   | .11       | 0.25      | 0.11         |
| Increm. dela                                         |                 | 9.1         | 0.3                            | 21.1      | 4.0       | _        | 0.3      |                                  | $\vdash$    | -         | .2                  | -  | 6.1                                      |                     |                     | ).7       | 1.5       | 0.1          |
| PF factor                                            | ~, <b>~=</b>    | 0.950       | 0.879                          | 0.610     | +         |          | 0.7      |                                  | $\vdash$    | -         | 000                 | -  | 841                                      |                     | -                   |           | 0.954     | 0.954        |
| Control dela                                         | ny              | 65.0        | 42.8                           | 45.0      | 47.       |          | 30.      |                                  |             | -         | 9.5                 | -  | 6.4                                      |                     | +                   | 7.7       | 36.7      | 28.4         |
|                                                      | ane group LOS E |             |                                | D         | D         |          | С        |                                  |             |           | D                   |    | E                                        |                     | ┰                   | E         | D         | С            |
| Apprch. dela                                         |                 | D<br>5.6    | 1                              | $\top$    | 40        |          |          |                                  | $\top$      |           | 64.9                |    |                                          | +                   |                     | 36.7      | L         |              |
| Approach L                                           |                 |             | <u> </u>                       |           |           | E        |          |                                  |             | $\top$    |                     | E  |                                          |                     | 十                   |           | D         |              |
| Intersec. de                                         | lay             | 51          | 1.1                            | <u>-</u>  | +         | •        |          | Int                              | ers         | ectio     | n LC                | S  |                                          |                     | T                   |           | D         |              |
| HCS2000 <sup>TM</sup>                                |                 | <del></del> | Co                             | pyright © | 2000 11   | niverni  | fız of   |                                  |             |           |                     |    |                                          |                     | -                   |           |           | Version 4.11 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                          |           |                            |          | SH           | ORT R        | EPC                                   | RT          |         |            |                                                |                                                  |                   |              |              |
|------------------------------------------------------|--------------------------|-----------|----------------------------|----------|--------------|--------------|---------------------------------------|-------------|---------|------------|------------------------------------------------|--------------------------------------------------|-------------------|--------------|--------------|
| General Inf                                          | ormation                 |           |                            |          | •            | S            | ite Inf                               | orma        | atior   | 1          |                                                |                                                  |                   |              |              |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                      | US        | SAI<br>SAI<br>9/12<br>PEAK |          |              | Aı<br>Ju     | tersec<br>rea Ty<br>urisdic<br>nalysi | /pe<br>tion |         | (          | 78WB RA<br>DEL<br>All oth<br>DCEANS<br>.ALT1/I | ORO<br>er are<br>SIDE-I                          | R<br>eas<br>NT.#8 |              |              |
| Volume an                                            | d Timing In              | out       |                            |          |              |              |                                       |             |         |            |                                                |                                                  |                   |              |              |
|                                                      |                          |           |                            | EB       |              |              | WE                                    | _           |         |            | NB                                             |                                                  |                   | SB           |              |
|                                                      |                          |           | LT                         | TH       | RT           | LT           | TH                                    |             | ₹T      | LT         | TH                                             | RT                                               | LT                | TH           | RT           |
| Num. of Lar                                          | nes                      |           | 0                          | 0        | 0            | 1            | 1                                     | _           | 1       | 1          | 2                                              | 0                                                | 0                 | 2            | 1            |
| Lane group                                           |                          |           | <u> </u>                   |          |              | L            | LTR                                   | F           |         | L          | T                                              |                                                  | ļ                 | T            | R            |
| Volume (vpl                                          |                          |           | -                          | -        |              | 135          | 5                                     | 31          |         | 220        | 600                                            | -                                                |                   | 917          | 860          |
| % Heavy ve                                           | en                       |           | <u> </u>                   | +        | <del> </del> | 10<br>0.95   | 10<br>0.95                            | 0.9         |         | 10<br>0.95 | 10<br>0.95                                     | $\vdash$                                         | +                 | 10<br>0.95   | 10<br>0.95   |
| Actuated (P.                                         | /A)                      |           | $\vdash$                   | 1        | +            | 0.90<br>A    | 0.90<br>A                             | - O.S       |         | 0.90<br>A  | 0.90<br>A                                      | A                                                | +                 | 0.90<br>A    | 0.90<br>A    |
| Startup lost                                         | '                        |           |                            |          |              | 2.0          | 2.0                                   | 2.          |         | 2.0        | 2.0                                            |                                                  |                   | 2.0          | 2.0          |
| Ext. eff. gree                                       | _                        |           |                            |          |              | 2.0          | 2.0                                   | 2.          | 0       | 2.0        | 2.0                                            |                                                  |                   | 2.0          | 2.0          |
| Arrival type                                         |                          |           |                            |          |              | 3            | 3                                     | 3           |         | 3          | 5                                              |                                                  |                   | 5            | 3            |
| Unit Extensi                                         |                          |           |                            |          |              | 3.0          | 3.0                                   |             | .0      | 3.0        | 3.0                                            |                                                  |                   | 3.0          | 3.0          |
|                                                      | TOR Volume               |           | 10                         | ļ        | ļ            | 0            |                                       | (           | _       |            | 1.2.2                                          | ├                                                | 0                 | 0            | 200          |
| Lane Width                                           |                          |           |                            | ļ        | <b> </b>     | 12.0         | 12.0                                  | 12          |         | 12.0       |                                                | <del> </del>                                     | <del> </del>      | 12.0         | 12.0         |
| Parking/Gra                                          | ide/Parking              |           | N                          |          | N            | N            | 0                                     | /           | ٧       | N          | 0                                              | N                                                | N                 | 0            | N            |
|                                                      | arking/hr<br>us stops/hr |           |                            |          |              | <b>—</b>     |                                       |             |         |            |                                                | <del>                                     </del> | -                 | <del> </del> | 1            |
|                                                      | us stops/hr              |           |                            | <u> </u> | <del> </del> | 0            | 0                                     |             | 2       | 0          | 0                                              | —                                                | +                 | 0            | 0            |
| Unit Extensi                                         |                          |           |                            | <u></u>  | <u></u>      | 3.0          | 3.0                                   |             | .0      | 3.0        | 3.0                                            | <u> </u>                                         | <u> </u>          | 3.0          | 3.0          |
| Phasing                                              | WB Only<br>G = 22.0      | 0:<br>G = | 2                          | 0<br>G = | 3            | 04<br>G =    | -                                     | G =         | Only    |            | hru & R1<br>= 48.0                             | G:                                               | 07                | G =          | 80           |
| Timing                                               | Y = 5                    | Y =       |                            | Y=       |              | Y=           |                                       | Y =         |         |            | = 5                                            | Y =                                              |                   | Y =          |              |
| Duration of A                                        | Analysis (hrs            | ) = 0.2   | 5                          | -        |              |              |                                       | -           | <u></u> |            | /cle Leng                                      |                                                  |                   |              |              |
| Lane Gro                                             | up Capaci                | ty, Co    | ontro                      | l Del    | ay, a        | nd LO        | S De                                  | tern        | nina    | atior      | <u> </u>                                       |                                                  |                   |              |              |
|                                                      |                          |           | EΒ                         |          |              | WB           |                                       |             |         |            | NB                                             |                                                  |                   | SB           |              |
| Adj. flow rate                                       | е                        |           |                            |          | 122          | 172          | 17                                    | 79          | 23      | 2          | 632                                            |                                                  |                   | 965          | 695          |
| Lane group                                           |                          |           |                            |          | 314          | 311          | 30                                    | 9           | 42      | 8          | 2499                                           |                                                  |                   | 1445         | 613          |
| v/c ratio                                            | ·                        |           |                            |          | 0.39         | 0.55         | 0.3                                   | 58          | 0.5     | i <b>4</b> | 0.25                                           |                                                  |                   | 0.67         | 1.13         |
| Green ratio                                          |                          |           |                            |          | 0.19         | 0.19         | 0.                                    | 19          | 0.2     | 16         | 0.72                                           |                                                  |                   | 0.42         | 0.42         |
| Unif. delay o                                        | 11                       |           |                            |          | 40.6         | 42.1         | 42                                    | 2.3         | 36.     | 6          | 5.4                                            |                                                  |                   | 27.1         | 33.5         |
| Delay factor                                         | ·k                       |           |                            |          | 0.11         | 0.15         | 0.                                    | 17          | 0.1     | 4          | 0.11                                           |                                                  |                   | 0.24         | 0.50         |
| Increm. dela                                         | ay d2                    |           |                            |          | 0.8          | 2.1          | 2.                                    | 7           | 1.4     | 4          | 0.1                                            |                                                  |                   | 1.2          | 79.1         |
| PF factor                                            |                          |           |                            |          | 1.000        | 1.000        | 1.0                                   | 000         | 1.0     | 00         | 0.180                                          |                                                  |                   | 0.522        | 1.000        |
| Control dela                                         | У                        |           |                            |          | 41.4         | 44.2         | 45                                    | .0          | 38.     | 0          | 1.0                                            |                                                  |                   | 15.3         | 112.6        |
| Lane group                                           | ane group LOS            |           |                            |          | D            | D            | I                                     | )           | D       | •          | Α                                              |                                                  |                   | В            | F            |
| Apprch. dela                                         | pprch. delay             |           |                            |          |              | 43.8         |                                       |             |         | 11         | .0                                             |                                                  |                   | 56.1         |              |
| Approach Lo                                          | os                       |           |                            |          |              | D            |                                       |             |         | E          | 3                                              |                                                  |                   | Ε            |              |
| Intersec. del                                        | lay                      | 4         | 11.1                       |          |              |              | Inte                                  | rsect       | ion l   | _os        |                                                |                                                  |                   | D            |              |
| HCC2000TM                                            |                          |           | 0-                         |          | 9 2000 II    | niversity of | ST13                                  | A 11 TO 2   | L4 D    |            | 1                                              |                                                  |                   |              | Version 4.1f |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                          | •                                                |             | -                                                | SH            | ORT R          | EPC                               | )R1          | T        |                                                  |                                                  |                                                   |                                                  |             | •           |
|------------------------------------------------------|------------------------------------------|--------------------------------------------------|-------------|--------------------------------------------------|---------------|----------------|-----------------------------------|--------------|----------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-------------|-------------|
| General Inf                                          | ormation                                 | •                                                |             |                                                  |               |                |                                   |              | natio    | n                                                |                                                  |                                                   |                                                  |             |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                                      | US<br>US<br>04/2<br>AM F                         | SAI<br>9/12 |                                                  |               | Ar<br>Ju       | terse<br>rea T<br>ırisdi<br>nalys | ype<br>ction | n        |                                                  | 78WB RA<br>DEL<br>All oth<br>OCEANS<br>ALT1/W    | ORO<br>er are<br>IDE-II                           | R<br>as<br>NT.#8                                 |             |             |
| Volume an                                            | d Timing In                              | out                                              |             |                                                  |               |                |                                   |              |          |                                                  |                                                  |                                                   | -                                                |             |             |
|                                                      |                                          |                                                  | <u> </u>    | EB                                               | T ==          | <del>   </del> | WI                                |              |          | <del>                                     </del> | NB                                               | LEE                                               | <del>                                     </del> | SB          | Tot         |
| Num. of Lar                                          | 200                                      |                                                  | LT<br>0     | TH<br>0                                          | RT<br>0       | LT<br>1        |                                   |              | RT1      | LT<br>1                                          | TH 2                                             | RT<br>0                                           | LT<br>O                                          | TH 2        | RT<br>1     |
|                                                      |                                          |                                                  | l -         | <del>                                     </del> | <del>اٽ</del> | 1 /            | LTF                               | ,            | R        | L                                                | <del>                                     </del> | <del>                                      </del> | <del>                                     </del> | T 7         | R           |
| Lane group                                           | LV                                       |                                                  | <u> </u>    | <u> </u>                                         | ļ.—           |                |                                   | _            |          |                                                  |                                                  | -                                                 | +                                                |             | 860         |
| Volume (vpl<br>% Heavy v                             |                                          |                                                  |             |                                                  |               | 135<br>10      | 5<br>10                           | +            | 310<br>0 | 277<br>10                                        | 626                                              | ╁                                                 | ╁─┈                                              | 927<br>10   | 10          |
| % neavy vo                                           | en en en en en en en en en en en en en e |                                                  | <u> </u>    | <del> </del>                                     | <b></b>       | 0.95           | 0.95                              | 1            | 0.95     | 0.95                                             |                                                  | ╁                                                 |                                                  | 0.95        | 0.95        |
| Actuated (P                                          | ·/A)                                     |                                                  |             |                                                  |               | A              | A                                 | +            | A        | A                                                | A                                                | Α                                                 |                                                  | A           | A           |
| Startup lost                                         |                                          | •                                                |             |                                                  |               | 2.0            | 2.0                               | 十            | 2.0      | 2.0                                              | 2.0                                              | <u> </u>                                          | 1                                                | 2.0         | 2.0         |
| Ext. eff. gre                                        |                                          |                                                  |             |                                                  |               | 2.0            | 2.0                               | 丁            | 2.0      | 2.0                                              | 2.0                                              |                                                   |                                                  | 2.0         | 2.0         |
| Arrival type                                         |                                          |                                                  |             |                                                  |               | 3              | 3                                 |              | 3        | 3                                                | 5                                                |                                                   |                                                  | 5           | 3           |
| Unit Extens                                          | ion                                      |                                                  |             |                                                  |               | 3.0            | 3.0                               | )            | 3.0      | 3.0                                              | 3.0                                              |                                                   |                                                  | 3.0         | 3.0         |
| Ped/Bike/R                                           | TOR Volume                               |                                                  | 10          |                                                  |               | 0              |                                   |              | 0        |                                                  |                                                  |                                                   | 0                                                | 0           | 200         |
| Lane Width                                           |                                          |                                                  |             | <u> </u>                                         | <u> </u>      | 12.0           | 12.0                              | ) [          | 12.0     | 12.0                                             |                                                  | <u> </u>                                          |                                                  | 12.0        | 12.0        |
| Parking/Gra                                          | de/Parking                               |                                                  | N           | ļ                                                | N             | N              | 0                                 |              | Ν        | N                                                | 0                                                | N                                                 | N                                                | 0           | N           |
| Parking/hr                                           |                                          |                                                  |             | ļ                                                |               |                |                                   |              |          |                                                  |                                                  | <u> </u>                                          |                                                  |             |             |
| Bus stops/h                                          | r                                        |                                                  |             |                                                  |               | 0              | 0                                 |              | 0        | 0                                                | 0                                                |                                                   |                                                  | 0           | 0           |
| Unit Extens                                          | ion                                      |                                                  |             |                                                  |               | 3.0            | 3.0                               |              | 3.0      | 3.0                                              | 3.0                                              |                                                   |                                                  | 3.0         | 3.0         |
| Phasing                                              | WB Only                                  | 02                                               | 2           | 03                                               | 3             | 04             |                                   |              | B Onl    |                                                  | hru & R                                          | _                                                 | 07                                               |             | 08          |
| Timing                                               | G = 22.0                                 | G=                                               |             | G =                                              |               | G =            |                                   |              | = 30.0   |                                                  | = 48.0                                           | G =                                               |                                                  | G =<br>Y =  | <u> </u>    |
|                                                      | Y = 5<br>Analysis (hrs                   | Y =                                              | _           | Υ=                                               |               | Υ =            |                                   | Υ =          | = 5      |                                                  | ′ = 5<br>ycle Leng                               |                                                   |                                                  |             |             |
|                                                      |                                          | ·                                                |             | I Dale                                           |               | 2410           | 5 D                               | 40           | em i n   |                                                  |                                                  | jui C -                                           | - 110                                            | ). U        |             |
| Lane Gro                                             | up Capaci                                | T                                                |             | Dela                                             | ay, ai        |                | -                                 | :tei         | 1111111  | auo                                              |                                                  |                                                   |                                                  | SB          |             |
| Adi flavorna                                         | ······································   |                                                  | EB          |                                                  | 400           | WB             | - 8                               | 79           | 29       | 12                                               | NB<br>659                                        |                                                   |                                                  | 976         | 695         |
| Adj. flow rat                                        |                                          |                                                  |             |                                                  | 122<br>314    | 172<br>311     | -                                 | 79<br>09     | 42       |                                                  | 2499                                             |                                                   |                                                  | 970<br>1445 | 613         |
| Lane group                                           | cap.                                     |                                                  |             |                                                  | 0.39          | 0.55           | <del>-</del>                      | .58          | 0.6      |                                                  | 0.26                                             |                                                   |                                                  | 0.68        | 1.13        |
| v/c ratio<br>Green ratio                             |                                          |                                                  |             |                                                  | 0.19          | 0.55           |                                   | . 19         | 0.2      |                                                  | 0.72                                             |                                                   |                                                  | 0.42        | 0.42        |
| Unif. delay                                          |                                          | +                                                |             |                                                  | 40.6          | 42.1           | _                                 | 2.3          | 38       | -                                                | 5.5                                              |                                                   |                                                  | 27.2        | 33.5        |
| Delay factor                                         |                                          |                                                  |             |                                                  | 0.11          | 0.15           | -                                 | .17          | 0.2      |                                                  | 0.11                                             | ,                                                 |                                                  | 0.25        | 0.50        |
| Increm. dela                                         |                                          | <del>                                     </del> |             |                                                  | 0.11          | 2.1            | -                                 | 2.7          | 4.       |                                                  | 0.11                                             |                                                   |                                                  | 1.3         | 79.1        |
| PF factor                                            | ay uz                                    |                                                  |             |                                                  | 1.000         | _              |                                   | 000          | -        | 000                                              | 0.180                                            |                                                   |                                                  | 0.522       | 1.000       |
| Control dela                                         | av                                       | +                                                |             |                                                  | 41.4          | 44.2           |                                   | 5.0          | 42       |                                                  | 1.0                                              |                                                   |                                                  | 15.5        | 112.6       |
| Lane group                                           | <del></del>                              | <del>                                     </del> |             |                                                  | D             | D              | <del>-</del>                      | D.U          |          |                                                  | A                                                |                                                   |                                                  | В           | F.          |
| Apprch. delay                                        |                                          |                                                  | L           | <b>I</b>                                         |               | 43.8           | 1_                                |              | +-       |                                                  | <br>3. <i>8</i>                                  |                                                   |                                                  | 55.9        | <u> </u>    |
| Approach L                                           |                                          |                                                  |             |                                                  |               | D              |                                   |              |          |                                                  | <u></u><br>В                                     |                                                   |                                                  | E           |             |
| Intersec. de                                         |                                          | 1 4                                              | 11.1        |                                                  |               | _              | Inte                              | erse         | ection   |                                                  |                                                  |                                                   | -                                                | D           |             |
| LICERONOTM                                           | 4                                        | 1 '                                              |             |                                                  | N 2000 I I    | niversity of   |                                   |              |          |                                                  |                                                  |                                                   | l                                                |             | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |               |                          |             |          | SH           | ORT R        | EPC                                   | RT           |                 |            |                                                |                                                  |                  |             |              |
|------------------------------------------------------|---------------|--------------------------|-------------|----------|--------------|--------------|---------------------------------------|--------------|-----------------|------------|------------------------------------------------|--------------------------------------------------|------------------|-------------|--------------|
| General Inf                                          | ormation      |                          |             |          |              | Si           | ite Inf                               | orm          | atior           | า          |                                                |                                                  |                  |             |              |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med           | US<br>US<br>04/2<br>PM F | SAI<br>9/12 |          |              | Aı<br>Ju     | tersed<br>rea Ty<br>urisdic<br>nalysi | /pe<br>:tion |                 |            | 78WB R/<br>DEL<br>All oth<br>OCEANS<br>).ALT1/ | ORO .<br>er are<br>SIDE-II                       | R<br>as<br>NT.#8 |             |              |
| Volume an                                            | d Timing In   | put                      |             |          |              |              |                                       |              |                 |            |                                                |                                                  |                  |             |              |
|                                                      |               |                          | LT          | EB<br>TH | RT           | LT           | WE<br>TH                              |              | ₹T              | LT         | NB<br>TH                                       | RT                                               | +                | SB<br>TH    | RT           |
| Num. of Lar                                          | nes           |                          | 0           | 0        | 0            | 1            | 1                                     | _            | 1               | 1          | 2                                              | 0                                                | 0                | 2           | 1            |
| Lane group                                           |               |                          |             |          |              | L            | LTR                                   |              | R               | L          | T                                              |                                                  |                  | T           | R            |
| Volume (vpl                                          | າ)            |                          |             | +        |              | 490          | 5                                     |              | 50              | 200        |                                                | <u> </u>                                         |                  | 920         | 675          |
| % Heavy ve                                           |               |                          |             |          |              | 10           | 10                                    |              | 0               | 10         | 10                                             |                                                  |                  | 10          | 10           |
| PHF                                                  |               |                          |             |          |              | 0.95         | 0.95                                  |              | 95              | 0.95       |                                                |                                                  |                  | 0.95        | 0.95         |
| Actuated (P.                                         |               |                          |             | ļ        | <b>_</b>     | A            | A                                     |              | 4               | A          | A                                              | Α                                                | ļ                | A           | A            |
| Startup lost<br>Ext. eff. gree                       |               |                          | <u> </u>    | -        | +            | 2.0          | 2.0                                   |              | .0              | 2.0<br>2.0 | 2.0                                            | <del>                                     </del> | +                | 2.0         | 2.0          |
| Arrival type                                         | C11           |                          |             | 1        | +            | 3            | 3                                     |              | . <i>0</i><br>3 | 3          | 5                                              |                                                  |                  | 5           | 3            |
| Unit Extensi                                         | on            |                          |             | 1        | 1            | 3.0          | 3.0                                   | _            | 3.0             | 3.0        | _                                              |                                                  | 1                | 3.0         | 3.0          |
|                                                      | ΓOR Volume    |                          | 10          |          | 1            | 0            |                                       | _            | 0               |            |                                                | <u> </u>                                         | 0                | 0           | 200          |
| Lane Width                                           |               |                          |             |          |              | 12.0         | 12.0                                  | 12           | 2.0             | 12.0       | 12.0                                           |                                                  |                  | 12.0        | 12.0         |
| Parking/Gra                                          | de/Parking    |                          | Ν           |          | N            | N            | 0                                     | 1            | N               | Ν          | 0                                              | Ν                                                | N                | 0           | N            |
| Parking/hr                                           |               |                          |             |          |              |              |                                       |              |                 |            |                                                |                                                  |                  |             |              |
| Bus stops/h                                          | r             | '                        |             |          |              | 0            | 0                                     |              | 0               | 0          | 0                                              |                                                  |                  | 0           | 0            |
| Unit Extensi                                         | on            |                          |             |          |              | 3.0          | 3.0                                   | 3            | 3.0             | 3.0        | 3.0                                            |                                                  |                  | 3.0         | 3.0          |
| Phasing                                              | WB Only       | 02                       | 2           | 0        | 3            | 04           |                                       | NB           | Only            | /   7      | hru & R                                        | Γ                                                | 07               |             | 08           |
| Timing                                               | G = 37.0      | G =                      |             | G =      |              | G =          |                                       |              | 21.0            |            | 6 = 47.0                                       | G =                                              |                  | G =         |              |
|                                                      | Y = 5         | Y =                      | -           | Y =      |              | Υ =          |                                       | Y =          | 5               |            | ′ = 5                                          | Y =                                              |                  | Y =         |              |
|                                                      | Analysis (hrs |                          |             |          |              | -410         | <u> </u>                              | 4            |                 | _          | ycle Leng                                      | gin C =                                          | = 120            | .0          |              |
| Lane Gro                                             | up Capaci     | ty, Co                   |             | Del      | ay, ai       |              |                                       | terr         | nina            | atioi      |                                                |                                                  |                  | 00          |              |
|                                                      |               |                          | EB          |          |              | WB           |                                       |              |                 |            | NB                                             |                                                  |                  | SB          |              |
| Adj. flow rat                                        |               |                          | :           |          | 444          | 432          | -                                     | 34           | 21              |            | 905                                            |                                                  |                  | 968         | 500          |
| Lane group                                           | cap           | ì                        |             |          | 506          | 500          | _                                     | 98           | 28              |            | 2106                                           |                                                  | $\vdash$         | 1356        | 575          |
| v/c ratio                                            |               |                          |             |          | 0.88         | 0.86         | -                                     | 87           | 0.7             |            | 0.43                                           |                                                  | -                | 0.71        | 0.87         |
| Green ratio                                          | 14            |                          |             |          | 0.31         | 0.31         | -                                     | 31           | 0.1             |            | 0.61                                           |                                                  |                  | 0.39        | 0.39         |
| Unif. delay o                                        |               |                          |             |          | 39.4         | 39.1         | _                                     | 9.3<br>40    | 46.             |            | 12.5<br>0.11                                   |                                                  | $\vdash$         | 30.8        | 33.7         |
| Delay factor                                         |               |                          |             |          | 0.40<br>16.0 | 0.39         | -                                     | 40<br>5.5    | 0.2<br>9.8      |            | 0.11                                           |                                                  |                  | 0.28<br>1.8 | 0.40<br>13.5 |
| Increm. dela<br>PF factor                            | iy uz         | ·                        |             |          | 1.000        |              | -                                     | 000          | 1.0             |            | 0.128                                          |                                                  |                  | 0.571       | 1.000        |
| Control dela                                         | N/            |                          |             |          | 55.3         | 53.7         | —                                     | i.7          | 56.             |            | 1.7                                            |                                                  |                  | 19.4        | 47.2         |
| Lane group                                           | <del>-</del>  |                          |             |          | 55.5<br>E    | D D          | -                                     | ·. <i>/</i>  | 50.<br>E        |            | 7.7<br>A                                       |                                                  |                  | B           | D D          |
| Apprch. delay                                        |               |                          |             |          |              | 54.6         | 1 '                                   |              | +-              |            | 2.1                                            |                                                  |                  | 28.9        |              |
| Approach Lo                                          |               |                          |             |          | D            |              |                                       |              |                 | B          |                                                |                                                  | C                | •           |              |
| Intersec. del                                        |               | 3                        | 2.7         |          |              |              | Inte                                  | rsec         | tion I          |            | -                                              |                                                  |                  | С           |              |
| HC\$2000 <sup>TM</sup>                               | ,             | <u> </u>                 |             | i        | 1 2000 II    | niversity of |                                       |              |                 |            |                                                |                                                  | 1                |             | Version 4.1: |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |                          |              |                                                  | SH                                               | ORT R        | REPO                               | DRT          | ı        |          |                                               |                            |                                                  |          |             |
|------------------------------------------------------|------------------------|--------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|------------------------------------|--------------|----------|----------|-----------------------------------------------|----------------------------|--------------------------------------------------|----------|-------------|
| General Inf                                          | ormation               |                          |              |                                                  |                                                  | Si           | ite In                             | form         | atio     | า        |                                               |                            |                                                  |          |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                    | US<br>US<br>04/2<br>PM F | SAI<br>9/12  |                                                  |                                                  | Aı<br>Ju     | terse<br>rea T<br>urisdio<br>nalys | ype<br>ction |          |          | 78WB R/<br>DEL<br>All oth<br>OCEANS<br>ALT1/M | ORO :<br>er are<br>SIDE-II | R<br>as<br>NT.#8                                 |          |             |
| Volume an                                            | ıd Timing In           | out                      |              |                                                  |                                                  |              |                                    |              | •        |          |                                               |                            |                                                  |          |             |
|                                                      |                        |                          | <del>├</del> | EB                                               | Lot                                              | 1,-          | W                                  |              |          | -        | NB                                            | Lot                        | +                                                | SB       | Lot         |
| Num. of Lar                                          | nes                    |                          | LT<br>0      | TH<br>  0                                        | RT<br>  0                                        | 1<br>1       | T⊦<br>1                            |              | RT<br>1  | LT<br>1  | TH 2                                          | RT<br>0                    | LT<br>0                                          | TH<br>2  | RT<br>1     |
| Lane group                                           |                        |                          |              |                                                  |                                                  | L            | LTF                                | ? /          | R        | L        | T                                             | <u> </u>                   |                                                  | T        | R           |
| Volume (vpl                                          | h)                     |                          |              |                                                  | 1                                                | 490          | 5                                  |              | 50       | 231      | 878                                           |                            |                                                  | 957      | 675         |
| % Heavy v                                            |                        |                          | ·            |                                                  |                                                  | 10           | 10                                 |              | 0        | 10       | 10                                            |                            |                                                  | 10       | 10          |
| PHF                                                  |                        |                          |              |                                                  |                                                  | 0.95         | 0.95                               | 5 O.         | 95       | 0.95     | _                                             |                            |                                                  | 0.95     | 0.95        |
| Actuated (P                                          |                        |                          |              |                                                  |                                                  | A            | A                                  |              | A        | A        | A                                             | Α                          |                                                  | A        | A           |
| Startup lost                                         |                        |                          | <u> </u>     | 1                                                |                                                  | 2.0          | 2.0                                |              | 2.0      | 2.0      | 2.0                                           | <del> </del>               | <del> </del>                                     | 2.0      | 2.0         |
| Ext. eff. gree<br>Arrival type                       | en                     |                          |              | <del>                                     </del> | +                                                | 2.0          | 2.0                                |              | 2.0<br>3 | 2.0<br>3 | 2.0<br>5                                      | <del> </del>               | -                                                | 2.0<br>5 | 2.0         |
| Unit Extensi                                         | ion                    |                          | $\vdash$     | +                                                |                                                  | 3.0          | 3.0                                |              | 3.0      | 3.0      |                                               | <del> </del>               | +                                                | 3.0      | 3.0         |
|                                                      | TOR Volume             |                          | 10           |                                                  | <del>                                     </del> | 0            | 0.0                                |              | 0        | 0.0      | 0.0                                           | <u> </u>                   | 0                                                | 0        | 200         |
| Lane Width                                           | TOTAL TOTAL TO         |                          | 1            |                                                  | <del>                                     </del> | 12.0         | 12.0                               | _            | 2.0      | 12.0     | 12.0                                          |                            | <del>                                     </del> | 12.0     | 12.0        |
| Parking/Gra                                          | ide/Parking            |                          | Ν            |                                                  | N                                                | N            | 0                                  |              | N        | N        | 0                                             | N                          | N                                                | 0        | N           |
| Parking/hr                                           |                        |                          |              |                                                  |                                                  |              |                                    |              |          |          |                                               |                            |                                                  |          |             |
| Bus stops/h                                          | Γ                      | ·                        |              |                                                  |                                                  | 0            | 0                                  | Î            | 0        | 0        | 0                                             |                            |                                                  | 0        | 0           |
| Unit Extensi                                         | ion                    |                          |              |                                                  |                                                  | 3.0          | 3.0                                | 3            | 3.0      | 3.0      | 3.0                                           |                            |                                                  | 3.0      | 3.0         |
| Phasing                                              | WB Only                | 02                       | 2            | 0                                                | 3                                                | 04           |                                    |              | Only     |          | hru & R                                       |                            | 07                                               |          | 08          |
| Timing                                               | G = 37.0               | G =                      |              | G =                                              |                                                  | G =          |                                    |              | 21.0     |          | 6 = 47.0                                      | G =                        |                                                  | G =      |             |
|                                                      | Y = 5<br>Analysis (hrs | Y =                      | 5            | Y =                                              |                                                  | Y =          |                                    | Y =          | 5        |          | ′ = 5<br>ycle Leng                            | Y =                        |                                                  | Y =      |             |
| ,                                                    | up Capaci              |                          |              | I Dal                                            | 21/ 21                                           | 24 I O       | S D                                | torr         | nin      |          |                                               | <u> </u>                   | - 120                                            | .0       |             |
| Lane GIO                                             | up Capaci              | ty, Ct                   | EB           | i Dêl                                            | ay, ai                                           | WB           |                                    | terr         | <u> </u> | 1110     | NB                                            |                            |                                                  | SB       |             |
| Adj. flow rat                                        | <br>e                  |                          |              |                                                  | 444                                              | 432          |                                    | 34           | 24       | 3        | 924                                           |                            |                                                  | 1007     | 500         |
| Lane group                                           |                        |                          |              |                                                  | 506                                              | 500          | -                                  | 98           | 28       |          | 2106                                          |                            |                                                  | 1356     | 575         |
| v/c ratio                                            |                        |                          |              |                                                  | 0.88                                             | 0.86         | _                                  | 87           | 0.8      |          | 0.44                                          |                            |                                                  | 0.74     | 0.87        |
| Green ratio                                          |                        |                          |              |                                                  | 0.31                                             | 0.31         | -                                  | 31           | 0.1      |          | 0.61                                          |                            |                                                  | 0.39     | 0.39        |
| Unif. delay o                                        | <u></u>                |                          |              |                                                  | 39.4                                             | 39.1         | 39                                 | 9.3          | 47.      | 9        | 12.6                                          |                            |                                                  | 31.3     | 33.7        |
| Delay factor                                         | ·k                     |                          |              |                                                  | 0.40                                             | 0.39         | O.                                 | 40           | 0.3      | 8        | 0.11                                          |                            |                                                  | 0.30     | 0.40        |
| Increm, dela                                         | ay d2                  |                          |              |                                                  | 16.0                                             | 14.6         | 1:                                 | 5.5          | 20.      | 4        | 0.1                                           |                            |                                                  | 2.2      | 13.5        |
| PF factor                                            |                        |                          |              |                                                  | 1.000                                            | 1.000        | ) 1.                               | 000          | 1.0      | 00       | 0.128                                         |                            | (                                                | 0.571    | 1.000       |
| Control dela                                         | y                      |                          |              |                                                  | 55.3                                             | 53.7         | 54                                 | 4.7          | 68.      | 3        | 1.7                                           |                            |                                                  | 20.1     | 47.2        |
| Lane group                                           | ane group LOS          |                          |              |                                                  | Ε                                                | D            |                                    | D            | E        |          | Α                                             |                            |                                                  | С        | D           |
| Apprch. dela                                         |                        |                          |              |                                                  | 54.6                                             |              |                                    |              | 1:       | 5.6      |                                               |                            | 29.1                                             |          |             |
| Approach Lo                                          | os                     |                          |              |                                                  |                                                  | D            |                                    |              |          |          | В                                             |                            |                                                  | С        |             |
| Intersec. de                                         | lay                    | 3                        | 3.5          |                                                  |                                                  |              | Inte                               | ersec        | tion I   | LOS      |                                               |                            |                                                  | С        |             |
| HCS2000TM                                            |                        |                          | Co           | nvriaht @                                        | ን ኃስበስ ፲፲                                        | niversity of | Ploride                            | AILD         | iahta D  | onorue   |                                               |                            |                                                  |          | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |                           |            |              | SH             | OF          | RT RE          | EPC      | R          | T        |         |                |                         |                          |               |          |                                                  |
|------------------------------------------------------|------------------------|---------------------------|------------|--------------|----------------|-------------|----------------|----------|------------|----------|---------|----------------|-------------------------|--------------------------|---------------|----------|--------------------------------------------------|
| General Inf                                          | ormation               |                           |            |              | •              |             | Site           | e Inf    | or         | mati     |         |                |                         |                          |               |          |                                                  |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                    | US<br>US<br>04/29<br>AM P | AI<br>9/12 |              |                |             | Are<br>Jur     |          | /pe<br>tio | e<br>n   |         | 0              | DEL<br>All oth<br>CEANS | ORO<br>ner are<br>SIDE-l | eas           |          |                                                  |
| Volume an                                            | nd Timing Inp          | out                       |            |              |                |             |                |          |            |          |         |                |                         |                          |               |          |                                                  |
|                                                      |                        |                           |            | EB           | I 53           | -           |                | W        |            |          | ١.      |                | NB                      | Lot                      | +             | SB       | Lot                                              |
| Num. of Lar                                          | nes                    |                           | LT<br>1    | TH<br>1      | R<br>1         |             | LT<br>0        | TH<br>0  | _          | RT<br>0  |         | <u>LT</u><br>0 | TH<br>2                 | RT<br>0                  | LT<br>2       | TH<br>2  | RT<br>0                                          |
| Lane group                                           |                        |                           | L          | LTR          | T <sub>R</sub> |             | Ť              | Ť        |            | Ť        | +       |                | TR                      | l                        | $\frac{1}{L}$ | T        | <u> </u>                                         |
| Volume (vpl                                          |                        |                           | 300        | 5            | 16             |             |                | _        | _          |          | +-      |                | 520                     | 290                      | 790           | 260      | ├                                                |
| % Heavy v                                            |                        |                           | 10         | 10           | 10             |             |                |          | -          |          | ╁       | -              | 10                      | 10                       | 10            | 10       | <del>                                     </del> |
| PHF                                                  |                        |                           | 0.95       | 0.95         | 0.9            |             |                |          |            |          | +       |                | 0.95                    | 0.95                     | 0.95          | 0.95     |                                                  |
| Actuated (P                                          |                        |                           | Α          | Α            | Α              |             |                |          |            |          |         |                | Α                       | Α                        | Α             | A        |                                                  |
| Startup lost                                         |                        |                           | 2.0        | 2.0          | 2.0            |             |                |          |            |          | $\perp$ |                | 2.0                     |                          | 2.0           | 2.0      |                                                  |
| Ext. eff. gre                                        | en                     |                           | 2.0        | 2.0<br>3     | 2.0            |             |                |          |            |          | +       |                | 2.0<br>5                | -                        | 2.0<br>5      | 2.0<br>5 |                                                  |
| Arrival type<br>Unit Extens                          | ion                    |                           | 3<br>3.0   | 3.0          | 3.0            |             |                |          |            |          | ┿       |                | 3.0                     |                          | 3.0           | 3.0      |                                                  |
|                                                      | TOR Volume             |                           | 10         | 3.0          | 0              |             | 0              |          | -          |          | 1       | 10             | 5.0                     | Ô                        | 3.0           | 3.0      | -                                                |
| Lane Width                                           | TOTA VOIGITIE          |                           | 12.0       | 12.0         | 12.            | 0           | <del>- ~</del> |          |            |          | +       |                | 12.0                    | ۲                        | 12.0          | 12.0     | <del>                                     </del> |
|                                                      | arking/Grade/Parking   |                           |            | 0            | N              |             | N              |          |            | N        | +       | <u></u>        | 0                       | Ν                        | N             | 0        | N                                                |
| Parking/hr                                           |                        |                           |            |              |                |             |                |          |            |          | _       |                |                         |                          |               |          |                                                  |
| Bus stops/h                                          | r                      |                           | 0          | 0            | 0              |             |                |          |            |          |         |                | 0                       |                          | 0             | 0        |                                                  |
| Unit Extens                                          | ion                    |                           | 3.0        | 3.0          | 3.0            | )           |                |          |            |          |         |                | 3.0                     |                          | 3.0           | 3.0      |                                                  |
| Phasing                                              | EB Only                | 02                        | 2          | 03           |                |             | 04             |          | S          | B Or     | nly     | Th             | ru & R                  | Т                        | 07            | 0        | )8                                               |
| Timing                                               | G = 23.0               | G =                       |            | G =          |                | G           |                |          |            | = 35     | 5.0     |                | = 47.0                  |                          |               | G =      |                                                  |
| •                                                    | Y = 5<br>Analysis (hrs | Y =                       |            | Y =          |                | Υ           | =              |          | Υ:         | = 5      |         |                | = 5                     | Y:                       | =<br>= 120.   | Y =      |                                                  |
|                                                      |                        |                           |            | Dolo         |                | <u>ب دا</u> | 100            | Da       | 40         | rma i i  | a a ti  |                | de Len                  | gui C                    | <u> </u>      | 0        |                                                  |
| Lane Gro                                             | up Capaci              | iy, Co                    | EE         |              | y, a           | nu          |                | /B       | LE         | <u> </u> | ıau     | On             | NB                      |                          |               | SB       |                                                  |
| Adi flavorat                                         |                        | 177                       | 179        |              | $\overline{}$  |             |                | 7Б<br>Т  |            |          |         | Т              | 52                      |                          | 832           | 274      | <del></del>                                      |
| Adj. flow rat                                        | *                      | +-                        | 309        |              | -              |             |                |          |            |          |         | -              | 273                     |                          | 930           | 2510     |                                                  |
| Lane group<br>v/c ratio                              | сар.                   | 315<br>0.56               | 0.58       | _            | $\dashv$       |             | +              | $\dashv$ |            | $\dashv$ |         | -              | .67                     |                          | 0.89          | 0.11     | -                                                |
| Green ratio                                          | 1 500                  | 0.19                      | 0.19       | -            | -              |             | +              | $\dashv$ |            | $\dashv$ |         | -              | 39                      |                          | 0.29          | 0.77     |                                                  |
| Unif. delay                                          | <del></del>            | 43.9                      | 44.1       | <del>-</del> |                |             | _              |          |            | -        |         | -              | 0.1                     |                          | 40.7          | 4.9      |                                                  |
| Delay factor                                         |                        | 0.16                      | 0.17       |              |                |             | +              |          |            |          |         |                | .24                     |                          | 0.42          | 0.11     |                                                  |
| Increm. dela                                         |                        | 2.3                       | 2.7        | _            |                |             | +              | $\dashv$ |            | $\dashv$ |         | -              | 1.4                     |                          | 11.1          | 0.0      | -                                                |
| PF factor                                            | ay uz                  | 1.000                     |            |              |                |             |                | $\dashv$ |            | $\dashv$ |         | -              | 571                     |                          | 0.725         | 0.182    |                                                  |
| Control dela                                         | av                     | 46.2                      | 46.8       |              | _              |             | $\dashv$       | _        |            |          |         |                | 8.5                     |                          | 40.7          | 0.9      |                                                  |
| Lane group                                           | •                      | D                         | D          | D            |                |             | +              |          |            |          |         | -              | В                       |                          | D             | A        | 1                                                |
|                                                      | Apprch. delay          |                           |            |              | $\dashv$       |             |                |          |            | $\dashv$ |         | 18             |                         |                          | <u> </u>      | 30.8     | 1                                                |
| Approach L                                           |                        | 16.0<br>D                 |            | $\neg$       |                |             |                |          | $\dashv$   |          | E       |                |                         |                          | С             |          |                                                  |
| Intersec. de                                         |                        | 2                         | 29.6       | ·            |                |             |                | lr       | nte        | rsect    | ion l   |                |                         |                          |               | С        |                                                  |
| ricessosTM                                           | <del>-</del>           |                           |            | nyriaht ©    | 00007          | y .         |                |          |            |          |         |                |                         |                          |               |          | ersion 4.1                                       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                      |                                       |                           |            |            | Sŀ     | 101      | RT RE       | EPC                              | R        | T           |             |           |                         |                          |                        |              |              |
|------------------------------------------------------|---------------------------------------|---------------------------|------------|------------|--------|----------|-------------|----------------------------------|----------|-------------|-------------|-----------|-------------------------|--------------------------|------------------------|--------------|--------------|
| General Inf                                          | ormation                              |                           |            |            |        |          | Site        | e Inf                            | orı      | mati        |             |           |                         |                          |                        |              |              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                                   | US<br>US<br>04/29<br>AM P | AI<br>9/12 |            |        |          | Are<br>Juri | ersec<br>ea Ty<br>isdic<br>alysi | /pe      | :           |             | 0         | DEL<br>All oth<br>CEANS | ORO<br>ner are<br>SIDE-I | eas                    |              |              |
| Volume an                                            | d Timing Inp                          | out                       |            |            |        |          |             |                                  |          |             |             |           |                         |                          |                        |              |              |
|                                                      |                                       |                           |            | EB         |        |          |             | W                                |          |             |             |           | NB                      |                          |                        | SB           |              |
|                                                      |                                       |                           | LT         | TH         | R      |          | LT          | TH                               |          | RT          | _           | <u>.T</u> | TH                      | RT                       | LT                     | TH           | RT           |
| Num. of Lar                                          | nes                                   |                           | 1          | 1          | 1      |          | 0           | 0                                | 4        | 0           | +           | )         | 2                       | 0                        | 2                      | 2            | 0            |
| Lane group                                           |                                       |                           | L          | LTR        | F      |          |             |                                  | _        |             | _           |           | TR                      | 222                      | L                      | T            | <u> </u>     |
| Volume (vpl                                          |                                       |                           | 300        | 5          | 18     |          |             |                                  | 4        |             | +           |           | 603<br>10               | 290<br>10                | 790<br>10              | 272<br>10    |              |
| % Heavy vo<br>PHF                                    | <u>en</u>                             |                           | 10<br>0.95 | 10<br>0.95 | 0.9    |          |             |                                  | ┥        |             | ╫           |           | 0.95                    | 0.95                     |                        | 0.95         |              |
| Actuated (P                                          | /A)                                   |                           | 0.95<br>A  | A          | ().8   |          | <u> </u>    | f                                | ᅱ        |             | +           |           | 0.90<br>A               | A                        | A                      | A            | $\vdash$     |
| Startup lost                                         | · · · · · · · · · · · · · · · · · · · |                           | 2.0        | 2.0        | 2.     |          | <b>1</b>    | $\vdash$                         |          |             | $\top$      |           | 2.0                     |                          | 2.0                    | 2.0          |              |
| Ext. eff. gre                                        |                                       |                           | 2.0        | 2.0        | 2.     | 0        |             |                                  |          |             | I           |           | 2.0                     |                          | 2.0                    | 2.0          |              |
| Arrival type                                         |                                       |                           | 3          | 3          | 3      |          |             |                                  | _        |             |             |           | 5                       |                          | 5                      | 5            |              |
| Unit Extens                                          |                                       |                           | 3.0        | 3.0        | 3.     |          |             |                                  |          |             |             |           | 3.0                     | <u> </u>                 | 3.0                    | 3.0          | <u> </u>     |
|                                                      | TOR Volume                            |                           | 10<br>12.0 | 12.0       | 0      |          | 0           |                                  | 4        |             | 1           | 0         | 5                       | 0                        |                        |              | <del> </del> |
| Lane Width                                           |                                       |                           |            |            | _      |          |             | ļ                                | _        |             | _           |           | 12.0                    |                          | 12.0                   | 12.0         | <u> </u>     |
|                                                      | arking/Grade/Parking                  |                           |            |            | ٨      |          | N           |                                  | _        | N           | 1./         | <u>v</u>  | 0                       | N                        | N                      | 0            | N            |
| Parking/hr                                           |                                       |                           |            |            |        |          |             |                                  | _        |             | 4           |           |                         |                          |                        |              |              |
| Bus stops/h                                          |                                       |                           | 0          | 0          | 0      |          | <u> </u>    |                                  |          |             | <u> </u>    |           | 0                       |                          | 0                      | 0            | <u> </u>     |
| Unit Extens                                          |                                       |                           | 3.0        | 3.0        | 3.     | 0        |             |                                  |          |             | <u> </u>    |           | 3.0                     |                          | 3.0                    | 3.0          |              |
| Phasing                                              | EB Only                               | 02                        | 2          | 0          | 3      | ╀        | 04          | _                                |          | B O         |             |           | ru & R                  | _                        | 07                     |              | 8            |
| Timing                                               | G = 23.0<br>Y = 5                     | G =<br>Y =                |            | G =<br>Y = |        |          | ' <b>=</b>  | _                                |          | = 35<br>= 5 | o. <i>0</i> |           | = 47.0<br>= 5           | G<br>Y                   |                        | G =<br>Y =   |              |
| Duration of                                          | ητ = ο<br>Analysis (hrs               |                           | 5          | Υ =-       |        | <u> </u> | _           |                                  | <u> </u> | - 0         |             |           |                         |                          | <del>-</del><br>= 120. |              |              |
|                                                      | up Capaci                             |                           |            | ام ۱       | 2V 2   | nc       | 1105        | De                               | ta       | rmi         | nati        |           | JIC ECIT                | guio                     | 720.                   |              |              |
| Lane Gro                                             | up Capaci                             | ly, oc                    | E          |            | ay, c  |          |             | VB                               | LC       | ····        | IIGU        | <u> </u>  | NB                      | -                        | T                      | SB           |              |
| Adj. flow rat                                        |                                       | 177                       | 184        |            | 58     |          |             | 7                                |          | $\dashv$    |             | Та        | 40                      |                          | 832                    | 286          | T            |
| -                                                    | * - **                                |                           | 309        | -+         | 81     | $\vdash$ | -           |                                  |          | $\dashv$    |             | +         | 281                     |                          | 930                    | 2510         | +            |
| Lane group                                           | cap.                                  | 315                       |            |            |        |          | _           |                                  |          | -           |             | ┿         |                         |                          | 1                      | <del> </del> | ┼─           |
| v/c ratio                                            |                                       | 0.56                      | 0.60       |            | 56     | ┞        |             |                                  |          |             |             | -         | .73                     |                          | 0.89                   | 0.11         | ┿            |
| Green ratio                                          |                                       | 0.19                      | 0.19       |            | 19     | <u> </u> |             |                                  |          |             |             | ┿         | .39                     |                          | 0.29                   | 0.73         |              |
| Unif. delay                                          |                                       | 43.9                      | 44.        |            | 3.9    |          |             |                                  |          | _           |             | +         | 1.2                     |                          | 40.7                   | 4.9          | <u> </u>     |
| Delay factor                                         | r k                                   | 0.16                      | 0.18       | 3 0        | 16     |          |             |                                  |          |             |             |           | .29                     |                          | 0.42                   | 0.11         | <u> </u>     |
| Increm, dela                                         | ay d2                                 | 2.3                       | 3.1        | 2          | 2.6    |          |             |                                  |          |             |             | 2         | 2.2                     |                          | 11.1                   | 0.0          | <u> </u>     |
| PF factor                                            |                                       | 1.000                     | 1.00       | 00 1.      | 000    |          |             |                                  |          |             |             | 0.        | 57 <b>1</b>             |                          | 0.725                  | 0.182        |              |
| Control dela                                         | ау                                    | 46.2                      | 47.4       | 4 4        | 6.5    |          |             |                                  |          |             |             | 2         | 0.0                     |                          | 40.7                   | 0.9          |              |
| Lane group LOS D                                     |                                       |                           | D          |            | D      |          |             |                                  |          |             |             |           | С                       |                          | D                      | Α            |              |
| Apprch. del                                          | Apprch. delay 46.7                    |                           |            |            |        |          |             |                                  |          |             |             | 20        | .0                      |                          |                        | 30.5         |              |
| Approach L                                           | Approach LOS D                        |                           |            |            |        |          |             |                                  |          |             |             | (         | )                       |                          |                        | С            |              |
| Intersec. delay 29.9                                 |                                       |                           |            |            |        | Π        |             | lı                               | nte      | rsec        | tion I      | LOS       | ;                       |                          |                        | С            |              |
| HCS2000 <sup>TM</sup>                                |                                       |                           | Co         | nyright    | ₾ 2000 | Univ     | ersity of F | lorida                           | i, All   | l Right     | s Rese      | rved      |                         |                          |                        | V            | ersion 4.1   |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                      |                             |            |              |        | ŞH             | OF       | RTRE        | PC                            | R           | T                 |          |         |                         |                        |               |         |              |
|------------------------------------------------------|----------------------|-----------------------------|------------|--------------|--------|----------------|----------|-------------|-------------------------------|-------------|-------------------|----------|---------|-------------------------|------------------------|---------------|---------|--------------|
| General Inf                                          | formation            |                             |            |              |        |                |          | Site        | e In                          | for         | mati              | ion      |         |                         |                        |               |         |              |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                  | US.<br>US.<br>04/29<br>PM P | AI<br>9/12 |              |        |                |          | Are<br>Jur  | erse<br>a T<br>isdic<br>alysi | ype<br>ctio | <del>)</del><br>n |          | C       | DEL<br>All otl<br>CEANS | ORC<br>her ar<br>SIDE- | eas           |         |              |
| Volume ar                                            | nd Timing Inp        | out                         |            |              |        |                |          |             |                               |             |                   |          |         |                         |                        |               |         |              |
|                                                      |                      |                             |            |              | В      |                |          |             | W                             | _           |                   | _        | · -     | NB<br>T Til             | T DT                   | 17            | SB      | Гот          |
| Num. of Lar                                          | 200                  |                             | LT<br>1    | T<br>  1     | H      | R <sup>-</sup> | <u> </u> | LT<br>O     | 0                             |             | R1<br>0           | ╫        | LT<br>0 | TH<br>2                 | RT<br>0                | <u>LT</u>     | TH<br>2 | RT           |
|                                                      |                      |                             | Ĺ          | LT           | D      | R              |          | Ť           | Ť                             |             | Ť                 | +        |         | TR                      | Ť                      | $\frac{1}{L}$ | T       | ┿            |
| Lane group<br>Volume (vp                             |                      |                             | 650        | 5            |        | 330            |          |             |                               |             |                   | +        |         | 400                     | 270                    |               | 690     | +            |
| % Heavy v                                            |                      |                             | 10         | 10           |        | 10             |          |             |                               | -           |                   | $\dashv$ |         | 10                      | 10                     | 10            | 10      | +            |
| PHF                                                  | CII                  |                             | 0.95       | 0.9          |        | 0.9            |          |             |                               |             |                   | $\top$   |         | 0.95                    | 0.95                   |               | 0.95    | +-           |
| Actuated (P                                          | P/A)                 |                             | Α          | A            |        | Α              |          |             |                               |             |                   | 十        |         | Α                       | A                      | A             | Α       |              |
| Startup lost                                         |                      |                             | 2.0        | 2.           | 0      | 2.0            | )        |             |                               |             |                   |          |         | 2.0                     |                        | 2.0           | 2.0     |              |
| Ext. eff. gre                                        |                      |                             | 2.0        | 2.           |        | 2.0            | )        |             |                               |             |                   | $\bot$   |         | 2.0                     |                        | 2.0           | 2.0     | $oxed{\Box}$ |
| Arrival type                                         |                      |                             | 3          | 3            |        | 3              |          |             |                               |             |                   | 4        |         | 5                       | <u> </u>               | 5             | 5       | —            |
| Unit Extens                                          |                      |                             | 3.0        | 3.           | 0      | 3.0            | )        |             |                               |             |                   |          |         | 3.0                     |                        | 3.0           | 3.0     | ╄            |
|                                                      | TOR Volume           |                             | 10<br>12.0 | <del> </del> |        | 0              |          | 0           |                               |             |                   | _        | 10      | 5                       | 0                      |               |         |              |
| Lane Width                                           |                      |                             |            | 12           |        | 12.            | _        |             | _                             |             |                   | _        |         | 12.0                    | <del>  </del>          | 12.0          | 12.0    | <del> </del> |
|                                                      | arking/Grade/Parking |                             |            | 0            |        | Ν              |          | N           |                               |             | Ν                 | 4        | N       | 0                       | Ν                      | N             | 0       | N            |
| Parking/hr                                           |                      |                             |            | <u> </u>     |        |                |          |             |                               |             |                   | 4        |         |                         |                        |               |         | ┼            |
| Bus stops/h                                          |                      |                             | 0          | 0            |        | 0              |          |             |                               |             |                   | 4        |         | 0                       | _                      | 0             | 0       |              |
| Unit Extens                                          | ion                  |                             | 3.0        | 3.           | 0      | 3.0            | )        |             |                               |             |                   |          |         | 3.0                     |                        | 3.0           | 3.0     | <u> </u>     |
| Phasing                                              | EB Only              | 02                          | -          |              | 03     |                |          | 04          |                               |             | ВО                |          |         | nru & R                 |                        | 07            |         | 80           |
| Timing                                               | G = 39.0             | G =                         |            | G =          |        |                | G        |             | _                             |             | = 3               | 5.0      |         | = 41.0                  | G<br>Y                 |               | G =     |              |
|                                                      | Y = 5                | Y =                         |            | Y =          |        |                | Υ        | =           |                               | Υ:          | = 5               |          | -       |                         | _ 1 .                  | = 130         | Y =     |              |
|                                                      | Analysis (hrs        |                             |            | I D          | .1     |                |          | 1.00        | <u></u>                       | 4-          | uma i             |          |         |                         | gui C                  | - 730         |         |              |
| Lane Gro                                             | oup Capaci           | ty, υα                      |            |              | alay   | /, a           | na       |             |                               | ; te        | rmi               | na       | lioi    |                         |                        | T             | SB      |              |
|                                                      |                      | 1                           | E          |              |        |                |          |             | <b>∕</b> B                    |             |                   |          | _       | NB                      |                        | 750           |         | _            |
| Adj. flow rat                                        | te                   | 383                         | 375        | -            | 278    | _              |          |             |                               |             |                   |          | -       | 705                     |                        | 758           | 726     |              |
| Lane group                                           | сар.                 | 492                         | 488        | 5            | 440    | )              |          |             |                               |             |                   |          |         | 016                     |                        | 858           | 2157    |              |
| v/c ratio                                            |                      | 0.78                        | 0.7        | 7            | 0.63   | 3              |          |             |                               |             |                   |          |         | 0.69                    |                        | 0.88          | 0.34    |              |
| Green ratio                                          |                      | 0.30                        | 0.3        | 0            | 0.30   | )              |          |             |                               |             |                   |          | 1       | ).32                    |                        | 0.27          | 0.62    |              |
| Unif. delay                                          | d1                   | 41.6                        | 41.        | 5            | 39.3   | 3              |          |             |                               |             |                   |          | <b></b> | 39.0                    |                        | 45.5          | 11.7    |              |
| Delay facto                                          | r k                  | 0.33                        | 0.3        | 2            | 0.21   | 1              |          |             | •                             |             |                   |          | 7       | 0.26                    |                        | 0.41          | 0.11    |              |
| Increm. del                                          | ay d2                | 7.8                         | 7.6        | ;            | 2.9    | ·              |          |             |                               |             |                   |          |         | 2.1                     |                        | 10.8          | 0.1     |              |
| PF factor                                            |                      | 1.000                       | 1.00       | 00           | 1.00   | 00             |          |             |                               |             |                   |          | C       | .693                    |                        | 0.754         | 0.133   |              |
| Control dela                                         | ay                   | 49.4                        | 49.        | 1            | 42.2   | 2              |          |             |                               |             |                   |          | ];      | 29.1                    |                        | 45.1          | 1.6     |              |
| Lane group                                           | LOS                  | D                           | D          |              | D      |                |          |             |                               |             |                   |          |         | С                       |                        | D             | Α       |              |
| Apprch. delay 47.                                    |                      |                             |            |              |        |                |          | _           |                               |             |                   |          | 2       | 9.1                     |                        |               | 23.9    |              |
| Approach LOS L                                       |                      |                             |            |              |        |                |          |             |                               |             |                   |          |         | С                       |                        |               | С       |              |
| Intersec. de                                         | 32.5                 |                             |            |              |        |                | ]        | nte         | rsec                          | tior        | 1 LO              | S        |         |                         | С                      |               |         |              |
| HCS2000 <sup>TM</sup>                                |                      | <u></u>                     | Co         | pyrigl       | nt © 2 | :000 1         | Jnive    | ersity of F | lorida                        | a, Al       | l Righ            | ıts Re   | serve   | l.                      |                        |               | ,       | Version 4.   |

 $HCS2000^{\mathrm{TM}}$ 

Page 1 of 1

|                                                      |                                   |                           |            |           | SH         | OF       | RT RE      | EPC                              | R        | T           |              |       |                         |                       |           |             |                                                  |
|------------------------------------------------------|-----------------------------------|---------------------------|------------|-----------|------------|----------|------------|----------------------------------|----------|-------------|--------------|-------|-------------------------|-----------------------|-----------|-------------|--------------------------------------------------|
| General Inf                                          | ormation                          |                           |            |           |            |          | Site       | e Inf                            | ori      | natio       | n            |       |                         |                       |           |             |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                               | US<br>US<br>04/29<br>PM P | AI<br>9/12 |           |            |          | Are<br>Jur | ersec<br>ea Ty<br>isdic<br>alysi | /pe      | l           |              | 0     | DEL<br>All oth<br>CEANS | ORO<br>er ar<br>SIDE- | eas       |             |                                                  |
| Volume an                                            | d Timing Inp                      | out                       |            |           |            |          |            |                                  |          |             |              |       |                         |                       |           |             |                                                  |
|                                                      |                                   |                           | 1 T        | EB        | I n        | т        | 17         | W                                |          | ОТ          | <del> </del> | т     | NB                      | Гот                   | LT        | SB<br>TH    | LDT                                              |
| Num, of Lar                                          | nes                               |                           | <u>LT</u>  | TH<br>1   | R          |          | LT<br>O    | T⊦<br>0                          | ┪        | RT<br>0     |              |       | TH<br>2                 | RT<br>0               | 2         | 2           | RT<br>0                                          |
| Lane group                                           |                                   |                           | L          | LTR       | R          |          |            |                                  |          |             | $\top$       |       | TR                      |                       | L         | T           |                                                  |
| Volume (vpl                                          | h)                                |                           | 650        | 5         | 39         |          |            |                                  | $\dashv$ |             | ┿            |       | 462                     | 270                   | 720       | 727         | <del></del>                                      |
| % Heavy ve                                           |                                   |                           | 10         | 10        | 10         |          |            |                                  |          |             | 1            |       | 10                      | 10                    | 10        | 10          |                                                  |
| PHF                                                  |                                   |                           | 0.95       | 0.95      | 0.9        |          | <u>-</u>   |                                  |          |             | T            |       | 0.95                    | 0.95                  | 0.95      | 0.95        |                                                  |
| Actuated (P                                          | /A)                               |                           | Α          | Α         | Α          |          |            |                                  |          |             |              |       | Α                       | Α                     | Α         | Α           |                                                  |
| Startup lost                                         |                                   |                           | 2.0        | 2.0       | 2.0        |          |            |                                  |          |             | 匚            |       | 2.0                     |                       | 2.0       | 2.0         |                                                  |
| Ext. eff. gree                                       | en                                |                           | 2.0        | 2.0       | 2.0        |          |            |                                  | _        |             | ↓            |       | 2.0                     | <u> </u>              | 2.0       | 2.0         | <u> </u>                                         |
| Arrival type                                         |                                   |                           | 3          | 3         | 3          | _        |            | ļ                                | 4        |             | ╄            |       | 5                       |                       | 5         | 5           | —                                                |
| Unit Extensi                                         |                                   |                           | 3.0        | 3.0       | 3.0        | )        |            |                                  | 4        |             | <del> </del> | _     | 3.0                     | _                     | 3.0       | 3.0         | —                                                |
|                                                      | TOR Volume                        |                           | 10<br>12.0 | 10.0      | 0          |          | 0          | _                                | $\dashv$ |             | 1            | 0     | 5                       | 0                     | 40.0      | 40.0        | ├──                                              |
| Lane Width                                           | ane width<br>arking/Grade/Parking |                           |            | 12.0      | 12.<br>N   |          | N          | <del> </del>                     | $\dashv$ | N           | +            | 1     | 12.0<br>0               | N                     | 12.0<br>N | 12.0        | N N                                              |
|                                                      | arking/Grade/Parking<br>arking/hr |                           |            | 0         | /N         |          | //         |                                  | -        | 7.4         | + '          | v     | <u> </u>                | 14                    | - / / -   | 1           | <del>  '\</del>                                  |
| Bus stops/h                                          | <u> </u>                          |                           | 0          | 0         | 0          |          |            | <b></b>                          | _        |             | ╁            |       | 0                       | 1                     | 0         | 0           | <del>                                     </del> |
| Unit Extensi                                         |                                   |                           | 3.0        | 3.0       | 3.0        | <u> </u> |            |                                  | -        |             | ┿            |       | 3.0                     | -                     | 3.0       | 3.0         | +                                                |
| Phasing                                              | EB Only                           | 02                        |            | 03        |            | T        | 04         | <u> </u>                         | <br>S    | B On        | lv           | Th    | ru & R                  | <u> </u>              | 07        | <del></del> | )8                                               |
| -                                                    | G = 39.0                          | G =                       |            | G =       |            | G        |            |                                  |          | = 35.       |              |       | = 41.0                  | G                     |           | G =         |                                                  |
| Timing                                               | Y = 5                             | Y =                       |            | Υ =       |            | Υ        | =          |                                  | Y        | = 5         |              |       | = 5                     | Υ                     |           | Υ=          |                                                  |
|                                                      | Analysis (hrs                     |                           |            |           |            |          |            |                                  |          |             |              |       | de Len                  | gth C                 | = 130.    | 0           |                                                  |
| Lane Gro                                             | up Capaci                         | ty, Co                    | ntro       | l Dela    | y, a       | nd       | LOS        | De                               | te       | <u>rmir</u> | ati          | on    |                         |                       |           |             |                                                  |
|                                                      |                                   |                           | El         | 3         |            |          | ٧          | VB .                             |          |             |              |       | NB                      |                       | ļ         | SB          |                                                  |
| Adj. flow rat                                        | е                                 | 383                       | 389        | 33        | 2          |          |            |                                  |          |             |              | 7     | 70                      |                       | 758       | 765         |                                                  |
| Lane group                                           | сар.                              | 492                       | 483        | 44        | 0          |          |            |                                  |          |             |              | 10    | 022                     |                       | 858       | 2157        |                                                  |
| v/c ratio                                            |                                   | 0.78                      | 0.81       | 0.7       | <b>'</b> 5 |          |            |                                  |          |             |              | 0.    | .75                     |                       | 0.88      | 0.35        |                                                  |
| Green ratio                                          | •                                 | 0.30                      | 0.30       | 0.3       | 80         |          |            |                                  |          |             |              | 0     | .32                     |                       | 0.27      | 0.62        |                                                  |
| Unif. delay                                          | <b>d</b> 1                        | 41.6                      | 42.0       | ) 41.     | .2         |          |            |                                  |          |             |              | 4     | 0.0                     |                       | 45.5      | 11.9        |                                                  |
| Delay factor                                         | ·k                                | 0.33                      | 0.38       | 5 0.3     | 31         |          |            |                                  |          |             |              | 0     | .31                     |                       | 0.41      | 0.11        |                                                  |
| Increm. dela                                         | ay d2                             | 7.8                       | 9.7        | 7.        | 3          |          |            |                                  |          |             |              | 3     | 3.2                     |                       | 10.8      | 0.1         |                                                  |
| PF factor                                            |                                   | 1.000                     | 1.00       | 0 1.0     | 00         |          |            |                                  |          |             |              | 0.    | 693                     |                       | 0.754     | 0.133       |                                                  |
| Control dela                                         | ay                                | 49.4                      | 51.7       | 7 48      | .4         |          |            |                                  |          |             |              | 3     | 0.9                     |                       | 45.1      | 1.7         |                                                  |
| Lane group                                           | LOS                               | D                         | D          | E         | ,          |          |            |                                  |          |             |              |       | С                       |                       | D         | Α           |                                                  |
| Apprch. delay 49.9                                   |                                   |                           |            |           |            |          | •          |                                  |          |             |              | 30    | 0.9                     |                       |           | 23.3        |                                                  |
| Approach LOS D                                       |                                   |                           |            |           |            |          |            |                                  |          |             |              | (     | )                       | -                     |           | С           |                                                  |
| Intersec. delay 33                                   |                                   |                           |            |           |            |          |            | İr                               | nte      | rsecti      | ion l        | OS    | }                       |                       |           | С           |                                                  |
| HCS2000 <sup>TM</sup>                                | -                                 | -                         | Co         | ovright © | 2000 I     | Iniar    | waite of E | ilo <del>ci</del> do             | A 11     | l Diabte    | Dasa         | errad |                         |                       | •         | 37          | ersion 4.1                                       |

 $HCS2000^{\text{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      | •                |                               |             |          | SH              | OF         | T RI       | EP           | OR          | T                |                                                  |                                                  |                           |           |             |       |
|------------------------------------------------------|------------------|-------------------------------|-------------|----------|-----------------|------------|------------|--------------|-------------|------------------|--------------------------------------------------|--------------------------------------------------|---------------------------|-----------|-------------|-------|
| General Inf                                          | ormation         |                               |             |          |                 |            |            |              |             | matio            | ì                                                |                                                  |                           |           |             |       |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med              | US,<br>US,<br>04/29<br>M PEAK | 41<br>9/12  | JR       |                 |            | Are<br>Jui | ea T<br>risd | ectionsis Y | €                | 00                                               | DEL (<br>All oti<br>CEANS                        | ORO i<br>her ar<br>SIDE-I |           |             |       |
| Volume an                                            | ıd Timing In     | put                           |             |          |                 |            | -          |              |             |                  |                                                  | N I P                                            |                           | -i        | 0.0         |       |
|                                                      |                  |                               | LT          | EB<br>TH | R               | ╤┤         | LT         | <u> </u>     | VB<br>⊢     | RT               | LT                                               | NB<br>TH                                         | RT                        | H LT      | SB<br>TH    | RT    |
| Num, of Lar                                          | nes              |                               | 1           | 2        | 0               | _          | 0          | 2            |             | 1                | 0                                                | 0                                                | 0                         | 1         | 0           | 1     |
| Lane group                                           |                  |                               | L           | 17       | H               | ┪          |            | 7            | -           | R                |                                                  |                                                  |                           | $+_L$     |             | R     |
| Volume (vpl                                          | h)               |                               | 450         | 220      | ┢               | $\dashv$   |            | 12           |             | 352              |                                                  |                                                  | 1                         | 175       | 1           | 250   |
| % Heavy v                                            |                  |                               | 1           | 1        |                 |            |            | 1            | _           | 1                |                                                  |                                                  |                           | 1         | 1           | 1     |
| PHF                                                  |                  |                               | 0.95        | 0.95     |                 |            |            | 0.9          | 95          | 0.95             |                                                  |                                                  |                           | 0.95      |             | 0.95  |
| Actuated (P                                          |                  |                               | Α           | Α        |                 |            |            | Α            |             | Α                |                                                  |                                                  |                           | Α         |             | Α     |
| Startup lost                                         |                  |                               | 2.0         | 2.0      |                 |            |            | 2.           |             | 2.0              |                                                  |                                                  |                           | 2.0       |             | 2.0   |
| Ext. eff. gre                                        | en               |                               | 2.0         | 2.0      |                 |            |            | 2.           |             | 2.0              | ļ                                                |                                                  | <u> </u>                  | 2.0       |             | 2.0   |
| Arrival type                                         |                  |                               | 5           | 5        | _               | -          |            | 5            |             | 5                |                                                  |                                                  | -                         | 4         | -           | 4     |
| Unit Extens                                          |                  |                               | 3.0         | 3.0      | _               | _          |            | 3.           |             | 3.0              | <u> </u>                                         | <u> </u>                                         |                           | 3.0       | <u> </u>    | 3.0   |
| Ped/Bike/R<br>Lane Width                             | TOR Volume       |                               | 12.0        | 12.0     | $\vdash$        | $\dashv$   | 5          | 5<br>12      |             | 0<br>12.0        | 5                                                | 1                                                | +                         | 5<br>12.0 | 5           | 12.0  |
| Parking/Gra                                          | de/Parking       |                               | N N         | 0        | N               | _          | N          |              | )           | 12.0<br>N        | N                                                |                                                  | l N                       | N N       | 0           | N     |
| Parking/hr                                           | don anding       |                               | , •         | Ť        | <del>  '`</del> | _          | ,,         | F '          |             | <del>- ''-</del> | '                                                | <del>                                     </del> | <del>  /\</del>           | +**       | Ť           | +''-  |
| Bus stops/h                                          | r                |                               | 0           | 0        | H               | 一          |            | (            | )           | 0                | <del>                                     </del> |                                                  |                           | 0         |             | 0     |
| Unit Extens                                          |                  |                               | 3.0         | 3.0      | $\vdash$        | $\dashv$   |            | 3.           |             | 3.0              |                                                  |                                                  | t                         | 3.0       |             | 3.0   |
| Phasing                                              | EB Only          | Thru 8                        |             | 03       |                 | ┰          | 04         | <u> </u>     |             | B Only           | ,                                                | 06                                               | <del>'</del>              | 07        | 1           | 08    |
| · · · · · · · · · · · · · · · · · · ·                | G = 35.0         | G = 30                        |             | G =      |                 | G          |            |              |             | = 25.0           |                                                  |                                                  | G                         |           | G =         |       |
| Timing                                               | Y = 5            | Y = 5                         |             | Y =      |                 | Υ          | =          |              | Υ:          | = 5              | Υ =                                              |                                                  | Y                         | =         | Y =         |       |
|                                                      | Analysis (hrs    |                               |             |          |                 |            |            |              |             |                  |                                                  | le Len                                           | gth C                     | = 105.    | 0           |       |
| Lane Gro                                             | up Capac         | ity, Co                       | ntro        | I Delay  | /, a            | nd         | LOS        | D            | ete         | rmina            | tion                                             |                                                  |                           |           |             |       |
|                                                      |                  |                               | EB          | 3        |                 |            | ٧          | VB           |             |                  |                                                  | NB                                               |                           |           | ŞB          |       |
| Adj. flow rat                                        | e                | 474                           | 232         | 2        |                 |            | 134        | !            | 37          | 1                |                                                  |                                                  |                           | 184       |             | 263   |
| Lane group                                           | сар.             | 596                           | 238         | 8        |                 |            | 1023       | 3            | 88          | 35               |                                                  |                                                  |                           | 425       |             | 970   |
| v/c ratio                                            |                  | 0.80                          | 0.1         | 2        |                 | ·          | 0.13       | 3            | 0.4         | 12               |                                                  |                                                  |                           | 0.43      |             | 0.27  |
| Green ratio                                          |                  | 0.33                          | 0.6         | 7        |                 |            | 0.29       | )            | 0.5         | 57               |                                                  |                                                  |                           | 0.24      |             | 0.62  |
| Unif. delay                                          | d1               | 31.8                          | 6.2         |          |                 |            | 27.8       | 3            | 12          | .7               | Ī                                                |                                                  |                           | 34.0      |             | 9.2   |
| Delay factor                                         | ·k               | 0.34                          | 0.1         | 1        |                 |            | 0.11       | 1            | 0.1         | 11               |                                                  |                                                  |                           | 0.11      |             | 0.11  |
| Increm. dela                                         | ay d2            | 7.4                           | 0.0         | ,        |                 |            | 0.1        |              | 0.          | 3                |                                                  |                                                  |                           | 0.7       |             | 0.2   |
| PF factor                                            |                  | 0.667                         | 0.18        | 50       | $\top$          |            | 0.73       | 3            | 0.1         | 17               | $\neg \uparrow$                                  |                                                  |                           | 1.000     |             | 0.527 |
| Control dela                                         | ay               | 28.6                          | 1.0         | ,        | $\top$          |            | 20.5       | <del></del>  | 1.          | 8                |                                                  |                                                  |                           | 34.7      |             | 5.0   |
| Lane group                                           | Lane group LOS C |                               | A           |          | 十               |            | С          |              | A           |                  |                                                  |                                                  |                           | С         |             | Α     |
|                                                      |                  |                               | 9.5         | <u> </u> |                 |            | 6.8        |              | <del></del> |                  |                                                  |                                                  |                           |           | 17.2        |       |
| Approach L                                           | os               |                               | В           |          | 十               |            | Α          |              |             |                  |                                                  |                                                  |                           |           | В           |       |
| Intersec. de                                         | 5.0              |                               |             |          |                 | lı         | nter       | section      | 1 LOS       |                  |                                                  |                                                  | В                         |           |             |       |
| HC 52000TM                                           |                  | Co                            | ovright © 2 | 000 T    | Tesisso         | naib. of I | امحاط      | lo 4.11      | l Diobto D  | anamind          |                                                  |                                                  | ·                         |           | Version 4.1 |       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |               |                             |            |            | SH       | OF       | T RI       | EP(                           | OR.          | T           |                                                  |                                                  |                                                  |         |         |           |
|------------------------------------------------------|---------------|-----------------------------|------------|------------|----------|----------|------------|-------------------------------|--------------|-------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------|---------|-----------|
| General Inf                                          | ormation      |                             |            |            |          |          |            |                               |              | matior      | )                                                |                                                  |                                                  |         | _       |           |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med           | US<br>US<br>04/29<br>M PEAI | AI<br>9/12 | 'R         |          |          | Are<br>Jui | erse<br>ea T<br>risdi<br>alys | ype<br>ictio | en          | 00                                               | DEL (<br>All oti<br>CEANS                        | ORO<br>her ar<br>IDE-l                           |         |         |           |
| Volume an                                            | d Timing In   | put                         |            |            |          |          |            |                               |              |             |                                                  |                                                  |                                                  |         |         |           |
|                                                      |               |                             |            | EB         |          |          |            |                               | VB           | l st        |                                                  | NB                                               | Loz                                              | 1       | SB      | Loz       |
| Num. of Lar                                          | 306           |                             | LT<br>1    | TH<br>2    | R        |          | LT<br>O    | 7                             |              | RT<br>1     | LT<br>0                                          | TH<br>0                                          | RT<br>0                                          | LT<br>1 | TH<br>O | RT_       |
|                                                      | 103           |                             | L          | T          | H        | $\dashv$ |            | 7                             |              | R           | <del>                                     </del> | + <del>-</del>                                   | <del>ا</del> ٽ                                   |         | -       | R         |
| Lane group                                           |               |                             |            |            | <u> </u> |          |            |                               |              |             |                                                  |                                                  | <u> </u>                                         |         |         |           |
| Volume (vp                                           |               |                             | 450        | 231        | <u> </u> |          |            | 15                            |              | 443         |                                                  |                                                  | ├                                                | 208     |         | 250<br>1  |
| % Heavy v                                            | en            |                             | 1<br>0.95  | 1<br>0.95  | <u> </u> |          |            | 0.9                           |              | 1<br>0.95   |                                                  | <del>                                     </del> | <del> </del>                                     | 0.95    | ├─      | 0.95      |
| Actuated (P                                          | /A)           | -                           | 0.90<br>A  | 0.90<br>A  |          | ᆉ        |            | A                             |              | A           |                                                  | <u> </u>                                         | -                                                | A       |         | A A       |
| Startup lost                                         |               |                             | 2.0        | 2.0        | H        | $\dashv$ |            | 2.                            |              | 2.0         | <b></b>                                          | <b>†</b>                                         | <del>                                     </del> | 2.0     | 1       | 2.0       |
| Ext. eff. gre                                        |               |                             | 2.0        | 2.0        | Г        | 一        |            | 2.                            |              | 2.0         | <b>†</b>                                         |                                                  |                                                  | 2.0     |         | 2.0       |
| Arrival type                                         |               |                             | 5          | 5          |          |          |            | 5                             |              | 5           |                                                  |                                                  |                                                  | 4       |         | 4         |
| Unit Extens                                          | ion           |                             | 3.0        | 3.0        |          |          |            | 3.                            | 0            | 3.0         |                                                  |                                                  |                                                  | 3.0     |         | 3.0       |
| Ped/Bike/R                                           | TOR Volume    |                             |            |            |          |          | 5          | 5                             |              | 0           | 5                                                |                                                  |                                                  | 5       | 5       | 0         |
| Lane Width                                           |               |                             | 12.0       | 12.0       |          |          |            | 12.                           | 0            | 12.0        |                                                  |                                                  |                                                  | 12.0    |         | 12.0      |
| Parking/Gra                                          | de/Parking    |                             | Ν          | 0          | Ν        |          | N          | (                             | )            | N           | Ν                                                |                                                  | N                                                | N       | 0       | N         |
| Parking/hr                                           |               |                             |            |            |          |          |            |                               |              |             |                                                  |                                                  |                                                  |         |         |           |
| Bus stops/h                                          | Γ             |                             | 0          | 0          |          |          |            | (                             | )            | 0           |                                                  |                                                  |                                                  | 0       |         | 0         |
| Unit Extens                                          | ion           |                             | 3.0        | 3.0        |          |          |            | 3.                            | 0            | 3.0         |                                                  |                                                  |                                                  | 3.0     |         | 3.0       |
| Phasing                                              | EB Only       | Thru 8                      | RT         | 03         | •        | Τ        | 04         | <u> </u>                      | S            | B Only      |                                                  | 06                                               | Ť                                                | 07      | T       | 08        |
|                                                      | G = 35.0      | G = 3                       |            | G =        |          | G        | =          |                               |              | = 25.0      |                                                  |                                                  | G                                                | =       | G =     |           |
| Timing                                               | Y = 5         | Y = 5                       |            | Y =        |          | Υ        |            |                               | Υ:           | = 5         | Υ =                                              |                                                  | Υ                                                |         | Y =     |           |
|                                                      | Analysis (hrs |                             |            |            |          |          |            |                               |              |             |                                                  | le Len                                           | gth C                                            | = 105.  | 0       |           |
| Lane Gro                                             | up Capaci     | ity, Co                     | ntrol      | Delay      | /, a     | nd       | LOS        | De                            | ete          | rmina       | tion                                             |                                                  |                                                  |         |         |           |
|                                                      |               |                             | ЕВ         |            |          |          | V          | ۷В                            |              |             |                                                  | NB                                               |                                                  | 1       | SB      |           |
| Adj. flow rat                                        | е             | 474                         | 243        |            |          |          | 166        | ;                             | 46           | 6           |                                                  |                                                  |                                                  | 219     |         | 263       |
| Lane group                                           | cap.          | 596                         | 2388       | 3          |          |          | 1023       | 3                             | 88           | 35          | 1                                                |                                                  |                                                  | 425     |         | 970       |
| v/c ratio                                            |               | 0.80                        | 0.10       | ,          |          |          | 0.16       | 3                             | 0.5          | 53          |                                                  |                                                  |                                                  | 0.52    |         | 0.27      |
| Green ratio                                          |               | 0.33                        | 0.67       | 7          |          |          | 0.29       | )                             | 0.5          | 57          |                                                  |                                                  |                                                  | 0.24    |         | 0.62      |
| Unif. delay                                          | d1            | 31.8                        | 6.3        |            |          |          | 28.1       | 1                             | 13           | .8          |                                                  |                                                  |                                                  | 34.7    |         | 9.2       |
| Delay factor                                         | · k           | 0.34                        | 0.11       | '          |          |          | 0.11       | 1                             | 0.1          | 13          |                                                  |                                                  |                                                  | 0.12    |         | 0.11      |
| Increm. dela                                         | ay d2         | 7.4                         | 0.0        |            |          |          | 0.1        |                               | 0.           | 6           |                                                  |                                                  |                                                  | 1.1     |         | 0.2       |
| PF factor                                            |               | 0.667                       | 0.15       | О          |          |          | 0.73       | 3                             | 0.1          | 17          |                                                  |                                                  |                                                  | 1.000   |         | 0.527     |
| Control dela                                         | ay            | 28.6                        | 1.0        |            |          |          | 20.7       | 7                             | 2.           | 2           |                                                  |                                                  |                                                  | 35.8    |         | 5.0       |
| Lane group                                           | LOS           | С                           | Α          |            |          |          | С          |                               | A            |             |                                                  |                                                  |                                                  | D       |         | Α         |
| Apprch. delay                                        |               |                             | 19.2       |            |          |          | 7.1        |                               |              |             |                                                  |                                                  |                                                  |         | 19.0    |           |
| Approach L                                           | os            |                             | В          |            |          |          | Α          |                               |              |             |                                                  |                                                  |                                                  |         | В       |           |
| Intersec. de                                         | lay           |                             | 15.0       |            |          |          |            | lı                            | nter         | section     | LOS                                              |                                                  |                                                  |         | В       |           |
| rrasaggaTM                                           |               |                             | σ-         | vright © 2 | 000 T    | r . 1    |            | 71: 4                         | - 41         | t D:-1-4- D | 1                                                |                                                  | -                                                |         |         | Version 4 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                    |                               |                  |                                                  | SH           | OF  | RT RE          | EP(                           | OR.          | T                |           |                          |                                                  |               |          |                 |
|------------------------------------------------------|--------------------|-------------------------------|------------------|--------------------------------------------------|--------------|-----|----------------|-------------------------------|--------------|------------------|-----------|--------------------------|--------------------------------------------------|---------------|----------|-----------------|
| General In                                           | formation          |                               |                  |                                                  |              |     |                |                               |              | matior           | 1         |                          | •                                                |               | •        |                 |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med<br>d <i>Pi</i> | US.<br>US.<br>04/29<br>M PEAF | AI<br>9/12       | IR                                               |              |     | Are<br>Jui     | erse<br>ea T<br>risdi<br>alys | ype<br>ictic | Э                | 00        | DEL (<br>All oth<br>EANS | ORO F<br>ner are<br>IDE-II                       |               |          |                 |
| Volume ar                                            | nd Timing Inp      | out                           |                  |                                                  |              |     |                |                               |              |                  |           |                          |                                                  |               |          |                 |
|                                                      |                    |                               | · · <del>·</del> | EB                                               | 1 5          |     |                |                               | VB.          | LBE              |           | NB                       | Loz                                              | ļ.,. <u>.</u> | SB       | T DT            |
| Num. of La                                           | nes                |                               | LT<br>1          | TH<br>2                                          | R            |     | LT<br><i>0</i> | T 2                           |              | RT 1             | <u>LT</u> | TH<br>0                  | RT 0                                             | LT<br>1       | TH<br>0  | RT<br>1         |
| Lane group                                           |                    |                               | L                | T                                                |              |     |                | 7                             | -            | R                |           |                          |                                                  | L             |          | R               |
| Volume (vp                                           |                    |                               | 360              | 304                                              | <del> </del> |     |                | 50                            | 2            | 330              |           |                          |                                                  | 480           |          | 540             |
| % Heavy v                                            |                    |                               | 1                | 1                                                |              |     |                | 1                             |              | 1                |           |                          |                                                  | 1             |          | 1               |
| PHF                                                  |                    |                               | 0.95             | 0.95                                             |              |     |                | 0.9                           | 95           | 0.95             |           |                          |                                                  | 0.95          |          | 0.95            |
| Actuated (F                                          |                    |                               | Α                | Α                                                |              |     |                | Α                             |              | Α                |           |                          |                                                  | Α             |          | Α               |
| Startup lost                                         |                    |                               | 2.0              | 2.0                                              | <u> </u>     |     |                | 2.0                           |              | 2.0              |           |                          |                                                  | 2.0           |          | 2.0             |
| Ext. eff. gre                                        | en                 |                               | 2.0              | 2.0                                              | ┿            |     |                | 2.0<br>5                      | _            | 2.0<br>5         |           | <b>.</b>                 | ├                                                | 2.0           | -        | 2.0             |
| Arrival type<br>Unit Extens                          | ion                |                               | 5<br>3.0         | 5<br>3.0                                         | ╫            | _   |                | 3.                            |              | 3.0              |           |                          |                                                  | 3.0           | ļ        | 3.0             |
|                                                      | TOR Volume         |                               | 3.0              | 3.0                                              | ╀            |     | 5              | ა.<br>5                       |              | 0                | 5         |                          | <u> </u>                                         | 5             | 5        | 0               |
| Lane Width                                           |                    |                               | 12.0             | 12.0                                             | ╁            |     |                | 12.                           |              | 12.0             | -         |                          | <del> </del>                                     | 12.0          | J        | 12.0            |
| Parking/Gra                                          |                    |                               | N                | 0                                                | ₩<br>N       |     | N              | ₩                             | )            | N                | N         |                          | N                                                | N N           | 0        | N               |
| Parking/hr                                           | aden anang         |                               |                  | <del>                                     </del> | +''          | -   |                | H                             | _            | <del>- ''-</del> |           |                          | <del>  ''</del>                                  | +"            | Ť        | <del>  ``</del> |
| Bus stops/h                                          | nr                 |                               | 0                | 0                                                | 1            |     |                | C                             | )            | 0                |           |                          | <del>                                     </del> | 0             | <u> </u> | 0               |
| Unit Extens                                          |                    |                               | 3.0              | 3.0                                              | $\vdash$     |     |                | 3.                            |              | 3.0              |           | <b></b>                  |                                                  | 3.0           |          | 3.0             |
| Phasing                                              | EB Only            | Thru 8                        |                  | 03                                               | <u> </u>     | 一   | 04             | <u> </u>                      |              | B Only           | <u> </u>  | 06                       | ╁                                                | 07            | T        | 08              |
|                                                      | G = 25.0           | G = 3                         |                  | G =                                              |              | lg  |                |                               |              | = 35.0           |           |                          | G :                                              |               | G =      |                 |
| Timing                                               | Y = 5              | Y = 5                         |                  | Y =                                              |              | Υ   | =              |                               | Υ            | = 5              | Υ =       |                          | Υ =                                              | •             | Y =      |                 |
| Duration of                                          | Analysis (hrs      | ) = 0.25                      | 5                |                                                  |              |     |                |                               |              |                  | Сус       | le Lenç                  | gth C                                            | = 105.        | 0        | :               |
| Lane Gro                                             | up Capaci          | ity, Co                       | ntro             | l Dela                                           | y, a         | nd  | LOS            | De                            | ete          | rmina            | tion      |                          |                                                  |               |          |                 |
|                                                      |                    |                               | EB               | }                                                |              |     | ٧              | VΒ                            |              |                  |           | NB                       |                                                  |               | SB       |                 |
| Adj. flow rai                                        | te                 | 379                           | 320              | )                                                |              |     | 528            | }                             | 34           | 17               |           |                          |                                                  | 505           |          | 568             |
| Lane group                                           | сар.               | 425                           | 204              | 7                                                |              |     | 1023           | 3                             | 10.          | 33               |           |                          |                                                  | 596           |          | 972             |
| v/c ratio                                            |                    | 0.89                          | 0.16             | 3                                                |              |     | 0.52           | 2                             | 0.3          | 34               |           |                          |                                                  | 0.85          |          | 0.58            |
| Green ratio                                          |                    | 0.24                          | 0.57             | 7                                                |              |     | 0.29           | )                             | 0.6          | 5 <b>7</b>       |           |                          |                                                  | 0.33          |          | 0.62            |
| Unif. delay                                          | d1                 | 38.7                          | 10.6             | 3                                                |              |     | 31.4           | 1                             | 7            | 5                |           |                          |                                                  | 32.5          |          | 11.9            |
| Delay facto                                          | r k                | 0.42                          | 0.11             | 1                                                |              |     | 0.12           | 2                             | 0.1          | 11               |           |                          |                                                  | 0.38          |          | 0.18            |
| Increm. dela                                         | ay d2              | 20.4                          | 0.0              |                                                  |              |     | 0.5            |                               | 0.           | 2                |           |                          |                                                  | 11.0          |          | 0.9             |
| PF factor                                            |                    |                               | 0.11             | 7                                                |              |     | 0.73           | 3                             | 0.1          | 50               |           |                          |                                                  | 0.958         |          | 0.527           |
| Control delay 51.1                                   |                    |                               | 1.3              | !                                                |              |     | 23.5           | 5                             | 1.           | 3                |           |                          |                                                  | 42.2          |          | 7.2             |
| Lane group                                           | _ane group LOS D   |                               |                  |                                                  |              |     | С              |                               | 1            | 1                |           |                          |                                                  | D             |          | Α               |
| Apprch. del                                          | 28.3               |                               |                  |                                                  | 14.7         |     |                |                               |              |                  |           |                          | 23.7                                             |               |          |                 |
| Approach L                                           | .os                |                               | С                |                                                  |              |     | В              |                               |              |                  |           |                          | ·                                                |               | С        |                 |
| Intersec. de                                         | elay               | 2                             | 21.9             |                                                  | 1            |     |                | l1                            | nter         | section          | LOS       |                          |                                                  |               | С        |                 |
| rraganaaTM                                           | •                  | -                             |                  | 1116                                             | 2000 7       | - · | '. CT          | 71 / 1                        | à 1          | 1 Piahte P       | 1         |                          |                                                  | •             |          | Version 4.1:    |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      | · ·               |                                |           | <u></u>     | SH                                               | OF       | T RE       | ĒP(                           | OR.         | T             |          |                           |                                                  |            |              |             |
|------------------------------------------------------|-------------------|--------------------------------|-----------|-------------|--------------------------------------------------|----------|------------|-------------------------------|-------------|---------------|----------|---------------------------|--------------------------------------------------|------------|--------------|-------------|
| General Inf                                          | formation         |                                |           |             |                                                  |          |            |                               | _           | mation        | )        |                           |                                                  |            |              |             |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med               | USA<br>USA<br>04/29,<br>M PEAK | \I<br>/12 | IR          |                                                  |          | Are<br>Jui | erse<br>ea T<br>risdi<br>alys | ype<br>ctic | 9             | 00       | DEL (<br>All oti<br>SEANS | ORO i<br>her ar<br>NDE-l                         |            |              |             |
| Volume an                                            | nd Timing Inp     | out                            |           |             |                                                  |          |            |                               | -           |               |          |                           |                                                  |            |              |             |
|                                                      |                   | -                              | LT        | EB          |                                                  | ₽        | LT         |                               | VB          | Lot           | LT       | NB<br>TH                  | RT                                               | Intercolor | SB<br>TH     | I DT        |
| Num. of Lar                                          | nes               |                                | 1         | TH<br>2     | R<br>0                                           | _        | 0          | T<br>2                        |             | RT<br>1       | 0        | 0                         | 0                                                | 1          | 0            | RT<br>1     |
| Lane group                                           |                   |                                | L         | Т           |                                                  | 一        |            | 7                             |             | R             |          |                           |                                                  | L          |              | R           |
| Volume (vpl                                          |                   |                                | 360       | 338         | <del>                                     </del> | 7        |            | 51                            | 9           | 379           |          |                           | <del>                                     </del> | 581        |              | 540         |
| % Heavy v                                            |                   |                                | 1         | 1           |                                                  |          |            | 1                             |             | 1             |          |                           |                                                  | 1          |              | 1           |
| PHF                                                  |                   |                                | 0.95      | 0.95        |                                                  |          |            | 0.9                           | _           | 0.95          |          |                           |                                                  | 0.95       |              | 0.95        |
| Actuated (P                                          |                   |                                | Α         | Α           |                                                  | $\Box$   |            | Α                             |             | Α             |          |                           |                                                  | Α          |              | Α           |
| Startup lost                                         |                   |                                | 2.0       | 2.0         | <u> </u>                                         | _        |            | 2.0                           |             | 2.0           |          | ļ                         | <b>ļ</b>                                         | 2.0        | <u> </u>     | 2.0         |
| Ext. eff. gre                                        |                   |                                | 2.0       | 2.0         | <u> </u>                                         |          |            | 2.0                           |             | 2.0           |          |                           | ļ                                                | 2.0        | <del> </del> | 2.0         |
| Arrival type<br>Unit Extens                          |                   | +                              | 5<br>3.0  | 5<br>3.0    | $\vdash$                                         | $\dashv$ |            | 5<br>3.                       |             | 5<br>3.0      |          |                           | +                                                | 3.0        | $\vdash$     | 3.0         |
|                                                      | ion<br>TOR Volume | -                              | J.U       | 3.0         | $\vdash$                                         | $\dashv$ | 5          | <i>3</i> .                    |             | 0             | 5        | ļ                         | +                                                | 5.0        | 5            | 0           |
| Lane Width                                           |                   |                                | 12.0      | 12.0        |                                                  | 1        |            | 12.                           |             | 12.0          | <u> </u> |                           |                                                  | 12.0       | ٦            | 12.0        |
| Parking/Gra                                          | ade/Parking       |                                | Ν         | 0           | Ν                                                |          | Ν          | (                             | )           | N             | N        |                           | N                                                | N          | 0            | N           |
| Parking/hr                                           |                   |                                | •         |             |                                                  |          |            |                               |             |               |          |                           |                                                  |            |              |             |
| Bus stops/h                                          | ١٢                |                                | 0         | 0           |                                                  |          |            | C                             | )           | 0             |          |                           |                                                  | 0          |              | 0           |
| Unit Extens                                          | ion               |                                | 3.0       | 3.0         |                                                  |          |            | 3.                            | 0           | 3.0           |          |                           |                                                  | 3.0        |              | 3.0         |
| Phasing                                              | EB Only           | Thru &                         |           | 03          |                                                  |          | 04         |                               | S           | B Only        |          | 06                        |                                                  | 07         |              | 80          |
| Timing                                               | G = 25.0<br>Y = 5 | G = 30 $Y = 5$                 | 0.0       | G =<br>Y =  |                                                  | G<br>Y   |            |                               |             | = 35.0<br>= 5 | G =      |                           | G<br>Y                                           |            | G =          |             |
| Duration of                                          | Analysis (hrs     |                                |           | 1           |                                                  | <u> </u> |            |                               | <u>'</u>    |               |          | le Len                    |                                                  |            |              |             |
|                                                      | up Capaci         |                                | ntro      | l Delav     | /. a                                             | nd       | LOS        | De                            | ete         | rmina         |          |                           |                                                  |            |              |             |
|                                                      |                   | ĺ                              | EΒ        |             | Ť                                                |          |            | VB                            |             |               |          | NB                        |                                                  |            | SB           |             |
| Adj. flow rat                                        | te                | 379                            | 356       | 3           |                                                  |          | 546        | ì                             | 39          | 9             |          |                           |                                                  | 612        |              | 568         |
| Lane group                                           | сар.              | 425                            | 204       | 7           |                                                  |          | 1023       | 3                             | 10          | 33            |          |                           |                                                  | 596        |              | 972         |
| v/c ratio                                            |                   | 0.89                           | 0.17      | 7           |                                                  |          | 0.53       | }                             | 0.3         | 39            |          |                           |                                                  | 1.03       |              | 0.58        |
| Green ratio                                          |                   | 0.24                           | 0.57      | 7           |                                                  |          | 0.29       | )                             | 0.6         | 67            |          |                           |                                                  | 0.33       |              | 0.62        |
| Unif. delay                                          | d1                | 38.7                           | 10.7      | 7           |                                                  |          | 31.6       | 3                             | 7.          | 9             |          |                           |                                                  | 35.0       |              | 11.9        |
| Delay factor                                         | rk                | 0.42                           | 0.1       | 1           |                                                  |          | 0.14       | 1                             | 0.1         | 11            |          |                           |                                                  | 0.50       |              | 0.18        |
| Increm. dela                                         | ay d2             | 20.4                           | 0.0       | 1           | $\perp$                                          |          | 0.5        |                               | 0.          | 2             |          |                           |                                                  | 43.9       |              | 0.9         |
| PF factor                                            |                   | 0.792                          | 0.11      | 7           |                                                  |          | 0.73       | 3                             | 0.1         | 50            |          |                           |                                                  | 0.958      |              | 0.527       |
| Control dela                                         | ay                | 51.1                           | 1.3       |             | $\perp$                                          |          | 23.7       | 7                             | 1.          | 4             |          |                           |                                                  | 77.4       | <u> </u>     | 7.2         |
| Lane group                                           | ane group LOS D   |                                |           |             |                                                  |          | С          |                               | Α           | 1             |          |                           |                                                  | E          |              | Α           |
| Apprch. delay 27.0                                   |                   |                                |           |             |                                                  |          | 14.3       |                               |             |               |          |                           |                                                  |            | 43.6         |             |
| Approach L                                           |                   | С                              |           |             |                                                  | В        |            |                               |             |               |          |                           |                                                  | D          |              |             |
| Intersec. de                                         | lay               | 2                              | 9.7       |             |                                                  |          |            | lı                            | nter        | section       | LOS      |                           |                                                  |            | С            |             |
| HCS2000 <sup>TM</sup>                                |                   |                                | Co        | pyright © 2 | 000 T                                            | Inive    | rsity of I | "lorid                        | a A1        | l Rights R    | eserved  |                           |                                                  |            |              | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                        |                    |                                       |                     |               | SH        | ORT                                              | REPO                        | OR"    | Γ              |          |                |          |                                    |          |                  |                                                  |
|----------------------------------------|--------------------|---------------------------------------|---------------------|---------------|-----------|--------------------------------------------------|-----------------------------|--------|----------------|----------|----------------|----------|------------------------------------|----------|------------------|--------------------------------------------------|
| General Inf                            | ormation           |                                       |                     |               |           |                                                  | Site Ir                     |        |                | n        |                |          |                                    |          |                  |                                                  |
| Analyst<br>Agency or C<br>Date Perfori | med                | U<br>08/:                             | SAI<br>SAI<br>24/12 |               |           |                                                  | Interse<br>Area T<br>Jurisd | уре    | <del>)</del>   | С        | A              | l ot     | BLVD.<br>WAY<br>her are<br>SIDE-II |          | TA               |                                                  |
| Time Period                            |                    | AM                                    | PEAK                |               |           |                                                  | Analys                      |        |                | В        | O.AL7          | 1        | /NO PI                             | ROJEC    | T                |                                                  |
| Volume an                              | d Timing I         | nput                                  |                     |               |           |                                                  |                             |        |                |          |                |          |                                    |          |                  |                                                  |
|                                        |                    |                                       | L                   | EB            |           | <del>                                     </del> | WI                          |        | <u> </u>       | <u> </u> | N              |          |                                    |          | SB               | l n-                                             |
| NI 6 I                                 |                    |                                       | LT                  | TH            | RT        | LT                                               | Th-                         | ┸      | RT             | LT<br>1  | ·Т             |          | RT<br>1                            | LT       | TH<br>3          | RT<br>0                                          |
| Num. of Lar                            | es                 |                                       | 2                   | 2             | 1         | 2                                                | 2                           | +      | 0              | <u> </u> |                |          |                                    | 2        | _                | -                                                |
| Lane group                             |                    |                                       | L                   | T             | R         | L                                                | TR                          |        | 2.42           | L        | 7              |          | R                                  | L        | TR               | 15                                               |
| Volume (vpl                            |                    |                                       | 55                  | 135<br>2      | 255<br>2  | 440                                              | 110                         |        | 340<br>2       | 110<br>2 | 84             |          | 795<br>2                           | 45<br>2  | 1400<br>2        | 45<br>2                                          |
| % Heavy ve                             | ∍n                 |                                       | 2<br>0.95           |               | ∠<br>0.95 | 2<br>0.95                                        |                             | +      | 2<br>),95      | 0.9      | _              |          | 0.95                               | 0.95     | <i>∠</i><br>0.95 | 0.95                                             |
| Actuated (P.                           | /A)                |                                       | 0.30<br>A           | A             | A         | A                                                | A                           |        | A              | A        | A              |          | A                                  | A        | A                | A                                                |
| Startup lost                           |                    |                                       | 2.0                 | 2.0           | 2.0       | 2.0                                              | 2.0                         | _      |                | 2.0      |                |          | 2.0                                | 2.0      | 2.0              |                                                  |
| Ext. eff. gree                         |                    |                                       | 2.0                 | 2.0           | 2.0       | 2.0                                              | 2.0                         | 工      |                | 2.0      | _              |          | 2.0                                | 2.0      | 2.0              |                                                  |
| Arrival type                           |                    |                                       | 5                   | 5             | 5         | 5                                                | 5                           |        |                | 5        | 5              |          | 5                                  | 5        | 5                |                                                  |
| Unit Extensi                           |                    |                                       | 3.0                 | 3.0           | 3.0       | 3.0                                              | 3.0                         |        |                | 3.0      |                |          | 3.0                                | 3.0      | 3.0              |                                                  |
| Ped/Bike/R                             | ΓOR Volum          | е                                     | 5                   | 5             | 0         | 5                                                | 5                           |        | 123            | 5        | 5              | _        | 0                                  | 5        | 5                | 0                                                |
| Lane Width                             |                    |                                       | 12.0                | 12.0          | 12.0      | 12.0                                             |                             | _      |                | 12.0     | _              | .0       | 12.0                               | 12.0     | 12.0             | <b>.</b>                                         |
| Parking/Gra                            | de/Parking         |                                       | N                   | 0             | N         | N                                                | 0                           | +      | N              | Ν        | 0              |          | N                                  | N        | 0                | N                                                |
| Parking/hr                             |                    |                                       |                     |               |           |                                                  |                             | 4      |                | _        |                |          |                                    | <u> </u> |                  |                                                  |
| Bus stops/h                            |                    |                                       | 0                   | 0             | 0         | 0                                                | 0                           |        |                | 0        | 0              |          | 0                                  | 0        | 0                |                                                  |
| Unit Extensi                           |                    |                                       | 3.0                 | 3.0           | 3.0       | 3.0                                              | 3.0                         |        |                | 3.0      |                |          | 3.0                                | 3.0      | 3.0              |                                                  |
| Phasing                                | Excl. Left         |                                       | Only                | Thru 8        |           | 0                                                | 4                           |        | ccl. Le        |          | Thru 8         |          |                                    | 07       |                  | 08                                               |
| Timing                                 | G = 4.0<br>Y = 5.6 | G =<br>Y =                            |                     | G = 7 $Y = 6$ |           | G =<br>Y =                                       |                             |        | = 9.5<br>= 5.6 |          | G = 4<br>Y = 6 |          | G =<br>Y =                         |          | G =<br>Y =       |                                                  |
| Duration of                            |                    |                                       |                     | 1 = 0.        | .4        | <u> </u>                                         |                             |        | - 5.0          |          |                |          |                                    | = 100.   |                  |                                                  |
| Lane Gro                               |                    |                                       |                     | l Dela        | v a       | nd I (                                           | OS De                       | ete:   | rmin           |          |                |          | 9                                  |          |                  |                                                  |
|                                        | ap oupa            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | EB                  |               | <u> </u>  |                                                  | NB                          |        |                |          | NB             |          |                                    |          | SB               |                                                  |
| Adj. flow rat                          | <u> </u>           | 58                                    | 142                 | 268           | 46.       |                                                  | 344                         |        | 11             | 6        | 884            | Т        | 837                                | 47       | 1521             | T                                                |
| Lane group                             |                    | 137                                   | 248                 | 349           | 60.       |                                                  | 647                         |        | 16             |          | 2131           | ┪        | 814                                | 327      | 2120             | +                                                |
| v/c ratio                              | <u></u>            | 0.42                                  | 0.57                | 0.77          | 0.7       |                                                  | .53                         |        | 0.0            |          | 0.41           | $\dashv$ | 1.03                               | 0.14     | 0.72             | +                                                |
| Green ratio                            |                    | 0.04                                  | 0.07                | 0.23          | 0.1       |                                                  | .21                         |        | 0.0            |          | 0.42           | -        | 0.52                               | 0.09     | 0.42             | _                                                |
| Unif. delay o                          | <br>ქ1             | 46.9                                  | 45.1                | 36.1          | 39.       | 2 3                                              | 5.4                         |        | 43             | .8       | 20.4           | ┪        | 23.9                               | 41.5     | 24.1             | <del>                                     </del> |
| Delay factor                           | ·k                 | 0.11                                  | 0.17                | 0.32          | 0.3       | 2 0                                              | 0.13                        |        | 0.2            | 26       | 0.11           | 十        | 0.50                               | 0.11     | 0.28             |                                                  |
| Increm dela                            | ay d2              | 2.1                                   | 3.2                 | 9.9           | 5.8       | 3 (                                              | 0.8                         |        | 11             | .4       | 0.1            | T        | 39.0                               | 0.2      | 1.2              | 1                                                |
| PF factor 0.972                        |                    |                                       | 0.950               | 0.802         | 0.8       | 58 O.                                            | .827                        |        | 0.9            | 30       | 0.517          | 7        | 0.269                              | 0.930    | 0.517            | ,                                                |
| Control delay 47.7                     |                    |                                       | 46.0                | 38.9          | 39.       | 5 3                                              | 30.1                        |        | 52             | .2       | 10.7           | 丁        | 45.4                               | 38.8     | 13.6             |                                                  |
| Lane group                             | D                  | D                                     | D                   | D             |           | С                                                |                             | L      |                | В        |                | D        | D                                  | В        |                  |                                                  |
| Apprch. dela                           | ay                 | 2.1                                   |                     |               | 35.5      | 5                                                |                             |        | 2              | 9.1      |                |          |                                    | 14.4     |                  |                                                  |
| Approach L                             | os                 |                                       | D                   |               |           | D                                                |                             |        |                |          | С              |          |                                    |          | В                |                                                  |
| Intersec. de                           | lay                | 20                                    | 6.6                 |               |           |                                                  | Ir                          | iters  | sectio         | n LC     | S              |          |                                    |          | С                |                                                  |
| HCS2000 <sup>TM</sup>                  |                    |                                       | Co                  | myright ©     | 2000 U    | niversity                                        | of Florid                   | a. All | Rights         | Reserv   | ed             |          |                                    |          |                  | ersion 4.1                                       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                       |                 |         |              |           | SH          | ORT F        | REPO              | <b>DR</b>    | T                |                 |          |                  |                 |     |                                                  |            |                                              |
|---------------------------------------|-----------------|---------|--------------|-----------|-------------|--------------|-------------------|--------------|------------------|-----------------|----------|------------------|-----------------|-----|--------------------------------------------------|------------|----------------------------------------------|
| General Inf                           | ormation        |         |              |           |             |              |                   |              | matic            | n               |          |                  |                 |     |                                                  |            |                                              |
| Analyst                               |                 | -       | SAI          |           |             | I            | nterse            | ectic        | on               | С               | OLL.     |                  | BLV<br>WAY      |     | @ VIST                                           | TA         |                                              |
| Agency or C<br>Date Perfor            |                 | _       | SAI<br>24/12 |           |             |              | Area T            |              |                  |                 |          | All of           |                 |     |                                                  |            |                                              |
| Time Period                           |                 |         | PEAK         |           |             |              | lurisdi<br>Analys |              |                  | ВС              |          |                  |                 |     | VT#11<br>PROJEC                                  | СТ         |                                              |
| Volume an                             | d Timing I      | nput    |              |           |             | -            |                   |              |                  |                 |          |                  |                 |     |                                                  |            |                                              |
|                                       |                 |         |              | EB        |             |              | WE                |              |                  | ļ. <u>.</u>     |          | NB               | T ===           |     |                                                  | SB         |                                              |
| Nives of Law                          |                 |         | LT           | TH        | RT<br>1     | LT           | T⊦                | $\dashv$     | RT<br>0          | LT<br>1         | +        | TH<br>3          | R <sup>*</sup>  |     | LT<br>2                                          | TH<br>3    | RT<br>0                                      |
| Num. of Lar                           | ies             |         | 2            | 2         | -           | 2            | 2                 | $\dashv$     | U                | <del> </del>    | +        |                  | <u> </u>        |     | <b>-</b>                                         |            | <u> </u>                                     |
| Lane group                            |                 |         |              | T 105     | R           | L 404        | TR                | _            | 0.40             | L               | ٠,       | T                | R               |     | L                                                | TR         | 45                                           |
| Volume (vpl                           |                 |         | 55<br>2      | 135<br>2  | 256<br>2    | 461<br>2     | 110               | +            | 340<br>2         | 113<br>2        | 7 2      | 375<br>2         | 81 <sub>-</sub> |     | 45<br>2                                          | 1410<br>2  | 45<br>2                                      |
| % Heavy vo                            | <del>5</del> 11 |         | 0.95         |           | 0.95        | 0.95         | 0.98              | $\pm$        | <u>-</u><br>0.95 | 0.9             | 5 0      | <u>2</u><br>).95 | 0.9             | _   | 0.95                                             | 0.95       | 0.95                                         |
| Actuated (P                           | /A)             |         | A            | A         | A           | A            | A                 | T            | A                | A               |          | A                | A               |     | A                                                | Α          | Α                                            |
| Startup lost                          |                 |         | 2.0          | 2.0       | 2.0         | 2.0          | 2.0               | ユ            |                  | 2.0             | 1        | 2.0              | 2.0             | 0   | 2.0                                              | 2.0        |                                              |
| Ext. eff. gre                         | en              |         | 2.0          | 2.0       | 2.0         | 2.0          | 2.0               | 耳            |                  | 2.0             |          | 2.0              | 2.0             | _   | 2.0                                              | 2.0        |                                              |
| Arrival type                          |                 |         | 5            | 5         | 5           | 5            | 5                 | 4            |                  | 5               | +        | 5                | 5               | _   | 5                                                | 5          | <b>  </b>                                    |
| Unit Extensi                          |                 | _       | 3.0          | 3.0       | 3.0         | 3.0<br>5     | 3.0               |              | 400              | 3.0             | <u>'</u> | 3.0<br>5         | 3.0             |     | 3.0<br>5                                         | 3.0<br>5   | 0                                            |
| Ped/Bike/R <sup>-</sup><br>Lane Width | TOR Volum       | е       | 5<br>12.0    | 5<br>12.0 | 0<br>12.0   | 12.0         | 5<br>12.0         |              | 123              | 5<br>12.0       | 1        | 2.0              | 0<br>12.        | _   | 12.0                                             | 5<br>12,0  | 0                                            |
| Parking/Gra                           | de/Parking      |         | 12.0<br>N    | 0         | 12.0<br>N   | N            | 12.0              | -            | N                | 12.<br>N        | _        | 0                | N               |     | 12.0<br>N                                        | 0          | N                                            |
| Parking/hr                            | do/i arking     |         | <u> </u>     | 0         |             | 1 /*         | ╁                 | $\dashv$     | , ,              | <del>  '`</del> | -        |                  | +~              |     | <del>-                                    </del> | ·          | '                                            |
| Bus stops/h                           | r               |         | 0            | 0         | 0           | 0            | 10                | 十            |                  | 0               |          | 0                | 0               | )   | 0                                                | 0          |                                              |
| Unit Extensi                          |                 |         | 3.0          | 3.0       | 3.0         | 3.0          | 3.0               | 十            |                  | 3.0             | ,        | 3.0              | 3.0             | 0   | 3.0                                              | 3.0        |                                              |
| Phasing                               | Excl. Left      | WB      | Only         | Thru 8    | k RT        | 04           |                   |              | xcl. Le          | eft             | Thru     | i & R            | <del> </del>    |     | 07                                               | Τ (        | 08                                           |
| Timing                                | G = 4.0         | G =     |              | G = 7     |             | G =          |                   | G            | = 9.5            |                 |          | 42.0             |                 | G = |                                                  | G =        |                                              |
|                                       | Y = 5.6         | Υ =     |              | Y = 6     | .4          | Y =          |                   | Υ:           | = 5.6            |                 | Y =      |                  |                 | Y = |                                                  | Y =        |                                              |
| Duration of                           |                 |         |              |           |             |              |                   | <del>-</del> |                  |                 |          | e Len            | gth             | C = | 100.                                             | 0          |                                              |
| Lane Gro                              | up Capa         | city, C |              | l Dela    | ıy, aı      |              |                   | <u> te</u>   | rmin             | atio            |          |                  |                 | •   |                                                  |            |                                              |
| <b>.</b>                              |                 |         | EB           | T 000     | 10          |              | /B                | _            |                  |                 |          | IB               | 0.57            |     | 47                                               | SB         |                                              |
| Adj. flow rat                         |                 | 58      | 142          | 269       | 48          |              | 44                | H            | 11               |                 | 92       |                  | 857             | -   | 47                                               | 1531       |                                              |
| Lane group                            | сар.            | 137     | 248          | 349       | 60          |              | 47                | <u> </u>     | 16               |                 | 213      | -                | 814             |     | 327                                              | 2120       |                                              |
| v/c ratio                             |                 | 0.42    | 0.57         | 0.77      | 0.8         |              | 53                | _            | 0.7              | 71              | 0.4      | -                | 1.05            |     | 0.14                                             | 0.72       |                                              |
| Green ratio                           |                 | 0.04    | 0.07         | 0.23      | 0.1         | 8 0.         | 21                | L            | 0.0              | 09              | 0.4      | 2                | 0.52            | 2   | 0.09                                             | 0.42       |                                              |
| Unif. delay                           | <del>1</del> 1  | 46.9    | 45.1         | 36.1      | 39.         | 5 35         | 5.4               | L            | 43               | .9              | 20.      | 6                | 23.9            | )   | 41.5                                             | 24.1       |                                              |
| Delay factor                          | · k             | 0.11    | 0.17         | 0.32      | 0.3         | 5 0.         | 13                |              | 0.2              | 27              | 0.1      | 1                | 0.50            | )   | 0.11                                             | 0.28       |                                              |
| Increm. dela                          | ay d2           | 2.1     | 3.2          | 10.1      | 7.6         | 3 0          | .8                |              | 12               | .9              | 0.1      | 1                | 46.4            | 1   | 0.2                                              | 1.2        |                                              |
| PF factor                             |                 | 0.972   | 0.950        | 0.802     | 0.8         | 58 0.8       | 927               |              | 0.9              | 30              | 0.5      | 17 (             | 0.26            | 9   | 0.930                                            | 0.517      | <u>'                                    </u> |
| Control dela                          | ay              | 47.7    | 46.0         | 39.1      | 41.         | 5 30         | 0.1               |              | 53               | .7              | 10.      | 8                | 52.8            | 3   | 38.8                                             | 13.7       |                                              |
| Lane group                            | LOS             | D       | D            | D         | D           | (            | 9                 |              | L                | )               | В        |                  | D               |     | D                                                | В          |                                              |
| Apprch. dela                          | ay              | 42      | 2.2          |           |             | <b>3</b> 6.8 |                   |              |                  | 3               | 2.4      |                  |                 |     |                                                  | 14.5       |                                              |
| Approach L                            | os              |         | D            |           |             | D            |                   |              |                  |                 | С        |                  |                 |     |                                                  | В          |                                              |
| Intersec. de                          | lay             |         |              |           | lr          | iter         | sectio            | n LC         | S                |                 |          |                  |                 | С   |                                                  |            |                                              |
| HCS2000 <sup>TM</sup>                 |                 |         | onvright ©   | 2000 U    | niversity o | f Florid     | a. Al             | ll Rights    | Reserv           | ed              |          | •                |                 | -   | V                                                | ersion 4.1 |                                              |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                       |            |             |                                                  |                                       | SH        | ORT F       | REP                                  | DR'          | Γ                                     |                                                  |                                   |                             |                   |            |                |
|-------------------------------------------------------|------------|-------------|--------------------------------------------------|---------------------------------------|-----------|-------------|--------------------------------------|--------------|---------------------------------------|--------------------------------------------------|-----------------------------------|-----------------------------|-------------------|------------|----------------|
| General Info                                          | ormation   |             |                                                  |                                       |           |             | Site Ir                              |              |                                       | on                                               |                                   |                             |                   |            |                |
| Analyst<br>Agency or C<br>Date Perforr<br>Time Period | ned        | U<br>08/2   | SAI<br>SAI<br>22/12<br>PEAK                      |                                       |           |             | nterse<br>Area T<br>Jurisd<br>Analys | ype<br>ictio | :<br>n                                |                                                  | OLLEGE<br>All o<br>OCEAN<br>O.ALT | WAY<br>ther are<br>ISIDE-II | -<br>eas<br>VT#11 |            |                |
| Volume an                                             | d Timing I | nput        | ···                                              |                                       |           |             |                                      |              | -                                     |                                                  |                                   |                             |                   |            |                |
| <del> </del>                                          | <u> </u>   |             |                                                  | EΒ                                    |           |             | WE                                   | 3            |                                       |                                                  | NB                                |                             |                   | SB         |                |
|                                                       |            |             | LT                                               | TH                                    | RT        | LT          | TH                                   |              | RT                                    | LT                                               | TH                                | RT                          | LT                | TH         | RT             |
| Num. of Lan                                           | es         |             | 2                                                | 2                                     | 1         | 2           | 2                                    |              | 0                                     | 1                                                | 3                                 | 1                           | 2                 | 3          | 0              |
| Lane group                                            |            |             | L                                                | Τ                                     | R         | L           | TR                                   |              |                                       | L                                                | T                                 | R                           | L                 | TR         |                |
| Volume (vpł                                           |            |             | 115                                              | 120                                   | 310       | 450         | 285                                  |              | 125                                   | 255                                              | 1420                              | 660                         | 45                | 1170       | 100            |
| % Heavy ve                                            | eh         |             | 2                                                | 2                                     | 2         | 2           | 2                                    |              | 2                                     | 2                                                | 2                                 | 2                           | 2                 | 2          | 2              |
| PHF                                                   | (A.)       |             | 0.95<br>A                                        | 0.95<br>A                             | 0.95<br>A | 0.95<br>A   | 0.95<br>A                            | ) (          | ).95<br>A                             | 0.95<br>A                                        | 0.95<br>A                         | 0.95<br>A                   | 0.95<br>A         | 0.95<br>A  | 0.95<br>A      |
| Actuated (P/<br>Startup lost                          |            |             | 2.0                                              | 2.0                                   | 2.0       | 2.0         | 2.0                                  | +            | A                                     | 2.0                                              | 2.0                               | 2.0                         | 2.0               | 2.0        | <del>  ^</del> |
| Ext. eff. gree                                        |            |             | 2.0                                              | 2.0                                   | 2.0       | 2.0         | 2.0                                  | 十            |                                       | 2.0                                              | 2.0                               | 2.0                         | 2.0               | 2.0        |                |
| Arrival type                                          |            |             | 5                                                | 5                                     | 5         | 5           | 5                                    |              |                                       | 5                                                | 5                                 | 5                           | 5                 | 5          |                |
| Unit Extensi                                          | on         |             | 3.0                                              | 3.0                                   | 3.0       | 3.0         | 3.0                                  |              |                                       | 3.0                                              | 3.0                               | 3.0                         | 3.0               | 3.0        |                |
| Ped/Bike/R1                                           | OR Volum   | е           | 5                                                | 5                                     | 10        | 5           | 5                                    |              | 65                                    | 5                                                | 5                                 | 0                           | 5                 | 5          | 0              |
| Lane Width                                            |            |             | 12.0                                             | 12.0                                  | 12.0      | 12.0        | 12.0                                 | )            |                                       | 12.0                                             | 12.0                              | 12.0                        | 12.0              | 12.0       |                |
| Parking/Gra                                           | de/Parking |             | Ν                                                | 0                                     | N         | Ν           | 0                                    |              | Ν                                     | N                                                | 0                                 | N                           | N                 | 0          | Ν              |
| Parking/hr                                            |            |             |                                                  |                                       |           |             |                                      |              |                                       |                                                  |                                   |                             |                   |            |                |
| Bus stops/hi                                          |            |             | 0                                                | 0                                     | 0         | 0           | 0                                    |              |                                       | 0                                                | 0                                 | 0                           | 0                 | 0          |                |
| Unit Extensi                                          | on         |             | 3.0                                              | 3.0                                   | 3.0       | 3.0         | 3.0                                  | <u> </u>     |                                       | 3.0                                              | 3.0                               | 3.0                         | 3.0               | 3.0        |                |
| Phasing                                               | Excl. Left |             | Only                                             | Thru                                  |           | 04          | 1                                    | _            | cl. L                                 |                                                  | NB Onl                            |                             | u & RT            |            | )8             |
| Timing                                                | G = 6.0    | G =         |                                                  | G = 1                                 |           | G =         |                                      |              | = 7.0<br>= 5.6                        |                                                  | G = 5.0<br>Y = 5.6                |                             | 6.2               | G =<br>Y = |                |
| Duration of /                                         | Y = 5.6    | Y = Y = 0 ' | **                                               | Y = 6                                 | ). J      | Υ =         |                                      | <u> </u>     | 5,0                                   |                                                  | ycle Lei                          |                             |                   |            | <del></del>    |
| Lane Gro                                              |            |             |                                                  | I Dol                                 | 21/ 2     | nd I O      | S D                                  | ator         | mir                                   |                                                  |                                   | igui O -                    | - 110.            |            |                |
| Lane Gio                                              | up Capa    | l City, C   | EB                                               | i Dei                                 | ay, a     |             | /B                                   | - 101        | Т                                     | iatio                                            | NB                                |                             |                   | SB         |                |
| Adj. flow rate                                        |            | 121         | 126                                              | 316                                   | 47.       | <del></del> | 79                                   | 1            | 2                                     | 68                                               | 1495                              | 695                         | 47                | 1337       | T              |
| -                                                     |            |             | <del>                                     </del> | 324                                   | -         |             | 23                                   |              | _                                     | 83                                               | 1924                              | 1068                        | 219               | 1415       |                |
| Lane group                                            | сар.       | 187         | 322                                              |                                       | 86        |             |                                      |              | -                                     |                                                  |                                   |                             |                   | +          | +              |
| v/c ratio                                             |            | 0.65        | 0.39                                             | 0.98                                  |           |             | 74                                   |              | -                                     | 95                                               | 0.78                              | 0.65                        | 0.21              | 0.94       |                |
| Green ratio                                           |            | 0.05        | 0.09                                             | 0.21                                  | 0.2       |             | 29                                   |              | +                                     | 16                                               | 0.38                              | 0.69                        | 0.06              | 0.28       |                |
| Unif. delay o                                         | 11         | 51.0        | 47.1                                             | 43.1                                  | 35.       | 8 38        | 5.4                                  |              | 4                                     | 5.7                                              | 30.1                              | 9.8                         | 48.9              | 38.6       |                |
| Delay factor                                          | k          | 0.22        | 0.11                                             | 0.48                                  | 0.1       | 5 0.        | 29                                   |              | 0.                                    | 46                                               | 0.33                              | 0.23                        | 0.11              | 0.46       |                |
| Increm. dela                                          | y d2       | 7.6         | 0.8                                              | 43.2                                  | 0.8       | 3 3         | 1.1                                  |              | 38                                    | 9.3                                              | 2.1                               | 1.4                         | 0.5               | 13.1       |                |
| PF factor                                             |            |             |                                                  | 0.821                                 | 0.7       | 77 0.       | 731                                  |              | 0.                                    | 873                                              | 0.593                             | 0.159                       | 0.955             | 0.737      | ·              |
| Control dela                                          | У          | 56.6        | 44.8                                             | 78.5                                  | 28.       | 6 29        | 9.0                                  |              | 79                                    | 9.3                                              | 19.9                              | 3.0                         | 47.2              | 41.5       |                |
| Lane group                                            | LOS        | E           | D                                                | E                                     | C         |             | С                                    |              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | E                                                | В                                 | Α                           | D                 | D          |                |
| Apprch. dela                                          | _          | 28.8        |                                                  | <u> </u>                              | _         |             | 1.6                                  |              | <u> </u>                              | 41.7                                             |                                   |                             |                   |            |                |
| Approach L                                            | <u>-</u>   |             | 6.3<br>E                                         | · · · · · · · · · · · · · · · · · · · | -         | С           |                                      |              | +                                     |                                                  | C                                 |                             |                   | D          |                |
| Intersec. del                                         |            | +           |                                                  | lr                                    | ntere     | ectiv       | on LO                                |              | <del>12. F 1.11151 T.</del>           | <del>                                     </del> |                                   |                             |                   |            |                |
| HCS2000 <sup>TM</sup>                                 | ау         | L3          | 2.6                                              |                                       | 3000 13   | niversity o |                                      |              |                                       |                                                  |                                   |                             | J.,,              |            | ersion 4.      |

|                                                      |                    |           |                             |              | SH         | ORT F       | REPO                                  | )R          | T            |           |          |                |                   |                      |                |           |                |
|------------------------------------------------------|--------------------|-----------|-----------------------------|--------------|------------|-------------|---------------------------------------|-------------|--------------|-----------|----------|----------------|-------------------|----------------------|----------------|-----------|----------------|
| General Inf                                          | ormation           |           |                             |              |            |             | ite In                                |             |              | n         |          |                |                   | <u></u>              |                |           |                |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                | U<br>08/. | SAI<br>SAI<br>22/12<br>PEAK |              |            | A<br>J      | nterse<br>Area T<br>Iurisdi<br>Analys | ype<br>ctio | e<br>n       |           | 0        | All of<br>CEAN | WA<br>thei<br>SID | \Y<br>r are<br>)E-IN |                |           |                |
| Volume ar                                            | nd Timing I        | nput      |                             |              |            | •           |                                       |             |              |           |          |                |                   |                      |                |           |                |
|                                                      |                    |           |                             | EB           |            |             | WE                                    |             |              |           |          | NB             |                   |                      |                | SB        |                |
|                                                      |                    |           | LT                          | TH           | RT         | LT          | TH                                    | +           | RT           | LT        |          | TH             | +                 | ₹T                   | LT             | TH        | RT             |
| Num. of Lar                                          |                    |           | 2                           | 2            | 1          | 2           | 2                                     | +           | 0            | 1         |          | 3              | ┿                 | 1                    | 2              | 3         | 0              |
| Lane group                                           |                    |           | L                           | T            | R          | L           | TR                                    | _           | <i>-</i>     | L         |          | T              |                   | R                    | L              | TR        | 100            |
| Volume (vp                                           |                    |           | 115<br>2                    | 120<br>2     | 314<br>2   | 514<br>2    | 285<br>2                              |             | 425<br>2     | 257<br>2  | -        | 1440<br>2      | _                 | 70<br>2              | 45<br>2        | 1202<br>2 | 100<br>2       |
| % Heavy v<br>PHF                                     | en                 |           | <i>∠</i><br>0.95            | 0.95         | 0.95       | 0.95        | 0.95                                  | 1           | ).95         | 0.98      | 5        | 0.95           | _                 | <u>2</u><br>95       | 0.95           | 0.95      | 0.95           |
| Actuated (P                                          | P/A)               |           | A                           | A            | A          | A           | A                                     | +           | A            | A         |          | A              | 7                 |                      | A              | A         | A              |
| Startup lost                                         |                    |           | 2.0                         | 2.0          | 2.0        | 2.0         | 2.0                                   | 1           |              | 2.0       |          | 2.0            | 2                 | .0                   | 2.0            | 2.0       |                |
| Ext. eff. gre                                        | en                 |           | 2.0                         | 2.0          | 2.0        | 2.0         | 2.0                                   | Ţ           |              | 2.0       |          | 2.0            |                   | .0                   | 2.0            | 2.0       |                |
| Arrival type                                         |                    |           | 5                           | 5            | 5          | 5           | 5                                     | _ -         |              | 5         | $\dashv$ | 5              | +-                | 5                    | 5              | 5         | <u> </u>       |
| Unit Extens                                          |                    | _         | 3.0                         | 3.0          | 3.0        | 3.0         | 3.0                                   | _           | 65           | 3.0       | _        | 3.0<br>5       |                   | 0.0                  | 3.0            | 3.0<br>5  | 0              |
| Ped/Bike/R'<br>Lane Width                            |                    | е         | 5<br>12.0                   | 5<br>12.0    | 10<br>12.0 | 5<br>12.0   | 5<br>12.0                             | _           | 65           | 5<br>12,0 | 2        | 5<br>12.0      | _                 | 0<br>2.0             | 5<br>12.0      | 5<br>12.0 | 0              |
| Parking/Gra                                          |                    |           | 12.0<br>N                   | 0            | 12.0<br>N  | N 12.0      | 0                                     | +           | N            | 12.0<br>N | $\dashv$ | 0              | <del></del>       | v                    | 12.0<br>N      | 0         | N              |
| Parking/Gra<br>Parking/hr                            | - arking           |           | 7.4                         | U            | 74         |             | ╁                                     | +           | / V          | , v       | _        |                | ╁                 | ·                    | 7.             |           | '              |
| Bus stops/h                                          | ır                 |           | 0                           | 0            | 0          | 0           | 0                                     | +           |              | 0         |          | 0              | $\vdash$          | 0                    | 0              | 0         |                |
| Unit Extens                                          |                    |           | 3.0                         | 3.0          | 3.0        | 3.0         | 3.0                                   | $\dashv$    |              | 3.0       | )        | 3.0            |                   | 2.0                  | 3.0            | 3.0       |                |
| Phasing                                              | Excl. Left         | WB        | Only                        | Thru &       |            | 04          |                                       |             | cl. Le       | <u></u>   |          | B Only         | ٠.,               |                      | u & RT         | <u> </u>  | <u>1</u><br>08 |
|                                                      | G = 6.0            |           | 16.0                        | G = 1        |            | G =         |                                       |             | = 7.0        |           |          | = 5.0          |                   |                      | 31.1           | G=        |                |
| Timing                                               | Y = 5.6            | Y =       |                             | Y = 6        | .3         | Y =         |                                       | Υ =         | = <i>5.6</i> |           |          | 5.6            |                   |                      | 6.2            | Y =       |                |
| Duration of                                          |                    |           |                             |              |            |             |                                       |             |              |           |          | le Len         | gth               | 1 C =                | : 110.         | 0         |                |
| Lane Gro                                             | up Capa            | city, C   |                             | l Dela       | ay, aı     |             |                                       | te          | <u>rmin</u>  | atic      |          |                |                   |                      |                |           |                |
|                                                      |                    |           | EB                          | <del>,</del> | _          | N.          |                                       |             |              |           | _        | NB             |                   |                      | ,              | SB        |                |
| Adj. flow rat                                        | te                 | 121       | 126                         | 320          | 54         | 1 67        | 79                                    |             | 27           | 1         | 15       | 516            | 70                | 5                    | 47             | 1370      | _              |
| Lane group                                           | сар.               | 187       | 322                         | 324          | 86         | 2 92        | 23                                    |             | 28           | 3         | 19       | 924            | 106               | 88                   | 219            | 1416      |                |
| v/c ratio                                            |                    | 0.65      | 0.39                        | 0.99         | 0.6        | 3 0.        | 74                                    |             | 0.9          | 96        | 0,       | 79             | 0.6               | 6                    | 0.21           | 0.97      |                |
| Green ratio                                          |                    | 0.05      | 0.09                        | 0.21         | 0.2        | 5 0         | 29                                    |             | 0.1          | 16        | 0.       | 38             | 0.6               | 9                    | 0.06           | 0.28      |                |
| Unif. delay                                          | d1                 | 51.0      | 47.1                        | 43.2         | 36.        | 6 35        | 5.4                                   |             | 45           | .8        | 3        | 0.2            | 9.9               | 9                    | 48.9           | 39.0      |                |
| Delay factor                                         | r k                | 0.22      | 0.11                        | 0.49         | 0.2        | 1 0         | 29                                    |             | 0.4          | 17        | 0.       | 33             | 0.2               | 3                    | 0.11           | 0.47      |                |
| Increm. dela                                         | ay d2              | 7.6       | 0.8                         | 46.5         | 1.8        | 5 3.        | .1                                    |             | 41           | .9        | 2        | 2.3            | 1.5               | 5                    | 0.5            | 16.7      |                |
| PF factor                                            |                    | 0.962     | 0.933                       | 0.821        | 0.7        | 77 0.7      | 731                                   |             | 0.8          | 73        | 0.       | 593            | 0.1               | 59                   | 0.9 <b>5</b> 5 | 0.737     | , <u> </u>     |
| Control dela                                         | Control delay 56.6 |           |                             | 82.0         | 29.        | 9 29        | 0.0                                   |             | 82           | .0        | 2        | 0.2            | 3.1               | 1                    | 47.2           | 45.5      |                |
| Lane group                                           | LOS                | Ε         | D                           | F            | С          | (           | )                                     |             | F            | -         |          | С              | Α                 |                      | D              | D         |                |
| Apprch. del                                          | ay                 |           |                             | 29.4         |            |             |                                       | 2           | 2.1          | 1         |          |                |                   | 45.5                 |                |           |                |
| Approach L                                           | os                 |           | E                           |              |            | С           |                                       |             |              |           | С        |                |                   |                      |                | D         |                |
| Intersec. de                                         | elay               | 34        | 4.1                         |              |            |             | In                                    | ters        | sectio       | n LC      | S        |                |                   |                      |                | С         |                |
| HCS2000 <sup>TM</sup>                                |                    |           | C                           | opyright ©   | 2000 U     | niversity o | f Florid                              | a. All      | Rights       | Reserv    | red      |                |                   |                      |                |           | ersion 4.      |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

WITH MIT. NB 2-RT LANGS/WB ADD RTO LANE.

|                                                      |             |         |                                    |              | SHO       | ORT R        |                                    |              | LA KON   |          |                                         |                              |                 |                                  |          |        |
|------------------------------------------------------|-------------|---------|------------------------------------|--------------|-----------|--------------|------------------------------------|--------------|----------|----------|-----------------------------------------|------------------------------|-----------------|----------------------------------|----------|--------|
| General Inf                                          | ormatio     | n       |                                    | _            |           | S            | ite In                             | torm         | ation    |          | LLECE                                   | E DI V                       | /D /            | @ \//C                           | TΛ       |        |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med         |         | USAI<br>USAI<br>18/24/12<br>M PEAK |              |           | A.<br>Ju     | iterse<br>rea T<br>urisdi<br>nalys | ype<br>ction |          | oci      | All c<br>EANSI                          | WA`<br>other<br>DE-II<br>MIT | Y<br>are<br>VT‡ | @ VIST<br>as<br>#11/WIT<br>ROJEC | ТН       |        |
| Volume an                                            | d Timin     | a Input |                                    |              |           |              | naiys                              | 13 1 6       | aı       | DO       | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 17140                        | 1.1             | TOOLO                            |          |        |
| volume an                                            | id Tillilli | ginput  | 1                                  | EB           |           |              | WE                                 |              | T        |          | NB                                      |                              |                 |                                  | SB       |        |
|                                                      |             |         | LT                                 | TH           | RT        | LT           | TH                                 |              | T        | LT       | TH                                      | R                            | Т               | LT                               | TH       | RT     |
| Num. of Lar                                          | nes         |         | 2                                  | 2            | 1         | 2            | 2                                  | 1            |          | 1        | 3                                       | 2                            |                 | 2                                | 3        | 0      |
| Lane group                                           |             |         | L                                  | T            | R         | L            | T                                  | F            | ?        | L        | T                                       | R                            | اح              | L                                | TR       |        |
| Volume (vp                                           |             |         | 55                                 | 135          | 255       | 440          | 110                                | 34           | 0        | 110      | 840                                     | 79.                          | 5               | 45                               | 1400     | 45     |
| % Heavy v                                            |             |         | 2                                  | 2            | 2         | 2            | 2                                  | 2            | ?        | 2        | 2                                       | 2                            |                 | 2                                | 2        | 2      |
| PHF                                                  |             |         | 0.95                               | 0.95         | 0.95      | 0.95         | 0.95                               | 0.9          | 95 (     | 0.95     | 0.95                                    | 0.9                          | 5               | 0.95                             | 0.95     | 0.95   |
| Actuated (P                                          |             |         | Α                                  | Α            | A         | Α            | Α                                  | A            | _        | Α        | Α                                       | A                            |                 | Α                                | Α        | A      |
| Startup lost                                         |             |         | 2.0                                | 2.0          | 2.0       | 2.0          | 2.0                                | 2.           | _        | 2.0      | 2.0                                     | 2.0                          | _               | 2.0                              | 2.0      |        |
| Ext. eff. gre                                        | en          |         | 2.0                                | 2.0          | 2.0       | 2.0          | 2.0                                | 2.           |          | 2.0      | 2.0                                     | 2.0                          | _               | 2.0                              | 2.0<br>5 | -      |
| Arrival type<br>Unit Extens                          | ion         |         | 5<br>3.0                           | 5<br>3.0     | <i>5</i>  | 3.0          | 5<br>3.0                           | 3.           | _        | 5<br>3.0 | 3.0                                     | 3.0                          | _               | 3.0                              | 3.0      |        |
| Ped/Bike/R                                           |             | ıme     | 5                                  | 5            | 0         | 5            | 5                                  | 12           | _        | 5        | 5                                       | 0                            |                 | 5                                | 5        | 0      |
| Lane Width                                           | TOTT VOIC   | arrio   | 12.0                               | 12.0         | 12.0      | 12.0         | 12.0                               | _            | _        | 12.0     | 12.0                                    | 12.                          | _               | 12.0                             | 12.0     | 1      |
| Parking/Gra                                          | de/Parki    | ng      | N                                  | 0            | N         | N            | 0                                  | 1            | _        | N        | 0                                       | N                            |                 | N                                | 0        | N      |
| Parking/hr                                           |             |         |                                    |              |           |              | 11                                 |              |          |          |                                         |                              |                 |                                  |          |        |
| Bus stops/h                                          | r           |         | 0                                  | 0            | 0         | 0            | 0                                  | (            | )        | 0        | 0                                       | 0                            |                 | 0                                | 0        |        |
| Unit Extens                                          | ion         |         | 3.0                                | 3.0          | 3.0       | 3.0          | 3.0                                | 3.           | 0        | 3.0      | 3.0                                     | 3.0                          | 0               | 3.0                              | 3.0      |        |
| Phasing                                              | Excl. L     | eft V   | /B Only                            | Thru         | & RT      | 04           |                                    | Excl         | . Lef    | t TI     | nru & F                                 | RT                           |                 | 07                               |          | 08     |
| Timing                                               | G = 4.0     |         | = 8.0                              | G = 7        |           | G =          |                                    | G =          |          |          | = 42.0                                  |                              | 3 =             |                                  | G =      |        |
|                                                      | Y = 5.6     |         | = 5.6                              | Y = 6        | 5.4       | Y =          |                                    | Y =          | 5.6      | Y        |                                         |                              | Y =             |                                  | Y =      |        |
| Duration of                                          |             | +       |                                    |              |           |              |                                    |              |          |          | cle Le                                  | ngth                         | C =             | 100.                             | 0        |        |
| Lane Gro                                             | up Cap      | pacity, |                                    | ol Dela      | ay, ar    |              | _                                  | tern         | nina     | ition    |                                         |                              | _               | _                                |          |        |
|                                                      |             |         | EB                                 |              |           | WE           | 3                                  |              |          |          | NB                                      | _                            |                 |                                  | SB       |        |
| Adj. flow rat                                        | e           | 58      | 142                                | 268          | 463       | 116          | 2                                  | 28           | 110      | 6        | 884                                     | 837                          | 7               | 47                               | 1521     |        |
| Lane group                                           | cap.        | 137     | 248                                | 349          | 605       | 731          | 3                                  | 18           | 168      | 8 2      | 2131                                    | 142                          | 3               | 327                              | 2120     |        |
| v/c ratio                                            |             | 0.42    | 0.57                               | 0.77         | 0.77      | 0.16         | 0                                  | .72          | 0.6      | 9        | 0.41                                    | 0.59                         | 9               | 0.14                             | 0.72     |        |
| Green ratio                                          |             | 0.04    | 0.07                               | 0.23         | 0.18      | 0.21         | 0                                  | .21          | 0.0      | 9        | 0.42                                    | 0.52                         | 2               | 0.09                             | 0.42     |        |
| Unif. delay                                          | d1          | 46.9    | 45.1                               | 36.1         | 39.2      | 32.6         | 3                                  | 7.0          | 43.      | 8        | 20.4                                    | 16.4                         | 4               | 41.5                             | 24.1     | 1      |
| Delay factor                                         |             | 0.11    | 0.17                               | 0.32         | 0.32      | 0.11         | _                                  | .28          | 0.2      | 6        | 0.11                                    | 0.18                         | 8               | 0.11                             | 0.28     |        |
| Increm. dela                                         |             | 2.1     | 3.2                                | 9.9          | 5.8       | 0.1          |                                    | 7.6          | 11.      | -        | 0.1                                     | 0.6                          | _               | 0.2                              | 1.2      |        |
| PF factor                                            |             | 0.972   |                                    | 0.802        | 0.858     |              |                                    | 827          | 0.93     | -        | 0.517                                   | 0.26                         | _               | 0.930                            | 0.51     | 7      |
| Control dela                                         | ay          | 47.7    | 46.0                               | 38.9         | 39.5      | 27.1         | _                                  | 8.1          | 52.      | -        | 10.7                                    | 5.1                          | -               | 38.8                             | 13.6     | _      |
| ane group LOS D                                      |             |         | D                                  | D            | D         | С            | _                                  | D            | D        | -        | В                                       | A                            |                 | D                                | В        |        |
| Apprch. del                                          |             |         | 37.3                               |              |           |              | 10                                 |              | 1. 1.7.5 |          |                                         | 14.4                         |                 |                                  |          |        |
| Approach L                                           |             |         | 42.1<br>D                          |              |           | D            |                                    | 57           |          | E        | · V                                     | -                            |                 | 7 -                              | В        | -      |
| Intersec. de                                         |             |         |                                    |              | Int       | ersec        | ction                              |              |          |          |                                         |                              | В               |                                  |          |        |
| HCS2000 <sup>TM</sup>                                |             | 4       | 19.7                               | 'any might ( | 3 2000 11 | niversity of | -                                  |              |          |          |                                         |                              | =               | J                                |          | ersion |

WITH MIT, INB 2- RT LAND /WB ADD RTO LANE.

|                                                      |                        |            |         |                                  |         | SH      | ORT F   |                                 |                |          | 16  |          |                 |                                   | 100                              |         |         |
|------------------------------------------------------|------------------------|------------|---------|----------------------------------|---------|---------|---------|---------------------------------|----------------|----------|-----|----------|-----------------|-----------------------------------|----------------------------------|---------|---------|
| General Inf                                          | ormatio                | n          |         |                                  |         |         | S       | ite l                           | nfo            | rmati    |     |          |                 | -1-                               |                                  |         |         |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                    |            | 08)     | JSAI<br>JSAI<br>/24/12<br>I PEAK |         |         | م<br>ا  | nters<br>area<br>urisc<br>analy | Typ<br>liction | e        | (   | OCE      | All o<br>EANSII | WAY<br>ther are<br>DE-INT<br>MIT. | .@ VIS<br>eas<br>#11/WI<br>PROJE | TH      |         |
| Volume an                                            | d Timin                | g Inp      | out     |                                  |         |         |         |                                 |                |          | _   |          |                 |                                   |                                  |         |         |
|                                                      |                        |            |         | 17                               | EB      | Lor     | CT.     | W                               |                | DT       | +   | <b>-</b> | NB              | Гот                               | 1.7                              | SB      | Lot     |
| Num. of Lar                                          | nes                    |            | -       | LT<br>2                          | TH 2    | RT<br>1 | LT<br>2 | Th 2                            | _              | RT<br>1  | L   | _        | TH<br>3         | RT 2                              | LT<br>2                          | TH<br>3 | RT<br>0 |
| Lane group                                           | .00                    |            | _       | L                                | T       | R       | L       | T                               | _              | R        |     | _        | T               | R                                 | L                                | TR      |         |
|                                                      | h)                     | -          |         | 55                               | 135     | 256     | 461     | 110                             | _              |          | 11  |          | 875             | 100                               |                                  | 1410    | 15      |
| Volume (vpl<br>% Heavy ve                            |                        | _          |         | 2                                | 2       | 256     | 2       | 2                               |                | 340<br>2 | 2   |          | 2               | 814                               | 45<br>2                          | 2       | 45      |
| PHF                                                  | 511                    |            |         | 0.95                             | 0.95    | 0.95    | 0.95    | 0.9                             | 5              | 0.95     | 0.9 | _        | 0.95            | 0.95                              | 0.95                             | 0.95    | 0.95    |
| Actuated (P.                                         | /A)                    |            |         | A                                | A       | A       | A       | A                               | _              | A        | A   |          | A               | A                                 | A                                | A       | A       |
| Startup lost                                         |                        |            |         | 2.0                              | 2.0     | 2.0     | 2.0     | 2.0                             | )              | 2.0      | 2.  |          | 2.0             | 2.0                               | 2.0                              | 2.0     |         |
| Ext. eff. gree                                       | en                     |            |         | 2.0                              | 2.0     | 2.0     | 2.0     | 2.0                             | )              | 2.0      | 2.  |          | 2.0             | 2.0                               | 2.0                              | 2.0     | 1       |
| Arrival type                                         |                        |            |         | 5                                | 5       | 5       | 5       | 5                               |                | 5        | 5   |          | 5               | 5                                 | 5                                | 5       |         |
| Unit Extensi                                         |                        |            |         | 3.0<br>5                         | 3.0     | 3.0     | 3.0     | 3.0                             | )              | 3.0      | 3.  |          | 3.0             | 3.0                               | 3.0                              | 3.0     |         |
|                                                      |                        |            |         |                                  | 5       | 0       | 5       | 5                               | - 1            | 123      | 5   | _        | 5               | 0                                 | 5                                | 5       | 0       |
| Lane Width                                           | rking/Grade/Parking    |            |         |                                  | 12.0    | 12.0    | 12.0    | 12.                             | -              | 12.0     | 12  | _        | 12.0            | 12.0                              | 12.0                             | 12.0    |         |
|                                                      | rking/Grade/Parking    |            |         |                                  | 0       | N       | Ν       | 0                               | )              | N        | ٨   |          | 0               | N                                 | N                                | 0       | N       |
| Parking/hr                                           | rking/hr               |            |         |                                  |         |         |         |                                 |                |          |     |          |                 |                                   |                                  |         |         |
| Bus stops/h                                          | rking/hr<br>s stops/hr |            |         |                                  | 0       | 0       | 0       | 0                               | -              | 0        | (   | _        | 0               | 0                                 | 0                                | 0       |         |
| Unit Extensi                                         | ion                    |            |         | 3.0                              | 3.0     | 3.0     | 3.0     | 3.0                             | )              | 3.0      | 3.  | 0        | 3.0             | 3.0                               | 3.0                              | 3.0     |         |
| Phasing                                              | Excl. L                |            |         | Only                             | Thru    |         | 04      | 7 11                            |                | xcl. L   | _   | _        | ru & F          |                                   | 07                               |         | 80      |
| Timing                                               | G = 4.0                |            |         | 8.0                              | G = 7   |         | G=      |                                 |                | = 9.5    |     |          | = 42.0          |                                   |                                  | G=      |         |
| Duration of                                          | Y = 5.6                |            | Y =     |                                  | Y = 6   | 0.4     | Y =     | _                               | Υ              | = 5.6    | )   |          | = 6.3           | Y =                               | = 100.                           | Y =     |         |
|                                                      |                        | _          |         |                                  | I Dol   | 21/ 21  | 410     | e D                             | oto            | vm iv    | 41  |          | de Lei          | igui C .                          | - 100.                           | 0       |         |
| Lane Gro                                             | ир Сар                 | T          | ty, c   | EB                               | or Dela | ay, ar  | W       |                                 | ete            | rmir     | iau | on       | NB              |                                   | 1                                | SB      |         |
| A 11 (1)                                             |                        | 1          |         |                                  | 000     | 105     |         | _                               |                |          |     | 1        |                 |                                   | -                                | _       |         |
| Adj. flow rate                                       |                        | -          | 8       | 142                              | 269     | 485     | 116     | -                               | 228            | _        | 19  | _        | 921             | 857                               | 47                               | 1531    | _       |
| Lane group                                           | сар.                   | -          | 37      | 248                              | 349     | 605     | 731     | _                               | 318            |          | 68  | -        | 131             | 1423                              | 327                              | 2120    | _       |
| v/c ratio                                            |                        | -          | 42      | 0.57                             | 0.77    | 0.80    |         | -                               | 0.72           |          | .71 | -        | 0.43            | 0.60                              | 0.14                             | 0.72    | _       |
| Green ratio                                          |                        | -          | 04      | 0.07                             | 0.23    | 0.18    |         | _                               | 0.21           | _        | .09 | -        | ).42            | 0.52                              | 0.09                             | 0.42    | _       |
| Unif. delay o                                        | 11                     | 46         | 3.9     | 45.1                             | 36.1    | 39.5    | 32.6    | 3                               | 37.0           | ) 4      | 3.9 | 2        | 20.6            | 16.6                              | 41.5                             | 24.1    |         |
| Delay factor                                         | k                      | 0.         | 11      | 0.17                             | 0.32    | 0.35    | 0.11    | (                               | 0.28           | 3 0      | .27 | C        | 0.11            | 0.19                              | 0.11                             | 0.28    |         |
| Increm. dela                                         | ay d2                  | 2.         | 1       | 3.2                              | 10.1    | 7.6     | 0.1     |                                 | 7.6            | 1        | 2.9 |          | 0.1             | 0.7                               | 0.2                              | 1.2     |         |
| PF factor                                            |                        | 0.9        | 972     | 0.950                            | 0.802   | 0.858   | 0.82    | 7 0                             | 0.82           | 7 0.     | 930 | 0        | .517            | 0.269                             | 0.930                            | 0.51    | 7       |
| Control dela                                         | y                      | 47         | 7.7     | 46.0                             | 39.1    | 41.5    | 27.1    |                                 | 38.1           | 1 5      | 3.7 | 1        | 0.8             | 5.2                               | 38.8                             | 13.7    |         |
| ane group LOS D                                      |                        |            | D       | D                                | D       | С       |         | D                               |                | D        | T,  | В        | Α               | D                                 | В                                |         |         |
| Apprch. delay 42.2                                   |                        |            |         |                                  |         | T.T     | 38.6    |                                 |                | 1 5      |     | 10.      | 9               |                                   |                                  | 14.5    |         |
| Approach LOS D                                       |                        |            |         |                                  |         | D       |         |                                 |                |          | В   | 7        |                 |                                   | В                                |         |         |
| Intersec. delay 20.0                                 |                        |            |         |                                  |         |         | In      | iters                           | sectio         | n LC     | S   |          |                 |                                   | В                                |         |         |
| HC \$2000 <sup>TM</sup>                              |                        | anyright C | 2000 11 | niversity of                     |         | -       |         |                                 | -              |          |     | 1        |                 | ersion 4.                         |                                  |         |         |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

WITH MIT: NB ADD RTOLANG/WB ADD RTOLANE.

| _                                                    | SHORT REPORT  Site Information  COLLEGE BLVD.@ VISTA |      |                                     |           |           |            |                                    |                        |                |          |                           |                          |                          | RIC           |      |      |
|------------------------------------------------------|------------------------------------------------------|------|-------------------------------------|-----------|-----------|------------|------------------------------------|------------------------|----------------|----------|---------------------------|--------------------------|--------------------------|---------------|------|------|
| General Int                                          | formation                                            |      |                                     |           | 3110      |            | 22                                 |                        |                | on       |                           | -                        |                          |               |      | _    |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | Co.<br>med                                           |      | USAI<br>USAI<br>08/22/12<br>PM PEAK |           |           | I<br>#     | nterso<br>Area<br>Jurisd<br>Analy: | ectio<br>Type<br>ictio | on<br>e<br>n   | 00       | All o<br>CEANSII<br>O.ALT | WA<br>ther<br>DE-I<br>MI | Y<br>r are<br>INT:<br>T. | eas<br>#11/WI | ТН   |      |
| Volume ar                                            | nd Timing                                            | Inpu | t                                   |           |           |            |                                    |                        |                |          |                           |                          |                          |               |      |      |
|                                                      |                                                      |      | 7                                   | EB        | Loz       | 1          | W                                  | _                      |                | 1 -      | NB                        | 1 -                      | · T                      | 1.7           | SB   | Lpz  |
|                                                      |                                                      |      | LT                                  | TH        | RT        | LT         | TH                                 |                        | RT             | LT       | TH                        | +                        | RT.                      | LT            | TH   | RT   |
| Num, of La                                           |                                                      |      | 2                                   | 2         | 1         | 2          | 2                                  |                        | 1              | 1        | 3                         | -                        | 2                        | 2             | 3    | 0    |
| Lane group                                           |                                                      |      | L                                   | T         | R         | L          | T                                  | - 11                   | R              | L        | T                         |                          | ?                        | L             | TR   |      |
| Volume (vp                                           |                                                      |      | 115                                 | 120       | 310       | 450<br>2   | 285                                | ) 4                    | 425<br>2       | 255<br>2 | 1420                      |                          | 60<br>2                  | 45<br>2       | 1170 | 100  |
| % Heavy v<br>PHF                                     | en                                                   |      | 0.95                                | 2<br>0.95 | 2<br>0.95 | 0.95       | 0.9                                | 5 0                    | 0.95           | 0.95     |                           | _                        | 95                       | 0.95          | 0.95 | 0.95 |
| Actuated (F                                          | P/A)                                                 |      | 0.95<br>A                           | A         | A         | A          | A                                  | _                      | A              | A        | A                         | /                        |                          | A             | A    | A    |
| Startup lost                                         |                                                      |      | 2.0                                 | 2.0       | 2.0       | 2.0        | 2.0                                | _                      | 2.0            | 2.0      | 2.0                       | _                        | .0                       | 2.0           | 2.0  |      |
| Ext. eff. gre                                        |                                                      |      | 2.0                                 | 2.0       | 2.0       | 2.0        | 2.0                                |                        | 2.0            | 2.0      | 2.0                       | 2.                       | .0                       | 2.0           | 2.0  |      |
| Arrival type                                         |                                                      |      | 5                                   | 5         | 5         | 5          | 5                                  |                        | 5              | 5        | 5                         | -                        | 5                        | 5             | 5    |      |
| Unit Extens                                          | 9 (1)                                                |      | 3.0                                 | 3.0       | 3.0       | 3.0        | 3.0                                |                        | 3.0            | 3.0      | 3.0                       | _                        | .0                       | 3.0           | 3.0  | 1    |
|                                                      | Bike/RTOR Volume Width                               |      |                                     | 5         | 10        | 5          | 5                                  | _                      | 65             | 5        | 5                         | _                        | )                        | 5             | 5    | 0    |
| Lane Width                                           |                                                      |      |                                     | 12.0      | 12.0      | 12.0       | 12.0                               | _                      | 2.0            | 12.0     | -                         | -                        | 2.0                      | 12.0          | 12.0 |      |
|                                                      | ade/Parkin                                           | g    | N                                   | 0         | N         | N          | 0                                  |                        | Ν              | N        | 0                         | 1                        | V                        | N             | 0    | N    |
| Parking/hr                                           |                                                      |      |                                     |           |           |            |                                    | _                      |                |          |                           | -                        |                          | 1             |      | -    |
| Bus stops/h                                          |                                                      |      | 0                                   | 0         | 0         | 0          | 0                                  |                        | 0              | 0        | 0                         | -                        | 0                        | 0             | 0    | _    |
| Unit Extens                                          |                                                      |      | 3.0                                 | 3.0       | 3.0       | 3.0        | 3.0                                |                        | 3.0            | 3.0      | 3.0                       | _                        | .0                       | 3.0           | 3.0  |      |
| Phasing                                              | Excl. Le                                             |      | WB Only                             | Thru      |           | 04         |                                    | _                      | cl. Le         |          | NB Onl                    | _                        | _                        | u & RT        | G =  | 80   |
| Timing                                               | G = 6.0<br>Y = 5.6                                   |      | 5 = 16.0<br>5 = 5.6                 | G = (     |           | G =<br>Y = |                                    |                        | = 7.0<br>= 5.6 |          | G = 5.0<br>G = 5.6        |                          |                          | 6.2           | Y =  |      |
| Duration of                                          |                                                      |      |                                     |           | 7.0       | 1.00       |                                    |                        | 0.0            |          | ycle Ler                  | _                        |                          |               |      |      |
| Lane Gro                                             |                                                      |      |                                     | ol Del    | av. ar    | nd LO      | S D                                | eter                   | min            |          |                           |                          |                          |               |      |      |
|                                                      | 3. p                                                 | 1    | EB                                  |           | 1         | W          |                                    |                        |                |          | NB                        |                          | 7                        |               | SB   |      |
| Adj. flow ra                                         | te                                                   | 121  | 126                                 | 316       | 474       |            |                                    | 379                    | 2              | 68       | 1495                      | 69                       | 5                        | 47            | 1337 | ,    |
| Lane group                                           |                                                      | 187  |                                     | 324       | 862       | _          | -                                  | 445                    |                | 83       | 1924                      | 186                      | _                        | 219           | 1415 | _    |
| v/c ratio                                            | р.                                                   | 0.65 |                                     | 0.98      | 0.55      |            | _                                  | 0.85                   |                | .95      | 0.78                      | 0.3                      |                          | 0.21          | 0.94 | _    |
| Green ratio                                          |                                                      | 0.05 |                                     | 0.21      | 0.25      |            | _                                  | 0.29                   | _              | 16       | 0.38                      | 0.6                      | -                        | 0.06          | 0.28 | _    |
| Unif. delay                                          |                                                      | 51.0 | _                                   | 43.1      | 35.8      | _          | _                                  | 37.0                   | _              | 5.7      | 30.1                      | 7.                       | _                        | 48.9          | 38.6 | _    |
| Delay facto                                          |                                                      | 0.22 | _                                   | 0.48      | 0.15      | _          | _                                  | 0.38                   | _              | .46      | 0.33                      | 0.1                      |                          | 0.11          | 0.46 | _    |
| Increm. del                                          |                                                      | 7.6  | 0.8                                 | 43.2      | 0.8       | 0.2        | _                                  | 14.6                   | _              | 9.3      | 2.1                       | 0.                       | _                        | 0.5           | 13.1 | 7 0  |
| PF factor                                            |                                                      | 0.96 |                                     | 0.821     | 0.77      |            | _                                  | 7.731                  | -              | 873      | 0.593                     | 0.1                      | 59                       | 0.955         | 0.73 | 7    |
| Control dela                                         | ay                                                   | 56.6 | 44.8                                | 78.5      | 28.6      | _          | 5                                  | 41.7                   | 7.             | 9.3      | 19.9                      | 1.                       | 3                        | 47.2          | 41.5 |      |
| Lane group                                           |                                                      | Е    | D                                   | Ε         | С         | С          |                                    | D                      |                | E        | В                         | A                        |                          | D             | D    |      |
| Apprch. delay 66.3                                   |                                                      |      |                                     |           |           | 31.3       |                                    |                        |                | 2        | 1.1                       |                          |                          |               | 41.7 |      |
| Approach L                                           | .os                                                  | E    |                                     |           | С         |            |                                    |                        |                | С        |                           |                          |                          | D             |      |      |
|                                                      |                                                      |      |                                     |           |           |            |                                    | 141.7                  | A. Terri       | 100      |                           |                          |                          | 1             | _    |      |

HCS2000<sup>TM</sup>

Intersec. delay

Copyright © 2000 University of Florida, All Rights Reserved

Intersection LOS

Version 4.1f

C

32.9

WITH MITIGATION. NB AND RTOLAND WE ADD RTO LINE

|                                                      |                     |         |                                    |            | SHO       | ORT F       |                  |           | 100    |         | - / -             |                                | ICIULA          | -       |         |
|------------------------------------------------------|---------------------|---------|------------------------------------|------------|-----------|-------------|------------------|-----------|--------|---------|-------------------|--------------------------------|-----------------|---------|---------|
| General Inf                                          | ormation            | n       |                                    |            |           | S           | ite Ir           | forma     | atio   | n       |                   |                                |                 |         |         |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                 |         | USAI<br>USAI<br>18/22/12<br>M PEAK |            |           | )<br>J      | Area T<br>urisdi | *         | ar     | 00      | All o<br>CEANSII  | WAY<br>ther a<br>DE-IN<br>MIT. |                 | TH      |         |
| Volume an                                            | d Timing            | g Input |                                    |            |           |             |                  |           |        |         |                   |                                |                 |         |         |
|                                                      |                     |         |                                    | EB         | Lot       | 1.7         | WE               |           | -      | 1 =     | NB                | Loz                            |                 | SB      | Loz     |
| Num. of Lar                                          | 100                 |         | LT<br>2                            | TH<br>2    | RT<br>1   | LT<br>2     | TH<br>2          | R 1       | +      | LT<br>1 | TH<br>3           | RT<br>2                        | LT<br>2         | TH<br>3 | RT<br>0 |
|                                                      | 100                 |         |                                    | T          | R         | L           | T                | R         | +      | L       | T                 | R                              | L               | TR      | Ť       |
| Lane group                                           | 2)                  |         | 115                                | 120        | 314       | 514         | 285              |           | _      | 257     | 1440              | 670                            |                 | 1202    | 100     |
| Volume (vpl<br>% Heavy ve                            |                     |         | 2                                  | 2          | 2         | 2           | 200              | 2         |        | 2       | 2                 | 2                              | 2               | 2       | 2       |
| PHF                                                  | 211                 |         | 0.95                               | 0.95       | 0.95      | 0.95        | 0.95             |           | _      | 0.95    |                   | 0.95                           |                 | 0.95    | 0.95    |
| Actuated (P                                          | /A)                 |         | A                                  | A          | A         | A           | A                | A         |        | A       | A                 | A                              | A               | A       | A       |
| Startup lost                                         |                     |         | 2.0                                | 2.0        | 2.0       | 2.0         | 2.0              | 2.0       | 2      | 2.0     | 2.0               | 2.0                            |                 | 2.0     |         |
| Ext. eff. gre                                        | en                  |         | 2.0                                | 2.0        | 2.0       | 2.0         | 2.0              | 2.0       | )      | 2.0     | 2.0               | 2.0                            | 2.0             | 2.0     |         |
| Arrival type                                         |                     |         | 5                                  | 5          | 5         | 5           | 5                | 5         |        | 5       | 5                 | 5                              | 5               | 5       |         |
| Unit Extensi                                         |                     |         | 3.0                                | 3.0        | 3.0       | 3.0         | 3.0              |           | _      | 3.0     | 3.0               | 3.0                            |                 | 3.0     |         |
| Ped/Bike/R                                           | ΓOR Volu            | ıme     | 5                                  | 5          | 10        | 5           | 5                | 65        | -      | 5       | 5                 | 0                              | 5               | 5       | 0       |
| Lane Width                                           |                     |         | 12.0                               | 12.0       | 12.0      | 12.0        | 12.0             |           | -      | 12.0    |                   | 12.0                           |                 | 12.0    |         |
| Parking/Gra                                          | de/Parki            | ng      | N                                  | 0          | N         | N           | 0                | N         |        | Ν       | 0                 | N                              | N               | 0       | N       |
| Parking/hr                                           |                     |         |                                    |            |           |             | 100              |           | 4      |         |                   |                                |                 | 17      | _       |
| Bus stops/h                                          |                     |         | 0                                  | 0          | 0         | 0           | 0                | 0         | -      | 0       | 0                 | 0                              | 0               | 0       |         |
| Unit Extensi                                         |                     |         | 3.0                                | 3.0        | 3.0       | 3.0         | 3.0              |           | _      | 3.0     | 3.0               | 3.0                            |                 | 3.0     | 1.00    |
| Phasing                                              | Excl. L             |         | /B Only                            |            | & RT      | 04          |                  | Excl.     | _      | _       | NB Onl            |                                | hru & RT        |         | 80      |
| Timing                                               | G = 6.0<br>Y = 5.6  |         | = 16.0<br>= 5.6                    | G = (      |           | G =<br>Y =  | _                | G = 3     |        |         | G = 5.0 $G = 5.6$ |                                | = 31.1<br>= 6.2 | G =     |         |
| Duration of                                          |                     |         |                                    | 1:=0       | 0.0       | -           |                  | 1 - 3     | 0.0    |         |                   |                                | c = 0.2         |         |         |
| Lane Gro                                             |                     |         |                                    | ol Del     | av. ar    | nd I O      | S De             | term      | ina    |         | -                 | .9                             |                 |         |         |
| Lano Gro                                             | ар оар              |         | EB                                 | J. D.      | 1         | W           |                  |           |        |         | NB                |                                |                 | SB      |         |
| Adj. flow rat                                        | e                   | 121     | 126                                | 320        | 541       | 300         |                  | 379       | 27     | 1       | 1516              | 705                            | 47              | 1370    |         |
| Lane group                                           |                     | 187     | 322                                | 324        | 862       | 101         | _                | 145       | 28     | _       | 1924              | 1868                           | _               | 1416    | _       |
| v/c ratio                                            | - 3 4 2             | 0.65    | 0.39                               | 0.99       | 0.63      | _           |                  | 0.85      | 0.9    |         | 0.79              | 0.38                           |                 | 0.97    | _       |
| Green ratio                                          |                     | 0.05    | 0.09                               | 0.21       | 0.25      |             | _                | 29        | 0.1    | _       | 0.38              | 0.69                           | 0.06            | 0.28    |         |
| Unif. delay o                                        | 11                  | 51.0    | 47.1                               | 43.2       | 36.6      | 30.8        | 5 3              | 37.0      | 45.    | .8      | 30.2              | 7.3                            | 48.9            | 39.0    |         |
| Delay factor                                         | k                   | 0.22    | 0.11                               | 0.49       | 0.21      | 0.1         | 1 0              | .38       | 0.4    | 17      | 0.33              | 0.11                           | 0.11            | 0.47    | 1       |
| Increm. dela                                         | ay d2               | 7.6     | 0.8                                | 46.5       | 1.5       | 0.2         | 1                | 4.6       | 41.    | .9      | 2.3               | 0.1                            | 0.5             | 16.7    |         |
| PF factor                                            |                     | 0.962   | 0.933                              | 0.821      | 0.777     | 7 0.73      | 31 0             | .731      | 0.8    | 73      | 0.593             | 0.15                           | 9 0.955         | 0.73    | 7       |
| Control dela                                         | ıy                  | 56.6    | 44.8                               | 82.0       | 29.9      | 22.8        | 5 4              | 11.7      | 82.    | .0      | 20.2              | 1.3                            | 47.2            | 45.5    | 5       |
| ane group LOS E                                      |                     |         | D                                  | F          | С         | С           |                  | D         | F      |         | С                 | Α                              | D               | D       |         |
| Approach LOS                                         |                     |         |                                    |            |           | 31.7        |                  |           |        | 2       | 1.6               |                                |                 | 45.5    |         |
| Approach LOS E                                       |                     |         |                                    |            |           | С           |                  |           |        | V       | С                 |                                |                 | D       |         |
| Intersec. de                                         | ntersec. delay 34.4 |         |                                    |            |           |             | In               | tersec    | tion   | LOS     | 3                 |                                |                 | С       |         |
| HCS2000TM                                            |                     |         | -                                  | 'any might | @ 2000 II | niversity o | f Florid         | o All Die | vhto D | acarva  | d                 |                                |                 |         | Version |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      | · · · ·                         |                          |            |           | SH         | ORT  | RE                  | PO                     | RI          | Γ      |          |     |                                              |                                                  |                    |       |            |
|------------------------------------------------------|---------------------------------|--------------------------|------------|-----------|------------|------|---------------------|------------------------|-------------|--------|----------|-----|----------------------------------------------|--------------------------------------------------|--------------------|-------|------------|
| General Inf                                          | ormation                        |                          |            |           |            |      |                     |                        |             | natio  | <u> </u> |     |                                              |                                                  |                    |       |            |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | Co.<br>med                      | US<br>US<br>08/2<br>AM F | AI<br>2/12 |           |            |      | Inte<br>Are<br>Juri | ersed<br>a Ty<br>isdic | ctio<br>/pe | n      | (        | oc  | LEGE<br>78EB (<br>All oth<br>EANS<br>ALT-1/I | OFF-R<br>ner are<br>IDE-IN                       | AM<br>as<br>IT.#12 |       |            |
| Volume an                                            | nd Timing In                    | put                      |            |           |            |      |                     |                        |             |        |          |     |                                              |                                                  |                    |       |            |
|                                                      |                                 |                          |            | EB        |            |      |                     | W                      |             |        |          |     | NB                                           |                                                  |                    | SB    |            |
|                                                      |                                 |                          | LT         | TH        | R          |      |                     | TH                     | 1           | RT     | L        | -   | TH                                           | RT                                               | LT                 | TH    | RT         |
| Num. of Lar                                          | nes                             |                          | 2          | 0         | 1          |      | 0                   | 0                      |             | 0      | 0        |     | 4                                            | 0                                                | 0                  | 4     | 0          |
| Lane group                                           |                                 |                          | L          |           | R          |      |                     |                        | ł           |        |          |     | Τ                                            |                                                  |                    | T     |            |
| Volume (vpl                                          |                                 |                          | 630        |           | 225        | 5    |                     |                        |             |        |          |     | 1115                                         |                                                  |                    | 1665  |            |
| % Heavy v                                            | eh                              |                          | 2          |           | 2          | _    |                     |                        | _           |        |          |     | 2                                            |                                                  |                    | 2     |            |
| PHF                                                  | /A \                            |                          | 0.95       |           | 0.9        | 5    |                     |                        | +           |        | _        | _   | 0.95                                         |                                                  |                    | 0.95  |            |
| Actuated (P<br>Startup lost                          |                                 |                          | 3.0        | _         | A<br>  3.0 | ,    |                     |                        | +           |        | $\vdash$ | 긤   | A<br>3.0                                     | <del>                                     </del> |                    | 3.0   | -          |
| Ext. eff. gre                                        |                                 |                          | 2.0        | -         | 2.0        |      |                     |                        | +           |        |          | ᅦ   | 2.0                                          |                                                  |                    | 2.0   | 1          |
| Arrival type                                         |                                 |                          | 3          |           | 3          |      |                     |                        | 十           |        |          |     | 5                                            |                                                  |                    | 5     |            |
| Unit Extens                                          | ion                             |                          | 3.0        |           | 3.0        | ,    |                     |                        | T           |        |          | T   | 3.0                                          |                                                  |                    | 3.0   |            |
| Ped/Bike/R                                           | TOR Volume                      |                          | 5          | 10        | 0          | ,    | 5                   |                        |             |        |          |     |                                              |                                                  |                    |       |            |
| Lane Width                                           |                                 |                          | 12.0       |           | 12.0       | )    |                     |                        |             |        |          |     | 12.0                                         |                                                  |                    | 12.0  |            |
| Parking/Gra                                          | de/Parking                      |                          | N          | 0         | N          | 1    | ٧                   |                        |             | Ν      | Ν        |     | 0                                            | N                                                | Ν                  | 0     | N          |
| Parking/hr                                           |                                 |                          |            |           |            |      |                     |                        |             |        |          |     |                                              |                                                  |                    |       |            |
| Bus stops/h                                          | r                               |                          | 0          |           | 0          |      |                     |                        |             |        |          |     | 0                                            |                                                  |                    | 0     |            |
| Unit Extens                                          | ion                             |                          | 3.0        |           | 3.0        |      |                     |                        |             | ,      |          |     | 3.0                                          |                                                  |                    | 3.0   |            |
| Phasing                                              | EB Only                         | 02                       | 2          | 03        | }          | (    | )4                  |                        | Thr         | ru Onl |          |     | 06                                           |                                                  | 07                 |       | )8         |
| Timing                                               | G = 26.0                        | G =                      |            | G =       |            | G =  |                     |                        |             | 62.7   |          | 3 = | :                                            | G =                                              |                    | G =   |            |
|                                                      | Y = 5                           | Y =                      |            | Y =       |            | Y =  |                     |                        | Y =         | 6.3    |          | / = |                                              | Y =                                              | 400                | Y =   |            |
|                                                      | Analysis (hrs                   |                          |            | I Dala    |            |      |                     | Dad                    | 4           |        |          | _   | e Leng                                       | ith C =                                          | 100.               | U     |            |
| Lane Gro                                             | up Capac                        | ity, Co                  |            |           | ıy, aı     | na L |                     |                        | ter         | mina   | ILIO     |     |                                              |                                                  |                    | 20    | -          |
|                                                      |                                 |                          |            | В         | _          |      | W                   | R                      |             |        |          |     | NB                                           |                                                  |                    | SB    | r          |
| Adj. flow rat                                        | e                               | 663                      |            | 23        | -          |      |                     | _                      |             |        |          | ┢   | 74                                           |                                                  |                    | 1753  |            |
| Lane group                                           | сар.                            | 903                      |            | 39        | 3          |      |                     |                        |             |        |          | 41  | 73                                           |                                                  |                    | 4173  |            |
| v/c ratio                                            |                                 | 0.73                     |            | 0.6       | 0          |      |                     |                        |             |        |          | 0.  | 28                                           |                                                  |                    | 0.42  |            |
| Green ratio                                          |                                 | 0.25                     |            | 0.2       | 5          |      |                     |                        |             |        |          | 0.  | 62                                           |                                                  |                    | 0.62  |            |
| Unif. delay                                          | <u> </u>                        | 34.4                     |            | 33.       | 1          |      |                     |                        |             |        |          | 8   | .9                                           |                                                  |                    | 9.9   |            |
| Delay factor                                         | ·k                              | 0.29                     |            | 0.1       | 9          |      |                     |                        |             |        |          | 0.  | 11                                           |                                                  |                    | 0.11  |            |
| Increm. dela                                         | lay factor k 0. rem. delay d2 3 |                          |            | 2.0       | 3          |      |                     | ****                   |             |        |          | 0   | .0                                           |                                                  |                    | 0.1   |            |
| PF factor                                            | factor 1.                       |                          |            | 1.0       | 00         |      |                     |                        | _           |        |          | 0.1 | 131                                          |                                                  |                    | 0.131 |            |
| Control dela                                         | ıy                              | 37.6                     |            | 35.       | 7          |      |                     |                        |             |        |          | 1.  | .2                                           |                                                  |                    | 1.4   |            |
| Lane group                                           | LOS                             | D                        |            | D         |            |      |                     |                        |             |        |          | /   | 4                                            |                                                  |                    | Α     |            |
| Apprch. dela                                         | ay                              | 37.1                     |            |           |            |      |                     |                        |             |        | 1.2      | 2   |                                              |                                                  | 1.4                |       |            |
| Approach L                                           | os                              | D                        |            |           |            |      |                     |                        |             |        | Α        |     |                                              |                                                  | Α                  |       |            |
| Intersec. de                                         | lay                             |                          | 9.7        |           |            |      |                     | Ir                     | ıter        | sectio | n LO     | วร  |                                              |                                                  |                    | Α     |            |
| иссеролоТМ                                           |                                 |                          |            | pyright © | 2000 77    |      | 0 =1                |                        | 4 11 1      |        |          | ,   |                                              |                                                  |                    |       | ereion 4.1 |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                  |                          |             | SH            | OF       | RT RE      | P           | DR'        | T            |                                |              |        |             |                                               |                                                   |                    |            |                |                |
|------------------------------------------------------|------------------|--------------------------|-------------|---------------|----------|------------|-------------|------------|--------------|--------------------------------|--------------|--------|-------------|-----------------------------------------------|---------------------------------------------------|--------------------|------------|----------------|----------------|
| General Inf                                          | ormation         |                          | •           |               |          |            |             | Sit        | e Ir         | ıfor                           | mati         | on     |             |                                               |                                                   |                    |            |                |                |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med              | US<br>US<br>08/2<br>AM P | :AI<br>2/12 |               |          |            |             | Are<br>Jur | ea T<br>isdi | ectic<br>ype<br>ictio<br>sis Y | <del>)</del> |        | 0           | LLEGE<br>78EB (<br>All oth<br>CEANS<br>LT-1/M | OFF-I<br>her ar<br>IDE-I                          | RAM<br>eas<br>NT.‡ | !<br>‡12   |                |                |
| Volume an                                            | nd Timing In     | put                      |             |               |          |            |             |            | 1.6          | <u>'D</u>                      |              |        |             | NIE.                                          | -                                                 |                    |            | 0.5            |                |
|                                                      |                  |                          | LT          | $\overline{}$ | EB<br>TH | R          | _           | LT         |              | /B<br>'H                       | RT           | -      | LT          | NB<br>TH                                      | RT                                                | +                  | т          | SB<br>TH       | RT             |
| Num. of Lar                                          | nes              |                          | 2           | $\dagger$     | 0        | 1          |             | 0          | C            |                                | 0            |        | 0           | 4                                             | 0                                                 | _                  | - <u>'</u> | 4              | 0              |
| Lane group                                           |                  |                          | L           | $\dagger$     |          | R          |             |            |              |                                |              | $\top$ |             | Т                                             |                                                   |                    |            | T              |                |
| Volume (vpl                                          |                  |                          | 630         | +             |          | 22         |             |            |              | -                              |              | 十      |             | 1166                                          | $\vdash$                                          | +                  | -          | 1697           |                |
| % Heavy v                                            |                  |                          | 2           | 十             |          | 2          |             |            |              |                                |              | 1      |             | 2                                             |                                                   |                    |            | 2              |                |
| PHF                                                  |                  |                          | 0.95        | 1             |          | 0.9        | 5           |            |              | $\neg$                         |              |        |             | 0.95                                          |                                                   |                    |            | 0.95           |                |
| Actuated (P                                          | <sup>2</sup> /A) |                          | Α           |               |          | Α          |             |            |              |                                |              |        |             | Α                                             |                                                   |                    |            | Α              |                |
| Startup lost                                         | time             |                          | 3.0         |               |          | 3.0        | _           |            |              |                                |              |        |             | 3.0                                           |                                                   |                    |            | 3.0            |                |
| Ext. eff. gre                                        | en               |                          | 2.0         | _             |          | 2.0        | )           |            |              |                                |              | 4      |             | 2.0                                           | <u> </u>                                          |                    |            | 2.0            |                |
| Arrival type                                         |                  |                          | 3           | _             |          | 3          |             |            |              | _                              |              | 4      |             | 5                                             | <u> </u>                                          | +                  |            | 5              |                |
| Unit Extens                                          |                  |                          | 3.0         | _             |          | 3.0        | )           |            |              |                                |              | 4      |             | 3.0                                           |                                                   | -                  |            | 3.0            | <u> </u>       |
|                                                      | TOR Volume       | •                        | 5<br>12.0   | _             | 10       | 0<br>12.   | ^           | 5          | _            |                                |              | +      |             | 12.0                                          | <del>                                      </del> |                    |            | 12.0           |                |
| Lane Width<br>Parking/Gra                            |                  |                          | 12.0<br>N   | ┽             | 0        | 12.<br>N   | _           | N          | _            |                                | N            | +      | N           | 0                                             | N                                                 | ٠,                 | v -        | 0              | N              |
|                                                      | de/Parking       |                          | 17          | +             | 0        | 11         |             | 7.0        |              | -                              | 14           | -      | /٧          | U                                             | 1//                                               | +                  | ٧          | <del>  '</del> | / / /          |
| Parking/hr<br>Bus stops/h                            |                  |                          | 0           | +             |          | 0          |             |            | _            | $\dashv$                       |              |        |             | 0                                             | $\vdash$                                          | +                  |            | 0              |                |
| Unit Extens                                          |                  |                          | 3.0         | +             |          | 3.0        | <u> </u>    |            | -            | _                              |              | +      |             | 3.0                                           | $\vdash$                                          |                    |            | 3.0            |                |
|                                                      | EB Only          | 02                       |             | $\perp$       | 03       | 3.0        |             | 04         | <u></u>      | Th                             | ru O         | nly    | <del></del> | 06                                            | <del></del>                                       | 07                 |            | <del></del>    | <u> </u><br> 8 |
| Phasing                                              | G = 26.0         | G =                      | <u> </u>    | G             | = 03     | ·····      | G           | _          |              |                                | = 62         |        | G :         |                                               | G                                                 |                    | -          | G =            | <u> </u>       |
| Timing                                               | Y = 5            | Y =                      |             | Ÿ             |          |            | ĬΫ          |            |              |                                | = 6.3        |        | Υ =         |                                               | Y:                                                |                    |            | Y =            |                |
| Duration of                                          | Analysis (hrs    | ) = 0.28                 | 5           |               |          |            |             |            |              |                                |              |        | Сус         | le Lenç                                       | gth C                                             | = 1                | 00.        | 0              |                |
| Lane Gro                                             | up Capaci        | ty, Co                   | ntro        | 1 [           | Delay    | y, a       | nd          | LOS        | De           | ete                            | rmii         | nat    | ion         |                                               | •                                                 |                    |            | ٠              |                |
|                                                      |                  |                          | Ē           | В             |          |            |             | V          | /B           |                                |              |        |             | NB                                            |                                                   |                    |            | SB             |                |
| Adj. flow rat                                        | ie               | 663                      |             |               | 237      |            |             |            |              |                                |              |        | 1.          | 227                                           |                                                   |                    |            | 1786           |                |
| Lane group                                           | cap.             | 859                      |             |               | 386      |            |             |            |              |                                |              |        | 4           | 174                                           |                                                   |                    |            | 4174           |                |
| v/c ratio                                            |                  | 0.77                     |             |               | 0.61     |            |             |            |              |                                |              |        | 0           | .29                                           |                                                   | 1                  |            | 0.43           |                |
| Green ratio                                          |                  | 0.25                     |             |               | 0.25     | 5          |             |            |              |                                |              |        | 0           | .62                                           |                                                   |                    |            | 0.62           |                |
| Unif. delay                                          | d1               | 34.8                     |             |               | 33.2     | 2          |             |            |              |                                |              |        | 9           | 9.0                                           | •                                                 |                    |            | 10.0           |                |
| Delay factor                                         | r k              | 0.32                     |             |               | 0.20     | )          |             |            |              |                                |              |        | 0           | .11                                           |                                                   | T                  |            | 0.11           |                |
| Increm. dela                                         | ay d2            | 4.4                      |             |               | 2.9      |            |             |            |              |                                |              |        | (           | 0.0                                           |                                                   |                    |            | 0.1            |                |
| PF factor                                            |                  | 1.00                     | 0           |               | 1.00     | 0_         |             |            |              |                                |              |        | 0.          | 131                                           |                                                   |                    |            | 0.131          |                |
| Control dela                                         | ontrol delay 39  |                          |             |               | 36.1     |            |             |            |              |                                |              |        | ·           | 1.2                                           |                                                   |                    |            | 1.4            |                |
| Lane group                                           | ane group LOS D  |                          |             |               | D        |            |             |            |              |                                |              |        |             | Α                                             |                                                   |                    |            | Α              |                |
| Apprch. dela                                         | ay               |                          | 38.4        |               |          |            |             |            |              |                                |              |        | 1.          | 2                                             |                                                   |                    |            | 1.4            |                |
| Approach L                                           | os               | D                        |             |               |          |            |             |            |              |                                |              | ŀ      | 1           |                                               |                                                   |                    | Α          |                |                |
| Intersec. de                                         | elay             | 9.8                      |             |               |          |            |             |            | Inte         | rsec                           | tion         | LOS    |             |                                               |                                                   |                    | A          |                |                |
| uc canooTM                                           |                  |                          | صياسات      | -<br>         | Tandano  | rsity of F | -<br>امندها | a 3.11     | Di~L+        | . D                            | owed.        |        |             |                                               |                                                   | 17.                | ersion 4.  |                |                |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                                       |                           |                                                |      | SH       | IOF | T RE       | PO                           | )R          | T        |          |          |                                                |                            |                    |              |    |
|-------------------------------------------------------|---------------------------------------|---------------------------|------------------------------------------------|------|----------|-----|------------|------------------------------|-------------|----------|----------|----------|------------------------------------------------|----------------------------|--------------------|--------------|----|
| General Inf                                           | ormation                              |                           |                                                |      |          |     | Sit        | e In                         | for         | mat      | ion      |          |                                                |                            |                    |              |    |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med                                   | US<br>US<br>08/2:<br>PM F | AI<br>2/12                                     |      |          |     | Are<br>Jur | erse<br>ea T<br>isdi<br>alys | ype<br>ctio | )        |          | 0        | LLEGE<br>78EB (<br>All oth<br>CEANS<br>ALT-1/I | OFF-R.<br>er are<br>IDE-IN | AM<br>as<br>IT.#12 |              |    |
| Volume an                                             | d Timing In                           | out                       |                                                |      |          |     |            |                              |             |          |          |          |                                                |                            |                    |              |    |
|                                                       |                                       | ,                         |                                                | EB   |          |     |            | V                            |             |          |          |          | NB                                             | •                          |                    | SB           |    |
|                                                       |                                       |                           | LT                                             | TH   | R        | _   | LT         | _                            | Н           | R٦       | $\Box$   | LT       | TH                                             | RT                         | LT                 | TH           | RT |
| Num. of Lan                                           | nes                                   |                           | 2                                              | 0    | 1        |     | 0          | С                            | )           | 0        |          | 0        | 4                                              | 0                          | 0                  | 4            | 0  |
| Lane group                                            |                                       |                           | L                                              |      | R        | 2   |            |                              |             |          |          |          | Τ                                              |                            |                    | T            |    |
| Volume (vpł                                           | ·                                     |                           | 630                                            |      | 39       |     |            |                              |             |          |          |          | 1705                                           |                            |                    | 1515         |    |
| % Heavy ve                                            | eh                                    |                           | 2                                              |      | 2        |     |            |                              |             |          |          |          | 2                                              |                            |                    | 2            |    |
| PHF                                                   | /A \                                  |                           | 0.95                                           |      | 0.9      |     |            | _                            |             |          | +        |          | 0.95                                           |                            |                    | 0.95         |    |
| Actuated (Pa<br>Startup lost                          |                                       |                           | 3.0                                            |      | 3.0      |     |            | $\vdash$                     | _           |          | +        |          | <i>A</i> 3.0                                   |                            |                    | 3.0          |    |
| Ext. eff. gree                                        |                                       |                           | 2.0                                            | 1    | 2.0      |     |            | $\vdash$                     |             |          | $\dashv$ |          | 2.0                                            | <u> </u>                   |                    | 2.0          |    |
| Arrival type                                          | <del></del>                           |                           | 3                                              | †    | 3        |     |            | -                            |             |          | 十        |          | 5                                              |                            |                    | 5            |    |
| Unit Extensi                                          | ion                                   |                           | 3.0                                            | 1    | 3.0      |     |            |                              |             |          | 十        |          | 3.0                                            |                            |                    | 3.0          |    |
| Ped/Bike/RT                                           | ΓOR Volume                            |                           | 5                                              | 10   | 0        |     | 5          |                              |             |          |          |          |                                                |                            |                    |              |    |
| Lane Width                                            |                                       |                           | 12.0                                           |      | 12.      | 0   |            |                              |             |          |          |          | 12.0                                           |                            |                    | 12.0         |    |
| Parking/Gra                                           | de/Parking                            |                           | N                                              | 0    | N        |     | N          |                              |             | N        |          | N        | 0                                              | N                          | N                  | 0            | Ν  |
| Parking/hr                                            |                                       |                           |                                                |      |          |     |            |                              |             |          | Ì        |          |                                                |                            |                    |              |    |
| Bus stops/hi                                          | r                                     |                           | 0                                              |      | 0        |     |            |                              |             |          |          |          | 0                                              |                            |                    | 0            |    |
| Unit Extensi                                          | ion                                   |                           | 3.0                                            |      | 3.0      | )   | ,          |                              |             |          | $\neg$   |          | 3.0                                            |                            |                    | 3.0          |    |
| Phasing                                               | EB Only                               | 02                        | <u>.                                      </u> | 03   | <u> </u> | Т   | 04         | <u>-</u>                     | Th          | ru C     | nly      | T        | 06                                             | T                          | 07                 | 1 0          | 8  |
| Timing                                                | G = 36.0                              | G =                       |                                                | G =  |          | G   |            |                              |             | = 63     |          | G =      |                                                | G =                        |                    | G =          |    |
|                                                       | Y = 5.2                               | Y =                       |                                                | Y =  |          | Υ   | =          |                              | Y =         | = 5.0    | 6        | Υ =      |                                                | Y =                        |                    | Y =          |    |
|                                                       | Analysis (hrs                         |                           |                                                |      |          |     |            | _                            |             |          |          |          | le Leng                                        | th C =                     | 110.               | 0            |    |
| Lane Gro                                              | up Capaci                             | ty, Co                    |                                                |      | y, a     | nd  |            |                              | te          | mi       | nat      | ion      |                                                |                            |                    |              |    |
|                                                       |                                       |                           | El                                             | 3    |          |     | W          | /B                           |             |          |          |          | NB                                             |                            |                    | SB           |    |
| Adj. flow rate                                        | е                                     | 663                       |                                                | 411  |          |     |            |                              |             |          |          | 1        | 795                                            |                            |                    | <i>15</i> 95 |    |
| Lane group                                            | сар.                                  | 1149                      |                                                | 502  |          |     |            |                              |             |          |          | 38       | 324                                            |                            |                    | 3902         |    |
| v/c ratio                                             |                                       | 0.58                      |                                                | 0.82 | 2        |     |            |                              |             |          |          | 0        | .47                                            |                            |                    | 0.41         |    |
| Green ratio                                           |                                       | 0.32                      |                                                | 0.32 | ?        |     |            |                              |             |          |          | 0        | .57                                            |                            |                    | 0.57         |    |
| Unif. delay o                                         | 11                                    | 31.3                      |                                                | 34.6 | 3        |     |            |                              |             | $\neg$   |          | 1        | 4.1                                            |                            |                    | 13.5         |    |
| Delay factor                                          | ·k                                    | 0.17                      |                                                | 0.36 | 3        |     | $\top$     |                              |             | $\neg$   |          | 0        | .11                                            |                            |                    | 0.11         |    |
| Increm. dela                                          |                                       |                           |                                                | 10.3 | 3        |     |            |                              |             |          |          | (        | ).1                                            |                            |                    | 0.1          |    |
| PF factor                                             | · · · · · · · · · · · · · · · · · · · |                           |                                                | 1.00 |          |     | $\top$     |                              |             | 一        |          |          | 132                                            |                            |                    | 0.132        |    |
| Control dela                                          |                                       |                           |                                                | 44.9 | ,        |     | $\top$     |                              |             |          |          | -        | 2.0                                            |                            |                    | 1.9          |    |
| Lane group                                            |                                       | С                         |                                                | D    | 一        |     | $\top$     |                              |             | $\dashv$ |          | $\dashv$ | A                                              |                            |                    | Α            |    |
| Apprch. delay 37.0                                    |                                       |                           |                                                |      |          |     |            |                              | L           |          |          | L<br>2.  |                                                |                            |                    | 1.9          |    |
| Approach LOS D                                        |                                       |                           |                                                |      |          |     |            |                              |             |          |          | 1        |                                                |                            |                    | Α            |    |
| Intersec. del                                         |                                       |                           |                                                |      |          | nte | rsec       | tion                         | LOS         |          |          |          | В                                              |                            |                    |              |    |
| TM                                                    |                                       |                           |                                                |      |          |     |            |                              |             |          |          |          |                                                |                            |                    |              |    |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                  |                           |              |                | SH            | OR   | TRE        | PO                           | DR'         | T        |          |     |                                               |                            |                                                  |            |             |
|------------------------------------------------------|------------------|---------------------------|--------------|----------------|---------------|------|------------|------------------------------|-------------|----------|----------|-----|-----------------------------------------------|----------------------------|--------------------------------------------------|------------|-------------|
| General Inf                                          | ormation         |                           |              |                |               |      |            |                              |             | mati     | ion      |     |                                               |                            |                                                  |            |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | Co.<br>med       | US<br>US<br>08/2.<br>PM P | AI<br>2/12   |                |               |      | Are<br>Jur | erse<br>ea T<br>isdi<br>alys | ype<br>ctio | €        |          | 0   | LLEGE<br>78EB (<br>All oth<br>CEANS<br>LT-1/W | OFF-R<br>Ier are<br>IDE-IN | AM<br>as<br>IT.#12                               |            |             |
| Volume an                                            | d Timing In      | put                       | ·            |                |               |      |            |                              |             | ,        |          |     |                                               |                            |                                                  |            | ***         |
|                                                      |                  |                           |              | EB             |               |      |            | W                            | Β           |          |          |     | NB                                            |                            |                                                  | SB         |             |
|                                                      |                  |                           | LT           | TH             | R             | Т    | LT         | T                            | H           | RT       | Γ        | LT  | TH                                            | RT                         | LT                                               | TH         | RT          |
| Num. of Lar                                          | nes              |                           | 2            | 0              | 1             |      | 0          | 0                            | )           | 0        |          | 0   | 4                                             | 0                          | 0                                                | 4          | 0           |
| Lane group                                           |                  |                           |              |                | R             |      |            |                              |             |          |          |     | Τ                                             |                            |                                                  | T          |             |
| Volume (vpl                                          | า)               |                           | 630          |                | 390           | 0    |            |                              |             |          |          |     | 1732                                          |                            |                                                  | 1615       |             |
| % Heavy ve                                           | eh               |                           | 2            |                | 2             |      |            |                              |             |          |          |     | 2                                             |                            |                                                  | 2          |             |
| PHF                                                  |                  |                           | 0.95         | ↓              | 0.9           | 5    |            |                              |             |          | _        |     | 0.95                                          |                            |                                                  | 0.95       |             |
| Actuated (P.                                         |                  |                           | A            | <u> </u>       | A             | _    |            | <u> </u>                     |             |          | 4        |     | <i>A</i>                                      |                            |                                                  | A          | <u> </u>    |
| Startup lost                                         |                  |                           | 3.0          | +              | 3.0           |      |            | <u> </u>                     |             |          |          |     | 3.0<br>2.0                                    |                            | <del>                                     </del> | 3.0<br>2.0 | <u> </u>    |
| Ext. eff. gree<br>Arrival type                       | en               |                           | 2.0<br>3     | - <del> </del> | 2.0<br>3      | _    |            |                              |             |          | +        |     | 2.0<br>5                                      |                            | <u> </u>                                         | 5          | -           |
| Unit Extensi                                         | inn              |                           | 3.0          | 1              | 3.0           | )    |            |                              |             | $\vdash$ | $\dashv$ |     | 3.0                                           |                            | <del>                                     </del> | 3.0        |             |
|                                                      | ror Volume       |                           | 5            | 10             | 0             |      | 5          | -                            |             |          | +        |     | 5.0                                           |                            |                                                  | 3.0        |             |
| Lane Width                                           | TOTA VOIGITIE    |                           | 12.0         | 170            | 12.           | 0    |            |                              |             |          | +        |     | 12.0                                          |                            |                                                  | 12.0       |             |
| Parking/Gra                                          | de/Parking       |                           | N            | 0              | N             |      | N          | -                            |             | N        | +        | N   | 0                                             | N                          | N                                                | 0          | N           |
| Parking/hr                                           |                  |                           |              |                |               |      |            |                              |             |          | T        | •   |                                               |                            |                                                  |            |             |
| Bus stops/h                                          | r                |                           | 0            |                | 0             |      |            |                              |             |          |          |     | 0                                             |                            |                                                  | 0          |             |
| Unit Extensi                                         | ion              |                           | 3.0          |                | 3.0           | )    |            | Ì                            |             |          |          |     | 3.0                                           |                            |                                                  | 3.0        |             |
| Phasing                                              | EB Only          | 02                        | 2            | 03             |               |      | 04         |                              | Th          | ru O     | nly      |     | 06                                            |                            | 07                                               | C          | 8           |
| Timing                                               | G = 36.0         | G =                       |              | G =            |               | G    |            |                              |             | = 63     |          | G:  |                                               | G =                        |                                                  | G =        |             |
|                                                      | Y = 5.2          | Y =                       |              | Υ =            |               | Y    | =          |                              | Υ =         | = 5.6    | 6        | Y = |                                               | Y =                        | 440                                              | Y =        |             |
|                                                      | Analysis (hrs    |                           |              | <b>D</b> 1     |               |      |            | _                            | 4           |          |          |     | le Leng                                       | ith C =                    | 110.                                             | .0         | <del></del> |
| Lane Gro                                             | up Capac         | ity, Co                   |              |                | <u>y, a</u>   | na   |            |                              | te          | rmii     | nat      | lon |                                               |                            |                                                  |            |             |
|                                                      |                  |                           | EF           |                |               |      |            | /B                           |             |          |          |     | NB                                            |                            |                                                  | SB         |             |
| Adj. flow rate                                       | e                | 663                       |              | 411            |               |      |            |                              |             |          |          | 1   | 823                                           |                            |                                                  | 1700       |             |
| Lane group                                           | сар.             | 1094                      | !            | 492            |               |      |            |                              |             |          |          | 3   | 825                                           |                            |                                                  | 3825       |             |
| v/c <b>ra</b> tio                                    |                  | 0.61                      |              | 0.84           | 1             |      |            |                              |             |          |          | 0   | .48                                           |                            |                                                  | 0.44       |             |
| Green ratio                                          |                  | 0.32                      |              | 0.32           | 2             |      |            |                              |             |          |          | 0   | .57                                           |                            |                                                  | 0.57       |             |
| Unif. delay o                                        | <del>1</del> 1   | 31.7                      |              | 34.8           | 3             |      |            |                              |             |          |          | 1   | 4.2                                           |                            |                                                  | 13.9       |             |
| Delay factor                                         | ·k               | 0.19                      |              | 0.37           | 7             |      |            |                              |             | 一        |          | 0   | .11                                           |                            |                                                  | 0.11       |             |
| Increm. dela                                         | ay d2            | 1.0                       | <del> </del> | 11.9           | ,             |      |            |                              |             |          |          | 1   | 0.1                                           |                            |                                                  | 0.1        |             |
| PF factor                                            | <del>-</del>     | 1.000                     | 2            | 1.00           | 0             |      | -          |                              |             | $\neg$   |          | 0.  | .132                                          |                            |                                                  | 0.132      |             |
|                                                      | ontrol delay 32. |                           | _            | 46.7           | $\rightarrow$ |      | $\top$     |                              |             | 一        |          |     | 2.0                                           |                            |                                                  | 1.9        | 1           |
|                                                      | ane group LOS C  |                           |              | D              | 1             |      | $\top$     |                              |             |          |          | 十   | A                                             |                            |                                                  | Α          |             |
| Apprch. dela                                         |                  | $\neg$                    |              |                |               |      | 一          |                              | 2.          | 0        |          |     | 1.9                                           | 1                          |                                                  |            |             |
| Approach LOS D                                       |                  |                           |              |                |               |      |            |                              |             | _        |          |     |                                               |                            |                                                  | Α          |             |
| Intersec. de                                         | $\dashv$         |                           |              | ]              | nte           | rsec | tion       | LOS                          |             |          |          | В   |                                               |                            |                                                  |            |             |
| rragaoooTM                                           | ,                | ı                         |              | nucioht @ 1    | 1000 1        | T .  |            |                              |             |          |          |     |                                               |                            | I                                                |            | ereion A    |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                            |                                        |              |               |             | SH              | ORT F             | PEP      | OR'          | T            | ***         | V                        | <u> </u>  |                 | . •          |              |                                                  |
|----------------------------|----------------------------------------|--------------|---------------|-------------|-----------------|-------------------|----------|--------------|--------------|-------------|--------------------------|-----------|-----------------|--------------|--------------|--------------------------------------------------|
| General Inf                | formation                              |              |               |             | 011             |                   |          |              | matic        | on .        |                          |           |                 |              |              |                                                  |
| Analyst                    |                                        |              | SAI           |             |                 | Ir                | nters    | ectio        | on           |             | LLEGE                    | DF        | ₹,              | _            | ZA           |                                                  |
| Agency or C                |                                        |              | SAI           |             |                 | P                 | rea      | Туре         | €            | 0           | All of                   |           |                 |              | · ·          |                                                  |
| Date Perfor<br>Time Period |                                        |              | 25/12<br>PEAK |             |                 | J                 | urisc    | dictio       | n            | O           | CEANSI<br>MIT            |           | -IN I<br>ATIO   |              | 0            |                                                  |
| Time r cho                 | 4                                      | 7.101 1      | LAN           |             |                 | A                 | naly     | sis Y        | ⁄ear         | В           | D.ALT1                   |           |                 |              | :T           |                                                  |
| Volume ar                  | nd Timing Ir                           | ıput         |               |             |                 |                   |          |              |              |             |                          |           |                 |              |              |                                                  |
|                            |                                        |              |               | EB          |                 |                   | W        |              |              |             | NB                       |           |                 |              | SB           |                                                  |
|                            |                                        |              | LT            | TH          | RT              | LT                | T        |              | RT           | LT          | TH                       | -         | <del>RT</del>   | LT           | TH           | RT                                               |
| Num. of Lar                | nes                                    |              | 1             | 1           | 0               | 1                 | 1        | -            | 1            | 1           | 3                        | L         | 0               | 2            | 3            | 0                                                |
| Lane group                 |                                        |              | L             | TR          |                 | L                 | <i>T</i> |              | R            | L           | TR                       |           |                 | L            | TR           |                                                  |
| Volume (vp                 |                                        |              | 85            | 70          | 15              | 115               | 15       |              | 210          | 45          | 820                      | -         | 95<br>-         | 565          | 1210         | 115                                              |
| % Heavy v                  | en                                     |              | 2             | 2<br>0.95   | 2<br>0.95       | 2<br>0.95         | 0.9      |              | 2            | 2           | 2                        | _         | 2<br>0 <i>E</i> | 2            | 2            | 2                                                |
| Actuated (P                | /Δ)                                    |              | 0.95<br>A     | 0.95<br>A   | 0.95<br>A       | 0.95<br>A         | 0.9<br>A |              | 0.95<br>A    | 0.95<br>A   | 0.95<br>A                | _         | 95<br>4         | 0.95<br>A    | 0.95<br>A    | 0.95<br>A                                        |
| Startup lost               |                                        |              | 3.0           | 3.0         | /1              | 3.0               | 3.0      | _            | 3.0          | 3.0         | 3.0                      | ╁         | •               | 3.0          | 3.0          |                                                  |
| Ext. eff. gre              |                                        |              | 2.0           | 2.0         |                 | 2.0               | 2.0      |              | 2.0          | 2.0         | 2.0                      | T         |                 | 2.0          | 2.0          | <del>                                     </del> |
| Arrival type               |                                        |              | 4             | 4           |                 | 4                 | 4        |              | 4            | 5           | 5                        |           |                 | 5            | 5            |                                                  |
| Unit Extens                | ion                                    |              | 3.0           | 3.0         |                 | 3.0               | 3.       | 0            | 3.0          | 3.0         | 3.0                      |           |                 | 3.0          | 3.0          |                                                  |
| Ped/Bike/R                 | TOR Volume                             | Э            | 5             |             | 0               | 5                 | 10       | )            | 0            | 5           | 10                       | 5         | 6               | 5            | 10           | 0                                                |
| Lane Width                 |                                        |              | 12.0          | 12.0        |                 | 12.0              | 12.      | 0 1          | 12.0         | 12.0        | 12.0                     | L         |                 | 12.0         | 12.0         |                                                  |
| Parking/Gra                | de/Parking                             |              | Ν             | 0           | N               | N                 | (        | )            | Ν            | N           | 0                        | 1         | ٧               | N            | 0            | N                                                |
| Parking/hr                 |                                        |              |               |             |                 |                   |          |              |              |             |                          |           |                 |              |              |                                                  |
| Bus stops/h                | r                                      |              | 0             | 0           |                 | 0                 | 0        |              | 0            | 0           | 0                        |           |                 | 0            | 0            |                                                  |
| Unit Extens                | ion                                    |              | 3.0           | 3.0         |                 | 3.0               | 3.6      | 2            | 3.0          | 3.0         | 3.0                      |           |                 | 3.0          | 3.0          |                                                  |
| Phasing                    | EB Only                                | WB           |               | 03          | 3               | 04                |          |              | κcl. Le      |             | SB Only                  | _         |                 | u & RT       |              | 08                                               |
| Timing                     | G = 12.0 $Y = 4$                       | G = 1        |               | G =<br>Y == |                 | G =<br>Y <b>=</b> |          |              | = 10.<br>= 4 |             | 5 = 19.0<br>7 = 4        |           | G =<br>Y =      | 31.0         | G =<br>Y =   |                                                  |
| Duration of                | <u>I ⊺ − <i>4</i></u><br>Analysis (hr: |              | -             | Τ —         | l               | <u> </u>          |          | <u> </u>     | - 4          |             | <del>4</del><br>√cle Len | <b></b>   | -               |              |              |                                                  |
|                            | up Capac                               |              |               | l Dela      | av ar           | nd I O            | ת פ      | oto          | rmin         | <del></del> |                          | 9"        |                 | ,,,,,        |              |                                                  |
| Lanc Old                   | ap Capac                               | l .          | EB            | I Dele      | 1 <b>y</b> , ai | W                 | _        | CLCI         |              | atio        | NB                       |           |                 |              | SB           |                                                  |
| Adj. flow rat              |                                        | 89           | 90            | 1           | 121             | 16                |          | 221          |              | 47          | 1115                     | 1         |                 | 595          | 1395         |                                                  |
|                            |                                        |              | +             |             | -               |                   |          |              |              |             |                          | ╀         |                 |              |              |                                                  |
| Lane group                 | cap.                                   | 195          | 199<br>0.45   |             | 122             |                   | _        | 319          | _            | 59          | 1463                     | +         |                 | 1100         | 2647         |                                                  |
| v/c ratio<br>Green ratio   |                                        | 0.46<br>0.11 | 0.45          |             | 0.99<br>0.07    |                   | -        | 0.69<br>0.21 | -            | .30         | 0.76<br>0.30             | ╀         |                 | 0.54<br>0.32 | 0.53<br>0.53 |                                                  |
| Unif. delay                |                                        | 41.7         | 41.7          |             | 46.5            |                   |          | 36.5         |              | 2.5         | 31.8                     | ╀         |                 | 28.0         | 15.3         | -                                                |
| Delay factor               |                                        | 0.11         | 0.11          |             | 0.49            |                   |          | 0.26         | -+           | .11         | 0.31                     | ╁         |                 | 0.14         | 0.13         |                                                  |
|                            |                                        | 1.7          | 1.6           |             | 78.8            |                   |          | 6.3          | <del></del>  | 1.0         | 2.4                      | ╁         |                 | 0.14         | 0.73         |                                                  |
| PF factor                  |                                        |              |               | ,           | 1.000           |                   | _        | 1.00         | _            | 934         | 0.714                    | ╁         |                 | 0.686        | 0.248        |                                                  |
|                            | ontrol delay 43.4                      |              |               |             | 125.            |                   |          | 42.9         |              | 0.8         | 25.1                     | $\dagger$ |                 | 19.7         | 4.0          |                                                  |
| Lane group                 | •                                      | D            | 43.3<br>D     |             | F               | D                 |          | D            |              | D.O         | C                        | t         |                 | В            | A            |                                                  |
| Apprch. dela               |                                        |              | 3.4 ·         |             |                 | 70.8              |          |              |              |             | 5.7                      |           |                 |              | 8.7          |                                                  |
|                            | Approach LOS D                         |              |               |             |                 |                   |          | •            |              | -           | C                        |           | -               |              | A            |                                                  |
| · ·                        | ntersec. delay 21.8                    |              |               |             |                 |                   | lr       | nters        | ection       | ı LOS       |                          |           |                 |              | С            |                                                  |
| rrago og cTM               |                                        |              |               |             | <u> </u>        | alvioraltvi a l   |          |              |              |             |                          |           |                 | L            |              |                                                  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                     |            | <del></del>                 |           | SH                                           | ORT F     | REP                    | OR            | RT             |                                     |               |                         |                                |                          |            |              |
|------------------------------------------------------|---------------------|------------|-----------------------------|-----------|----------------------------------------------|-----------|------------------------|---------------|----------------|-------------------------------------|---------------|-------------------------|--------------------------------|--------------------------|------------|--------------|
| General Inf                                          | ormation            |            |                             |           |                                              | S         | ite i                  | nfo           | rmati          |                                     |               |                         |                                |                          |            |              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Perioc | med                 | U:<br>08/2 | SAI<br>SAI<br>25/12<br>PEAK |           |                                              | J         | nters<br>irea<br>uriso | Typ<br>dictio | e<br>on        |                                     | OC:           | All ot<br>EANSII<br>MIT | DR.<br>her ar<br>DE-IN<br>IGAT | T.#13/N<br>IO            | IO         |              |
| Volume an                                            | nd Timing Ir        | nut        |                             |           |                                              |           | naly                   | SIS           | Year           | E                                   | O.A           | LT1/\                   | MITH                           | PROJE                    | СТ         |              |
| volume an                                            | iu mining ii        | iput       |                             | EB        |                                              | 1         | W                      |               |                | Т                                   |               | NB                      |                                |                          | SB         |              |
|                                                      |                     |            | LT                          | TH        | RT                                           | LT        | TI                     |               | RT             | 1                                   | T             | TH                      | RT                             | LT                       | TH         | RT           |
| Num. of Lar                                          | nes                 |            | 1                           | 1         | 0                                            | 1         | 1                      | -             | 1              | 1                                   | 1             | 3                       | 0                              | 2                        | 3          | 0            |
| Lane group                                           |                     |            | L                           | TR        |                                              | L         | 7                      |               | R              | 1                                   | -             | TR                      |                                | L                        | TR         |              |
| Volume (vpl                                          | h)                  |            | 110                         | 100       | 58                                           | 118       | 21                     | 7             | 210            | 6                                   | 1             | 846                     | 326                            | 565                      | 1222       | 136          |
| % Heavy ve                                           |                     |            | 2                           | 2         | 2                                            | 2         | 2                      |               | 2              | 2                                   | ?             | 2                       | 2                              | 2                        | 2          | 2            |
| PHF                                                  |                     |            | 0.95                        | 0.95      | 0.95                                         | 0.95      | 0.9                    | _             | 0.95           | 0.9                                 |               | 0.95                    | 0.95                           | 0.95                     | 0.95       | 0.95         |
| Actuated (P                                          |                     |            | Α                           | Α         | Α                                            | Α         | A                      | _             | Α              | 1                                   |               | Α                       | Α                              | Α                        | Α          | Α            |
| Startup lost                                         |                     |            | 3.0                         | 3.0       |                                              | 3.0       | 3.0                    | $\overline{}$ | 3.0            | 3.                                  |               | 3.0                     |                                | 3.0                      | 3.0        |              |
| Ext. eff. gre                                        | en                  |            | 2.0                         | 2.0       |                                              | 2.0       | 2.0                    |               | 2.0            | 2.                                  |               | 2.0                     |                                | 2.0                      | 2.0        | <u> </u>     |
| Arrival type                                         |                     |            | 4                           | 4         |                                              | 4         | 4                      | _             | 4              | 1 5                                 |               | 5                       |                                | 5                        | 5          | -            |
| Unit Extensi                                         |                     |            | 3.0                         | 3.0       |                                              | 3.0       | 3.0                    |               | 3.0            |                                     | .0            | 3.0                     |                                | 3.0                      | 3.0        |              |
| Ped/Bike/R <sup>-</sup><br>Lane Width                | I OR Volume         | 3          | 5<br>12.0                   | 12.0      | 0                                            | 5<br>12.0 | 10<br>12.              | $\overline{}$ | 0<br>12.0      | 12                                  |               | 10<br>12.0              | 56                             | 5<br>12.0                | 10<br>12.0 | 0            |
| Parking/Gra                                          | de/Darking          |            | 12.0<br>N                   | 0         | N                                            | 12.0<br>N | 12.                    | -             | 12.0<br>N      | 1/2                                 |               | 0                       | N                              | N N                      | 0          | N            |
| Parking/Gra                                          | ide/Farking         |            | 7.4                         | U         | //                                           | 17        | <del>  '</del>         | ′∤            | /٧             | +                                   | ·             | <u> </u>                | /٧                             | - / /                    |            | 10           |
| Bus stops/h                                          | r                   |            | 0                           | ō         |                                              | 0         | 10                     | -             | 0              |                                     | )             | 0                       |                                | 10                       | 0          |              |
| Unit Extensi                                         |                     |            | 3.0                         | 3.0       |                                              | 3.0       | 3.0                    | $\rightarrow$ | 3.0            | 3.                                  |               | 3.0                     |                                | 3.0                      | 3.0        | <del> </del> |
|                                                      |                     | LAAD       |                             |           | <u>                                     </u> |           | J 3.1                  |               |                |                                     | _             |                         | 176                            |                          | <u> </u>   | 00           |
| Phasing                                              | EB Only<br>G = 12.0 | G =        | Only                        | 0:<br>G = | 3                                            | 04<br>G = |                        |               | xcl. L<br>= 10 |                                     | _             | B Only<br>= 19.0        |                                | ru & RT<br>= <i>31.0</i> | G =        | 08           |
| Timing                                               | Y = 4               | Y = 4      |                             | Y =       |                                              | Y =       |                        | _             | = 4            | ,,,,                                |               | = 13.0<br>= 4           |                                | = <i>4</i>               | Y =        |              |
| Duration of                                          |                     |            |                             |           |                                              |           |                        | <u> </u>      | <u> </u>       |                                     | _             |                         |                                | = 100.                   | <u> </u>   |              |
| Lane Gro                                             | up Capac            | ity, C     | ontro                       | l Dela    | ay, ar                                       | nd LO     | S D                    | ete           | rmir           | nati                                | on            |                         |                                |                          |            |              |
|                                                      |                     |            | EB                          |           |                                              | W         |                        |               |                | · · · · · · · · · · · · · · · · · · |               | NB                      |                                |                          | ŞB         |              |
| Adj. flow rat                                        | e                   | 116        | 166                         |           | 124                                          | 22        |                        | 221           | 1              | 64                                  |               | 1175                    | Τ                              | 595                      | 1429       | T            |
| Lane group                                           |                     | 195        | 194                         |           | 122                                          | 130       |                        | 319           | -              | 159                                 | $\rightarrow$ | 1459                    |                                | 1100                     | 2640       |              |
| v/c ratio                                            |                     | 0.59       | 0.86                        | $\top$    | 1.02                                         | 0.1       | 7                      | 0.6           | 9 (            | 0.40                                |               | 0.81                    |                                | 0.54                     | 0.54       |              |
| Green ratio                                          |                     | 0.11       | 0.11                        |           | 0.07                                         | 0.0       | 7                      | 0.2           | 1 (            | 0.09                                | $\neg$        | 0.30                    |                                | 0.32                     | 0.53       |              |
| Unif. delay o                                        | <u></u><br>11       | 42.4       | 43.7                        | _         | 46.5                                         | 43.       | 3                      | 36.           | 5 4            | 43.0                                | $\exists$     | 32.3                    | <del> </del>                   | 28.0                     | 15.5       |              |
| Delay factor                                         | k                   | 0.18       | 0.39                        |           | 0.50                                         | 0.1       | 1                      | 0.2           | 6 (            | 0.11                                |               | 0.35                    |                                | 0.14                     | 0.14       |              |
| Increm. dela                                         | ay d2               | 4.9        | 29.4                        | 1         | 85.9                                         | 0.6       |                        | 6.3           | 3              | 1.7                                 | 寸             | 3.4                     | 1                              | 0.5                      | 0.2        |              |
| PF factor                                            |                     | 1.000      | 1.000                       | 7         | 1.000                                        | 0 1.00    | 00                     | 1.00          | 00 0           | 0.934                               | 4             | 0.714                   |                                | 0.686                    | 0.248      |              |
| Control dela                                         | ıy                  | 47.2       | 73.1                        |           | 132.4                                        | 4 44.     | 4                      | 42.           | 9 4            | 41.8                                |               | 26.5                    |                                | 19.7                     | 4.1        |              |
| Lane group                                           | LOS                 | D          | Ε                           |           | F                                            | D         |                        | D             |                | D                                   | T             | С                       |                                | В                        | Α          |              |
| Apprch. dela                                         | ау                  | 6.         | 2.4                         | •         |                                              | 73.2      |                        |               |                |                                     | 27            | .3                      |                                |                          | 8.7        | -            |
| Approach Lo                                          | os                  |            | E                           |           |                                              | E         | ·                      |               |                |                                     | C             | ;                       |                                |                          | Α          |              |
| Intersec. de                                         | lay                 | 2.         | 4.5                         |           |                                              |           | lr                     | nters         | sectio         | n LO                                | os            |                         |                                |                          | С          |              |
| rrage on aTM                                         |                     | •          |                             |           |                                              |           |                        |               | II Diabe       |                                     |               |                         |                                | •                        |            |              |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                       | ·         |                             |           | SHO      | ORT F        | ₹EP                    | OR           | T              |          |                  |                |                    |             |          |             |
|------------------------------------------------------|---------------------------------------|-----------|-----------------------------|-----------|----------|--------------|------------------------|--------------|----------------|----------|------------------|----------------|--------------------|-------------|----------|-------------|
| General Inf                                          | ormation                              |           |                             |           |          |              |                        |              | matic          | on       |                  |                |                    |             | ·        |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med                                   | U<br>08/. | SAI<br>SAI<br>22/12<br>PEAK |           |          | Δ            | nters<br>krea<br>urisd | Туре         | )              |          | AII<br>OCEAN     | DF<br>other    | R.<br>Fare<br>G-IN | T#13/N      |          |             |
|                                                      |                                       |           |                             |           |          |              | naly                   | sis Y        | 'ear           | В        |                  |                |                    | ROJEC       | Τ        |             |
| Volume an                                            | d Timing In                           | put       |                             |           |          | 1            | 3.8.0                  |              |                |          |                  |                |                    | <del></del> |          |             |
| <b>.</b>                                             |                                       |           | LT                          | EB<br>TH  | RT       | LT           | W<br>TH                |              | RT             | LT       | NE<br>TH         |                | RT                 | LT          | SB<br>TH | RT          |
| Num. of Lar                                          | nes                                   |           | 1                           | 1         | 0        | 1            | 1                      | <del>-</del> | 1              | 1        | 3                |                | <del>``</del>      | 2           | 3        | 0           |
| Lane group                                           |                                       |           | L                           | TR        |          | L            | 7                      |              | R              | L        | TR               |                |                    | L           | TR       |             |
| Volume (vpl                                          | n)                                    |           | 145                         | 120       | 15       | 200          | 20                     | 4            | 115            | 25       | 1145             | 38             | 30                 | 630         | 1210     | 65          |
| % Heavy ve                                           |                                       |           | 2                           | 2         | 2        | 2            | 2                      | 1            | 2              | 2        | 2                | _              | 2                  | 2           | 2        | 2           |
| PHF                                                  |                                       |           | 0.95                        | 0.95      | 0.95     | 0.95         | 0.9                    | 5 0          | .95            | 0.95     | 0.95             | 0.9            | 95                 | 0.95        | 0.95     | 0.95        |
| Actuated (P                                          |                                       |           | Α                           | Α         | Α        | Α            | A                      |              | Α              | Α        | Α                | 1              | 1                  | Α           | Α        | Α           |
| Startup lost                                         | time                                  |           | 3.0                         | 3.0       |          | 3.0          | 3.0                    | ) (          | 3.0            | 3.0      | 3.0              |                |                    | 3.0         | 3.0      |             |
| Ext. eff. gre                                        | en                                    |           | 2.0                         | 2.0       |          | 2.0          | 2.0                    | ) 2          | 2.0            | 2.0      | 2.0              |                |                    | 2.0         | 2.0      |             |
| Arrival type                                         |                                       |           | 4                           | 4         |          | 4            | 4                      | _            | 4              | 5        | 5                | _              |                    | 5           | 5        |             |
| Unit Extensi                                         |                                       |           | 3.0                         | 3.0       |          | 3.0          | 3.0                    |              | 3.0            | 3.0      | 3.0              |                |                    | 3.0         | 3.0      |             |
|                                                      | ΓOR Volume                            | )         | 5                           | 10.0      | 4        | 5            | 5                      |              | 56             | 5        | 5                | 5              | 3                  | 5           | 5        | 5           |
| Lane Width                                           | L /D 11                               |           | 12.0                        | 12.0      | .,       | 12.0         | 12.0                   | _            | 2.0            | 12.0     |                  |                |                    | 12.0        | 12.0     | ļ.,.        |
| Parking/Gra                                          | ide/Parking                           |           | N                           | 0         | N        | N            | 0                      |              | N              | N        | 0                | ^              | <b>V</b>           | N           | 0        | N           |
| Parking/hr                                           | · · · · · · · · · · · · · · · · · · · |           |                             |           |          | -            | <u> </u>               | _            |                | <u> </u> | +-               | _              |                    |             |          | <b> </b>    |
| Bus stops/h                                          |                                       |           | 0                           | 0         | <u> </u> | 0            | 0                      | +            | 0              | 0        | 0                | -              |                    | 0           | 0        | <u> </u>    |
| Unit Extensi                                         |                                       | T         | 3.0                         | 3.0       | <u> </u> | 3.0          | 3.0                    |              | 3.0            | 3.0      | 3.0              | <u> </u>       |                    | 3.0         | 3.0      | <u> </u>    |
| Phasing                                              | EB Only<br>G = 12.0                   |           | Only<br>15.0                | 0:<br>G = | 3        | G =          |                        |              | cl. Le         |          | SB Or            |                |                    | u & RT      | G =      | )8          |
| Timing                                               | G = 12.0<br>Y = 4.2                   | Y=        |                             | Y=        |          | Y =          |                        |              | = 7.0<br>= 4.2 |          | G = 12 $G = 5.2$ |                |                    | 39.2<br>5.6 | Y =      |             |
| Duration of                                          | <u> </u>                              |           |                             | <u>'</u>  |          | <u> </u>     |                        |              | 7.2            |          |                  |                |                    | = 110.      |          |             |
|                                                      | up Capac                              |           |                             | l Dela    | av. ar   | nd LO        | S D                    | eter         | min            |          |                  | <u> </u>       |                    |             | -        | <del></del> |
|                                                      | <u></u>                               | ,,,,      | EB                          |           | <u> </u> | W            |                        |              |                |          | NB               |                |                    |             | SB       |             |
| Adj. flow rat                                        | <del></del> е                         | 153       | 138                         |           | 211      | 21           |                        | 378          |                | 26       | 1549             | Т              |                    | 663         | 1337     |             |
| Lane group                                           |                                       | 177       | 184                         |           | 223      | 237          | -                      | 600          |                | 97       | 1696             |                |                    | 694         | 2534     | 1           |
| v/c ratio                                            |                                       | 0.86      | 0.75                        |           | 0.95     |              |                        | 0.63         |                | .27      | 0.91             | +              |                    | 0.96        | 0.53     | +           |
| Green ratio                                          |                                       | 0.10      | 0.10                        |           | 0.13     |              | $\rightarrow$          | 0.39         | <del></del>    | .05      | 0.35             | $\top$         |                    | 0.20        | 0.50     | +           |
| Unif. delay o                                        | <u> </u>                              | 48.8      | 48.2                        |           | 47.6     | 42.          | -                      | 27.2         | <del>-</del>   | 9.9      | 34.3             | _              |                    | 43.4        | 18.5     | 1           |
| Delay factor                                         | ·k                                    | 0.39      | 0.31                        |           | 0.46     | 0.1          | 1                      | 0.21         | 0              | .11      | 0.43             | $\top$         |                    | 0.47        | 0.13     | +           |
| Increm. dela                                         | ay d2                                 | 33.1      | 15.7                        |           | 45.3     | 0.2          |                        | 2.1          | 1              | 1.5      | 8.0              | 十              |                    | 23.7        | 0.2      | $\top$      |
| PF factor                                            |                                       | 1.000     | 1.000                       | 7         | 1.000    | 0 1.00       | 00 (                   | 0.906        | 6 O.           | .962     | 0.645            | <del>,  </del> |                    | 0.831       | 0.324    | 1           |
| Control dela                                         | У                                     | 81.9      | 63.9                        |           | 92.9     | 42.          | 5                      | 26.8         | 4              | 9.5      | 30.2             |                |                    | 59.8        | 6.2      |             |
| ane group LOS F                                      |                                       |           | Ε                           |           | F        | D            |                        | С            |                | D        | С                |                |                    | Ε           | Α        |             |
| Apprch. dela                                         | ay                                    | 7         | 3.3                         |           |          | 50.2         |                        |              |                |          | 30.5             |                |                    |             | 23.9     |             |
| Approach Lo                                          | os                                    |           | E                           |           |          | D            |                        |              |                |          | С                |                |                    |             | С        |             |
| Intersec. del                                        | lay                                   | 3         | 3.0                         |           |          |              | In                     | terse        | ection         | ı LOS    | }                |                |                    |             | С        |             |
| HCS2000 <sup>TM</sup>                                |                                       |           | Co                          | pyright © | 2000 Un  | niversity of | Florid                 | la, All      | Rights         | Reserve  | d                |                |                    |             | V        | ersion 4.1  |

Short Report

|                                                                                                                            |                      |            |       |            | SH      | ORT F       | REP           | OI                      | RT              |      |          |                         |                       |                              |                    |            |             |
|----------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------|------------|---------|-------------|---------------|-------------------------|-----------------|------|----------|-------------------------|-----------------------|------------------------------|--------------------|------------|-------------|
| General Information  Analyst Agency or Co.  Site Information  COLLEGE BLVD.@ P  Intersection DR. Area Type All other areas |                      |            |       |            |         |             |               |                         |                 |      |          |                         |                       |                              |                    |            |             |
|                                                                                                                            | med                  | U.<br>08/2 | SAI   |            |         | J.          | Area<br>Iuris | Ty <sub>l</sub><br>dict | pe<br>tion      |      | 00       | All ot<br>EANSI<br>MITI | DF<br>hei<br>DE<br>G/ | R.<br>r are<br>E-INT<br>ATIO | as<br>[#13/N<br> N | o          |             |
| Volume an                                                                                                                  | d Timing In          | put        |       |            |         | <u> </u>    | naıy          | /SIS                    | Year            |      | BO.A     | LT1/                    | VI I                  | IHF                          | ROJE               | C1         |             |
|                                                                                                                            |                      |            |       | ΕB         |         |             | W             | /B                      |                 | Т    |          | NB                      |                       |                              |                    | SB         |             |
|                                                                                                                            |                      |            | LT    | TH         | RT      | LT          | T             | Н                       | RT              |      | LT       | TH                      | F                     | ₹T                           | LT                 | TH         | RT          |
| Num. of Lar                                                                                                                | nes                  |            | 1     | 1          | 0       | 1           | 1             |                         | 1               |      | 1        | 3                       |                       | 0                            | 2                  | 3          | 0           |
| Lane group                                                                                                                 |                      |            | L     | TR         |         | L           | 7             | -                       | R               |      | L        | TR                      |                       |                              | L                  | TR         |             |
| Volume (vpl                                                                                                                | 1)                   |            | 158   | 136        | 38      | 210         | 37            |                         | 415             |      | 70       | 1159                    | 3                     | 97                           | 630                | 1246       | 134         |
| % Heavy ve                                                                                                                 | ∍h                   |            | 2     | 2          | 2       | 2           | 2             |                         | 2               | _    | 2        | 2                       | _                     | 2                            | 2                  | 2          | 2           |
| PHF                                                                                                                        |                      |            | 0.95  | 0.95       | 0.95    | 0.95        | 0.9           |                         | 0.95            | _    | .95      | 0.95                    |                       | 95                           | 0.95               | 0.95       | 0.95        |
| Actuated (P.                                                                                                               |                      |            | A     | A          | Α       | A           | A             |                         | A               | _    | <u>A</u> | A                       | _                     | 4                            | A                  | <i>A</i>   | Α           |
| Startup lost                                                                                                               |                      |            | 3.0   | 3.0<br>2.0 |         | 3.0<br>2.0  | 3.0           |                         | 3.0             | _    | 3.0      | 3.0                     | ┝                     |                              | 3.0                | 3.0        |             |
| Ext. eff. gree<br>Arrival type                                                                                             | en                   |            | 2.0   | 2.0<br>4   |         | 2.0         | 2.0           |                         | 2.0<br>4        |      | 2.0<br>5 | 2.0<br>5                | -                     |                              | 2.0<br>5           | 2.0<br>5   | -           |
| Unit Extensi                                                                                                               | on                   |            | 3.0   | 3.0        |         | 3.0         | 3.            |                         | 3.0             | _    | 3.0      | 3.0                     |                       |                              | 3.0                | 3.0        |             |
| Ped/Bike/R1                                                                                                                |                      | )          | 5     | 0.0        | 4       | 5           | 5             |                         | 56              | Ť    | 5<br>5   | 5                       | 5                     | 3                            | 5                  | 5          | 5           |
| Lane Width                                                                                                                 | <del>- i</del>       |            | 12.0  | 12.0       |         | 12.0        | 12.           | .0                      | 12.0            | 1    | 2.0      | 12.0                    |                       |                              | 12.0               | 12.0       |             |
| Parking/Gra                                                                                                                | de/Parking           |            | N     | 0          | N       | N           |               | )                       | N               | T    | N        | 0                       | 7                     | ٧                            | Ν                  | 0          | N           |
| Parking/hr                                                                                                                 |                      |            |       |            |         |             |               |                         |                 | T    |          |                         |                       |                              |                    |            |             |
| Bus stops/h                                                                                                                | r                    |            | 0     | 0          |         | 0           | 0             | )                       | 0               | T    | 0        | 0                       |                       |                              | 0                  | 0          |             |
| Unit Extensi                                                                                                               | on                   |            | 3.0   | 3.0        |         | 3.0         | 3.            | 0                       | 3.0             | T    | 3.0      | 3.0                     |                       |                              | 3.0                | 3.0        |             |
| Phasing                                                                                                                    | EB Only              | WB         | Only  | 0:         | 3       | 04          |               | T                       | Excl. L         | _eft | S        | B Only                  |                       | Thr                          | u & RT             | (          | 08          |
| Timing                                                                                                                     | G = 12.0<br>Y = 4.2  | G =<br>Y = |       | G =<br>Y = |         | G =<br>Y =  |               | _                       | 3 = 7. $4 = 4.$ |      |          | = 12.0<br>= 5.2         | _                     |                              | 39.2<br>5.6        | G =<br>Y = |             |
| Duration of A                                                                                                              |                      |            |       |            |         |             |               | <u> </u>                |                 |      |          | cle Len                 | _                     |                              |                    |            | ĺ           |
| Lane Gro                                                                                                                   | ир Сарас             | ity, C     | ontro | l Dela     | ay, aı  | nd LO       | S D           | et                      | ermi            | na   | tion     | ·                       |                       |                              |                    |            |             |
|                                                                                                                            |                      |            | EB    |            |         | •           | /B            |                         |                 |      |          | NB                      |                       |                              |                    | SB         |             |
| Adj. flow rate                                                                                                             | e                    | 166        | 179   | T          | 221     | 39          | )             | 37                      | 78              | 74   |          | 1582                    | Π                     |                              | 663                | 1448       |             |
| Lane group                                                                                                                 | cap.                 | 177        | 181   |            | 223     | 23          | 7             | 60                      | 20              | 97   | .        | 1694                    | T                     |                              | 694                | 2513       |             |
| v/c ratio                                                                                                                  | · .                  | 0.94       | 0.99  |            | 0.99    | 0.1         | 6             | 0.0                     | 63              | 0.7  | 6        | 0.93                    | T                     |                              | 0.96               | 0.58       |             |
| Green ratio                                                                                                                |                      | 0.10       | 0.10  |            | 0.13    | 3 0.1       | 3             | 0.3                     | 39              | 0.0  | 5        | 0.35                    | T                     |                              | 0.20               | 0.50       |             |
| Unif. delay o                                                                                                              | 11                   | 49.2       | 49.4  |            | 47.9    | 42.         | 8             | 27                      | 7.2             | 51.  | 3        | 34.7                    | T                     |                              | 43.4               | 19.1       |             |
| Delay factor                                                                                                               | k                    | 0.45       | 0.49  |            | 0.49    | 0.1         | 1             | 0.2                     | 21              | 0.3  | 2        | 0.45                    | T                     |                              | 0.47               | 0.17       |             |
| Increm. dela                                                                                                               | ncrem. delay d2 49.6 |            |       |            | 57.6    | 0.3         | 3             | 2.                      | .1              | 29.  | 5        | 10.1                    | T                     |                              | 23.7               | 0.3        |             |
| PF factor                                                                                                                  | 1.000                | 1.000      | )     | 1.00       | 0 1.00  | 20          | 0.9           | 906                     | 0.9             | 32   | 0.645    | T                       |                       | 0.831                        | 0.324              |            |             |
| Control dela                                                                                                               | 99.0                 | 112.9      | )     | 105.       | 5 43.   | 1           | 26            | 5.8                     | 78.             | 8    | 32.4     |                         |                       | 59.8                         | 6.5                |            |             |
| Lane group                                                                                                                 | LOS                  | F          | F     |            | F       | D           |               | (                       | )               | Ε    |          | С                       |                       |                              | Ε                  | Α          |             |
| Apprch. dela                                                                                                               | ау                   | 10         | 06.2  |            |         | 55.0        |               |                         |                 |      | 34       | .5                      |                       |                              |                    | 23.2       |             |
| Approach Lo                                                                                                                | os                   |            |       | Ε          |         |             |               |                         | (               |      |          |                         |                       | С                            |                    |            |             |
| Intersec. del                                                                                                              | lay                  | 3          |       |            |         | lı          | ntei          | rsectio                 | on L            | .os  |          |                         |                       |                              | D                  |            |             |
| rrccagoaTM                                                                                                                 |                      |            | -     |            | 2000 11 | niversity o | C T21!        | 1.                      | 4 11 Th to 1.4  | D    |          |                         |                       |                              |                    |            | ersion 4.1f |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Version 4.1f

Page 1 of 1

MITHADD NB 12TO LAME

|                                                           |         |           |                             |           | SHO          | ORT R     | EPOF                                       | RT             |          |      |                     |                                     |           |         |      |
|-----------------------------------------------------------|---------|-----------|-----------------------------|-----------|--------------|-----------|--------------------------------------------|----------------|----------|------|---------------------|-------------------------------------|-----------|---------|------|
| General Informati                                         | on      |           |                             |           |              | S         | ite Info                                   | rmati          | 1000     |      |                     |                                     |           |         |      |
| Analyst<br>Agency or Co.<br>Date Performed<br>Time Period |         | U<br>08/: | SAI<br>SAI<br>25/12<br>PEAK |           |              | A<br>Ju   | ntersect<br>rea Typ<br>urisdict<br>nalysis | oe<br>ion      | 0        | CEAI | All oi<br>VSID<br>M | DR.<br>ther are<br>E-INT.<br>ITIGAT | #13/WI    | TH      |      |
| Volume and Timi                                           | ng In   | put       |                             |           |              |           | , , ,                                      |                |          |      |                     |                                     |           |         |      |
|                                                           |         |           |                             | EB        |              |           | WB                                         |                |          |      | NB                  |                                     |           | SB      |      |
|                                                           |         |           | LT                          | TH        | RT           | LT        | TH                                         | RT             | L        | _    | TH                  | RT                                  | LT        | TH      | RT   |
| Num. of Lanes                                             |         |           | 1                           | 1         | 0            | 1         | 1                                          | 1              | 1        | 7    | 3                   | 1                                   | 2         | 3       | 0    |
| Lane group                                                |         |           | L                           | TR        |              | L         | T                                          | R              | L        | 5    | T                   | R                                   | L         | TR      |      |
| Volume (vph)                                              |         |           | 85                          | 70        | 15           | 115       | 15                                         | 210            | 45       | 5 8  | 20                  | 295                                 | 565       | 1210    | 115  |
| % Heavy veh                                               |         |           | 2                           | 2         | 2            | 2         | 2                                          | 2              | 2        | _    | 2                   | 2                                   | 2         | 2       | 2    |
| PHF                                                       |         |           | 0.95                        | 0.95      | 0.95         | 0.95      | 0.95                                       | 0.95           | 0.9      | _    | .95                 | 0.95                                | 0.95      | 0.95    | 0.95 |
| Actuated (P/A)                                            |         |           | Α                           | Α         | A            | Α         | Α                                          | A              | A        |      | Α                   | Α                                   | Α         | Α       | A    |
| Startup lost time                                         |         |           | 3.0                         | 3.0       |              | 3.0       | 3.0                                        | 3.0            | 3.0      | _    | 3.0                 | 2.0                                 | 3.0       | 3.0     |      |
| Ext. eff. green                                           |         | -         | 2.0                         | 2.0       |              | 2.0       | 2.0                                        | 2.0            | 2.0      |      | 2.0                 | 2.0                                 | 2.0       | 2.0     | -    |
| Arrival type                                              |         |           | 4                           | 4         |              | 4         | 4                                          | 4              | 5        | _    | 5                   | 5                                   | +         | 5       | -    |
| Unit Extension                                            | £ 310 0 |           | 3.0                         | 3.0       |              | 3.0       | 3.0                                        | 3.0            | 3.       | 0    | 3.0                 | 3.0                                 | 3.0       | 3.0     | -    |
| Ped/Bike/RTOR Vo                                          | lume    |           | 5                           | 120       | 0            | 5         | 10                                         | 12.0           | 5<br>12. | _    | 10<br>2.0           | 56<br>12.0                          | 5<br>12.0 | 10      | 0    |
| Lane Width                                                | doa     |           | 12.0<br>N                   | 12.0      | N            | 12.0<br>N | 12.0                                       | 12.0<br>N      | 12.<br>N | _    | 0                   | N                                   | N         | 0       | N    |
| arking/Grade/Parking<br>arking/hr                         |         |           | 10                          | U         | 11           | 10        | U                                          | / / /          | 70       |      | U                   | 11                                  | 111       | 0       | 74   |
| arking/hr<br>us stops/hr                                  |         |           | 0                           | 0         |              | 0         | 0                                          | 0              | 0        | - F  | 0                   | 0                                   | 0         | 0       | -    |
| Unit Extension                                            |         |           | 3.0                         | 3.0       |              | 3.0       | 3.0                                        | 3.0            | 3.       | _    | 3.0                 | 3.0                                 | 3.0       | 3.0     | -    |
|                                                           | Valu.   | LWD       | Only                        | 0.0       | 2 1          | 04        |                                            | Excl. L        |          |      | Only                |                                     | ru & RT   |         | 08   |
| Phasing EB C                                              |         | G =       |                             | G =       | 3            | G =       |                                            | $\hat{S} = 10$ | _        | G =  |                     |                                     | = 31.0    | G =     | 00   |
| Timing $Y = 4$                                            |         | Y =       |                             | Y =       |              | Y =       |                                            | ' = 4          | 7.0      | Y =  |                     | Y =                                 |           | Y =     |      |
| Duration of Analysi                                       |         |           |                             |           |              | •         |                                            |                |          |      | _                   | gth C                               |           |         |      |
| Lane Group Ca                                             |         |           |                             | l Del     | av. ar       | nd LO     | S Det                                      | ermi           |          |      |                     |                                     |           |         |      |
|                                                           |         | , .       | EB                          |           | ,,           | WB        |                                            |                |          | N    | В                   |                                     |           | SB      |      |
| Adj. flow rate                                            |         | 89        | 90                          |           | 121          | 16        | 221                                        |                | 47       | 863  | -                   | 252                                 | 595       | 1395    |      |
| Lane group cap.                                           |         | 195       | 199                         |           | 122          | 130       | 319                                        | _              | 59       | 152  | -                   | 479                                 | 1100      | 2647    | _    |
| v/c ratio                                                 | _       | 0.46      | 0.45                        |           | 0.99         | 0.12      | 0.69                                       | _              | .30      | 0.5  | _                   | 0.53                                | 0.54      | 0.53    | _    |
| Green ratio                                               | _       | 0.11      | 0.11                        |           | 0.07         | 0.07      | 0.21                                       | _              | .09      | 0.30 |                     | 0.31                                | 0.32      | 0.53    | -    |
| Unif. delay d1                                            | _       | 41.7      | 41.7                        |           | 46.5         | 43.6      | 36.5                                       | _              | 2.5      | 29.3 | _                   | 28.4                                | 28.0      | 15.3    |      |
| Delay factor k                                            |         | 0.11      | 0.11                        |           | 0.49         | 0.11      | 0.26                                       | -              | .11      | 0.10 |                     | 0.13                                | 0.14      | 0.13    | -    |
| Increm. delay d2                                          | _       | 1.7       | 1.6                         |           | 78.8         | 0.4       | 6.3                                        |                | 1.0      | 0.5  | _                   | 1.1                                 | 0.5       | 0.2     |      |
| PF factor                                                 | -       | 1.000     | 1.000                       |           | 1.000        | 1.000     | _                                          | _              | 934      | 0.71 | -                   | 0.700                               | 0.686     | 0.248   | 3    |
| Control delay                                             |         | 43.4      | 43.3                        |           | 125.3        | 44.0      | 42.9                                       |                | 0.8      | 21.0 | -                   | 21.0                                | 19.7      | 4.0     |      |
| Lane group LOS                                            |         | D         | D                           | TE        | F            | D         | D                                          |                | D        | С    |                     | С                                   | В         | Α       |      |
| Apprch. delay                                             |         |           | 3.4                         |           |              | 70.8      |                                            |                |          | 22.2 |                     |                                     |           | 8.7     |      |
| Approach LOS                                              |         |           | D                           |           |              | E         |                                            |                |          | С    |                     |                                     |           | Α       |      |
| Intersec. delay                                           |         | 0.7       |                             |           |              | Inter     | sectio                                     | n LO           | S        |      |                     |                                     | С         |         |      |
| HCS2000 <sup>TM</sup>                                     |         |           | opyright (                  | © 2000 Ur | niversity of |           |                                            |                |          |      |                     |                                     |           | /ersion |      |

MIT: ADD NB RTO LANE SHORT REPORT General Information Site Information COLLEGE BLVD.@ PLAZA Intersection Analyst USAI DR. Agency or Co. USAI Area Type All other areas Date Performed 08/25/12 OCEANSIDE-INT.#13/WITH Jurisdiction Time Period AM PEAK **MITIGAT** 

| Time Terior   | -             | AWIL    | ., ,   |      | 1    | Analys | is Year | BO.   | ALT1/   | WITH   | PROJE    | CT   |      |
|---------------|---------------|---------|--------|------|------|--------|---------|-------|---------|--------|----------|------|------|
| Volume ar     | nd Timing In  | put     |        |      |      | -3-    |         |       | 70.     |        |          |      |      |
|               |               |         | E      | 3    | 194  | WE     | 3       |       | NB      |        |          | SB   |      |
|               |               | E       | г ТН   | RT   | LT   | TH     | RT      | LT    | TH      | RT     | LT_      | TH   | RT   |
| Num. of La    | nes           | 1       | 1      | 0    | 1    | 1      | 1       | 1     | 3       | 1      | 2        | 3    | 0    |
| Lane group    |               | L       | TR     |      | L    | T      | R       | L     | T       | R      | L        | TR   |      |
| Volume (vp    | h)            | 11      | 0 100  | 58   | 118  | 21     | 210     | 61    | 846     | 326    | 565      | 1222 | 136  |
| % Heavy v     | eh            | 2       | 2      | 2    | 2    | 2      | 2       | 2     | 2       | 2      | 2        | 2    | 2    |
| PHF           |               | 0.9     | 5 0.95 | 0.95 | 0.95 | 0.95   | 0.95    | 0.95  | 0.95    | 0.95   | 0.95     | 0.95 | 0.95 |
| Actuated (F   | P/A)          | A       | A      | A    | Α    | A      | A       | A     | A       | Α      | Α        | Α    | A    |
| Startup lost  | time          | 3.0     | 3.0    |      | 3.0  | 3.0    | 3.0     | 3.0   | 3.0     | 2.0    | 3.0      | 3.0  |      |
| Ext. eff. gre | en            | 2.0     | 2.0    |      | 2.0  | 2.0    | 2.0     | 2.0   | 2.0     | 2.0    | 2.0      | 2.0  |      |
| Arrival type  |               | 4       | 4      |      | 4    | 4      | 4       | 5     | 5       | 5      | 5        | 5    |      |
| Unit Extens   | ion           | 3.0     | 3.0    |      | 3.0  | 3.0    | 3.0     | 3.0   | 3.0     | 3.0    | 3.0      | 3.0  |      |
| Ped/Bike/R    | TOR Volume    | 5       | 3      | 0    | 5    | 10     | 0       | 5     | 10      | 56     | 5        | 10   | 0    |
| Lane Width    |               | 12.     | 0 12.0 | )    | 12.0 | 12.0   | 12.0    | 12.0  | 12.0    | 12.0   | 12.0     | 12.0 |      |
| Parking/Gra   | ade/Parking   | N       | 0      | N    | N    | 0      | N       | N     | 0       | N      | N        | 0    | N    |
| Parking/hr    |               |         |        |      |      |        |         |       |         |        |          |      |      |
| Bus stops/h   | nr            | 0       | 0      |      | 0    | 0      | 0       | 0     | 0       | 0      | 0        | 0    |      |
| Unit Extens   | ion           | 3.0     | 3.0    |      | 3.0  | 3.0    | 3.0     | 3.0   | 3.0     | 3.0    | 3.0      | 3.0  |      |
| Phasing       | EB Only       | WB Onl  | у      | 03   | 04   |        | Excl. L | eft : | SB Only | / T    | hru & R1 | 7    | 08   |
| Timing        | G = 12.0      | G = 8.0 | G =    |      | G =  |        | G = 10  | .0 G  | = 19.0  | ) G    | i = 31.0 | G =  |      |
| Timing        | Y = 4         | Y = 4   | Y =    |      | Y =  |        | Y = 4   | Y     | = 4     | Y      | = 4      | Y =  |      |
| Duration of   | Analysis (hrs | = 0.25  |        |      |      |        |         | Cy    | cle Ler | ngth C | c = 100. | .0   |      |

| Lane Group Ca    | oacity, C | ontrol D | elay, an | d LOS | Deteri  | minatio  | on    |       | 5.7   |       |
|------------------|-----------|----------|----------|-------|---------|----------|-------|-------|-------|-------|
| 4 4 1 1 1 4 4    |           | EB       |          | WB    |         |          | NB    | 40    |       | SB    |
| Adj. flow rate   | 116       | 166      | 124      | 22    | 221     | 64       | 891   | 284   | 595   | 1429  |
| Lane group cap.  | 195       | 194      | 122      | 130   | 319     | 159      | 1522  | 479   | 1100  | 2640  |
| v/c ratio        | 0.59      | 0.86     | 1.02     | 0.17  | 0.69    | 0.40     | 0.59  | 0.59  | 0.54  | 0.54  |
| Green ratio      | 0.11      | 0.11     | 0.07     | 0.07  | 0.21    | 0.09     | 0.30  | 0.31  | 0.32  | 0.53  |
| Unif. delay d1   | 42.4      | 43.7     | 46.5     | 43.8  | 36.5    | 43.0     | 29.7  | 29.2  | 28.0  | 15.5  |
| Delay factor k   | 0.18      | 0.39     | 0.50     | 0.11  | 0.26    | 0.11     | 0.18  | 0.18  | 0.14  | 0.14  |
| Increm. delay d2 | 4.9       | 29.4     | 85.9     | 0.6   | 6.3     | 1.7      | 0.6   | 2.0   | 0.5   | 0.2   |
| PF factor        | 1.000     | 1.000    | 1.000    | 1.000 | 1.000   | 0.934    | 0.714 | 0.700 | 0.686 | 0.248 |
| Control delay    | 47.2      | 73.1     | 132.4    | 44.4  | 42.9    | 41.8     | 21.8  | 22.4  | 19.7  | 4.1   |
| Lane group LOS   | D         | Ε        | F        | D     | D       | D        | С     | С     | В     | Α     |
| Apprch. delay    | 62        | 2.4      | 7        | 3.2   |         | 2        | 23.0  |       |       | 8.7   |
| Approach LOS     |           | E        | 1        | E     |         |          | С     |       | 1     | Α     |
| Intersec. delay  | 23        | 3.1      |          |       | Interse | ction LO | S     |       |       | С     |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

MIT, : ADD NB RTO LANE

|                                                      |                                   |         |                                |           | SH         | ORT R         |                                    |                        |            | T D  |     | 1015                  | E                                  | O LA      | OF        |           |
|------------------------------------------------------|-----------------------------------|---------|--------------------------------|-----------|------------|---------------|------------------------------------|------------------------|------------|------|-----|-----------------------|------------------------------------|-----------|-----------|-----------|
| General Inf                                          | ormation                          |         |                                |           | 011        |               | ite In                             |                        |            | on   |     |                       |                                    |           |           |           |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | Co.<br>med                        | 08/     | ISAI<br>ISAI<br>'22/12<br>PEAK |           |            | Ir<br>A<br>Jı | nterse<br>rea T<br>urisdi<br>nalys | ection<br>ype<br>ction | 1          | 0    | CE. | All of<br>ANSIE<br>MI | DR.<br>ther are<br>DE-INT<br>TIGAT | #13/WI    | TH        |           |
| Volume ar                                            | nd Timing I                       | nput    |                                |           |            | - 10          | in rolly c                         |                        | -          |      | -   |                       |                                    |           |           |           |
| VV.V.                                                |                                   | 6.      |                                | EB        |            |               | WE                                 |                        |            |      |     | NB                    |                                    |           | SB        |           |
| ua IIV - Tela                                        |                                   |         | LT                             | TH        | RT         | LT            | TH                                 |                        | RT         | L7   |     | TH                    | RT                                 | LT        | TH        | RT        |
| Num. of Lar                                          | nes                               |         | 1                              | 1         | 0          | 1             | 1                                  | _                      | 1          | 1    | 4   | 3                     | 1                                  | 2         | 3         | 0         |
| Lane group                                           |                                   |         | L                              | TR        |            | L             | T                                  |                        | 7          | L    |     | T                     | R                                  | L         | TR        |           |
| Volume (vp                                           |                                   |         | 145                            | 120       | 15         | 200           | 20                                 | _                      | 15         | 25   | 1.  | 1145                  | 380                                | 630       | 1210      | 65        |
| % Heavy v                                            | eh                                |         | 2                              | 2         | 2          | 2             | 2                                  |                        | 2          | 2    | _   | 2                     | 2                                  | 2         | 2         | 2         |
| PHF<br>Actuated (P                                   | /A)                               |         | 0.95<br>A                      | 0.95<br>A | 0.95<br>A  | 0.95<br>A     | 0.95<br>A                          | _                      | 95<br>4    | 0.9. | 0   | 0.95<br>A             | 0.95<br>A                          | 0.95<br>A | 0.95<br>A | 0.95<br>A |
| Startup lost                                         |                                   |         | 3.0                            | 3.0       | A          | 3.0           | 3.0                                |                        | .0         | 3.0  | ,   | 3.0                   | 2.0                                | 3.0       | 3.0       | A         |
| Ext. eff. gre                                        |                                   |         | 2.0                            | 2.0       |            | 2.0           | 2.0                                | _                      | .0         | 2.0  | _   | 2.0                   | 2.0                                | 2.0       | 2.0       |           |
| Arrival type                                         |                                   |         | 4                              | 4         |            | 4             | 4                                  | _                      | 4          | 5    |     | 5                     | 5                                  | 5         | 5         |           |
| Unit Extens                                          | ion                               |         | 3.0                            | 3.0       | 1          | 3.0           | 3.0                                | 3                      | .0         | 3.0  | )   | 3.0                   | 3.0                                | 3.0       | 3.0       |           |
| Ped/Bike/R                                           | TOR Volum                         | е       | 5                              |           | 4          | 5             | 5                                  | 5                      | 6          | 5    |     | 5                     | 53                                 | 5         | 5         | 5         |
| Lane Width                                           |                                   |         | 12.0                           | 12.0      |            | 12.0          | 12.0                               | 12                     | 2.0        | 12.  | 0   | 12.0                  | 12.0                               | 12.0      | 12.0      |           |
| Parking/Gra                                          | arking/Grade/Parking<br>arking/hr |         |                                | 0         | N          | N             | 0                                  |                        | N          | N    |     | 0                     | N                                  | N         | 0         | N         |
| Parking/hr                                           | arking/hr                         |         |                                |           |            |               |                                    |                        |            |      |     |                       |                                    |           |           |           |
| Bus stops/h                                          |                                   |         |                                | 0         |            | 0             | 0                                  |                        | 0          | 0    |     | 0                     | 0                                  | 0         | 0         |           |
| Unit Extens                                          | ion                               |         | 3.0                            | 3.0       |            | 3.0           | 3.0                                | 3                      | .0         | 3.0  | )   | 3.0                   | 3.0                                | 3.0       | 3.0       |           |
| Phasing                                              | EB Only                           | WB      | Only                           | 0         | 3          | 04            | 5 21                               | Exc                    | l. Le      | eft  | SI  | 3 Only                | Th                                 | u & RT    |           | 08        |
| Timing                                               | G = 12.0                          |         | 15.0                           | G =       |            | G =           |                                    | G=                     |            |      | _   | 12.0                  |                                    | 39.2      | G=        |           |
| 7.70                                                 | Y = 4.2                           | Y =     |                                | Y =       |            | Y =           |                                    | Y =                    | 4.2        | _    | Y = | 713.00                |                                    | 5.6       | Y =       |           |
| Duration of                                          |                                   |         |                                |           |            |               |                                    | 3.75                   |            | _    | -   | le Len                | gth C =                            | = 110.    | 0         |           |
| Lane Gro                                             | up Capa                           | city, C |                                | ol Del    | ay, ar     |               |                                    | terr                   | <u>nin</u> | atic |     | 0.07 = 0.00           |                                    |           |           |           |
|                                                      |                                   |         | EB                             |           |            | WB            |                                    |                        |            |      |     | NB                    |                                    |           | SB        |           |
| Adj. flow rat                                        | e                                 | 153     | 138                            |           | 211        | 21            | 3                                  | 78                     | 2          | 6    | 12  | 05                    | 344                                | 663       | 1337      |           |
| Lane group                                           | сар.                              | 177     | 184                            |           | 223        | 237           | 6                                  | 00                     | 9          | 7    | 17  | 62                    | 553                                | 694       | 2534      |           |
| v/c ratio                                            |                                   | 0.86    | 0.75                           |           | 0.95       | 0.09          | 0.                                 | 63                     | 0.2        | 27   | 0.  | 68                    | 0.62                               | 0.96      | 0.53      |           |
| Green ratio                                          |                                   | 0.10    | 0.10                           | -         | 0.13       | 0.13          | 0.                                 | 39                     | 0.0        | )5   | 0.  | 35                    | 0.36                               | 0.20      | 0.50      |           |
| Unif. delay                                          | d1                                | 48.8    | 48.2                           |           | 47.6       | 42.4          | 27                                 | 7.2                    | 49         | .9   | 30  | 0.7                   | 29.3                               | 43.4      | 18.5      |           |
| Delay factor                                         |                                   | 0.39    | 0.31                           |           | 0.46       | 0.11          | -                                  | 21                     | 0.1        | _    | -   | _                     | 0.21                               | 0.47      | 0.13      |           |
| Increm. dela                                         |                                   | 33.1    | 15.7                           |           | 45.3       | 0.2           | 2                                  | .1                     | 1.         | 5    | 1.  | .1                    | 2.2                                | 23.7      | 0.2       |           |
| PF factor                                            |                                   | 1.000   | 1.000                          |           | 1.000      | 1.000         | 0.5                                | 906                    | 0.9        | 62   | 0.6 | 345                   | 0.631                              | 0.831     | 0.324     |           |
| Control dela                                         | ay                                | 81.9    | 63.9                           |           | 92.9       | 42.5          | 26                                 | 5.8                    | 49         | .5   | 20  | 0.9                   | 20.6                               | 59.8      | 6.2       | $\top$    |
| Lane group                                           | -                                 | F       | E                              | 111       | F          | D             | (                                  | 0                      | L          | )    | (   | 2                     | С                                  | Е         | Α         |           |
|                                                      |                                   | 7.      | 3.3                            |           |            | 50.2          |                                    |                        | T          | 2    | 1.3 |                       |                                    |           | 23.9      |           |
| Approach L                                           | - 7                               | E       |                                | 1         | D          |               |                                    |                        |            | С    |     |                       |                                    | С         |           |           |
|                                                      | ntersec. delay                    |         |                                |           |            |               | Inte                               | ersec                  | ction      | LOS  | S   |                       |                                    |           | С         |           |
| HCS2000 <sup>TM</sup>                                | •                                 |         | 9.8                            | nvright ( | © 2000 III | niversity of  | _                                  | -                      |            | _    | -   |                       |                                    |           |           | ersion -  |

MIT. : ADD NB RTO LANE

|                                                      |                                   |         |                                |            | SH        | ORT          |                                       |               |       | - 1  | -    |                       |                                     | MAYO     |       |          |
|------------------------------------------------------|-----------------------------------|---------|--------------------------------|------------|-----------|--------------|---------------------------------------|---------------|-------|------|------|-----------------------|-------------------------------------|----------|-------|----------|
| General Inf                                          | ormation                          |         |                                |            |           | S            | ite In                                | form          | natio | n    |      |                       |                                     |          |       |          |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                               | 08/     | ISAI<br>ISAI<br>'22/12<br>PEAK |            |           | A<br>J       | nterse<br>rea Tr<br>urisdio<br>nalysi | ype<br>ction  |       | 0    | CEA  | All of<br>ANSIL<br>Mi | DR.<br>ther are<br>DE-INT<br>ITIGAT | #13/WI   | TH    |          |
| Volume an                                            | d Timing I                        | nput    |                                |            |           |              |                                       |               |       |      |      |                       |                                     |          |       |          |
|                                                      |                                   |         |                                | EB         |           |              | WB                                    |               |       |      |      | NB                    |                                     |          | SB    |          |
| Contract of                                          | 7:6                               |         | LT                             | TH         | RT        | LT           | TH                                    | _             | RT    | LT   | -    | TH                    | RT                                  | LT       | TH    | RT       |
| Num. of Lar                                          | ies                               |         | 1                              | 1          | 0         | 1            | 1                                     | _             | 1     | 1    | _    | 3                     | 1                                   | 2        | 3     | 0        |
| Lane group                                           |                                   |         | L                              | TR         |           | L            | LT                                    |               | 7     | L    |      | T                     | R                                   | L        | TR    | 11       |
| Volume (vpl                                          |                                   |         | 208                            | 132        | 52        | 281          | 34                                    | 53            | _     | 70   | 1    | 557                   | 404                                 | 585      | 1561  | 210      |
| % Heavy ve                                           | eh                                |         | 2                              | 2          | 2         | 2            | 2                                     | _             | 2     | 2    |      | 2                     | 2                                   | 2        | 2     | 2        |
| PHF                                                  |                                   |         | 0.95                           | 0.95       | 0.95      | 0.95         | 0.95                                  | 0.9           |       | 0.9  | 5 (  | 0.95                  | 0.95                                | 0.95     | 0.95  | 0.95     |
| Actuated (P.                                         |                                   |         | A 2.0                          | A 2.0      | Α         | A 2.0        | A                                     | 1             |       | A    |      | A                     | A                                   | A 2.0    | A     | A        |
| Startup lost                                         |                                   |         | 3.0<br>2.0                     | 3.0<br>2.0 |           | 3.0<br>2.0   | 3.0<br>2.0                            | 3.<br>2.      | _     | 2.0  | _    | 3.0<br>2.0            | 2.0                                 | 3.0      | 3.0   |          |
| Ext. eff. gree<br>Arrival type                       | 311                               |         | 4                              | 4          | Y==       | 4            | 4                                     |               | 4     | 5    |      | <i>2.0</i> 5          | 5                                   | 2.0<br>5 | 2.0   | +        |
| Unit Extensi                                         | on                                |         | 3.0                            | 3.0        |           | 3.0          | 3.0                                   | $\rightarrow$ | .0    | 3.0  |      | 3.0                   | 3.0                                 | 3.0      | 3.0   |          |
| Ped/Bike/R                                           |                                   | e       | 5                              | 0.0        | 4         | 5            | 5                                     | 5             |       | 5    |      | 5                     | 53                                  | 5        | 5     | 5        |
| Lane Width                                           | Ort volum                         | C       | 12.0                           | 12.0       | 7         | 12.0         | 12.0                                  | 12            |       | 12.0 | ,    | 12.0                  | 12.0                                | 12.0     | 12.0  | 1        |
| S ANNOUNCE PORCE                                     | de/Parking                        |         | N                              | 0          | N         | N            | 0                                     | _             | V     | N    |      | 0                     | N                                   | N        | 0     | N        |
| Parking/hr                                           | arking/Grade/Parking<br>arking/hr |         |                                |            | 1         |              | _                                     | 1             | •     |      | +    |                       |                                     |          |       | 1        |
| Bus stops/h                                          |                                   |         |                                | 0          |           | 0            | 0                                     | (             | 0     | 0    | 1    | 0                     | 0                                   | 0        | 0     |          |
| Unit Extensi                                         |                                   |         | 3.0                            | 3.0        |           | 3.0          | 3.0                                   | _             | .0    | 3.0  |      | 3.0                   | 3.0                                 | 3.0      | 3.0   |          |
| Phasing                                              | EB Only                           | WB      | Only                           | 0          | 3         | 04           | T                                     |               | l. Le |      |      | Only                  |                                     | ru & RT  |       | 08       |
|                                                      | G = 12.0                          |         | 14.0                           | G =        |           | G =          |                                       | G =           |       |      |      | 10.0                  |                                     | 42.2     | G =   |          |
| Timing                                               | Y = 4.2                           | Y =     |                                | Y =        |           | Y =          |                                       | Y =           | 4.2   |      | Y =  | 5.2                   | Υ =                                 | 5.6      | Y =   |          |
| Duration of a                                        | Analysis (hı                      | rs) = 0 | 25                             |            |           |              |                                       |               |       |      | Cycl | e Len                 | gth C =                             | = 110.   | 0     |          |
| Lane Gro                                             | up Capa                           | city, C | ontro                          | ol Del     | ay, ar    | nd LO        | S De                                  | tern          | nin   | atic | n    |                       |                                     |          |       |          |
|                                                      |                                   |         | EB                             |            |           | WB           |                                       |               |       |      | 1    | NB                    |                                     |          | SB    |          |
| Adj. flow rate                                       | е                                 | 219     | 190                            |            | 163       | 169          | 49                                    | 9             | 74    | 1    | 163  | 39                    | 369                                 | 616      | 1859  |          |
| Lane group                                           | сар.                              | 177     | 179                            |            | 207       | 210          | 55                                    | 8             | 97    | 7    | 190  | 00                    | 596                                 | 631      | 2548  | 8.       |
| v/c ratio                                            |                                   | 1.24    | 1.06                           |            | 0.79      | 0.80         | 0.8                                   | 39            | 0.7   | 6    | 0.8  | 36                    | 0.62                                | 0.98     | 0.73  |          |
| Green ratio                                          |                                   | 0.10    | 0.10                           |            | 0.12      | 0.12         | 0.3                                   | 36            | 0.0   | )5   | 0.3  | 37                    | 0.38                                | 0.18     | 0.51  |          |
| Unif. delay o                                        | 11                                | 49.5    | 49.5                           |            | 47.2      | 47.3         | 33                                    | .1            | 51.   | 3    | 31.  | .8                    | 27.4                                | 44.7     | 20.9  |          |
| Delay factor                                         |                                   | 0.50    | 0.50                           |            | 0.33      | 0.35         | 0.4                                   | _             | 0.3   |      | 0.3  | _                     | 0.20                                | 0.48     | 0.29  |          |
| Increm. dela                                         |                                   | 145.7   | 84.5                           |            | 18.1      | 20.0         | 16                                    |               | 11.   |      | 1.   | -                     | 0.7                                 | 15.9     | 0.4   |          |
| PF factor                                            |                                   | 1.000   | 1.000                          |            | 1.000     | 1.000        | _                                     |               | 0.9   |      | 0.6  | _                     | 0.585                               | 0.850    | 0.299 | ,        |
| Control dela                                         | y                                 | 195.2   | 134.0                          | _          | 65.3      | 67.3         | 47                                    |               | 61.   | _    | 20.  | _                     | 16.7                                | 53.9     | 6.6   | +        |
|                                                      |                                   | F       | F                              | N ET       | E         | E            | D                                     | _             | E     |      | C    | -                     | В                                   | D        | A     |          |
|                                                      |                                   | 66.7    | 1                              | _          | 55.1      |              |                                       | ΙĒ            |       | 1.4  |      |                       |                                     | 18.4     | 1     |          |
| Appron. delay 16                                     |                                   |         | F                              |            |           | E            |                                       |               |       |      | C    |                       |                                     |          | В     |          |
| Intersec. del                                        |                                   | 5.2     |                                | -          | -         | Into         | rsec                                  | tion          |       |      |      |                       |                                     | D        | _     |          |
| HCS2000 <sup>TM</sup>                                | ч                                 | 3.      |                                |            | D 2000 11 | niversity of |                                       |               | _     |      |      |                       |                                     |          |       | ersion 4 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

|                                                      |                  |          |                                   |           | SH                 | ORT R     | EP(             | ORT                               |                 |                |          |                        |         |              |             |              |
|------------------------------------------------------|------------------|----------|-----------------------------------|-----------|--------------------|-----------|-----------------|-----------------------------------|-----------------|----------------|----------|------------------------|---------|--------------|-------------|--------------|
| General Inf                                          | ormation         |          |                                   |           |                    | s         | ite Ir          | nform                             | natio           | n              |          |                        |         |              |             |              |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med              |          | USAI<br>USAI<br>8/24/12<br>M PEAK |           |                    | A<br>Ju   | rea T<br>urisdi | ectior<br>ype<br>iction<br>sis Ye |                 |                | CE       | MAR<br>All ot<br>EANSI | MIT.    | PD.          |             |              |
| Volume an                                            | d Timing         | Input    |                                   |           |                    |           | iaryc           | 7.0 1 (                           |                 |                | <u> </u> |                        | /// / / | 10020        |             |              |
|                                                      |                  |          |                                   | EB        |                    |           | W               | В                                 |                 |                |          | NB                     |         |              | SB          |              |
|                                                      |                  |          | LT                                | TH        | RT                 | LT        | Th              | 1                                 | RT              | L <sup>-</sup> | Γ        | TH                     | RT      | LT           | TH          | RT           |
| Num. of Lar                                          | nes              |          | 2                                 | 1         | 1                  | 1         | 1               |                                   | 1               | 2              |          | 2                      | 1       | 2            | 2           | 0            |
| Lane group                                           |                  |          | L                                 | T         | R                  | L         | T               |                                   | R               | L              |          | Τ                      | R       | L            | T           |              |
| Volume (vpl                                          |                  |          | 140<br>2                          | 150       | 110<br>2           | 410       | 192             | 2 3                               | 35              | 260            | )        | 690<br>2               | 235     | 215          | 1205<br>2   |              |
| % Heavy vo                                           | ∌n               |          | 0.92                              | 2<br>0.92 | 0.92               | 2<br>0.92 | 0.9             | 2 0                               | 2<br>.92        | 0.9            | 2        | 0.92                   | 0.92    | 2<br>0.92    | 0.92        | $\vdash$     |
| Actuated (P                                          | /A)              |          | A                                 | A         | A                  | A         | A               | _                                 | A               | A              | ۷.       | A                      | A       | A            | A           | A            |
| Startup lost                                         |                  |          | 2.0                               | 2.0       | 2.0                | 2.0       | 2.0             |                                   | 2.0             | 2.0            |          | 2.0                    | 2.0     | 2.0          | 2.0         |              |
| Ext. eff. gree                                       | en               |          | 2.0                               | 2.0       | 2.0                | 2.0       | 2.0             |                                   | 2.0             | 2.0            | )        | 2.0                    | 2.0     | 2.0          | 2.0         | <u> </u>     |
| Arrival type<br>Unit Extensi                         | ion .            |          | 3.0                               | 3.0       | <i>4</i><br>3.0    | 3.0       | 3.0             |                                   | <u>4</u><br>3.0 | 3.0            | _        | 5<br>3.0               | 3.0     | 5<br>3.0     | 5<br>3.0    | $\vdash$     |
| Ped/Bike/R                                           |                  | me       | 5                                 | 5         | 0                  | 5         | 5.0             |                                   | 0               | 5              | ,        | 5                      | 0       | 5            | 3.0         | $\vdash$     |
| Lane Width                                           | OIT VOILI        | iio      | 12.0                              | 12.0      | 12.0               | 12.0      | 12.             | _                                 | 2.0             | 12.            | 0        | 12.0                   | 12.0    | 12.0         | 12.0        |              |
| Parking/Gra                                          | de/Parkin        | g        | N                                 | 0         | N                  | N         | 0               | -+                                | N               | N              |          | 0                      | N       | N            | 0           | N            |
| Parking/hr                                           |                  | <u> </u> |                                   |           |                    |           |                 |                                   |                 |                |          |                        |         |              |             |              |
| Bus stops/h                                          | r                | • •      | 0                                 | 0         | 0                  | 0         | 0               |                                   | 0               | 0              |          | 0                      | 0       | 0            | 0           |              |
| Unit Extensi                                         | on               |          | 3.0                               | 3.0       | 3.0                | 3.0       | 3.0             | 7 (                               | 3.0             | 3.6            | )        | 3.0                    | 3.0     | 3.0          | 3.0         |              |
| Phasing                                              | Excl. Le         |          | /B Only                           | Thru 8    |                    | 04        |                 |                                   | l. Le           |                |          | 3 Only                 |         | u & RT       | 0           | 8            |
| Timing                                               | G = 11.0 $Y = 4$ |          | = 10.0                            | G = 1     |                    | G =       |                 | G =                               |                 |                |          | 9.0                    |         | 27.0         | G =<br>Y =  |              |
| Duration of                                          |                  |          | = <i>4</i>                        | Y = 4     |                    | Y =       |                 | Y =                               | 4               |                | Y =      | •                      | gth C = | 4<br>: 100.0 |             |              |
| Lane Gro                                             |                  |          |                                   | l Dela    | ıv. ar             | nd I OS   | S De            | terr                              | nin             |                |          | io com                 | 9.11 0  | 100.0        | <u></u>     |              |
| Lano Oro                                             | ар оар.          | <u> </u> | EB                                |           | . <del>y, a.</del> | WE        |                 |                                   | Т               | 4110           |          | NB                     |         | ļ —          | SB          |              |
| Adj. flow rat                                        | e                | 152      | 163                               | 120       | 446                | 209       |                 | 364                               | 28              | 3.3            | _        | 50                     | 255     | 234          | 1310        | $\neg$       |
| Lane group                                           |                  | 378      | 186                               | 353       | 443                | 447       | -               | 574                               | 30              |                | +        | 58                     | 870     | 756          | 1419        | +            |
| v/c ratio                                            |                  | 0.40     | 0.88                              | 0.34      | 1.01               |           |                 | 0.63                              | 0.9             |                | +        |                        | 0.29    | 0.31         | 0.92        | <del> </del> |
| Green ratio                                          |                  | 0.11     | 0.10                              | 0.23      | 0.25               | _         | _               | .37                               | 0.0             |                | +        |                        | 0.56    | 0.22         | 0.40        |              |
| Unif. delay o                                        | <br>11           | 41.4     | 44.4                              | 32.2      | 37.5               |           |                 | 5.9                               | 45              | .1             | 3        | 3.8                    | 11.6    | 32.6         | 28.5        | +            |
| Delay factor                                         | k                | 0.11     | 0.40                              | 0.11      | 0.50               | 0.11      | 0               | .21                               | 0.4             | 43             | 0.       | 33                     | 0.11    | 0.11         | 0.44        | $\top$       |
| Increm. dela                                         |                  | 0.7      | 34.3                              | 0.6       | 44.5               |           |                 | 2.3                               | 30              |                | 4        | .3                     | 0.2     | 0.2          | 10.3        | 1-           |
| PF factor                                            |                  | 1.000    | 1.000                             | 1.000     | 1.000              | -         | 0.              | .925                              | 0.9             | 34             | 0.       | 753                    | 0.152   | 0.812        | 0.556       | 1            |
| Control dela                                         | у                | 42.1     | 78.7                              | 32.7      | 82.0               | 33.3      | 2               | 6.3                               | 72              | .7             | 29       | 9.7                    | 1.9     | 26.7         | 26.2        | $\top$       |
| Lane group LOS D                                     |                  | Е        | С                                 | F         | С                  | $\top$    | С               | E                                 | :               | T              | С        | Α                      | С       | С            |             |              |
| Apprch. dela                                         | 3.2              |          |                                   | 52.1      |                    |           |                 | 3                                 | 33.7            | 7              |          |                        | 26.3    | -            |             |              |
| Approach L                                           | os               |          | D                                 |           |                    | D         |                 |                                   |                 |                | С        |                        |         |              | С           |              |
| Intersec. de                                         | lay              | 3        |                                   |           |                    | In        | terse           | ction                             | LO              | S              |          |                        |         | D            |             |              |
| HC\$2000 <sup>TM</sup>                               |                  | •        | anurioht @                        | 2000 11   | niversity of       | Florid    | a Δ11 12        | iohte I                           | 2 00000         | ed             |          |                        | •       |              | ersion 4.1f |              |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |              | •                 |                                  |            | SH        | ORT F       | EP          | OF                      | T              |          |             |                |                         |                                    |                     |           |                                              |
|------------------------------------------------------|--------------|-------------------|----------------------------------|------------|-----------|-------------|-------------|-------------------------|----------------|----------|-------------|----------------|-------------------------|------------------------------------|---------------------|-----------|----------------------------------------------|
| General Inf                                          | ormation     |                   |                                  |            |           | s           | ite         | Info                    | rma            | tior     | 1 <u> </u>  |                |                         |                                    |                     | •         |                                              |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med          | 08<br>08          | JSAI<br>JSAI<br>/24/12<br>' PEAK |            |           | J           | rea<br>uris | secti<br>Typ<br>diction | е              | г        |             | All o<br>CEANS | RR<br>the<br>IDI<br>TIO | ON R<br>er area<br>E-INT.<br>GATIC | D.<br>as<br>.#13/N0 |           |                                              |
| Volume an                                            | d Timing     | Input             |                                  |            |           |             |             |                         |                |          |             |                |                         |                                    |                     |           |                                              |
|                                                      |              |                   |                                  | EB         |           |             |             | VΒ                      |                |          |             | NB             |                         |                                    |                     | SB        |                                              |
|                                                      |              |                   | LT                               | TH         | RT        | LT          | _           | <u>H</u>                | R <sup>*</sup> | Ţ        | <u>LT</u>   | TH             | +                       | RT                                 | LT                  | TH        | RT                                           |
| Num. of Lar                                          |              |                   | 2                                | 1          | 1         | 1           | +           | 1                       | 1              |          |             | 2              | +                       | 1                                  | 2                   | 2         | 0                                            |
| Lane group                                           |              |                   | L                                | T          | R         | L           |             | <u> </u>                | R              |          | L           | T              | 4                       | R                                  | L                   | T         | <u> </u>                                     |
| Volume (vpl<br>% Heavy vo                            |              |                   | 197<br>2                         | 157<br>2   | 148<br>2  | 410<br>2    | 19          |                         | 337            | -        | 274<br>2    | 704            | +                       | 235<br>2                           | 222<br>2            | 1242<br>2 |                                              |
| PHF                                                  | 311          |                   | 0.92                             | 0.92       | 0.92      | 0.92        | 0.5         |                         | 0.9            | 2        | 0.92        |                | +                       | 2<br>0. <b>9</b> 2                 | 0.92                | 0.92      | <b></b>                                      |
| Actuated (P                                          | /A)          |                   | A                                | A          | A         | A           | 7           |                         | A              |          | A           | A              | +                       | A                                  | A                   | A         | Α                                            |
| Startup lost                                         |              |                   | 2.0                              | 2.0        | 2.0       | 2.0         | 2.          |                         | 2.0            |          | 2.0         |                | 1                       | 2.0                                | 2.0                 | 2.0       |                                              |
| Ext. eff. gree                                       | en           |                   | 2.0                              | 2.0        | 2.0       | 2.0         | 2.          |                         | 2.0            |          | 2.0         |                | Ţ                       | 2.0                                | 2.0                 | 2.0       |                                              |
| Arrival type                                         | <del> </del> |                   | 4                                | 4          | 4         | 4           | 1           |                         | 4              | $\dashv$ | 5           | 5              | +                       | 5                                  | 5                   | 5         | ├─                                           |
| Unit Extensi                                         |              |                   | 3.0                              | 3.0        | 3.0       | 3.0         |             | .0                      | 3.0            | )        | 3.0         |                | +                       | 3.0                                | 3.0                 | 3.0       | <u> </u>                                     |
| Ped/Bike/RT                                          | TOR Volum    | ne                | 5<br>12.0                        | 5<br>12.0  | 0<br>12.0 | 5<br>12.0   | 12          |                         | 0<br>12.       |          | 5<br>12.0   | 5<br>) 12.0    | +                       | 0<br>12.0                          | 5<br>12.0           | 12.0      |                                              |
| Parking/Gra                                          | de/Darkin    | <u> </u>          | N N                              | 0          | 12.0<br>N | 12.0<br>N   |             | 0                       | 12.<br>N       |          | 12.0<br>N   | 0              | +                       | N N                                | N N                 | 0         | N                                            |
| Parking/br                                           | ue/i aikiii  | 9                 | 14                               |            | - 14      | 11          | ╁           | U                       | 7.4            |          | 14          |                | ╁                       | 14                                 | 14                  |           |                                              |
| Bus stops/h                                          |              |                   | 0                                | 0          | 0         | 0           | +,          | 2                       | 0              | $\dashv$ | 0           | 0              | ╅                       | 0                                  | 0                   | 0         |                                              |
| Unit Extensi                                         |              |                   | 3.0                              | 3.0        | 3.0       | 3.0         | +-          | .0                      | 3.0            |          | 3.0         |                | ╁                       | 3.0                                | 3.0                 | 3.0       |                                              |
| Phasing                                              | Excl. Le     | ft \\             | 3 Only                           | Thru 8     |           | 04          | 1 -         |                         | xcl.           |          |             | SB Only        |                         |                                    | 1 & RT              | 0.0       | <u>.                                    </u> |
| -                                                    | G = 11.0     |                   | 10.0                             | G = 1      |           | G =         |             | _                       | = 9            |          |             | 3 = 9.0        | ,                       |                                    | 27.0                | G =       | <del></del>                                  |
| Timing                                               | Y = 4        | Y =               | 4                                | Y = 4      |           | Y =         |             | Υ                       | = 4            |          |             | ′ = 4          |                         | Y =                                |                     | Y =       | ***********                                  |
| Duration of                                          | Analysis (l  | hrs) = <i>0</i> . | 25                               |            |           |             |             |                         |                |          | <u> </u>  C | ycle Lei       | ngt                     | h C =                              | 100.0               | )         |                                              |
| Lane Gro                                             | up Capa      | acity, (          | Contro                           | l Dela     | ıy, aı    | nd LO       | S D         | ete                     | rm             | ina      | itio        | n              |                         |                                    |                     |           |                                              |
|                                                      |              |                   | EB                               |            |           | W           | 3           |                         |                |          |             | NB             |                         |                                    |                     | SB        |                                              |
| Adj. flow rat                                        | e            | 214               | 171                              | 161        | 446       | 212         |             | 366                     | 3              | 29       | 8           | 765            | 2                       | 55                                 | 241                 | 1350      |                                              |
| Lane group                                           | сар.         | 378               | 186                              | 353        | 443       | 447         |             | 574                     | 1              | 30       | 9           | 958            | 8                       | 70                                 | 756                 | 1419      |                                              |
| v/c ratio                                            |              | 0.57              | 0.92                             | 0.46       | 1.01      | 0.47        | 7           | 0.64                    | 4              | 0.9      | 6           | 0.80           | 0.                      | 29                                 | 0.32                | 0.95      |                                              |
| Green ratio                                          |              | 0.11              | 0.10                             | 0.23       | 0.25      | 0.24        |             | 0.37                    | 7              | 0.0      | 9           | 0.27           | 0,                      | 56                                 | 0.22                | 0.40      |                                              |
| Unif. delay o                                        | <br>ქ1       | 42.2              | 44.6                             | 33.1       | 37.5      | 32.6        | ;           | 26.0                    | )              | 45.      | 3           | 34.0           | 1                       | 1.6                                | 32.7                | 29.1      |                                              |
| Delay factor                                         | - k          | 0.16              | 0.44                             | 0.11       | 0.50      | 0.11        |             | 0.22                    | 2              | 0.4      | 7           | 0.34           | 0.                      | 11                                 | 0.11                | 0.46      |                                              |
| Increm. dela                                         | ay d2        | 2.0               | 43.7                             | 0.9        | 44.5      | 0.8         |             | 2.4                     |                | 41.      | 5           | 4.8            | d                       | .2                                 | 0.2                 | 14.0      | 1                                            |
| PF factor                                            |              | 1.000             | 1.000                            | 1.000      | 1.000     | 0 1.00      | 0           | 0.92                    | 25             | 0.9      | 34          | 0.753          | 0.                      | 152                                | 0.812               | 0.556     | 1                                            |
| Control dela                                         | ay           | 44.2              | 88.3                             | 34.1       | 82.0      | 33.4        |             | 26.4                    | 4              | 83.      | 9           | 30.4           | 1                       | .9                                 | 26.8                | 30.1      | 1                                            |
| Lane group                                           | LOS          | D                 | F                                | С          | F         | С           |             | С                       |                | F        |             | С              | Ι.                      | A                                  | С                   | С         | 1                                            |
| Apprch. dela                                         | 5.0          |                   |                                  | 52.0       |           | •           |             |                         | 3              | 7.0      |             |                |                         | 29.6                               |                     |           |                                              |
| Approach L                                           | os           | L                 |                                  |            |           | D           |             | <del></del>             |                |          |             | D              |                         |                                    |                     | С         |                                              |
| Intersec. de                                         | lay          | 40                | 0.0                              |            |           |             |             | nter                    | sect           | ion      | LOS         | 3              |                         |                                    |                     | D         | ····                                         |
| HCS2000 <sup>TM</sup>                                |              |                   | C                                | nnvright © | 2000 I I  | niversity o | Flori       | ida A                   | II Rial        | hts R    | ecerve      | ·d             |                         |                                    |                     | Va        | rsion 4.1                                    |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

|                                                      |                      |           | •         |                             |           | SH       | ORI         | ΓRE            | EPOF                                  | ₹T                                               |               |           |            |                   |                           |                                                  |               |                    |
|------------------------------------------------------|----------------------|-----------|-----------|-----------------------------|-----------|----------|-------------|----------------|---------------------------------------|--------------------------------------------------|---------------|-----------|------------|-------------------|---------------------------|--------------------------------------------------|---------------|--------------------|
| General Inf                                          | ormation             |           |           |                             |           |          |             | Sit            | e Info                                | rma                                              | atio          | n         |            |                   |                           |                                                  |               |                    |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                  |           | U<br>08/2 | SAI<br>SAI<br>22/12<br>PEAK |           |          |             | Are<br>Jui     | ersect<br>ea Typ<br>risdict<br>alysis | oe<br>ion                                        | ar            |           |            | RR<br>the<br>ISIL | ON Ri<br>er area<br>DE-IN | D.<br>as<br>T.#14                                | Γ             |                    |
| Volume ar                                            | d Timing             | Inp       | ut        |                             |           |          |             |                |                                       |                                                  |               |           |            |                   |                           |                                                  |               |                    |
|                                                      |                      |           |           | <u> </u>                    | EB        | l D.T.   | 4.          | <del>-</del> 1 | WB                                    | T =                                              |               | 1 =       | NB         | _                 |                           |                                                  | SB            | O.T.               |
| Num. of Lar                                          | nes                  |           |           | LT<br>2                     | TH<br>1   | RT<br>1  |             | <u>.T</u>      | <u>TH</u><br>1                        | R                                                | _             | LT<br>2   | TH<br>2    | ╅                 | RT<br>1                   | LT<br>2                                          | TH<br>2       | RT<br>0            |
| Lane group                                           |                      |           |           | <u>-</u>                    | 7         | R        |             |                | T                                     | F                                                | ,             | <br>      | <u> </u>   | 十                 | R                         | L                                                | $\frac{-}{T}$ |                    |
| Volume (vp                                           | h)                   |           |           | 510                         | 300       | 270      | 25          |                | 167                                   | 29                                               |               | 290       | 1210       | +                 | 585                       | 425                                              | 795           |                    |
| % Heavy v                                            |                      |           |           | 2                           | 2         | 2        | 2           | _              | 2                                     | 2                                                | _             | 2         | 2          | +                 | 2                         | 2                                                | 2             |                    |
| PHF                                                  | 011                  |           |           | 0.92                        | 0.92      | 0.92     | 0.9         | _              | 0.92                                  | 0.9                                              |               | 0.92      | 0.92       | 1                 | 0.92                      | 0.92                                             | 0.92          |                    |
| Actuated (P                                          | /A)                  |           |           | Α                           | Α         | Α        | A           | 4              | Α                                     | Α                                                |               | Α         | Α          |                   | Α                         | Α                                                | Α             | Α                  |
| Startup lost                                         |                      |           |           | 3.0                         | 3.0       | 3.0      | 3.          | _              | 3.0                                   | 3.                                               |               | 3.0       | 3.0        | _                 | 3.0                       | 3.0                                              | 3.0           |                    |
| Ext. eff. gre                                        | en                   |           |           | 2.0                         | 2.0       | 2.0      | 2.          |                | 2.0                                   | 2.                                               |               | 2.0       | 2.0        | 4                 | 2.0                       | 2.0                                              | 2.0           |                    |
| Arrival type                                         | •                    |           |           | 5                           | 5         | 5        | 5           | $\overline{}$  | 5                                     | 5                                                | $\overline{}$ | 5         | 5          | +                 | 5                         | 5                                                | 5             | -                  |
| Unit Extens<br>Ped/Bike/R                            |                      |           |           | 3.0<br>5                    | 3.0<br>10 | 3.0<br>0 | 3.          |                | 3.0<br>10                             | 3.                                               |               | 3.0<br>5  | 3.0        | 4                 | 3.0<br>0                  | 3.0                                              | 3.0           |                    |
| Lane Width                                           | TOR Volu             | me        |           | 12.0                        | 12.0      | 12.0     | 12          | <del></del>    | 12.0                                  | 12                                               | _             | 5<br>12.0 | 10<br>12.0 | +                 | 12.0                      | 5<br>12.0                                        | 12.0          |                    |
| Parking/Gra                                          | de/Parkin            | a         |           | N                           | 0         | N N      | 1/2         | _              | 0                                     | 12                                               | _             | 72.0<br>N | 0          | +                 | N                         | N                                                | 0             | N                  |
| Parking/hr                                           |                      |           |           |                             |           | <u> </u> | $\top$      |                |                                       | <del>                                     </del> |               |           |            | 十                 |                           |                                                  |               |                    |
| Bus stops/h                                          | r                    |           |           | 0                           | 0         | 0        | 0           | ,              | 0                                     | (                                                | )             | 0         | 0          | 十                 | 0                         | 0                                                | 0             |                    |
| Unit Extens                                          |                      |           |           | 3.0                         | 3.0       | 3.0      | 3.          | 0              | 3,0                                   | 3.                                               | 0             | 3.0       | 3.0        | 十                 | 3.0                       | 3.0                                              | 3.0           |                    |
| Phasing                                              | Excl. Le             | ft        | Thru      | & RT                        | 03        | 3        |             | 04             | TE                                    | Excl.                                            | . Lef         | t T       | hru & F    | <u>₹</u>          |                           | 07                                               | 08            | 3                  |
| Timing                                               | G = 17.              | 5         | G =       |                             | G =       |          | G =         |                | _                                     |                                                  | 14.0          | _         | = 37.8     |                   | G =                       |                                                  | G =           |                    |
|                                                      | Y = 3                |           | Y =       |                             | Υ =       |          | Y =         |                | Υ                                     | = (                                              | 3             |           | = 5        |                   | Y =                       |                                                  | Y =           |                    |
| Duration of                                          |                      |           |           |                             | <u> </u>  |          |             |                |                                       |                                                  | _             |           | cle Ler    | ngt               | h C =                     | 99.5                                             | <del> </del>  |                    |
| Lane Gro                                             | up Cap               | aci<br>T  | ty, C     |                             | l Dela    | ıy, aı   |             |                | Det                                   | erm                                              | ina           | tior      |            |                   |                           | <del>                                     </del> |               |                    |
|                                                      |                      | <u> </u>  |           | EB                          |           |          |             | WB             |                                       |                                                  |               |           | NB         | _                 |                           |                                                  | SB            |                    |
| Adj. flow rat                                        | e                    | 55        | _         | 326                         | 293       | 277      | -           | 182            | 32                                    |                                                  | 31:           | -         | 1315       | -                 | 36                        | 462                                              | 864           |                    |
| Lane group                                           | cap.                 | 57        | 70        | 262                         | 502       | 294      | 2           | 262            | 50                                    | 2                                                | 44            | 9         | 1301       | 5                 | 68                        | 449                                              | 1301          | <u> </u>           |
| v/c ratio                                            |                      | 0.9       | 97        | 1.24                        | 0.58      | 0.94     | 0           | .69            | 0.6                                   | 4                                                | 0.7           | 0         | 1.01       | 1.                | 12                        | 1.03                                             | 0.66          |                    |
| Green ratio                                          |                      | 0.1       | 17 (      | 0.14                        | 0.33      | 0.17     | 0           | ).14           | 0.3                                   | 3                                                | 0.1           | 3         | 0.37       | 0.                | 37                        | 0.13                                             | 0.37          | 1                  |
| Unif. delay                                          | <del>1</del> 1       | 41        | .3        | 42.8                        | 27.9      | 41.0     | 4           | 0.7            | 28.                                   | 5                                                | 41.           | 4         | 31.5       | 3.                | 1.5                       | 43.3                                             | 26.4          |                    |
| Delay factor                                         | ·k                   | 0.4       | 48 (      | 0.50                        | 0.18      | 0.45     | 0           | .26            | 0.2                                   | 2                                                | 0.2           | 7         | 0.50       | 0.                | 50                        | 0.50                                             | 0.24          |                    |
| Increm. dela                                         | ncrem. delay d2 30.6 |           | .6        | 137.8                       | 1.7       | 37.3     |             | 7.7            | 2.7                                   | 7                                                | 4.9           | 9         | 27.6       | 73                | 5.1                       | 50.1                                             | 1.3           |                    |
| PF factor                                            |                      |           | 867 (     | 0.891                       | 0.677     | 0.867    | 7 0.        | .891           | 0.6                                   | 77                                               | 0.9           | 00        | 0.614      | 0.                | 614                       | 0.900                                            | 0.614         |                    |
| Control dela                                         | Control delay 66.4   |           | .4        | 175.9                       | 20.6      | 72.9     | 4           | 4.0            | 22.                                   | 0                                                | 42.           | 1         | 47.0       | 94                | 4.5                       | 89.0                                             | 17.5          |                    |
| ane group LOS E                                      |                      |           |           | F                           | С         | Е        | $\top$      | D              | С                                     |                                                  | D             |           | D          |                   | F                         | F                                                | В             |                    |
| Apprch. dela                                         | Apprch. delay 85     |           |           |                             |           |          | 45.2        | 2              |                                       |                                                  |               | 59        | .6         | 1                 |                           |                                                  | 42.4          | ·• · · · · · · · · |
| Approach L                                           | os                   | Ī         | F         |                             |           |          | D           | <del></del>    |                                       |                                                  | <u> </u>      | l         | =          |                   |                           |                                                  | D             |                    |
| Intersec. de                                         |                      | $f^-$     | 58.       | 9                           | •         |          | <del></del> |                | Inter                                 | sec                                              | tion          | LOS       | •          |                   |                           |                                                  | E             |                    |
| riceannaTM                                           |                      | <u> —</u> |           |                             | nvright © | 0000 11  | _/          | e T            |                                       |                                                  |               |           |            |                   |                           | 1                                                |               | sion 4 1t          |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                       |                                         |           |                                                   |              |            | SH           | OF            | RT R         | ΕP          | OR            | T          |               |           |                    |                  |                           |                   |            |             |
|-----------------------|-----------------------------------------|-----------|---------------------------------------------------|--------------|------------|--------------|---------------|--------------|-------------|---------------|------------|---------------|-----------|--------------------|------------------|---------------------------|-------------------|------------|-------------|
| General Inf           | General Information Site Information    |           |                                                   |              |            |              |               |              |             |               |            |               |           |                    |                  |                           |                   |            |             |
| Date Perfor           | med                                     |           | U<br>08/1                                         | SAI<br>22/12 |            |              |               | Ar<br>Ju     | ea<br>irisd | Typ<br>lictic | e<br>on    | ar            |           | MA<br>All<br>DCEAL | RR<br>oth<br>VSI | ON Ri<br>er area<br>DE-IN | D.<br>as<br>T.#14 | e <b>T</b> |             |
| Volume an             | d Timing                                | Inp       | ut                                                |              |            | •            |               |              |             |               |            |               |           |                    |                  |                           |                   |            |             |
|                       |                                         |           | •                                                 |              | EB         |              |               |              | W           |               |            |               |           | N                  |                  |                           |                   | SB         |             |
|                       |                                         |           |                                                   | LT           | TH         | RT           | +             | LT           | T           |               | R          | $\overline{}$ | LT        | Th                 | <del>!  </del>   | RT                        | LT                | TH         | RT          |
| Num. of Lar           | nes                                     |           |                                                   | 2            | 1          | 1            | 4             | 1            | 1           |               | 1          | -             | 2         | 2                  | _                | 1                         | 2                 | 2          | 0           |
| Lane group            |                                         |           |                                                   | L            | T          | R            | _             | L            | 7           |               | R          |               | L         | T                  |                  | R                         | L                 | T          |             |
| Volume (vpl           |                                         |           |                                                   | 541          | 304        | 290          | 1             | 255          | 17          |               | 30         |               | 332       | 125                | 1                | 585                       | 428               | 815        |             |
| % Heavy vo            | eh                                      |           |                                                   | 2<br>0.92    | 2<br>0.92  | 2<br>0.92    | -             | 2<br>).92    | 0.9         |               | 2<br>0.9   | _             | 2<br>0.92 | 0.92               | -                | 2<br>0.92                 | 2<br>0.92         | 2<br>0.92  | <u> </u>    |
| Actuated (P           | /A)                                     |           |                                                   | 0.92<br>A    | 0.92<br>A  | 0.92<br>A    | +             | A.92         | O.S         |               | O.S        | _             | 0.92<br>A | 0.9 <sub>4</sub>   | _                | 0.92<br>A                 | 0.92<br>A         | 0.92<br>A  | A           |
| Startup lost          |                                         |           |                                                   | 3.0          | 3.0        | 3.0          | +             | 3.0          | 3.0         | _             | 3.         |               | 3.0       | 3.0                | 寸                | 3.0                       | 3.0               | 3.0        | <del></del> |
| Ext. eff. gre         |                                         |           | •                                                 | 2.0          | 2.0        | 2.0          |               | 2.0          | 2.0         |               | 2.         |               | 2.0       | 2.0                | _                | 2.0                       | 2.0               | 2.0        |             |
| Arrival type          |                                         |           |                                                   | 5            | 5          | 5            | _             | 5            | 5           |               | 5          | _             | 5         | 5                  |                  | 5                         | 5                 | 5          |             |
| Unit Extensi          |                                         |           |                                                   | 3.0          | 3.0        | 3.0          | ;             | 3.0          | 3.          |               | 3.         |               | 3.0       | 3.0                |                  | 3.0                       | 3.0               | 3.0        |             |
| Ped/Bike/R            | TOR Volur                               | ne        |                                                   | 5            | 10         | 0            | 4             | 5            | 10          |               | 0          |               | 5         | 10                 | $\rightarrow$    | 0                         | 5                 | 40.0       |             |
| Lane Width            |                                         |           |                                                   | 12.0         | 12.0       | 12.0         | 1             | 12.0         | 12.         |               | 12.        |               | 12.0      |                    | )                | 12.0                      | 12.0              | 12.0       | L           |
| Parking/Gra           | ide/Parkin                              | g         |                                                   | N            | 0          | N            | _             | N            | (           | )             | ٨          | _             | Ν         | 0                  | _                | N                         | N                 | 0          | N           |
| Parking/hr            |                                         |           |                                                   |              |            |              | _             |              |             |               | _          |               |           |                    | _                |                           |                   |            |             |
| Bus stops/h           |                                         |           |                                                   | 0            | 0          | 0            | _             | 0            | 0           |               | 0          |               | 0         | 0                  | _                | 0                         | 0                 | 0          |             |
| Unit Extensi          |                                         |           |                                                   | 3.0          | 3.0        | 3.0          | <u> </u>      | 3.0          | 3.          | _             | 3.         |               | 3.0       | 3.0                |                  | 3.0                       | 3.0               | 3.0        |             |
| Phasing               | Excl. Le                                | _         |                                                   | & RT         | 03         | }            |               | 04           |             | -             |            | Lef           |           | hru &              |                  |                           | 07                | 0.         | 3           |
| Timing                | G = 17.8<br>Y = 3                       | 5         | G =<br>Y =                                        | 15.0<br>1.5  | G =<br>Y = |              | G<br>Y        |              |             | _             | = ?<br>= 3 | 14.0          |           | i = 37<br>i = 5    | .5               | G =                       |                   | G =<br>Y = |             |
| Duration of           |                                         | hrs`      |                                                   |              | <u> </u>   |              |               |              |             | <u>'</u>      |            | ,             |           |                    | enal             |                           | 99.5              |            |             |
| Lane Gro              |                                         |           |                                                   |              | l Dela     | v. a         | nd            | 109          | : D         | ete           | rm         | ina           |           |                    | <u>g</u> .       |                           |                   |            |             |
| 24110 010             | ир Сирс                                 | <u> </u>  | <del>.,,                                   </del> | EB           | 1 2010     | <br>         | 114           | WB           |             | -             |            |               |           | NB                 |                  |                           |                   | SB         |             |
| Adj. flow rat         |                                         | 58        | 2.2                                               | 330          | 315        | 277          |               | 190          |             | 328           | ,          | 36            | 1         | 1360               | Τ,               | 36                        | 465               | 886        | $\top$      |
| Lane group            |                                         | 57        |                                                   | 262          | 502        | 294          |               | 262          |             | 502           |            | 44            |           | 1301               | -                | 568                       | 449               | 1301       | +           |
| v/c ratio             |                                         | 1.0       |                                                   | 1.26         | 0.63       | 0.94         | _             | 0.73         | +           | 0.65          |            | 0.8           |           | 1.05               | -                | .12                       | 1.04              | 0.68       |             |
| Green ratio           |                                         | 0.        | -                                                 | 0.14         | 0.33       | 0.17         | _             | 0.14         | +           | ). 33         |            | 0.1           |           | 0.37               | +                | .37                       | 0.13              | 0.37       | +           |
| Unif. delay           | 11                                      | 41        |                                                   | 42.8         | 28.4       | 41.0         |               | 40.9         | _           | 28.7          |            | 42.           |           | 31.5               | +                | 1.5                       | 43.3              | 26.6       | +           |
| Delay factor          |                                         | 0.8       | -                                                 | 0.50         | 0.21       | 0.45         |               | 0.29         | -           | 0.7           |            | 0.3           |           | 0.50               |                  | .50                       | 0.50              | 0.25       | -           |
|                       |                                         | ⊢         |                                                   | 143.9        | 2.5        | 37.3         | $\rightarrow$ | 9.6          | -           | 3.0           |            | 10.           |           | 37.7               | +-               | 5.1                       | 52.0              | 1.5        | +-          |
| PF factor             | ncrem. delay d2 46.0<br>PF factor 0.867 |           |                                                   | 0.891        |            | 0.86         | _             | 0.891        | +           | ).67          |            | 0.9           |           | 0.614              | -                | 614                       | 0.900             | 0.614      | +-          |
|                       | Control delay 82.0                      |           |                                                   | 181.9        | 21.7       | 72.9         |               | 46.1         | -           | 22.4          |            | 48.           |           | 57.0               | +                | 4.5                       | 90.9              | 17.8       | +           |
| ane group LOS F       |                                         |           |                                                   | F            | C          | 72.3<br>E    |               | D            | - -         | C             |            | 70.<br>D      |           | E                  |                  | <del>7</del> .0<br>F      | 90.9<br>F         | B          | +-          |
| Apprch. delay 9       |                                         |           |                                                   |              |            | <del>-</del> | <u>4</u> 5    | 5.7          |             |               |            | ٦             |           | <u> </u>           |                  |                           | ,                 | 42.9       |             |
| Approach L            | <u> </u>                                | $\vdash$  | 90.<br>F                                          |              |            |              |               | <i></i><br>D |             |               |            |               |           |                    |                  |                           |                   | D          |             |
| Intersec. de          |                                         |           | <u> </u>                                          |              | -          | Ir           | iters         | sec          | L<br>lion   | LOS           |            |               |           |                    | E                |                           |                   |            |             |
| HCS2000 <sup>TM</sup> | ,                                       | pyright © | 2000 II                                           | niva         | roity of l |              |               |              |             |               |            |               |           | I                  |                  | rsion 4.11                |                   |            |             |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

MIT: ADD 2ND NB RTO LANE

|                                                      |                                    |         |          |                                                            | SHO     | ORT R            | _       |                                                                                               |          |               | 2100 1      |      |           |          |        |          |  |
|------------------------------------------------------|------------------------------------|---------|----------|------------------------------------------------------------|---------|------------------|---------|-----------------------------------------------------------------------------------------------|----------|---------------|-------------|------|-----------|----------|--------|----------|--|
| General Inf                                          | formatio                           | n       |          |                                                            |         | Si               | te Ir   | nforn                                                                                         | natio    | n             |             |      |           |          |        |          |  |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | USAI<br>USAI<br>18/24/12<br>M PEAK |         | Aı<br>Ju | Intersection<br>Area Type<br>Jurisdiction<br>Analysis Year |         |                  |         | COLLEGE BLVD.@  MARRON RD.  All other areas  OCEANSIDE-INT.#14/WITH  MIT.  BO.ALT1/NO PROJECT |          |               |             |      |           |          |        |          |  |
| Volume ar                                            | d Timin                            | g Input |          |                                                            |         |                  |         |                                                                                               |          |               |             |      |           |          |        |          |  |
|                                                      |                                    |         |          | EB                                                         |         |                  |         | WB                                                                                            |          | NB            |             |      |           | SB       |        |          |  |
| Num. of Lanes                                        |                                    |         | LT 2     | TH 1                                                       | RT<br>1 | LT<br>1          | TI<br>1 |                                                                                               | RT<br>1  | L 2           | 7 TH        | -    | RT<br>2   | LT<br>2  | TH 2   | RT<br>0  |  |
|                                                      |                                    |         | _        | † † †                                                      | -       | _                | T       | _                                                                                             | R        | -             | T           | +    |           |          |        | Ü        |  |
| Lane group                                           |                                    |         | L 110    | 150                                                        | 110     | L 110            | 192     |                                                                                               |          | L             |             | +    | R         | L 245    | T      | -        |  |
| Volume (vph)<br>% Heavy veh                          |                                    |         | 140      | 2                                                          | 2       | 410              | 2       |                                                                                               | 335<br>2 | 260 69<br>2 2 |             | +    | 235<br>2  | 215      | 1205   | +        |  |
| PHF                                                  |                                    |         | 0.92     | 0.92                                                       | 0.92    | 0.92             |         | 0.92 0.92                                                                                     |          | 0.9           |             |      | 0.92      | 0.92     | 0.92   | 1        |  |
| Actuated (P/A)                                       |                                    |         | Α        | Α                                                          | Α       | Α                | A       |                                                                                               |          | A             | A           | 1    | A         | A        | A      | Α        |  |
| Startup lost time                                    |                                    |         | 2.0      | 2.0                                                        | 2.0     | 2.0              | 2.0     |                                                                                               |          | 2.0           |             |      | 2.0       | 2.0      | 2.0    |          |  |
| Ext. eff. green                                      |                                    |         | 2.0      | 2.0                                                        | 2.0     | 2.0              | 2.0     |                                                                                               | 2.0      | 2.0           |             |      | 2.0       | 2.0      | 2.0    |          |  |
| Arrival type<br>Unit Extension                       |                                    |         | 4        | 4                                                          | 4       | 4                | 4       | _                                                                                             | 4        | 5             |             |      | 5         | 5        | 5      |          |  |
| Ped/Bike/RTOR Volume                                 |                                    |         | 3.0<br>5 | 3.0<br>5                                                   | 3.0     | 3.0              | 3.0     |                                                                                               | 3.0<br>0 | 3.0           | 3.0         | +    | 3.0       | 3.0<br>5 | 3.0    |          |  |
| Lane Width                                           |                                    |         | 12.0     | 12.0                                                       | 12.0    | 12.0             | 12.     | _                                                                                             | 2.0      | 12.           | _           | +    | 12.0      | 12.0     | 12.0   | -        |  |
| Parking/Grade/Parking                                |                                    |         | N        | 0                                                          | N       | N N              | 0       | -                                                                                             | N        | N             |             | +    | N         | N        | 0      | N        |  |
| Parking/hr                                           |                                    |         |          |                                                            |         |                  |         | +                                                                                             |          | -             |             | +    |           |          |        | -        |  |
| Bus stops/hr                                         |                                    |         | 0        | 0                                                          | 0       | 0                | 0       |                                                                                               | 0        | 0             | 0           | 1    | 0         | 0        | 0      |          |  |
| Unit Extension                                       |                                    |         | 3.0      | 3.0                                                        | 3.0     | 3.0              | -       | 3.0 3.                                                                                        |          | 3.0           |             | 1    | 3.0       | 3.0      | 3.0    |          |  |
|                                                      |                                    |         | /B Only  | Thru &                                                     | 0.0     | 04               |         |                                                                                               | cl. Le   |               | SB On       |      | Thru & RT |          | C.2.c. | 8        |  |
|                                                      | G = 11.0 G =                       |         | = 10.0   |                                                            |         | G =              |         |                                                                                               | = 9.0 G  |               | G = 9.0 G = |      | 27.0 G=   |          |        |          |  |
| Timing $Y = 4$ $Y =$                                 |                                    |         |          | Y = 4                                                      |         | Y =              | = Y=    |                                                                                               | 4        |               |             |      |           |          |        |          |  |
| Duration of                                          |                                    |         |          |                                                            |         |                  |         |                                                                                               |          |               | ycle Le     | ngt  | h C =     | 100.0    | )      |          |  |
| Lane Gro                                             | up Cap                             | pacity, |          | ol Dela                                                    | ay, an  |                  |         | eter                                                                                          | mina     | atio          |             |      |           |          |        |          |  |
|                                                      |                                    |         | EB       |                                                            |         | WE               | WB      |                                                                                               |          |               | NB          |      |           | SB       |        |          |  |
| Adj. flow rate                                       |                                    | 152     | 163      | 120                                                        | 446     | 209              |         | 364                                                                                           | 28       | 33            | 750         | 255  |           | 234      | 1310   |          |  |
| Lane group cap.                                      |                                    | 378     | 186      | 353                                                        | 443     | 447              |         | 574                                                                                           | 30       | 9             | 958         | 1519 |           | 756      | 1419   |          |  |
| v/c ratio 0.40                                       |                                    | 0.88    | 0.34     | 1.01                                                       | 0.47    | C                | 0.63    | 0.9                                                                                           | 92       | 0.78          | 0           | .17  | 0.31      | 0.92     |        |          |  |
| Green ratio 0.11                                     |                                    | 0.10    | 0.23     | 0.25                                                       | 0.24    | 0                | .37     | 0.09                                                                                          |          | 0.27          | 0.56        |      | 0.22      | 0.40     |        |          |  |
| Unif. delay d1                                       |                                    | 41.4    | 44.4     | 32.2                                                       | 37.5    | 32.5             | 2       | 25.9                                                                                          |          | .1            | 33.8        | 10.7 |           | 32.6     | 28.5   |          |  |
| Delay factor k                                       |                                    | 0.11    | 0.40     | 0.11                                                       | 0.50    | 0.11             | 0       | 0.21                                                                                          |          | 43            | 0.33        | 0.11 |           | 0.11     | 0.44   |          |  |
| Increm. delay d2                                     |                                    | 0.7     | 34.3     | 0.6                                                        | 44.5    | 0.8              |         | 2.3                                                                                           |          | .5            | 4.3         | 0.1  |           | 0.2      | 10.3   |          |  |
| PF factor                                            |                                    | 1.000   | 1.000    | 1.000                                                      | 1.000   | _                | _       | .925                                                                                          | -        |               | 0.753       |      |           | 0.812    | 0.556  |          |  |
| Control delay                                        |                                    | 42.1    | 78.7     | 32.7                                                       | 82.0    | 33.3             | _       | 26.3                                                                                          | 72       |               | 29.7        | +    | 1.7 26.7  |          | 26.2   |          |  |
| Lane group LOS                                       |                                    | D       | E        | С                                                          | F       | С                |         | С                                                                                             | E        |               |             | C    |           | СС       |        | 1        |  |
| Apprch. delay                                        |                                    |         | 53.2     |                                                            | 52.1    |                  |         |                                                                                               |          | 33.6          |             |      |           |          | 26.3   |          |  |
|                                                      |                                    | D       |          | D                                                          |         |                  |         | C                                                                                             |          |               |             | C C  |           |          |        |          |  |
|                                                      |                                    | 7.4     |          |                                                            | 2       | Intersection LOS |         |                                                                                               |          |               |             | D    |           |          |        |          |  |
| ACS2000TM                                            | lay                                |         |          |                                                            | 2000.11 | iversity of      |         |                                                                                               |          | _             |             |      |           |          |        | ersion 4 |  |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

MIT : ADD ZNO NB RTU LANE

|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   |                | SH      | ORT R           |                          |               |         |      | OB C               |                          | -       | IV L                 |       |          |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|----------------|---------|-----------------|--------------------------|---------------|---------|------|--------------------|--------------------------|---------|----------------------|-------|----------|
| General Inf                                           | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1            |                                   |                | -       | -107 42 1 E - D |                          | form          |         | n    |                    |                          | -       |                      |       |          |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | o.<br>med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08           | USAI<br>USAI<br>8/24/12<br>1 PEAK |                |         | In<br>A<br>Ju   | iterse<br>rea 1<br>urisd | ection        | 1       | 0    | MA<br>All<br>CEANS | ARF<br>oth<br>IDE<br>MIT | TIGAT   | RD.<br>eas<br>#14/WI |       |          |
| Volume an                                             | d Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Input        |                                   |                |         |                 |                          |               |         |      |                    |                          |         |                      |       |          |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   | EB             | 1       |                 | W                        |               | 5=      | ļ.,  | N                  |                          | - D.T.  | 1.7                  | SB    | L        |
| Num. of Lar                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | LT<br>2                           | TH<br>1        | RT<br>1 | LT<br>1         | TI-                      | 1             | RT<br>1 | L 2  | _                  |                          | RT<br>2 | LT<br>2              | TH 2  | R 0      |
|                                                       | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | _                                 | -              |         |                 | -                        | -             |         |      |                    |                          |         |                      | T     | -        |
| Lane group                                            | - \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | L 407                             | T 457          | R       | L               | T                        |               | R       | L    |                    |                          | R       | L                    |       |          |
| Volume (vpl<br>% Heavy ve                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 197                               | 157            | 148     | 410             | 198                      |               | 37<br>2 | 27   |                    |                          | 235     | 222                  | 1242  | $\vdash$ |
| % neavy ve                                            | 5H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 0.92                              | 0.92           | 0.92    | 0.92            | 0.9                      | _             | .92     | 0.9  |                    | _                        | 0.92    | 0.92                 | 0.92  |          |
| Actuated (P                                           | /A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | A                                 | A              | A       | A               | A                        | _             | A       | A    |                    | 7 1                      | A       | A                    | A     | A        |
| Startup lost                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 2.0                               | 2.0            | 2.0     | 2.0             | 2.0                      | _             | 2.0     | 2.   | _                  | )                        | 2.0     | 2.0                  | 2.0   |          |
| Ext. eff. gree                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 2.0                               | 2.0            | 2.0     | 2.0             | 2.0                      | _             | 2.0     | 2.   |                    | )                        | 2.0     | 2.0                  | 2.0   |          |
| Arrival type                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 4                                 | 4              | 4       | 4               | 4                        | $\overline{}$ | 4       | 5    | _                  | _                        | 5       | 5                    | 5     |          |
| Unit Extensi                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 3.0<br>5                          | 3.0            | 3.0     | 3.0             | 3.0                      |               | 3.0     | 3.   |                    | -                        | 3.0     | 3.0                  | 3.0   |          |
|                                                       | d/Bike/RTOR Volume<br>ne Width<br>rking/Grade/Parking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                   | 5              | 0       | 5               | 5                        | _             | 0       | 5    | _                  | _                        | 0       | 5                    | 7.22  |          |
| Lane Width                                            | ne Width<br>rking/Grade/Parking<br>rking/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                   | 12.0           | 12.0    | 12.0            | 12.                      | _             | 2.0     | 12.  |                    | 0                        | 12.0    | 12.0                 | 12.0  |          |
|                                                       | ne Width<br>rking/Grade/Parking<br>rking/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                   | 0              | N       | N               | 0                        |               | N       | N    | 0                  |                          | N       | N                    | 0     | N        |
| Parking/hr                                            | rking/Grade/Parking<br>rking/hr<br>s stops/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                   |                |         |                 |                          |               |         |      |                    |                          |         |                      |       |          |
| Bus stops/h                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 0                                 | 0              | 0       | 0               | 0                        | _             | 0       | 0    |                    | _                        | 0       | 0                    | 0     |          |
| Unit Extensi                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 3.0                               | 3.0            | 3.0     | 3.0             | 3.0                      |               | 3.0     | 3.   |                    |                          | 3.0     | 3.0                  | 3.0   |          |
| Phasing                                               | Excl. Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | B Only                            | Thru a         |         | 04              |                          | _             | l. Le   | _    | SB O               |                          |         | u & RT               |       | 8        |
| Timing                                                | G = 11. $Y = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 G =<br>Y = | 10.0                              | G = 1<br>Y = 4 |         | G =<br>Y =      |                          | G =<br>Y =    |         |      | G = 9. $Y = 4$     | 0                        | G =     | 27.0                 | G =   |          |
| Duration of                                           | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |              |                                   | Y = 4          |         | Υ =             |                          | Υ =           | 4       |      |                    | enc                      |         | = 100.0              |       |          |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                   | I Dale         | av 21   | 2410            | S D                      | ator          | min     | _    |                    | OHE                      | jui 0 - | 100.0                |       | -        |
| Lane Gro                                              | ир Сар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l acity,     | EB                                | ח שכוני        | ay, al  | WE              |                          | e let i       | 1       | auc  | NB                 |                          |         | 1                    | SB    |          |
| ۸ ــا: ـــا ــــــــــــــــــــــــــــ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 044          | _                                 | 101            | 110     |                 |                          | 266           | - 01    | 10   |                    | T                        | 255     | 044                  | _     | T        |
| Adj. flow rat                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 214          | 171                               | 161            | 446     | 212             | _                        | 366           | 29      | _    | 765                | -                        | 255     | 241                  | 1350  | +        |
| Lane group                                            | cap.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 378          | 186                               | 353            | 443     | 447             |                          | 574           | 30      | _    | 958                | +                        | 519     | 756                  | 1419  | -        |
| v/c ratio                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.57         | 0.92                              | 0.46           | 1.01    |                 | -                        | 0.64          | _       | 96   | 0.80               | +                        | 0.17    | 0.32                 | 0.95  | +        |
| Green ratio                                           | N 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11         | 0.10                              | 0.23           | 0.25    |                 | _                        | ).37          | 0.0     |      | 0.27               | -                        | 0.56    | 0.22                 | 0.40  | -        |
| Unif. delay o                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.2         | 44.6                              | 33.1           | 37.5    |                 | _                        | 26.0          | _       | 5.3  | 34.0               | -                        | 10.7    | 32.7                 | 29.1  |          |
| Delay factor                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.16         | 0.44                              | 0.11           | 0.50    |                 |                          | ).22          | _       | 47   | 0.34               | -                        | 0.11    | 0.11                 | 0.46  | 1        |
| Increm. dela                                          | ay d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0          | 43.7                              | 0.9            | 44.5    | 0.8             | i                        | 2.4           | 41      | .5   | 4.8                |                          | 0.1     | 0.2                  | 14.0  |          |
| PF factor                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000        | 1.000                             | 1.000          | 1.000   | 1.00            | 0 0                      | .925          | 0.9     | 934  | 0.753              | C                        | .152    | 0.812                | 0.556 |          |
| Control dela                                          | ıy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.2         | 88.3                              | 34.1           | 82.0    | 33.4            | 2                        | 26.4          | 83      | 3.9  | 30.4               |                          | 1.7     | 26.8                 | 30.1  |          |
| Lane group                                            | ane group LOS D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | F                                 | С              | F       | С               |                          | С             | I       | 7    | С                  |                          | Α       | С                    | С     |          |
| Apprch. dela                                          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                   | 52.0           |         |                 |                          | T             | 37.0    |      |                    |                          | 29.6    |                      |       |          |
| Approach L                                            | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | E                                 |                |         | D               |                          |               |         |      | D                  |                          |         | Je                   | С     |          |
| Intersec. de                                          | lay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4            | 0.0                               |                |         |                 | In                       | terse         | ction   | 1 LO | S                  |                          |         | 1-                   | D     |          |
| HCS2000 <sup>TM</sup>                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            |                                   | anuriaht @     | 2000 11 | niversity of    |                          |               |         |      |                    |                          |         | 1                    |       | ersion   |

MITI & ADD 2ND NB RTO LANE

|                                                      |                                 |            |                                  |              | SHO       | ORT R     | EPO                          | RT         |        |      |                              |           | NB                   | 10.10     |     |
|------------------------------------------------------|---------------------------------|------------|----------------------------------|--------------|-----------|-----------|------------------------------|------------|--------|------|------------------------------|-----------|----------------------|-----------|-----|
| General Inf                                          | ormation                        | ĺ          |                                  |              |           | S         | ite Info                     | ormati     | ion    |      |                              |           |                      |           |     |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                             | 08         | JSAI<br>JSAI<br>/22/12<br>I PEAK |              |           | Ai<br>Ju  | tersec<br>rea Ty<br>urisdict | pe<br>tion |        | CEA  | MAR<br>All ot<br>ANSID<br>MI | TIGAT     | RD.<br>eas<br>#14/WI |           |     |
| Volume an                                            | d Timing                        | Input      |                                  |              |           |           |                              |            |        |      |                              |           |                      |           |     |
|                                                      |                                 |            | 1                                | EB           |           | 1000      | WB                           | T          | _      |      | NB                           |           |                      | SB        |     |
| Num. of Lar                                          | 200                             |            | LT<br>2                          | TH<br>1      | RT 1      | LT<br>1   | TH<br>1                      | RT<br>1    |        | _T   | TH 2                         | RT 2      | LT<br>2              | TH 2      | R 7 |
|                                                      | ies                             |            | _                                | T            | -         |           |                              |            | _      |      | T                            |           |                      |           | U   |
| Lane group                                           |                                 |            | L                                |              | R         | L         | T                            | R          |        |      |                              | R         | L                    | T         |     |
| Volume (vpl                                          |                                 |            | 510                              | 300          | 270       | 255       | 167                          | 295        | _      | 90   | 1210                         | 585       | 425                  | 795       |     |
| % Heavy vo                                           | en                              |            | 2                                | 2            | 2<br>0.92 | 2         | 2                            | 0.92       |        | 2    | 2<br>0.92                    | 2         | 2                    | 2<br>0.92 | -   |
| Actuated (P                                          | /A \                            |            | 0.92<br>A                        | 0.92<br>A    | 0.92<br>A | 0.92<br>A | 0.92<br>A                    | 0.92<br>A  | 2 0.   |      | 0.92<br>A                    | 0.92<br>A | 0.92<br>A            | 0.92<br>A | A   |
| Startup lost                                         |                                 |            | 3.0                              | 3.0          | 3.0       | 3.0       | 3.0                          | 3.0        | _      | .0   | 3.0                          | 3.0       | 3.0                  | 3.0       | A   |
| Ext. eff. gre                                        |                                 |            | 2.0                              | 2.0          | 2.0       | 2.0       | 2.0                          | 2.0        |        | .0   | 2.0                          | 2.0       | 2.0                  | 2.0       | -   |
| Arrival type                                         |                                 |            | 5                                | 5            | 5         | 5         | 5                            | 5          |        | 5    | 5                            | 5         | 5                    | 5         |     |
| Unit Extens                                          | ion                             |            | 3.0                              | 3.0          | 3.0       | 3.0       | 3.0                          | 3.0        | _      | .0   | 3.0                          | 3.0       | 3.0                  | 3.0       |     |
|                                                      | d/Bike/RTOR Volume<br>ne Width  |            |                                  | 10           | 0         | 5         | 10                           | 0          |        | 5    | 10                           | 0         | 5                    | 3.5       |     |
| Lane Width                                           | ne Width<br>rking/Grade/Parking |            |                                  | 12.0         | 12.0      | 12.0      | 12.0                         | 12.0       | _      | 2.0  | 12.0                         | 12.0      | 12.0                 | 12.0      |     |
| Parking/Gra                                          | rking/Grade/Parking             |            |                                  | 0            | N         | N         | 0                            | N          | 1      | ٧    | 0                            | N         | N                    | 0         | N   |
| Parking/hr                                           |                                 |            |                                  |              |           |           |                              |            |        |      |                              |           |                      |           |     |
| Bus stops/h                                          | arking/hr<br>us stops/hr        |            |                                  | 0            | 0         | 0         | 0                            | 0          |        | 0    | 0                            | 0         | 0                    | 0         |     |
| Unit Extensi                                         |                                 |            |                                  | 3.0          | 3.0       | 3.0       | 3.0                          | 3.0        | 3      | .0   | 3.0                          | 3.0       | 3.0                  | 3.0       |     |
| Phasing                                              | Excl. Le                        |            | u & RT                           | 03           | 3         | 04        |                              | Excl. L    | _eft   | Thr  | u & R                        | T         | 07                   | 0         | 8   |
| Timing                                               | G = 17.                         |            | 15.0                             | G=           |           | G =       |                              | 3 = 14     | 4.0    |      | 37.5                         | _         |                      | G =       |     |
| 73                                                   | Y = 3                           |            | 4.5                              | Y =          |           | Υ =       | Υ                            | ′ = 3      |        | Y =  |                              | Y =       |                      | Y =       |     |
| Duration of                                          |                                 |            |                                  |              |           |           |                              |            |        |      | e Len                        | gth C =   | 99.5                 |           |     |
| Lane Gro                                             | up Cap                          | acity, (   |                                  | ol Dela      | ay, ar    |           |                              | ermii      | nati   |      |                              |           | 1                    |           |     |
| 7. 2. 2°C                                            |                                 |            | EB                               |              | -         | WE        |                              |            | L. 105 | _    | NB                           | 2.52      | 173.0                | SB        |     |
| Adj. flow rat                                        |                                 | 554        | 326                              | 293          | 277       | 182       | _                            | _          | 315    | _    | 315                          | 636       | 462                  | 864       | _   |
| Lane group                                           | сар.                            | 570        | 262                              | 502          | 294       | 262       | _                            |            | 449    | _    | 301                          | 991       | 449                  | 1301      |     |
| v/c ratio                                            |                                 | 0.97       | 1.24                             | 0.58         | 0.94      | 0.69      | _                            | -          | 0.70   | _    | _                            | 0.64      | 1.03                 | 0.66      |     |
| Green ratio                                          |                                 | 0.17       | 0.14                             | 0.33         | 0.17      | 0.14      | _                            |            | 0.13   | _    |                              | 0.37      | 0.13                 | 0.37      |     |
| Unif. delay o                                        |                                 | 41.3       | 42.8                             | 27.9         | 41.0      | 40.7      |                              |            | 11.4   | -    |                              | 26.1      | 43.3                 | 26.4      |     |
| Delay factor                                         | k                               | 0.48       | 0.50                             | 0.18         | 0.45      | 0.26      | 0.2                          | 22 (       | 0.27   | 0.   | 50                           | 0.22      | 0.50                 | 0.24      |     |
| Increm. dela                                         | ay d2                           | 30.6       | 137.8                            | 1.7          | 37.3      | 7.7       | 2.                           | 7          | 4.9    | 27   | 7.6                          | 1.4       | 50.1                 | 1.3       |     |
| PF factor                                            |                                 | 0.867      | 0.891                            | 0.677        | 0.867     | 0.89      | 1 0.6                        | 77 0       | .900   | 0.   | 614                          | 0.614     | 0.900                | 0.614     |     |
| Control dela                                         | ıy                              | 66.4       | 175.9                            | 20.6         | 72.9      | 44.0      | 22.                          | .0 4       | 12.1   | 47   | 7.0                          | 17.4      | 89.0                 | 17.5      |     |
| Lane group                                           | LOS                             | Ε          | F                                | С            | E         | D         | C                            |            | D      |      | D                            | В         | F                    | В         |     |
| Apprch. delay 85.4                                   |                                 |            | 5.4                              |              |           | 45.2      |                              |            |        | 38.0 | )                            |           |                      | 42.4      |     |
| Approach LOS F                                       |                                 |            |                                  |              |           | D         |                              |            |        | D    |                              |           |                      | D         |     |
| ntersec. delay 50.1                                  |                                 |            |                                  |              |           |           | Inte                         | rsectio    | on LC  | os   |                              |           |                      | D         |     |
| HCS2000 <sup>TM</sup>                                | -2                              | opyright © | 2000 Ur                          | niversity of | Florida.  | All Right | s Resei                      | eved       |        |      | 1                            | Ve        | ersion               |           |     |

MIT. & ADD ZNO NE RTO LANE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |            |                                   |              | SHO    | ORT R     |                           |                  |      |         | 100 10                | B (c                                 | 10 11               | INL      | _    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------|-----------------------------------|--------------|--------|-----------|---------------------------|------------------|------|---------|-----------------------|--------------------------------------|---------------------|----------|------|
| General Inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ormation                                              | n          |                                   |              |        | S         | ite Info                  | ormati           | on   |         |                       |                                      |                     |          |      |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | med                                                   |            | USAI<br>USAI<br>8/22/12<br>M PEAK |              |        | Ai<br>Ju  | tersec<br>rea Typurisdict | pe<br>ion        |      | )CE     | All ot<br>ANSID<br>MI | RON R<br>her are<br>E-INT.;<br>TIGAT | ?D.<br>as<br>#14/WI |          |      |
| Volume an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d Timing                                              | g Input    |                                   |              |        |           |                           |                  |      |         |                       |                                      |                     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |            |                                   | EB           |        |           | WB                        | T ==             |      | _       | NB                    | T ==                                 |                     | SB       | T == |
| Num, of Lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |            | LT<br>2                           | TH<br>1      | RT 1   | LT<br>1   | TH<br>1                   | RT<br>1          | _    | _T      | TH<br>2               | RT 2                                 | LT<br>2             | TH 2     | R1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies                                                   |            | _                                 |              | _      | -         | _                         | -                | _    |         | T                     | _                                    | +                   | T        | 0    |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -\                                                    |            | L                                 | T 204        | R      | L         | T                         | R                |      | 22      | -                     | R                                    | L 420               | 1000     |      |
| Volume (vpl<br>% Heavy ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |            | 541<br>2                          | 304          | 290    | 255<br>2  | 175<br>2                  | 302              |      | 32<br>2 | 1251                  | 585<br>2                             | 428                 | 815<br>2 |      |
| PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 311                                                   |            | 0.92                              | 0.92         | 0.92   | 0.92      | 0.92                      | 0.92             |      | 92      | 0.92                  | 0.92                                 | 0.92                | 0.92     |      |
| Actuated (P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /A)                                                   |            | A                                 | A            | A      | A         | A                         | A                |      | 4       | A                     | A                                    | A                   | A        | Α    |
| Startup lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |            | 3.0                               | 3.0          | 3.0    | 3.0       | 3.0                       | 3.0              | _    | .0      | 3.0                   | 3.0                                  | 3.0                 | 3.0      |      |
| Ext. eff. gree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | en                                                    |            | 2.0                               | 2.0          | 2.0    | 2.0       | 2.0                       | 2.0              | _    | .0      | 2.0                   | 2.0                                  | 2.0                 | 2.0      |      |
| Arrival type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |            | 5<br>3.0                          | 5            | 5      | 5         | 5                         | 5                | _    | 5       | 5                     | 5                                    | 5                   | 5        |      |
| Unit Extensi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d/Bike/RTOR Volume                                    |            |                                   | 3.0          | 3.0    | 3.0       | 3.0                       | 3.0              |      | .0      | 3.0                   | 3.0                                  | 3.0                 | 3.0      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d/Bike/RTOR Volume<br>ne Width<br>rking/Grade/Parking |            |                                   | 10           | 0      | 5         | 10                        | 0                | _    | 5       | 10                    | 0                                    | 5                   | 12.2     | -    |
| 2000-031-031-031-031-031-031-031-031-031-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne Width<br>king/Grade/Parking                        |            |                                   | 12.0         | 12.0   | 12.0      | 12.0                      | 12.0             | _    | 2.0     | 12.0                  | 12.0                                 | 12.0                | 12.0     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rking/Grade/Parking<br>rking/hr                       |            |                                   | 0            | N      | N         | 0                         | N                | 1    | V       | 0                     | N                                    | Ν                   | 0        | N    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |            | 0                                 |              | -      |           |                           |                  | +    | 0       |                       | -                                    |                     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rking/hr s stops/hr it Extension                      |            |                                   | 0            | 0      | 0         | 0                         | 0                | _    | 0       | 0                     | 0                                    | 0                   | 0        |      |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                       | - 1-i      | 3.0                               | 3.0          | 3.0    | 3.0       | 3.0                       | 3.0              |      | .0      | 3.0                   | 3.0                                  | 3.0                 | 3.0      | _    |
| Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Excl. Lo                                              |            | ru & RT                           | G =          |        | 04<br>G = |                           | Excl. L $S = 14$ | _    |         | ru & R                | G =                                  | 07                  | G =      | 8    |
| Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G = 17 $Y = 3$                                        |            | = 15.0<br>= 4.5                   | Y =          |        | Y =       |                           | ' = 3            | .0   |         | = 37.5<br>= 5         | Y =                                  |                     | Y =      |      |
| Duration of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |            |                                   |              |        | 10.00     |                           |                  |      |         |                       |                                      | 99.5                |          |      |
| Lane Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |            |                                   | ol Dela      | ay, an | d LOS     | S Det                     | ermir            | nati |         |                       |                                      |                     |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |            | EB                                |              |        | WE        | _                         |                  |      |         | NB                    |                                      |                     | SB       | 7    |
| Adj. flow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e                                                     | 588        | 330                               | 315          | 277    | 190       | 32                        | 8 3              | 361  | 1.      | $\overline{}$         | 636                                  | 465                 | 886      |      |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | 570        | 262                               | 502          | 294    | 262       |                           | _                | 149  | _       |                       | 991                                  | 449                 | 1301     |      |
| v/c ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.                                                    | 1.03       | 1.26                              | 0.63         | 0.94   | 0.73      | _                         |                  | .80  | _       |                       | 0.64                                 | 1.04                | 0.68     | +    |
| Green ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 0.17       | 0.14                              | 0.33         | 0.17   | 0.14      |                           |                  | .13  | -       |                       | 0.37                                 | 0.13                | 0.37     | 1    |
| Unif. delay o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                    | 41.5       | 42.8                              | 28.4         | 41.0   | 40.9      | _                         |                  | 2.0  | _       |                       | 26.1                                 | 43.3                | 26.6     |      |
| Delay factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | 0.50       | 0.50                              | 0.21         | 0.45   | 0.29      | _                         |                  | .35  | _       | _                     | 0.22                                 | 0.50                | 0.25     |      |
| Increm. dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       | 46.0       | 143.9                             | 2.5          | 37.3   | 9.6       | 3.0                       |                  | 0.2  | _       | 7.7                   | 1.4                                  | 52.0                | 1.5      |      |
| PF factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | 0.867      | 0.891                             | 0.677        | 0.867  | _         | _                         | -                | 900  | -       |                       | 0.614                                | 0.900               | 0.614    |      |
| Control dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | у                                                     | 82.0       | 181.9                             | 21.7         | 72.9   | 46.1      | 22.                       | 4 4              | 8.0  | 5       | 7.0                   | 17.4                                 | 90.9                | 17.8     |      |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOS                                                   | F          | F                                 | С            | Ε      | D         | C                         |                  | D    | 1       | E                     | В                                    | F                   | В        |      |
| Apprch. delay 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |            | 93.4                              |              | 111-   | 45.7      |                           |                  |      | 45.     | 0                     |                                      |                     | 42.9     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |            | F                                 |              |        | D         |                           |                  |      | D       |                       |                                      |                     | D        |      |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                       |            | 55.0                              |              |        |           | Inte                      | rsectio          | n LC | os      |                       |                                      |                     | D        |      |
| HCS2000 <sup>TM</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       | onvright @ | 2000 Un                           | niversity of |        |           |                           |                  |      |         |                       |                                      | ersion 4            |          |      |

 $HCS2000^{\mathrm{TM}}$ 

|                                                      |                   |            |                             |            | SH                | IOR        | ΓR       | EPO                                           | )R                      | T            |        |           |                                           |                  |                       |              | -          |                  |
|------------------------------------------------------|-------------------|------------|-----------------------------|------------|-------------------|------------|----------|-----------------------------------------------|-------------------------|--------------|--------|-----------|-------------------------------------------|------------------|-----------------------|--------------|------------|------------------|
| General Inf                                          | ormation          |            |                             |            |                   |            | S        | ite In                                        | fo                      | rmat         | ion    |           | ·                                         |                  |                       |              |            |                  |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med               | U:<br>04/3 | SAI<br>SAI<br>30/12<br>PEAK |            |                   |            | A<br>Ji  | nterse<br>Irea T<br>urisdi<br>Inalys          | yp<br>ctic              | e<br>on      |        | C         | COLLE<br>CARLS<br>All ot<br>CARLS<br>ALT1 | SB.<br>the<br>BA | AD '<br>r are<br>D-IN | VILL.<br>eas | :T         |                  |
| Volume an                                            | d Timing In       | put        |                             |            |                   |            |          |                                               |                         |              |        |           |                                           |                  |                       |              |            |                  |
| ·                                                    |                   |            |                             | EB         |                   |            |          | WE                                            | }                       |              |        |           | NB                                        |                  |                       |              | SB         |                  |
|                                                      |                   |            | LT                          | TH         | RT                | _          |          | TH                                            | 4                       | RT           |        | <u>.T</u> | TH                                        | _                | ₹T                    | LT           | TH         | RT               |
| Num. of Lar                                          | nes               |            | 1                           | 1          | 1                 | 1          |          | 1                                             | 4                       | 0            | 1      |           | 2                                         | Ļ                | 0                     | 1            | 2          | 0                |
| Lane group                                           |                   |            | L                           | LT         | R                 | L          |          | TR                                            | ┙                       |              | Ĺ      |           | TR                                        |                  |                       | L            | TR         |                  |
| Volume (vpl                                          |                   |            | 350                         | 5          | 70                | 5          |          | 10                                            | 4                       | 15           | 6      |           | 570                                       | _                | 5                     | 5            | 1395       | 375              |
| % Heavy vo                                           | eh                |            | 1                           | 1          | 0.00              | 1          |          | 0.95                                          | -                       | 1            | 1      |           | 2                                         |                  | <u>1</u>              | 1            | 2          | 1<br>0.95        |
| Pnr<br>Actuated (P                                   | /Δ\               |            | 0.95<br>A                   | 0.95<br>A  | 0.98<br>A         | 5 0.9<br>A |          | 0.95<br>A                                     | +                       | 0.95<br>A    | 0.9    |           | 0.95<br>A                                 | -                | 95<br>A               | 0.95<br>A    | 0.95<br>A  | 0.95<br>A        |
| Startup lost                                         |                   |            | 2.0                         | 2.0        | 2.0               |            |          | 2.0                                           | $\dashv$                |              | 2.     |           | 2.0                                       | ť                | 1                     | 2.0          | 2.0        | <del>  ^ -</del> |
| Ext. eff. gre                                        |                   |            | 2.0                         | 2.0        | 2.0               |            |          | 2.0                                           | 寸                       |              | 2.     |           | 2.0                                       | T                |                       | 2.0          | 2.0        |                  |
| Arrival type                                         |                   |            | 4                           | 4          | 4                 | 4          |          | 4                                             |                         |              | E      |           | 5                                         |                  |                       | 5            | 5          |                  |
| Unit Extensi                                         | ion               |            | 3.0                         | 3.0        | 3.0               | 3.0        | 0        | 3.0                                           | $oldsymbol{\mathbb{J}}$ |              | 3,     | 0         | 3.0                                       |                  |                       | 3.0          | 3.0        |                  |
| Ped/Bike/R                                           | TOR Volume        | )          | 5                           | 5          | 0                 | 5          |          | 5                                             | $\Box$                  | 0            |        |           | 5                                         |                  | 0                     | 5            | 5          | 150              |
| Lane Width                                           |                   |            | 12.0                        | 12.0       | 12.0              |            |          | 12.0                                          |                         |              | 12     |           | 12.0                                      | L                |                       | 12.0         | 12.0       |                  |
| Parking/Gra                                          | de/Parking        |            | N                           | 0          | Ν                 | ^          | <u> </u> | 0                                             | _                       | N            | ^      | <u> </u>  | 0                                         | 1                | V                     | N            | 0          | N                |
| Parking/hr                                           |                   |            |                             |            |                   |            |          |                                               | 4                       |              | ┸      |           |                                           |                  |                       |              |            |                  |
| Bus stops/h                                          |                   |            | 0                           | 0          | 0                 | 0          |          | 0                                             |                         |              | (      | )         | 0                                         |                  |                       | 0            | 0          |                  |
| Unit Extensi                                         | ion               |            | 3.0                         | 3.0        | 3.0               | 3.0        | 0        | 3.0                                           |                         |              | 3.     | 0         | 3.0                                       |                  |                       | 3.0          | 3.0        |                  |
| Phasing                                              | EB Only           |            | Perm                        | 03         | 3                 |            | 04       |                                               |                         | xcl. L       |        |           | ıru & R                                   |                  |                       | 07           |            | 08               |
| Timing                                               | G = 17.0<br>Y = 5 | G =<br>Y = |                             | G =<br>Y = |                   | G =        |          |                                               | _                       | = 13         | 3.0    |           | = 60.0                                    |                  | G =                   |              | G =<br>Y = |                  |
| Duration of                                          |                   |            |                             | Υ =        |                   | Υ =        |          |                                               | Y                       | = 5          |        |           | = 5                                       | ath              | > <u> </u> <          | = 120.       |            |                  |
|                                                      | up Capac          |            |                             | l Dala     | ))/ /             | nnd I      | <u> </u> | S D                                           | +0                      | rmi          | nati   |           | JIC LCII                                  | yu               | 10-                   | - 120,       | <u> </u>   |                  |
| Lane Gio                                             | up Capac          | Tiy, C     | EB                          | Deid       | <u>ау, с</u><br>Т | allu L     | _        | VB                                            | : LE                    | 1 1 1 1 1 1  | IIau   | OII       | NB                                        |                  |                       |              | SB         |                  |
| Adj. flow rat                                        | Δ                 | 184        | 189                         | 74         | -                 | 5          | _        | 27                                            | Т                       | _            | 63     |           | 605                                       | T                |                       | 5            | 1705       | $\overline{}$    |
| Lane group                                           |                   | 405        | 400                         | 220        |                   |            | +-       | 39                                            | ╁                       | $\dashv$     | 194    | $\dashv$  | 1771                                      | ╁                |                       | 194          | 1732       | +-               |
| v/c ratio                                            | сар.              | 0.45       | 0.47                        | 0.34       | -                 | 0.03       | ┿        | 39<br>19                                      | ╁                       | $\dashv$     | 0.32   | $\dashv$  | 0.34                                      | ╁                |                       | 0.03         | 0.98       |                  |
| Green ratio                                          |                   | 0.27       | 0.47                        | 0.14       |                   | 0.08       | -        | 08                                            | ╁                       |              | 0.32   | _         | 0.50                                      | ╁                |                       | 0.03         | 0.50       |                  |
| Unif. delay o                                        | <del></del>       | 36.0       | 36.9                        | 46.4       | <del>-</del> +    | 50.6       | -        | 1.2                                           | ╁                       |              | 49.4   |           | 18.1                                      | +                |                       | 47.8         | 29.5       | +                |
| Delay factor                                         |                   | 0.11       | 0.11                        | 0.11       | -                 | ).11       | +        | 11                                            | <u> </u>                | _            | 0.11   | -         | 0.11                                      | +                |                       | 0.11         | 0.49       | +                |
| Increm. dela                                         |                   | 0.8        | 0.9                         | 0.9        | -+                | 0.1        | +-       | <u>, , ,                                 </u> | T                       | +            | 1.0    | $\dashv$  | 0.11                                      | $\dagger$        |                       | 0.1          | 18.0       | +                |
| PF factor                                            | <del>y</del>      | 1.000      | 1.000                       | -          | -                 | .000       | +        | 000                                           | H                       | <del>-</del> | 0.919  | ,         | 0.333                                     | +                |                       | 0.919        | 0.333      | +                |
| Control dela                                         |                   |            | 37.8                        | 47.3       |                   | 0.7        | +-       | 1.9                                           | T                       |              | 46.4   |           | 6.1                                       | $\dagger$        |                       | 44.0         | 27.8       | +                |
|                                                      | ane group LOS D   |            |                             |            | +                 | D          | -        | D                                             | t                       | $\dashv$     | D      | 一         | Α                                         | $\dagger$        |                       | D            | С          | 1                |
| Apprch. dela                                         |                   | 3          | 9.0                         | B          | $\dashv$          | 5          | 1.7      |                                               | 1                       | _            |        | 9.        | 9                                         |                  |                       |              | 27.9       |                  |
| Approach Lo                                          | os                |            | D                           |            | 十                 |            | D        |                                               |                         | _            |        | -         | 1                                         |                  |                       |              | С          |                  |
| Intersec. de                                         | lay               | 2          | 5.7                         |            |                   |            |          | In                                            | iter                    | secti        | on L   | os        |                                           |                  |                       |              | С          |                  |
| HCS2000 <sup>TM</sup>                                |                   | •          | Co                          | pyright ©  | 2000              | Universi   | tv of    | Florida                                       | A1                      | 1 Right      | s Rese | rved      |                                           |                  |                       | <b></b>      | V          | ersion 4.1       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                |              |                             |           | Sł        | IORT        | R        | EPC                                 | R           | T       |                |             |                                              |                   |                    |                                                  | ·           |                                                  |
|------------------------------------------------------|----------------|--------------|-----------------------------|-----------|-----------|-------------|----------|-------------------------------------|-------------|---------|----------------|-------------|----------------------------------------------|-------------------|--------------------|--------------------------------------------------|-------------|--------------------------------------------------|
| General Inf                                          | ormation       |              |                             |           |           |             | S        | ite In                              | for         | rmati   | ion            |             |                                              |                   |                    |                                                  |             |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med            | U:<br>04/3   | SAI<br>SAI<br>BO/12<br>PEAK |           |           |             | Ai<br>Ju | iterse<br>rea T<br>urisdio<br>nalys | yp:<br>ctic | e<br>on | E              | C           | COLLE<br>CARLS<br>All ot<br>CARLSE<br>LLT1/1 | SBA<br>her<br>BAE | D \<br>are<br>)-IN | VILL.<br>eas                                     | СТ          |                                                  |
| Volume an                                            | ıd Timing In   | put          |                             |           |           |             |          |                                     |             |         |                |             |                                              |                   |                    |                                                  |             |                                                  |
|                                                      |                |              |                             | EB        |           |             |          | WB                                  | }           |         | 4              |             | NB                                           | _                 | _                  | ļ                                                | SB          | T ==                                             |
| Num, of Lar                                          |                |              | LT<br>1                     | TH<br>1   | RT<br>1   | L           |          | TH<br>1                             | +           | RT<br>0 | <u> </u>       | <u>T</u>    | TH<br>2                                      | R                 |                    | LT<br>1                                          | TH<br>2     | RT<br>0                                          |
|                                                      | 162            |              |                             |           | _         |             |          |                                     | +           |         | $+\frac{1}{l}$ |             |                                              | _                 |                    | <del>                                     </del> |             | <del>                                     </del> |
| Lane group                                           | L. \           |              | L                           | LT        | R         | L           |          | TR                                  | 4           | 4.5     |                |             | TR                                           |                   |                    | L                                                | TR          | 200                                              |
| Volume (vpl<br>% Heavy v                             | - <del> </del> |              | 356<br>1                    | 5<br>1    | 70<br>1   | 5<br>1      |          | 10<br>1                             | +           | 15<br>1 | 6              | _           | 586<br>2                                     | 5<br>1            |                    | 5                                                | 1441<br>2   | 390<br>1                                         |
| PHF                                                  | <del>.</del>   |              | 0.95                        | 0.95      | 0.98      |             |          | 0.95                                | $\dashv$    | 0.95    | 0.9            |             | 0.95                                         | 0.9               |                    | 0.95                                             | 0.95        | 0.95                                             |
| Actuated (P                                          | /A)            |              | A                           | Ā         | A         | A           |          | A                                   | T           | A       | 1              |             | A                                            | A                 |                    | A                                                | A           | A                                                |
| Startup lost                                         |                |              | 2.0                         | 2.0       | 2.0       |             |          | 2.0                                 |             |         | 2.             |             | 2.0                                          |                   |                    | 2.0                                              | 2.0         |                                                  |
| Ext. eff. gre                                        | en             |              | 2.0                         | 2.0       | 2.0       |             |          | 2.0                                 | Ţ           |         | 2.             |             | 2.0                                          |                   |                    | 2.0                                              | 2.0         |                                                  |
| Arrival type                                         |                |              | 4                           | 4         | 4         | 4           |          | 4                                   | _           |         | Ę              |             | 5                                            |                   |                    | 5                                                | 5           |                                                  |
| Unit Extensi                                         |                |              | 3.0                         | 3.0       | 3.0       |             |          | 3.0                                 | 4           |         | 3.             |             | 3.0                                          |                   |                    | 3.0                                              | 3.0         | 1.55                                             |
| -                                                    | TOR Volume     | <del>)</del> | 5                           | 5         | 0         | 5           |          | 5                                   | +           | 0       | 1.5            |             | 5                                            | 0                 |                    | 5                                                | 5           | 150                                              |
| Lane Width                                           | do/Darkina     |              | 12.0<br>N                   | 12.0<br>0 | 12.0<br>N | ) 12.<br>N  |          | 12.0<br>0                           | +           | N       | 12             |             | 12.0<br>0                                    |                   | ï                  | 12.0<br>N                                        | 12.0<br>0   | N                                                |
| Parking/Gra<br>Parking/hr                            | ide/Parking    |              | 74                          | U .       | /٧        | - /۷        |          | <u> </u>                            | -           | 14      | +              |             | 0                                            | -/\               | 1                  | //                                               |             | 17                                               |
| Bus stops/h                                          | r              |              | 0                           | 0         | 0         | 0           |          | 0                                   | ╅           |         | +,             | <del></del> | 0                                            | _                 | _                  | 0                                                | 0           |                                                  |
| Unit Extensi                                         |                |              | 3.0                         | 3.0       | 3.0       | <u> </u>    |          | 3.0                                 | $\dashv$    |         | 3              |             | 3.0                                          |                   |                    | 3.0                                              | 3.0         | 1                                                |
| Phasing                                              | EB Only        | EW           |                             | 03        |           | <del></del> | 04       | 1                                   | E           | xcl. L  |                |             | ru & R                                       | T                 |                    | 07                                               | <del></del> | 08                                               |
|                                                      | G = 17.0       | G =          |                             | G =       |           | G =         |          |                                     |             | = 13    |                | _           | = 60.0                                       | _                 | G =                |                                                  | G =         |                                                  |
| Timing                                               | Y = 5          | Y = .        |                             | Y =       |           | Y =         |          |                                     | Y           | = 5     |                |             | = 5                                          |                   | Y =                |                                                  | Υ=          |                                                  |
|                                                      | Analysis (hr   |              |                             |           |           |             |          |                                     |             |         |                |             | de Len                                       | gth               | <u>C</u> =         | = 120.                                           | 0           |                                                  |
| Lane Gro                                             | up Capac       | ity, C       |                             | l Dela    | ay, a     | and L       |          |                                     | te          | rmi     | nati           | on          |                                              |                   |                    |                                                  |             |                                                  |
|                                                      |                |              | EB                          |           | _         |             | _        | VB                                  | _           | _       |                |             | NB                                           |                   |                    |                                                  | SB          |                                                  |
| Adj. flow rat                                        | e              | 188          | 192                         | 74        | _         | 5           | +        | ?7                                  | ╀           |         | 63             |             | 622                                          | ╀                 |                    | 5                                                | 1770        | 4                                                |
| Lane group                                           | cap. 🛭         | 405          | 400                         | 220       | <u> </u>  | 147         | 1;       | 39                                  | L           |         | 194            | _           | 1771                                         | _                 |                    | 194                                              | 1731        |                                                  |
| v/c ratio                                            |                | 0.46         | 0.48                        | 0.34      | 1 (       | 0.03        | 0.       | 19                                  | L           |         | 0.32           | Ц           | 0.35                                         | _                 |                    | 0.03                                             | 1.02        |                                                  |
| Green ratio                                          |                | 0.27         | 0.27                        | 0.14      | 1 (       | 0.08        | 0.       | 08                                  |             |         | 0.11           |             | 0.50                                         | L                 |                    | 0.11                                             | 0.50        |                                                  |
| Unif. delay                                          | d1             | 36.1         | 37.0                        | 46.4      | 1 5       | 50.6        | 51       | 1.2                                 |             |         | 49.4           |             | 18.2                                         |                   |                    | 47.8                                             | 30.0        |                                                  |
| Delay factor                                         | · k            | 0.11         | 0.11                        | 0.11      |           | ).11        | 0.       | 11                                  |             |         | 0.11           |             | 0.11                                         |                   |                    | 0.11                                             | 0.50        |                                                  |
| Increm. dela                                         | ay d2          | 0.8          | 0.9                         | 0.9       |           | 0.1         | 0        | .7                                  |             |         | 1.0            |             | 0.1                                          |                   |                    | 0.1                                              | 27.5        |                                                  |
| PF factor                                            |                | 1.000        | 1.000                       | 1.00      | 0 1       | .000        | 1.0      | 000                                 |             | (       | 0.91           | 9           | 0.333                                        |                   |                    | 0.919                                            | 0.333       |                                                  |
| Control dela                                         | ıy             | 37.0         | 37.9                        | 47.3      | 3 5       | 50.7        | 51       | 1.9                                 | Γ           | $\Box$  | 46.4           |             | 6.2                                          |                   |                    | 44.0                                             | 37.5        |                                                  |
| Lane group                                           | LOS            | D            | D                           | D         |           | D           | 1        | D                                   | Ī           |         | D              |             | Α                                            |                   |                    | D                                                | D           |                                                  |
| Apprch. dela                                         | ay             | 3            | 9.0                         | •         |           | 5           | 1.7      |                                     |             |         |                | 9.          | 9                                            |                   |                    |                                                  | 37.5        | •                                                |
| Approach L                                           | os             |              | D                           |           | 十         |             | D        |                                     |             |         |                | /           | ł                                            |                   |                    |                                                  | D           |                                                  |
| Intersec. de                                         | lay            |              |                             |           |           | In          | ter      | rsecti                              | ion L       | os      |                |             |                                              |                   | С                  |                                                  |             |                                                  |
| HCS2000 <sup>TM</sup>                                | -              |              | 1.5                         | ругight © | 2000      | Universi    | tv of    |                                     |             |         |                |             |                                              |                   |                    |                                                  | 7           | ersion 4.1                                       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                   |             |                             |             | Şŀ          | IORT       | R        | EPO                                  | RT                                               |          |           |                                           |                    |                    |                        |            |                                                  |
|------------------------------------------------------|-------------------|-------------|-----------------------------|-------------|-------------|------------|----------|--------------------------------------|--------------------------------------------------|----------|-----------|-------------------------------------------|--------------------|--------------------|------------------------|------------|--------------------------------------------------|
| General Inf                                          | ormation          |             |                             |             |             |            | S        | ite In                               | form                                             | ati      | on        |                                           |                    |                    |                        |            |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med               | U.<br>04/3  | SAI<br>SAI<br>30/12<br>PEAK |             |             |            | Ai<br>Ju | iterse<br>rea T<br>urisdio<br>nalysi | ype<br>ction                                     |          | B         | COLLE<br>CARL<br>All o<br>CARLS<br>D.ALT1 | SBA<br>ther<br>BAD | D \<br>are<br>)-IN | /ILL.<br>eas<br>IT.#15 | T          |                                                  |
| Volume an                                            | d Timing In       | put         |                             |             |             |            |          |                                      |                                                  |          |           |                                           |                    |                    |                        |            |                                                  |
|                                                      |                   |             |                             | EB          |             |            |          | WB                                   |                                                  |          |           | NB                                        |                    |                    |                        | SB         |                                                  |
|                                                      |                   |             | LT                          | TH          | RT          |            |          | TH                                   | _                                                | ₹T       | LT        | TH                                        | R                  |                    | LT                     | TH         | RT                                               |
| Num. of Lar                                          | nes               |             | 1                           | 1           | 1           | 1          |          | 1                                    | (                                                | )        | 1         | 2                                         | 0                  | '                  | 1                      | 2          | 0                                                |
| Lane group                                           |                   |             | L                           | LT          | R           | L          |          | TR                                   |                                                  |          | L         | TR                                        |                    |                    | L                      | TR         | <u> </u>                                         |
| Volume (vpl                                          | <u> </u>          |             | 375                         | 10          | 55          | 5          | _        | 5                                    | 1                                                |          | 150       | 1655                                      | 5                  |                    | 15                     | 1005       | 350                                              |
| % Heavy von                                          | eh                |             | 1<br>0.95                   | 1<br>0.95   | 1<br>0.95   | 0.9        | _        | 1<br>0.95                            | 0.                                               |          | 0.95      | 2<br>0.95                                 | 0.9                |                    | 1<br>0.95              | 2<br>0.95  | 1<br>0.95                                        |
| Actuated (P                                          | /Δ\               |             | 0.95<br>A                   | 0.95<br>A   | 0.90<br>A   | ) 0.98     | 9        | 0.95<br>A                            | 10.                                              |          | 0.93<br>A | 0.95<br>A                                 | A                  | _                  | 0.93<br>A              | 0.95<br>A  | 0.93<br>A                                        |
| Startup lost                                         |                   |             | 2.0                         | 2.0         | 2.0         | 2.0        | ,        | 2.0                                  | †                                                | •        | 2.0       | 2.0                                       | Ť                  |                    | 2.0                    | 2.0        |                                                  |
| Ext. eff. gre                                        | _                 |             | 2.0                         | 2.0         | 2.0         | 2.0        |          | 2.0                                  |                                                  |          | 2.0       | 2.0                                       |                    |                    | 2.0                    | 2.0        |                                                  |
| Arrival type                                         |                   |             | 4                           | 4           | 4           | 4          |          | 4                                    |                                                  |          | 5         | 5                                         |                    |                    | 5                      | 5          |                                                  |
| Unit Extens                                          |                   |             | 3.0                         | 3.0         | 3.0         | 3.0        | )        | 3.0                                  |                                                  |          | 3.0       | 3.0                                       |                    |                    | 3.0                    | 3.0        |                                                  |
|                                                      | TOR Volume        | )           | 5                           | 5           | 0           | 5          |          | 5                                    | (                                                | )        | 5         | 5                                         | 0                  | 1                  | 5                      | 5          | 150                                              |
| Lane Width                                           |                   |             | 12.0                        | 12.0        | 12.0        |            | 0        | 12.0                                 |                                                  |          | 12.0      |                                           | <b>—</b>           |                    | 12.0                   | 12.0       |                                                  |
| Parking/Gra                                          | de/Parking        |             | N                           | 0           | Ν           | N          | _        | 0                                    | +′                                               | ٧        | N         | 0                                         | <u> </u>           |                    | N                      | 0          | Ν                                                |
| Parking/hr                                           |                   |             |                             |             |             |            |          | <u> </u>                             | 4                                                |          | ļ         | <del> </del>                              | -                  |                    |                        |            |                                                  |
| Bus stops/h                                          |                   |             | 0                           | 0           | 0           | 0          |          | 0                                    | _                                                |          | 0         | 0                                         | ╄                  |                    | 0                      | 0          | <u> </u>                                         |
| Unit Extens                                          | •                 |             | 3.0                         | 3.0         | 3.0         | 3.0        |          | 3.0                                  |                                                  |          | 3.0       | 3.0                                       | <u>L</u> ,         |                    | 3.0                    | 3.0        | <u> </u>                                         |
| Phasing                                              | EB Only           |             | Perm                        | 0:          | 3           |            | 04       | -                                    | Exc                                              |          |           | Thru & R                                  | _                  |                    | 07                     |            | 08                                               |
| Timing                                               | G = 17.0<br>Y = 5 | G =<br>Y =  |                             | G =<br>Y =  |             | G =<br>Y = |          |                                      | G =<br>Y =                                       |          |           | 9 = 59.0<br>' = 5                         |                    | G =<br>Y =         |                        | G =<br>Y = |                                                  |
| Duration of                                          | Analysis (hr      |             | -                           |             |             |            |          |                                      | <u> </u>                                         | <u> </u> |           | ycle Ler                                  |                    | •                  |                        |            |                                                  |
|                                                      | ир Сарас          |             |                             | l Dela      | av. a       | and L      | OS       | S De                                 | terr                                             | nir      |           |                                           | O.                 |                    |                        |            |                                                  |
|                                                      | ap capac          |             | EB                          |             |             |            |          | VB                                   |                                                  | T        |           | NB                                        |                    |                    |                        | SB         |                                                  |
| Adj. flow rat                                        | :e                | 198         | 208                         | 58          | 一           | 5          | 2        | 21                                   |                                                  | T        | 158       | 1747                                      | Т                  |                    | 16                     | 1269       | <u></u>                                          |
| Lane group                                           |                   | 410         | 406                         | 220         | , ,         | 147        | 1;       | 34                                   |                                                  | +        | 208       | 1743                                      | 十                  |                    | 208                    | 1695       | 1                                                |
| v/c ratio                                            |                   | 0.48        | 0.51                        | 0.26        | -           | 0.03       | ┢        | 16                                   |                                                  | -        | 0.76      | 1.00                                      | 十                  |                    | 0.08                   | 0.75       | +-                                               |
| Green ratio                                          |                   | 0.27        | 0.27                        | 0.14        | -           | 0.08       | ┢        | 08                                   |                                                  | (        | 0.12      | 0.49                                      | T                  |                    | 0.12                   | 0.49       |                                                  |
| Unif. delay                                          | <br>d1            | 36.3        | 37.4                        | 45.9        | <del></del> | 50.6       | 51       | 1.1                                  |                                                  | +        | 51.4      | 30.5                                      | +                  |                    | 47.2                   | 24.5       | 1                                                |
| Delay factor                                         |                   | 0.11        | 0.12                        | 0.11        | -           | ).11       |          | 11                                   | t                                                | 1        | 0.31      | 0.50                                      | 1                  |                    | 0.11                   | 0.30       | 1                                                |
| Increm. dela                                         |                   | 0.9         | 1.1                         | 0.6         | -           | 0.1        | ┢        | 0.5                                  | <del>                                     </del> | 1        | 15.0      | 22.1                                      | T                  |                    | 0.2                    | 1.9        | <del>                                     </del> |
| PF factor                                            |                   | 1.000       | 1.000                       | <del></del> |             | .000       | ┢        | 000                                  |                                                  | C        | 0.912     | 0.355                                     | T                  | -                  | 0.912                  | 0.355      | ;                                                |
| Control dela                                         | ay                | 37.2        | 38.5                        | 46.6        | 3 5         | 0.7        | 51       | 1.6                                  |                                                  | 7        | 61.9      | 32.9                                      | 十                  |                    | 43.2                   | 10.6       | 1                                                |
| Lane group                                           | LOS               | D           | D                           | D           |             | D          | 1        | D                                    |                                                  | 十        | Ε         | С                                         | 丨                  |                    | D                      | В          |                                                  |
| Apprch. dela                                         | ay                | 3           | 9.0                         |             | 十           | 51         | 1.4      |                                      |                                                  | 十        | ,         | 35.3                                      |                    |                    |                        | 11.0       | _                                                |
| Approach L                                           | os                |             | D                           |             |             | ı          | D        |                                      |                                                  | 十        | •         | D                                         |                    |                    |                        | В          |                                                  |
| Intersec. de                                         | lay               | 2           | 7.4                         |             |             |            |          | In                                   | terse                                            | ecti     | on LO     | S                                         |                    |                    |                        | С          |                                                  |
| UCS2000TM                                            |                   | <del></del> | C                           | مسامامه ه   | 2000        | Universit  | Tr of    | Florida                              | A 11 D                                           | iahta    | Decem     | .d                                        |                    |                    | -                      | 3          | Zersion 4.1                                      |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |              |              |                             |            | SI       | HOR    | TR       | REPO                                 | R           | T         |           |                                             |                  |                       |                        |           |                                        |
|------------------------------------------------------|--------------|--------------|-----------------------------|------------|----------|--------|----------|--------------------------------------|-------------|-----------|-----------|---------------------------------------------|------------------|-----------------------|------------------------|-----------|----------------------------------------|
| General Inf                                          | ormation     |              |                             |            |          |        | S        | ite In                               | for         | mati      | on        |                                             |                  |                       |                        |           |                                        |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med          | U.<br>04/3   | SAI<br>SAI<br>30/12<br>PEAK |            |          |        | A<br>J   | nterse<br>krea T<br>urisdi<br>knalys | ype<br>ctic | e<br>on   |           | COLLE<br>CARLS<br>All of<br>CARLSI<br>ALT1/ | SB.<br>the<br>BA | AD '<br>r are<br>D-IN | VILL.<br>eas<br>IT.#15 | ст        |                                        |
| Volume an                                            | d Timing In  | put          |                             |            |          |        |          |                                      |             |           |           |                                             |                  |                       |                        |           |                                        |
|                                                      |              |              |                             | EB         |          |        |          | WE                                   | 3           |           |           | NB                                          |                  |                       |                        | SB        |                                        |
|                                                      |              |              | <u>LT</u>                   | TH         | R        | _      | T        | TH                                   | 4           | RT        | LT        | TH                                          | +                | RT_                   | LT                     | TH        | RT                                     |
| Num. of Lar                                          | nes          |              | 1                           | 1          | 1        |        | 1        | 1                                    | 4           | 0         | 1         | 2                                           | L                | 0                     | 1                      | 2         | 0                                      |
| Lane group                                           |              |              | L                           | LT         | R        |        | <u>'</u> | TR                                   | ╛           |           | L         | TR                                          |                  |                       | L                      | TR        |                                        |
| Volume (vpl                                          |              |              | 392                         | 10         | 55       |        | 5        | 5                                    |             | 15        | 150       | 1723                                        |                  | 5                     | 15                     | 1030      | 358                                    |
| % Heavy v                                            | eh           |              | 1                           | 1          | 1        |        | 1        | 1                                    | +           | 1         | 1         | 2                                           | _                | 1                     | 1                      | 2         | 1                                      |
| PHF<br>Actuated (P                                   | /^)          |              | 0.95<br>A                   | 0.95<br>A  | 0.9<br>A |        | 95<br>4  | 0.95<br>A                            | +           | 0.95<br>A | 0.95<br>A | 0.95<br>A                                   |                  | .95<br>A              | 0.95<br>A              | 0.95<br>A | 0.95<br>A                              |
| Startup lost                                         |              |              | 2.0                         | 2.0        | 2.0      |        | .0       | 2.0                                  | +           |           | 2.0       | 2.0                                         | H                | <u>~</u> 1            | 2.0                    | 2.0       |                                        |
| Ext. eff. gre                                        |              |              | 2.0                         | 2.0        | 2.0      | _      | 0        | 2.0                                  | +           | -         | 2.0       | 2.0                                         | T                |                       | 2.0                    | 2.0       | 1                                      |
| Arrival type                                         |              | ·            | 4                           | 4          | 4        | 7      | 4        | 4                                    |             |           | 5         | 5                                           |                  |                       | 5                      | 5         |                                        |
| Unit Extensi                                         | ion          |              | 3.0                         | 3.0        | 3.0      | 3.     | .0       | 3.0                                  |             |           | 3.0       | 3.0                                         |                  |                       | 3.0                    | 3.0       |                                        |
| Ped/Bike/R                                           | TOR Volume   | <del>)</del> | 5                           | 5          | 0        |        | 5        | 5                                    |             | 0         | 5         | 5                                           | L                | 0                     | 5                      | 5         | 150                                    |
| Lane Width                                           |              |              | 12.0                        | 12.0       | 12.      | 0 12   | 2.0      | 12.0                                 |             |           | 12.0      | 12.0                                        |                  |                       | 12.0                   | 12.0      |                                        |
| Parking/Gra                                          | ide/Parking  |              | Ν                           | 0          | Ν        | /      | ٧        | 0                                    |             | N         | N         | 0                                           |                  | N                     | Ν                      | 0         | N                                      |
| Parking/hr                                           |              |              |                             |            |          |        |          |                                      | ┙           |           |           |                                             | L                |                       |                        |           |                                        |
| Bus stops/h                                          | Γ            | ·            | 0                           | 0          | 0        |        | )        | 0                                    |             |           | 0         | 0                                           |                  |                       | 0                      | 0         |                                        |
| Unit Extensi                                         | ion          |              | 3.0                         | 3.0        | 3.0      | 3.     | .0       | 3.0                                  |             |           | 3.0       | 3.0                                         |                  |                       | 3.0                    | 3.0       |                                        |
| Phasing                                              | EB Only      |              | Perm                        | 03         | 3        |        | 04       |                                      |             | xcl. L    | _         | hru & R                                     |                  |                       | 07                     |           | 80                                     |
| Timing                                               | G = 17.0     | G =          |                             | G =        |          | G:     |          |                                      |             | = 14      |           | 5 = 59.0                                    | '                | G=                    |                        | G =       |                                        |
|                                                      | Y = 5        | Y = .        |                             | Υ =        |          | Υ =    | =        |                                      | Y :         | = 5       |           | ′ = 5<br>ycle Len                           | atk              | Υ =                   |                        | Y =       |                                        |
|                                                      | Analysis (hr |              |                             | l Dal      |          | d      |          | e D.                                 | 4.          | uma i n   |           |                                             | gu               | 10-                   | - 120.                 | U         |                                        |
| Lane Gro                                             | up Capac     | πιγ, C       |                             | or Dera    | ay, i    | anu    |          |                                      | :te         | <u> </u>  | iatioi    |                                             |                  |                       | Г                      | SB        |                                        |
|                                                      |              |              | EB                          | 1          | +        |        | Т        | VB                                   | <del></del> |           | 4.50      | NB<br>Loss                                  | т-               |                       |                        |           |                                        |
| Adj. flow rat                                        | e            | 207          | 217                         | 58         | _        | 5      |          | 21                                   | _           | -         | 158       | 1819                                        | ╀                |                       | 16                     | 1303      |                                        |
| Lane group                                           | cap.         | 410          | 406                         | 220        |          | 147    | 1        | 34                                   |             |           | 208       | 1743                                        | ┸                |                       | 208                    | 1694      |                                        |
| v/c ratio                                            |              | 0.50         | 0.53                        | 0.26       | 3        | 0.03   | 0.       | .16                                  |             | (         | 0.76      | 1.04                                        |                  |                       | 0.08                   | 0.77      |                                        |
| Green ratio                                          |              | 0.27         | 0.27                        | 0.14       | 1 (      | 0.08   | 0.       | .08                                  |             | (         | 0.12      | 0.49                                        |                  | •                     | 0.12                   | 0.49      |                                        |
| Unif. delay                                          | d1           | 36.5         | 37.6                        | 45.9       | , (      | 50.6   | 5        | 1.1                                  |             |           | 51.4      | 30.5                                        | T                |                       | 47.2                   | 24.9      |                                        |
| Delay factor                                         | k            | 0.11         | 0.14                        | 0.11       | , ,      | 0.11   | 0.       | .11                                  |             | (         | 0.31      | 0.50                                        | T                |                       | 0.11                   | 0.32      | ************************************** |
| Increm. dela                                         | ay d2        | 1.0          | 1.4                         | 0.6        | 丁        | 0.1    | 0        | ).5                                  | T           |           | 15.0      | 33.9                                        | T                |                       | 0.2                    | 2.2       |                                        |
| PF factor                                            |              | 1.000        | 1.000                       | 1.00       | 0 1      | .000   | 1.       | 000                                  |             | C         | 0.912     | 0.355                                       | Ţ                |                       | 0.912                  | 0.355     | ;                                      |
| Control dela                                         | ау           | 37.6         | 39.0                        | 46.6       | 3 (      | 50.7   | 5        | 1.6                                  |             | (         | 61.9      | 44.8                                        |                  |                       | 43.2                   | 11.1      |                                        |
| Lane group                                           | LOS          | D            | D                           | D          |          | D      |          | D                                    |             |           | E         | D                                           |                  |                       | D                      | В         |                                        |
| Apprch. dela                                         | ay           | 3            | 9.3                         |            |          | ,      | 51.4     | !                                    |             |           | 4         | 6.1                                         |                  |                       |                        | 11.5      |                                        |
| Approach L                                           | os           |              | D                           |            |          |        | D        |                                      |             |           |           | D                                           |                  |                       |                        | В         |                                        |
| Intersec. de                                         | lay          | 3            | 3.3                         |            | $\neg$   |        |          | Ir                                   | iter        | secti     | on LO     | S                                           |                  |                       |                        | С         |                                        |
| HCS2000 <sup>TM</sup>                                |              | -            | C                           | opyright © | 3 2000   | Hniver | eity o   | f Florids                            | . A1        | 1 Rights  | Reserve   | d                                           |                  |                       | _                      | 7         | Version 4.1:                           |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |             |                                       |                             |            | SH            | ORTR         | EPC                                  | )R           | T               |           |                   |                      |                         |            |       |             |
|------------------------------------------------------|-------------|---------------------------------------|-----------------------------|------------|---------------|--------------|--------------------------------------|--------------|-----------------|-----------|-------------------|----------------------|-------------------------|------------|-------|-------------|
| General Inf                                          | ormation    |                                       |                             |            |               | S            | ite In                               | for          | rmatic          | n         |                   |                      |                         |            |       |             |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med         | U<br>04/3                             | SAI<br>SAI<br>30/12<br>PEAK |            |               | A<br>J       | nterse<br>.rea T<br>urisdi<br>.nalys | yp:          | e<br>on         |           | C,<br>Al.<br>CARL | ANN<br>l oth<br>LSB/ | ION .<br>er ar<br>4D-li |            |       |             |
| Volume an                                            | d Timing I  | nput                                  |                             |            |               |              |                                      |              |                 |           |                   |                      |                         |            |       | į           |
|                                                      |             |                                       |                             | EB         |               |              | WE                                   | _            |                 |           | N                 |                      |                         |            | SB    |             |
|                                                      |             |                                       | LT                          | TH         | RT            | LT           | TH                                   | 4            | RT              | LT        | <u> </u>          | 1                    | RT                      | LT         | TH    | RT          |
| Num. of Lar                                          | nes         |                                       | 2                           | 2          | 0             | 2            | 2                                    | 4            | 0               | 2         | 2                 |                      | 1                       | 2          | 2     | 1           |
| Lane group                                           |             |                                       | L                           | TR         |               | L            | TR                                   |              |                 | L         | T                 |                      | R                       | L          | T     | R           |
| Volume (vp.                                          |             |                                       | 195                         | 400        | 50            | 515          | 800                                  |              | 45              | 110       | 44:               | 5                    | 550                     | 60         | 1100  | 260         |
| % Heavy v                                            | eh          |                                       | 2                           | 2          | 2             | 2            | 2                                    | _            | 2               | 2         | 2                 | _                    | 2                       | 2          | 2     | 2           |
| PHF<br>Actuated (P                                   | )/A \       |                                       | 0.95                        | 0.95       | 0.95          | 0.95         | 0.95                                 | <del>'</del> | 0.95<br>A       | 0.95<br>A | 0.9<br>A          | 5 (                  | ).95<br>A               | 0.95<br>A  | 0.95  | 0.95<br>A   |
| Startup lost                                         |             |                                       | A<br>2.0                    | A<br>2.0   | A             | 2.0          | A<br>2.0                             | $\dashv$     | А               | 2.0       | 2.0               | +                    | 2.0                     | 2.0        | 2.0   | 2.0         |
| Ext. eff. gre                                        |             |                                       | 2.0                         | 2.0        |               | 2.0          | 2.0                                  | _            |                 | 2.0       | 2.0               | _                    | 2.0                     | 2.0        | 2.0   | 2.0         |
| Arrival type                                         |             |                                       | 5                           | 5          |               | 5            | 5                                    |              |                 | 5         | 5                 |                      | 3                       | 5          | 5     | 5           |
| Unit Extens                                          | ion         |                                       | 3.0                         | 3.0        |               | 3.0          | 3.0                                  | T            |                 | 3.0       | 3.0               | )                    | 3.0                     | 3.0        | 3.0   | 3.0         |
| Ped/Bike/R                                           | TOR Volum   | е                                     | 5                           |            | 0             | 5            |                                      |              | 0               | 5         | 5                 |                      | 0                       | 5          | 5     | 0           |
| Lane Width                                           |             |                                       | 12.0                        | 12.0       |               | 12.0         | 12.0                                 | )            |                 | 12.0      | 12.               | 0 '                  | 12.0                    | 12.0       | 12.0  | 12.0        |
| Parking/Gra                                          | ade/Parking |                                       | N                           | 0          | N             | N            | 0                                    |              | Ν               | Ν         | 0                 |                      | Ν                       | Ν          | 0     | N           |
| Parking/hr                                           |             |                                       |                             |            |               |              |                                      |              |                 |           |                   |                      |                         |            |       |             |
| Bus stops/h                                          |             |                                       | 0                           | 0          |               | 0            | 0                                    |              |                 | 0         | 0                 |                      | 0                       | 0          | 0     | 0           |
| Unit Extens                                          | ion         |                                       | 3.0                         | 3.0        |               | 3.0          | 3.0                                  |              |                 | 3.0       | 3.0               | )                    | 3.0                     | 3.0        | 3.0   | 3.0         |
| Phasing                                              | Excl. Left  |                                       | Only                        | Thru       |               | 04           |                                      | _            | xcl. Le         | _         | hru 8             |                      |                         | 07         |       | 80          |
| Timing                                               | G = 11.0    | G =                                   |                             | G = 2      |               | G =          |                                      |              | = 17.           |           | = 40              | 6.0                  | G                       |            | G =   |             |
| Duration of                                          | Y = 5       | Y = (rs) = 0 '                        |                             | Y = 5      | )             | Y =          |                                      | Υ            | = 5             |           | = 5               | ona                  | Y:                      | =<br>= 140 | Y =   |             |
|                                                      |             |                                       |                             | l Dal      | ax. a         | -d I O       | <u> </u>                             |              | in              |           |                   | eng                  | III C                   | - 140      | 7.0   |             |
| Lane Gro                                             | up Capa     | City, C                               |                             | n Dei      | ay, aı        |              | 3 DE                                 | יוט          | T 11131111<br>T |           | 1B                |                      |                         | -          | SB    |             |
| A 12 G                                               |             | 005                                   | EB                          | Т          | 5.40          | WB           |                                      |              | 110             | -         |                   | F-76                 | +                       | 00         |       | 074         |
| Adj. flow rat                                        |             | 205                                   | 474                         | +          | 542           | 889          | -                                    |              | 116             | 46        |                   | 579                  | -                       | 63         | 1158  | 274         |
| Lane group                                           | сар.        | 270                                   | 523                         |            | 884           | 1156         |                                      |              | 417             | 11        | _                 | 966                  | -                       | 417        | 1165  | 688         |
| v/c ratio                                            |             | 0.76                                  | 0.91                        |            | 0.61          | 0.77         | $\perp$                              |              | 0.28            | 0.4       | 10                | 0.60                 | )                       | 0.15       | 0.99  | 0.40        |
| Green ratio                                          |             | 0.08                                  | 0.15                        |            | 0.26          | 0.33         |                                      |              | 0.12            | 0.3       | 33                | 0.62                 | 2                       | 0.12       | 0.33  | 0.44        |
| Unif. delay                                          | d1          | 63.2                                  | 58.5                        |            | 45.9          | 42.2         |                                      |              | 55.9            | 36        | .4                | 16.0                 | )                       | 55.0       | 46.9  | 26.4        |
| Delay factor                                         | rk          | 0.31                                  | 0.43                        |            | 0.20          | 0.32         |                                      |              | 0.11            | 0.1       | 1                 | 0.19                 | 9                       | 0.11       | 0.50  | 0.11        |
| increm. dela                                         | ay d2       | 11.8                                  | 19.5                        |            | 1.3           | 3.2          | $\top$                               |              | 0.4             | 0.        | 2                 | 1.0                  |                         | 0.2        | 24.8  | 0.4         |
| PF factor                                            |             |                                       |                             |            | 0.769         | 0.674        | 1                                    |              | 0.908           | 3 0.6     | 74                | 1.00                 | 00                      | 0.908      | 0.674 | 0.470       |
| Control dela                                         | ау          | 71.4                                  | 71.1                        |            | 36.5          | 31.7         |                                      |              | 51.1            | 24        | .7                | 17.0                 | 2                       | 50.1       | 56.4  | 12.8        |
| Lane group                                           | LOS         | E                                     | E                           |            | D             | С            |                                      |              | D               |           | ;                 | В                    |                         | D          | E     | В           |
| Apprch. del                                          | ay          | 71                                    | 1.2                         | •          |               | 33.5         |                                      |              |                 | 23.5      |                   |                      |                         |            | 48.2  |             |
| Approach L                                           | os          | ı                                     | Ē                           |            |               | С            |                                      |              |                 | С         |                   |                      |                         |            | D     |             |
| Intersec. de                                         | lay         | 4                                     | 1.0                         |            |               |              | Inte                                 | rse          | ection I        | LOS       |                   | ·                    |                         |            | D     |             |
| HCS2000 <sup>TM</sup>                                |             | · · · · · · · · · · · · · · · · · · · | Co                          | onvright @ | •<br>⊇ 2000 U | niversity of | f Florid                             | a. A1        | ll Rights       | Reserve   | <br>I             |                      |                         |            |       | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                   |             |                             |              | SH           | ORT R         | EPC                                  | R          | T       |          |                |                       |                       |              |          |       |
|------------------------------------------------------|-------------------|-------------|-----------------------------|--------------|--------------|---------------|--------------------------------------|------------|---------|----------|----------------|-----------------------|-----------------------|--------------|----------|-------|
| General Inf                                          | ormation          |             |                             |              |              | S             | ite In                               | foı        | rmatic  | n        |                |                       |                       |              |          |       |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med               | U<br>04/:   | SAI<br>SAI<br>30/12<br>PEAK |              |              | J             | nterse<br>irea T<br>urisdi<br>inalys | yp<br>ctic | e<br>on | ВС       | CAF            | CAN<br>All of<br>RLSI | NON<br>her a<br>BAD-l |              | ł        |       |
| Volume an                                            | d Timing I        | nput        |                             |              |              |               |                                      |            |         |          |                |                       |                       |              |          |       |
|                                                      |                   |             | LT                          | EB<br>TH     | RT           | LT            | WE<br>TH                             | <u> </u>   | RT      | LT       |                | NB<br>TH              | RT                    | LT           | SB<br>TH | RT    |
| Num, of Lar                                          | nes               |             | 2                           | 2            | 0            | 2             | 2                                    | ┪          | 0       | 2        | _              | 2                     | 1                     | 2            | 2        | 1     |
| Lane group                                           |                   |             | L                           | TR           | <del> </del> | $\frac{1}{L}$ | TR                                   | ┪          |         | L        |                | T                     | R                     | 1 1          | T        | R     |
| Volume (vp                                           | h)                |             | 197                         | 400          | 50           | 515           | 800                                  | ┪          | 46      | 110      |                | 58                    | 550                   | 63           | 1135     | 265   |
| % Heavy v                                            |                   |             | 2                           | 2            | 2            | 2             | 2                                    | 十          | 2       | 2        |                | 2                     | 2                     | 2            | 2        | 2     |
| PHF                                                  |                   |             | 0.95                        | 0.95         | 0.95         | 0.95          | 0.95                                 |            | 0.95    | 0.98     | <i>0.</i>      | 95                    | 0.95                  | 0.95         | 0.95     | 0.95  |
| Actuated (P                                          |                   |             | Α                           | Α            | Α            | Α             | Α                                    | $\Box$     | Α       | Α        |                | A                     | Α                     | Α            | Α        | Α     |
| Startup lost                                         |                   |             | 2.0                         | 2.0          | ļ <u>.</u>   | 2.0           | 2.0                                  | 4          |         | 2.0      |                | 2.0                   | 2.0                   | 2.0          | 2.0      | 2.0   |
| Ext. eff. gre                                        | en                |             | 2.0<br>5                    | 2.0<br>5     |              | 2.0<br>5      | 2.0<br>5                             | +          |         | 2.0<br>5 |                | .0<br>5               | 2.0<br>3              | 2.0<br>5     | 2.0<br>5 | 2.0   |
| Arrival type<br>Unit Extens                          | ion               |             | 3.0                         | 3.0          | <u> </u>     | 3.0           | 3.0                                  | $\dashv$   |         | 3.0      | _              | 3.0                   | 3.0                   | 3.0          | 3.0      | 3.0   |
| Ped/Bike/R                                           |                   | e           | 5                           | 0.0          | 0            | 5             | 5.0                                  | -          | 0       | 5        |                | 5                     | 0                     | 5            | 5        | 0.0   |
| Lane Width                                           | TOTE VOIGITI      |             | 12.0                        | 12.0         | Ť            | 12.0          | 12.0                                 |            |         | 12.0     |                | 2.0                   | 12.0                  |              | 12.0     | 12.0  |
| Parking/Gra                                          | de/Parking        |             | N                           | 0            | N            | N             | 0                                    | T          | Ν       | Ν        | 7              | )                     | Ν                     | N            | 0        | N     |
| Parking/hr                                           |                   |             |                             |              |              |               |                                      |            |         |          |                |                       |                       |              |          |       |
| Bus stops/h                                          | r                 |             | 0                           | 0            |              | 0             | 0                                    |            |         | 0        |                | 0                     | 0                     | 0            | 0        | 0     |
| Unit Extens                                          | ion               |             | 3.0                         | 3.0          | Ī            | 3.0           | 3.0                                  |            |         | 3.0      | 3              | 3.0                   | 3.0                   | 3.0          | 3.0      | 3.0   |
| Phasing                                              | Excl. Left        |             | Only                        | Thru         |              | 04            |                                      |            | xcl. Le |          | Thru           |                       |                       | 07           |          | 08    |
| Timing                                               | G = 11.0          | G =         |                             | G = 2        |              | G =           |                                      |            | = 17.   |          | G =            |                       | G<br>Y                |              | G =      |       |
| Duration of                                          | Y = 5             | Y = 0       | _                           | Y = 8        | )            | Y =           |                                      | Y          | = 5     |          | Y = ;<br>alov: |                       |                       | =<br>= 140   | Y =      |       |
| Lane Gro                                             |                   |             |                             | l Dal        | av aı        | nd I O        | S De                                 | tο         | rmin    |          | _              | LOII                  | giii O                | 7-70         |          |       |
| Lane Old                                             | up Capa           | l           | EB                          | i Dei        | ay, ai       | WB            | O De                                 |            | T       | alic     | NB             |                       |                       |              | SB       |       |
| Adj. flow rat                                        | e                 | 207         | 474                         |              | 542          | 890           | Т                                    |            | 116     | 1        | 82             | 57                    | 79                    | 66           | 1195     | 279   |
| Lane group                                           | <del></del>       | 270         | 523                         | $\dagger$    | 884          | 1156          | <del>-   -</del>                     |            | 417     |          | 165            | 96                    |                       | 417          | 1165     | 688   |
| v/c ratio                                            |                   | 0.77        | 0.91                        | -            | 0.61         | 0.77          | -                                    |            | 0.28    | -        | .41            |                       | 60                    | 0.16         | 1.03     | 0.41  |
| Green ratio                                          |                   | 0.08        | 0.15                        |              | 0.26         | 0.33          |                                      |            | 0.12    | o        | .33            | 0.0                   | 62                    | 0.12         | 0.33     | 0.44  |
| Unif. delay                                          |                   | 63.2        | 58.5                        |              | 45.9         | 42.2          |                                      |            | 55.9    | 3        | 6.5            | 16                    | .0                    | 55.1         | 47.0     | 26.5  |
| Delay factor                                         | ·k                | 0.32        | 0.43                        |              | 0.20         | 0.32          | 十                                    |            | 0.11    | d        | .11            | o.                    | 19                    | 0.11         | 0.50     | 0.11  |
| Increm. dela                                         | ay d2             | 12.5        | 19.5                        |              | 1.3          | 3.2           |                                      |            | 0.4     | 7        | ).2            | 1.                    | .0                    | 0.2          | 33.1     | 0.4   |
| PF factor                                            | <u> </u>          |             |                             |              | 0.769        | 0.674         | 4                                    |            | 0.908   | 3 0      | 674            | 1.0                   | 000                   | 0.908        | 0.674    | 0.470 |
| Control dela                                         | ontrol delay 72.1 |             |                             |              | 36.5         | 31.7          |                                      |            | 51.1    | 2        | 4.8            | 17                    | 7.0                   | 50.2         | 64.8     | 12.8  |
| Lane group                                           | ane group LOS E   |             |                             |              | D            | С             |                                      |            | D       |          | С              | E                     | 3                     | D            | Ε        | В     |
| Apprch. del                                          | ay                | 7           | 1.4                         |              |              | 33.5          |                                      |            |         | 23.      | 3              |                       |                       |              | 54.8     |       |
| Approach L                                           | os                |             | E                           |              |              | С             |                                      |            |         | С        |                |                       |                       |              | D        |       |
| Intersec. de                                         | lay               |             |                             |              | Inte         | rse           | ection I                             | LOS        |         |          |                |                       | D                     |              |          |       |
| HC\$2000 <sup>TM</sup>                               |                   | opyrriæbt @ | • 2000 T                    | niversity of | f Elorida    | . Δ1          | II Rights                            | Reserv     | eđ      |          |                |                       |                       | Version 4.1. |          |       |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                    |            |                             |                | SHO                                              | ORT R       | EPO                                  | )R          | T            |          |                |                     |                        |          |            |                                       |
|------------------------------------------------------|--------------------|------------|-----------------------------|----------------|--------------------------------------------------|-------------|--------------------------------------|-------------|--------------|----------|----------------|---------------------|------------------------|----------|------------|---------------------------------------|
| General Inf                                          | ormation           |            |                             |                |                                                  | S           | ite In                               | for         | rmatic       | n        |                |                     |                        |          |            | ····-                                 |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                | U<br>04/3  | SAI<br>SAI<br>30/12<br>PEAK |                |                                                  | J           | nterse<br>krea T<br>urisdi<br>knalys | ype<br>ctic | e<br>on      |          | C<br>Ai<br>CAR | ANN<br>I oth<br>LSB | NON<br>ner al<br>IAD-l |          | }          |                                       |
| Volume an                                            | d Timing I         | nput       |                             |                |                                                  |             |                                      |             |              |          |                |                     |                        |          |            |                                       |
|                                                      |                    |            | <del> </del>                | EB             | Lot                                              | 1           | WE                                   |             | DT.          |          | N              |                     |                        | +,-      | SB         | Тот                                   |
| Num, of Lar                                          | nes                |            | <u>LT</u><br>2              | TH<br>2        | RT<br>0                                          | LT<br>2     | TH<br>2                              | ╅           | RT<br>0      | LT<br>2  | T <br>  2      | $\rightarrow$       | RT<br>1                | LT<br>2  | TH<br>2    | RT<br>1                               |
| Lane group                                           |                    |            | 1                           | TR             |                                                  | 17          | TR                                   | ┪           |              | L        | 1 7            | _                   | R                      | 1 7      | T          | R                                     |
| Volume (vpl                                          | 2)                 |            | 260                         | 600            | 85                                               | 450         | 600                                  | +           | 60           | 50       | 144            |                     | 600                    | 60       | 705        | 200                                   |
| % Heavy ve                                           |                    |            | 2                           | 2              | 2                                                | 2           | 2                                    | $\forall$   | 2            | 2        | 2              |                     | 2                      | 2        | 2          | 2                                     |
| PHF                                                  | 511                |            | 0.95                        | 0.95           | 0.95                                             | 0.95        | 0.95                                 | ;           | 0.95         | 0.95     | 0.9            |                     | 0.95                   |          | 0.95       | 0.95                                  |
| Actuated (P                                          | /A)                |            | Α                           | Α              | Α                                                | Α           | Α                                    |             | Α            | Α        | Α              |                     | Α                      | Α        | Α          | Α                                     |
| Startup lost                                         |                    |            | 2.0                         | 2.0            | ļ                                                | 2.0         | 2.0                                  | $\bot$      |              | 2.0      | 2.0            |                     | 2.0                    | 2.0      | 2.0        | 2.0                                   |
| Ext. eff. gree                                       | <u>en</u>          |            | 2.0                         | 2.0            |                                                  | 2.0<br>5    | 2.0<br>5                             | +           |              | 2.0<br>5 | 2.6            |                     | <u>2.0</u><br>3        | 2.0<br>5 | 2.0<br>5   | 2.0<br>5                              |
| Arrival type<br>Unit Extensi                         | lon                |            | 5<br>3.0                    | 5<br>3.0       | ╂                                                | 3.0         | 3.0                                  | +           |              | 3.0      | 3.             | _                   | 3.0                    | 3.0      | 3.0        | 3.0                                   |
| Ped/Bike/R                                           |                    | Δ          | 5                           | 3.0            | 0                                                | 5.0         | 3.0                                  | +           | 0            | 5        | 5              |                     | 0                      | 5        | 5          | 0                                     |
| Lane Width                                           | I OIX VOIGITI      | <u> </u>   | 12.0                        | 12.0           | <del>                                     </del> | 12.0        | 12.0                                 | ,           |              | 12.0     | 12.            | _                   | 12.0                   |          | 12.0       | 12.0                                  |
| Parking/Gra                                          | de/Parking         |            | N                           | 0              | Ν                                                | Ν           | 0                                    | 1           | N            | Ν        | 0              |                     | Ν                      | N        | 0          | N                                     |
| Parking/hr                                           |                    |            |                             |                |                                                  |             |                                      |             |              |          |                |                     |                        |          |            |                                       |
| Bus stops/h                                          | r                  |            | 0                           | 0              |                                                  | 0           | 0                                    |             |              | 0        | 0              |                     | 0                      | 0        | 0          | 0                                     |
| Unit Extensi                                         | ion                |            | 3.0                         | 3.0            |                                                  | 3.0         | 3.0                                  |             |              | 3.0      | 3.             | 0                   | 3.0                    | 3.0      | 3.0        | 3.0                                   |
| Phasing                                              | Excl. Left         |            | Only                        | Thru           |                                                  | 04          |                                      | _           | xcl. Le      |          | hru 8          |                     |                        | 07       |            | 08                                    |
| Timing                                               | G = 13.0<br>Y = 5  | G =<br>Y = |                             | G = 2<br>Y = 8 |                                                  | G =<br>Y =  |                                      |             | = 9.0<br>= 5 |          | = 5<br>= 5     | 7.0                 | G<br>Y                 |          | G =<br>Y = |                                       |
| Duration of                                          |                    |            |                             | 1 - 5          | ·                                                | <u> </u>    |                                      | Ţ           | - 3          |          |                | enc                 |                        | <u> </u> |            |                                       |
| Lane Gro                                             |                    |            |                             | l Dela         | av. ar                                           | nd LO       | S De                                 | ete         | rmin         |          | ===            |                     | ,                      |          |            | · · · · · · · · · · · · · · · · · · · |
| <u> </u>                                             | ир опри            |            | EB                          |                | <u>,</u>                                         | WB          |                                      |             | 1            |          | NB             |                     |                        |          | SB         |                                       |
| Adj. flow rat                                        | e                  | 274        | 721                         | T              | 474                                              | 695         |                                      |             | 53           | 15       | 16             | 63                  | 2                      | 63       | 742        | 211                                   |
| Lane group                                           | сар.               | 319        | 671                         |                | 663                                              | 1024        |                                      |             | 221          | 14       | 44             | 98                  | 9                      | 221      | 1444       | 834                                   |
| v/c ratio                                            |                    | 0.86       | 1.07                        |                | 0.71                                             | 0.68        |                                      |             | 0.24         | 1.0      | )5             | 0.6                 | 4                      | 0.29     | 0.51       | 0.25                                  |
| Green ratio                                          |                    | 0.09       | 0.19                        |                | 0.19                                             | 0.29        |                                      |             | 0.06         | 0.4      | 11             | 0.6                 | 4                      | 0.06     | 0.41       | 0.54                                  |
| Unif. delay                                          | <b>d1</b>          | 62.6       | 56.5                        |                | 52.9                                             | 43.7        |                                      |             | 62.2         | 41       | .5             | 15.                 | 6                      | 62.4     | 31,1       | 17.5                                  |
| Delay factor                                         | · k                | 0.39       | 0.50                        |                | 0.28                                             | 0.25        |                                      |             | 0.11         | 0.8      | 50             | 0.2                 | 2                      | 0.11     | 0.12       | 0.11                                  |
| Increm. dela                                         | ay d2              | 15.1       | 51.2                        |                | 2.6                                              | 1.3         |                                      |             | 0.4          | 34       | .4             | 1.0                 | )                      | 0.5      | 0.2        | 0.1                                   |
| PF factor                                            |                    |            |                             |                | 0.841                                            | 0.724       | 4                                    |             | 0.954        | 0.5      | 42             | 1.0                 | 00                     | 0.954    | 0.542      | 0.231                                 |
| Control dela                                         | Control delay 73.5 |            |                             |                | 47.1                                             | 32.9        |                                      |             | 59.8         | 56       | .9             | 16.                 | 6                      | 60.1     | 17.1       | 4.1                                   |
| Lane group                                           | Ε                  | F          |                             | D              | С                                                |             |                                      | E           | E            |          | В              |                     | E                      | В        | Α          |                                       |
| Apprch. dela                                         | ay                 | 9          | 1.8                         |                |                                                  | 38.6        |                                      |             |              | 45.4     |                |                     |                        |          | 17.1       |                                       |
| Approach L                                           | os                 |            | F                           |                |                                                  | D           |                                      |             |              | D        |                |                     |                        |          | В          |                                       |
| Intersec. de                                         | lay                |            |                             |                | Inte                                             | гsе         | ection                               | LOS         |              |          |                |                     | D                      |          |            |                                       |
| HC52000 <sup>TM</sup>                                |                    |            | C                           | onvright (     | 3 2000 FE                                        | niversity o | f Florid                             | a Al        | Il Rights    | D ecerue | ı              |                     |                        |          |            | Version 4.1                           |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                       |                                       |                                                |               | <u> </u>                                         | SH                                               | ORT R          | EPC                   | R         | T        |           |                 |      |               |            |           |              |
|---------------------------------------|---------------------------------------|------------------------------------------------|---------------|--------------------------------------------------|--------------------------------------------------|----------------|-----------------------|-----------|----------|-----------|-----------------|------|---------------|------------|-----------|--------------|
| General Inf                           | ormation                              |                                                |               |                                                  |                                                  | S              | ite In                | for       | matic    | n         |                 |      |               |            |           |              |
| Analyst                               |                                       | U                                              | SAI           |                                                  |                                                  | Ir             | nterse                | ectio     | on       |           |                 |      | E BL<br>ON I  | LVD.@      |           |              |
| Agency or C                           | Co.                                   |                                                | SAI           |                                                  |                                                  | l <sub>A</sub> | rea T                 | ימע       | е        |           |                 |      | er ar         |            |           |              |
| Date Perfor<br>Time Period            |                                       |                                                | 30/12<br>PEAK |                                                  |                                                  | J              | u <mark>ris</mark> di | ctic      | on       |           | CARL            | SBA  | D-II          | NT.#16     |           |              |
|                                       |                                       |                                                | FLAN          |                                                  |                                                  | A              | nalys                 | is `      | Year     | BO.       | 4 <i>LT.</i> -: | 1/W  | ΙΤΗ           | PROJE      | CT        | ••••         |
| Volume an                             | nd Timing I                           | nput                                           | 1             | ===                                              |                                                  | _              | 144                   |           |          | ,         |                 |      |               |            |           |              |
|                                       |                                       |                                                | LT            | EB<br>TH                                         | RT                                               | LT             | WE<br>TH              |           | RT       | LT        | NB<br>TH        |      | RT            | LT         | SB<br>TH  | RT           |
| Num, of Lar                           | nes                                   |                                                | 2             | 2                                                | 0                                                | 2              | 2                     | ┪         | 0        | 2         | 2               | +    | 1             | 2          | 2         | 1            |
| Lane group                            |                                       |                                                | L             | TR                                               | 1                                                | L              | TR                    | 廿         |          | L         | T               | +    | R             | 1 7        | T         | R            |
| Volume (vpl                           |                                       |                                                | 266           | 600                                              | 85                                               | 450            | 600                   | +         | 64       | 50        | 1474            | 1 6  | 500           | 62         | 724       | 203          |
| % Heavy v                             |                                       |                                                | 2             | 2                                                | 2                                                | 2              | 2                     | 1         | 2        | 2         | 2               |      | 2             | 2          | 2         | 2            |
| PHF                                   |                                       |                                                | 0.95          | 0.95                                             | 0.95                                             | 0.95           | 0.95                  | 5 (       | 0.95     | 0.95      | 0.95            | 0    | .95           | 0.95       | 0.95      | 0.95         |
| Actuated (P                           |                                       |                                                | Α             | Α                                                | Α                                                | Α              | Α                     |           | Α        | Α         | Α               |      | Α             | Α          | Α         | Α            |
| Startup lost                          |                                       |                                                | 2.0           | 2.0                                              |                                                  | 2.0            | 2.0                   |           |          | 2.0       | 2.0             | _    | 2.0           | 2.0        | 2.0       | 2.0          |
| Ext. eff. gre                         | en                                    |                                                | 2.0           | 2.0                                              | ļ                                                | 2.0            | 2.0                   | _         |          | 2.0       | 2.0             | 1    | 2.0           | 2.0        | 2.0       | 2.0          |
| Arrival type                          | ·                                     |                                                | 5             | 5                                                | -                                                | 5              | 5                     | +         |          | 5         | 5               | -    | 3             | 5          | 5         | 5            |
| Unit Extens                           |                                       |                                                | 3.0           | 3.0                                              |                                                  | 3.0            | 3.0                   | +         | ^        | 3.0       | 3.0             |      | 3.0           | 3.0        | 3.0       | 3.0          |
| Ped/Bike/R <sup>-</sup><br>Lane Width | I OR Volum                            | <u>e                                      </u> | 5<br>12.0     | 12.0                                             | 0                                                | 5<br>12.0      | 12.0                  | ,         | 0        | 5<br>12.0 | 5<br>12.0       | 1    | 0<br>2.0      | 5<br>12.0  | 5<br>12.0 | 0<br>12.0    |
| Parking/Gra                           | de/Parking                            |                                                | , <u>z.</u> 0 | 0                                                | N                                                | N              | 0                     | $\forall$ | N        | N         | 0               | +    | N.            | N N        | 0         | N            |
| Parking/hr                            |                                       |                                                |               |                                                  |                                                  | <del> </del>   | Ť                     | 寸         |          |           | ۲               |      |               | 1          | 1         |              |
| Bus stops/h                           | r                                     |                                                | Ö             | 0                                                |                                                  | 0              | 0                     |           |          | 0         | 0               |      | 0             | 0          | 0         | 0            |
| Unit Extens                           | ion                                   |                                                | 3.0           | 3.0                                              |                                                  | 3.0            | 3.0                   | T         |          | 3.0       | 3.0             |      | 3.0           | 3.0        | 3.0       | 3.0          |
| Phasing                               | Excl. Left                            | WB                                             | Only          | Thru                                             | & RT                                             | 04             |                       | E         | xcl. Le  | ft T      | nru &           | RT   |               | 07         |           | 08           |
| Timing                                | G = 13.0                              | G =                                            |               | G = 2                                            |                                                  | G =            |                       |           | = 9.0    |           | = 57.           | .0   | G:            |            | G =       |              |
|                                       | Y = 5                                 | Y =                                            |               | Y = 8                                            | )                                                | Y =            |                       | Υ:        | = 5      |           | = 5             | n at | Υ:            | =<br>= 140 | Y =       |              |
| Duration of                           |                                       |                                                |               | l Dal                                            | 01/ 01                                           | 2410           | e Da                  | +-        | rmin     |           |                 | ngu  | пС            | - 140      | 7.0       |              |
| Lane Gro                              | up Capa                               | lity, C                                        | EB            | n Der                                            | ay, aı                                           | WB             | 3 De                  | ; te      | <u> </u> |           | В               |      |               |            | SB        |              |
| Adj. flow rat                         | · · · · · · · · · · · · · · · · · · · | 280                                            | 721           | I                                                | 474                                              | 699            | Т                     |           | 53       | 155       |                 | 632  | $\dashv$      | 65         | 762       | 214          |
| Lane group                            |                                       | 319                                            | 671           | +                                                | 663                                              | 1024           | +                     |           | 221      | 144       | -               | 989  | -             | 221        | 1444      | 834          |
| v/c ratio                             | сар.                                  | 0.88                                           | 1.07          | +                                                | 0.71                                             | 0.68           |                       |           | 0.24     | 1.0       | -               | ).64 | -             | 0.29       | 0.53      | 0.26         |
| Green ratio                           |                                       | 0.09                                           | 0.19          | +                                                | 0.19                                             | 0.29           |                       |           | 0.24     | 0.4       |                 | ).64 | -             | 0.06       | 0.41      | 0.54         |
| Unif. delay                           |                                       | 62.7                                           | 56.5          | +                                                | 52.9                                             | 43.7           | -                     |           | 62.2     | 41.       |                 | 15.6 | -             | 62.5       | 31.3      | 17.5         |
| Delay factor                          |                                       | 0.40                                           | 0.50          | +                                                | 0.28                                             | 0.25           | -                     |           | 0.11     | 0.5       | -+              | ).22 | $\rightarrow$ | 0.11       | 0.13      | 0.11         |
| Increm. dela                          |                                       | 17.4                                           | 51.2          | +                                                | 2.6                                              | 1.3            | _                     | ,         | 0.4      | 43.       | <del>- +</del>  | 1.0  | $\dashv$      | 0.5        | 0.3       | 0.1          |
| PF factor                             | ., u-                                 | 0.932                                          | 0.841         |                                                  | 0.841                                            | -              | 1                     |           | 0.954    |           | <del>- +</del>  | .00  | 0 1           |            | 0.542     | 0.231        |
| Control dela                          |                                       | 75.9                                           | 98.7          | <del>                                     </del> | 47.1                                             | 33.0           | -                     |           | 59.8     | 65.       |                 | 16.6 |               | 60.1       | 17.2      | 4.2          |
| Lane group                            | -                                     | E                                              | F             | +                                                | D                                                | C              | +                     |           | E        | E         | -+              | В    | 十             | E          | В         | A            |
| Apprch. dela                          |                                       | <u> </u>                                       | 2.3           |                                                  |                                                  | 38.7           |                       |           |          | 51.8      |                 |      | 十             |            | <br>17.2  | 1            |
| Approach L                            |                                       | -                                              | <u> </u>      |                                                  | <b></b>                                          | D              |                       |           |          | D         |                 |      | 十             |            | В         |              |
| Intersec. de                          |                                       |                                                | 9.8           |                                                  | <del>                                     </del> | _              | Inte                  | гsе       | ction I  |           |                 |      | 寸             |            | D         |              |
| HCS2000 <sup>TM</sup>                 | <u> </u>                              | L                                              | ····          | nvright (                                        | L 2000 U                                         | niversity of   |                       |           |          |           |                 |      |               |            |           | Version 4.11 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      | ·           |              |                             |           | SI             | HOF                                              | RT R        | EPC                                   | )R          | T         |        |                                              |           |                           |                                                  |           | · · · · · · · · · · · · · · · · · · ·            |
|------------------------------------------------------|-------------|--------------|-----------------------------|-----------|----------------|--------------------------------------------------|-------------|---------------------------------------|-------------|-----------|--------|----------------------------------------------|-----------|---------------------------|--------------------------------------------------|-----------|--------------------------------------------------|
| General Inf                                          | ormation    |              |                             |           |                |                                                  | S           | ite Int                               | for         | rmati     |        |                                              |           |                           |                                                  | · ·       |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med         | U:<br>08/2   | SAI<br>SAI<br>27/12<br>PEAK |           |                |                                                  | Aı<br>Ju    | iterse<br>rea Ty<br>urisdio<br>nalysi | ype<br>etic | e<br>on   |        | 0                                            |           | RAMP<br>ner are<br>IDE-IN | S<br>as<br>VT.#17                                |           |                                                  |
| Volume an                                            | d Timing Ir | put          |                             |           |                |                                                  |             |                                       |             |           |        |                                              |           |                           |                                                  |           |                                                  |
|                                                      |             |              |                             | EB        |                |                                                  |             | WE                                    | 3           |           | ╀.     |                                              | NB        |                           | <u> </u>                                         | SB        |                                                  |
| Num. of Lar                                          | 205         |              | LT<br>1                     | TH<br>2   | R <sup>-</sup> | <del>'  </del>                                   | LT<br>2     | TH<br>2                               | $\dashv$    | RT<br>0   | +      | _T<br>1                                      | TH<br>1   | RT<br>1                   | LT<br>0                                          | TH<br>2   | RT<br>0                                          |
|                                                      | 100         |              | L                           | T         | R              | +                                                | L           | TR                                    | ┪           |           | +      | <u>.                                    </u> | LT        | R                         | <del>                                     </del> | LTR       |                                                  |
| Lane group<br>Volume (vpl                            | h)          |              | 90                          | 605       | 308            |                                                  | <u> </u>    | 325                                   | $\dashv$    | 50        |        | -<br>15                                      | 50        | 180                       | 45                                               | 70        | 35                                               |
| % Heavy v                                            |             |              | 2                           | 2         | 2              | <del>,                                    </del> | 2           | 2                                     | ᅱ           | 2         |        | 2                                            | 2         | 2                         | 2                                                | 2         | 2                                                |
| PHF                                                  | <u> </u>    |              | 0.95                        | 0.95      | 0.9            | 5 (                                              | 0.95        | 0.95                                  | ;           | 0.95      |        | 95                                           | 0.95      | 0.95                      | 0.95                                             | 0.95      | 0.95                                             |
| Actuated (P                                          | /A)         |              | Α                           | Α         | Α              |                                                  | Α           | Α                                     | ┪           | Α         | 1      |                                              | Α         | Α                         | Α                                                | Α         | Α                                                |
| Startup lost                                         |             |              | 3.0                         | 3.0       | 3.0            |                                                  | 3.0         | 3.0                                   |             |           |        | 0                                            | 3.0       | 3.0                       |                                                  | 3.0       |                                                  |
| Ext. eff. gre                                        | en          |              | 2.0                         | 2.0       | 2.0            | ) .                                              | 2.0         | 2.0                                   | _           |           |        | .0                                           | 2.0       | 2.0                       |                                                  | 2.0       |                                                  |
| Arrival type                                         | •           |              | 5                           | 5         | 5              | +                                                | 5           | 5                                     | 4           |           | -      | 3                                            | 3         | 3                         | -                                                | 3         |                                                  |
| Unit Extensi                                         |             |              | 3.0<br>5                    | 3.0<br>10 | 3.0<br>0       | <u> </u>                                         | 3.0<br>5    | 3.0<br>10                             | -           | 0         |        | .0<br>5                                      | 3.0<br>10 | 3.0<br>0                  | 5                                                | 3.0<br>10 | 0                                                |
| Lane Width                                           | FOR Volume  | <del>)</del> | 12.0                        | 12.0      | 12.0           | 0 1                                              | 5<br>12.0   | 12.0                                  | $\dashv$    | U         | _      | 2.0                                          | 12.0      | 12.0                      | +*                                               | 12.0      | 0                                                |
| Parking/Gra                                          | de/Parking  |              | N N                         | 0         | N.             | _                                                | N           | 0                                     | $\exists$   | N         | -      | v                                            | 0         | N N                       | N                                                | 0         | N                                                |
| Parking/hr                                           |             |              |                             |           |                |                                                  |             | <u> </u>                              |             |           | Ť      | _                                            | _         |                           |                                                  |           |                                                  |
| Bus stops/h                                          | r           |              | 0                           | 0         | 0              |                                                  | 0           | 0                                     | 1           |           | 1      | 0                                            | 0         | 0                         |                                                  | 0         |                                                  |
| Unit Extensi                                         | ion         |              | 3.0                         | 3.0       | 3.0            | ) ,                                              | 3.0         | 3.0                                   |             |           | 3      | .0                                           | 3.0       | 3.0                       |                                                  | 3.0       |                                                  |
| Phasing                                              | Excl. Left  | Thru         | & RT                        | 03        | }              |                                                  | 04          |                                       | S           | SB Or     | ıly    | N                                            | B Only    |                           | 07                                               | (         | 08                                               |
| Timing                                               | G = 11.0    | G = .        |                             | G =       |                | G                                                |             |                                       | _           | = 9.0     | 9      |                                              | = 37.0    | G =                       |                                                  | G =       |                                                  |
|                                                      | Y = 4       | Y = 4        |                             | Y =       |                | Υ                                                | =           |                                       | Y           | = 4       |        |                                              | = 4       | Y =                       |                                                  | Y =       |                                                  |
| Duration of                                          |             |              |                             | I Dala    |                | اء د، د                                          | 10          | C Da                                  | 4-          |           | 4      | _                                            | cle Len   | gtn C :                   | = 100.                                           | 0         |                                                  |
| Lane Gro                                             | up Capac    | ity, C       | EB                          | Dela      | ıy, a          | and                                              |             | VB                                    | te          | rmir      | าสน    | <u>on</u>                                    | NB        |                           |                                                  | SB        |                                                  |
| Adj. flow rat                                        | Δ           | 95           | 637                         | 321       | +              | 289                                              |             | 95                                    | T           |           | 298    |                                              | 297       | 189                       |                                                  | 158       |                                                  |
| Lane group                                           | <del></del> | 177          | 922                         | 401       |                | 344                                              |             | 98<br>98                              | ┢           |           | 634    | _                                            | 642       | 557                       |                                                  | 265       |                                                  |
| v/c ratio                                            | оар.        | 0.54         | 0.69                        | 0.80      | -              | ).8 <b>4</b>                                     | -           | 44                                    | ╁           |           | 0.47   | $\rightarrow$                                | 0.46      | 0.34                      | _                                                | 0.60      | +-                                               |
| Green ratio                                          |             | 0.10         | 0.26                        | 0.26      | -              | 0.10                                             | -           | 26                                    | t           |           | 0.36   | -                                            | 0.36      | 0.36                      |                                                  | 0.08      |                                                  |
| Unif. delay                                          |             | 42.8         | 33.4                        | 34.6      | -              | 14.2                                             |             | 0.9                                   | t           |           | 24.7   | -                                            | 24.6      | 23.3                      |                                                  | 44.4      | +                                                |
| Delay factor                                         | <del></del> | 0.14         | 0.26                        | 0.34      |                | 0.38                                             |             | 11                                    | 1           |           | 0.11   | —⊦                                           | 0.11      | 0.11                      |                                                  | 0.19      | <del>                                     </del> |
|                                                      |             | 3.2          | 2.2                         | 11.0      | -              | 16.7                                             | <del></del> | 0.3                                   | t           |           | 0.6    | $\dashv$                                     | 0.5       | 0.4                       | -                                                | 3.6       |                                                  |
| PF factor                                            |             |              |                             | 0.76      |                | 0.926                                            | -           | 766                                   | t           |           | 1.00   | <del>,</del>                                 | 1.000     | 1.000                     |                                                  | 1.000     | +                                                |
| Control dela                                         | ny          | 42.8         | 27.8                        | 37.5      |                | 57.7                                             | -           | 4.0                                   | T           |           | 25.2   | -                                            | 25.1      | 23.7                      |                                                  | 48.1      |                                                  |
| Lane group                                           |             | D            | С                           | D         | 1              | E                                                | <u> </u>    | С                                     | T           | 十         | С      | $\dashv$                                     | С         | С                         |                                                  | D         | 1                                                |
| Apprch. dela                                         | <del></del> | 3.           | 2.1                         |           | 1              |                                                  | 38.2        |                                       | ا           |           |        | 24                                           | .8        | <u> </u>                  |                                                  | 48.1      | <u>l</u>                                         |
| Approach L                                           | os          | 1            | С                           |           | 十              |                                                  | D           |                                       |             |           |        | C                                            | )         |                           |                                                  | D         |                                                  |
| Intersec. de                                         | lay         | 3.           | 2.5                         |           | 1              |                                                  |             | I                                     | nte         | ersect    | tion   | LOS                                          | 3         |                           |                                                  | С         |                                                  |
| HC\$2000TM                                           |             |              | Co                          | nvright © | 2000           | Liniva                                           | voitu of    | Florido                               | Α.1         | 11 Diahta | . Done | n rod                                        |           |                           |                                                  | 7.0       | ersion 4.1                                       |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                   |                                       |                             |            | SH       | IORT         | RI             | EPO                                | RT                    |               |                 |                          |                                              |                                                  |             |                                                  |
|------------------------------------------------------|-------------------|---------------------------------------|-----------------------------|------------|----------|--------------|----------------|------------------------------------|-----------------------|---------------|-----------------|--------------------------|----------------------------------------------|--------------------------------------------------|-------------|--------------------------------------------------|
| General Inf                                          | ormation          |                                       |                             |            |          |              | Sit            | te Inf                             | orma                  | tior          | 1               |                          |                                              |                                                  |             |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med               | U.<br>08/2                            | SAI<br>SAI<br>27/12<br>PEAK |            |          |              | Are<br>Jui     | ersec<br>ea Ty<br>risdic<br>alysis | pe<br>tion            | ır            | 0               |                          | RAMP:<br>her are<br>IDE-IN                   | S<br>as<br>IT.#17                                |             |                                                  |
| Volume an                                            | d Timing In       | put                                   |                             |            |          | .,           |                | •                                  |                       |               |                 |                          |                                              |                                                  |             |                                                  |
|                                                      |                   |                                       |                             | EB         |          |              |                | WB                                 | 1                     |               |                 | NB                       |                                              | ļ . <u></u>                                      | SB          |                                                  |
| Num. of Lar                                          | 200               |                                       | <u>L</u> T<br>1             | TH<br>2    | RT<br>1  | Г LT<br>2    |                | <u>TH</u><br>2                     | R                     | -             | LT<br>1         | TH<br>1                  | RT<br>1                                      | <u>LT</u><br>0                                   | TH 2        | RT 0                                             |
|                                                      | 103               |                                       |                             |            | <u> </u> |              | $\dashv$       |                                    | ┯                     | $\dashv$      |                 |                          | <del> </del>                                 | <del>                                     </del> |             | ├                                                |
| Lane group                                           |                   |                                       | L                           | T 047      | R        | L 07/        |                | TR                                 | -                     | $\dashv$      | L               | LT                       | R                                            | 15                                               | LTR         | 107                                              |
| Volume (vpl                                          |                   |                                       | 97<br>2                     | 617<br>2   | 305<br>2 | 275          | <del>'  </del> | 329<br>2                           | 50<br>2               |               | <i>529</i><br>2 | 50<br>2                  | 180<br>2                                     | 45<br>2                                          | 70<br>2     | 37<br>2                                          |
| % Heavy vo                                           | en                |                                       | 0.95                        | 0.95       | 0.98     |              | <del>-  </del> | ∠<br>0.95                          | 0.9                   |               | 0.95            | 0.95                     | 0.95                                         | 0.95                                             | 0.95        | 0.95                                             |
| Actuated (P                                          | /A)               |                                       | A                           | 0.90<br>A  | A        | A            | ┷┤             | 0.90<br>A                          | A                     | ┧             | A               | A                        | A                                            | A                                                | A           | A                                                |
| Startup lost                                         |                   |                                       | 3.0                         | 3.0        | 3.0      |              |                | 3.0                                | <del>†</del>          | _             | 3.0             | 3.0                      | 3.0                                          |                                                  | 3.0         |                                                  |
| Ext. eff. gre                                        |                   |                                       | 2.0                         | 2.0        | 2.0      | 2.0          |                | 2.0                                |                       |               | 2.0             | 2.0                      | 2.0                                          |                                                  | 2.0         |                                                  |
| Arrival type                                         |                   |                                       | 5                           | 5          | 5        | 5            |                | 5                                  |                       |               | 3               | 3                        | 3                                            |                                                  | 3           | <u> </u>                                         |
| Unit Extensi                                         |                   |                                       | 3.0                         | 3.0        | 3.0      |              |                | 3.0                                |                       |               | 3.0             | 3.0                      | 3.0                                          |                                                  | 3.0         |                                                  |
|                                                      | TOR Volume        | <del>)</del>                          | 5                           | 10         | 0        | 5            | _              | 10                                 | 0                     | $\rightarrow$ | 5               | 10                       | 0                                            | 5                                                | 10          | 0                                                |
| Lane Width                                           |                   |                                       | 12.0                        | 12.0       | 12.0     |              |                | 12.0                               |                       | _             | 12.0            | 12.0                     | 12.0                                         | A./                                              | 12.0        | <del>                                     </del> |
| Parking/Gra                                          | ide/Parking       |                                       | N                           | 0          | N        | N            | 4              | 0                                  | Ν                     |               | Ν               | 0                        | N                                            | N                                                | 0           | N                                                |
| Parking/hr                                           |                   |                                       |                             |            | _        |              | $\dashv$       |                                    | <del>-</del>          | _             |                 |                          |                                              | <u> </u>                                         |             | <del> </del>                                     |
| Bus stops/h                                          |                   | · · · · · · · · · · · · · · · · · · · | 0                           | 0          | 0        | 0            |                | 0                                  | +                     | $\dashv$      | 0               | 0                        | 0                                            |                                                  | 0           | <b>├</b> ──                                      |
| Unit Extensi                                         |                   | 1_                                    | 3.0                         | 3.0        | 3.0      |              |                | 3.0                                | <u> </u>              |               | 3.0             | 3.0                      | 3.0                                          | <u> </u>                                         | 3.0         | <u> </u>                                         |
| Phasing                                              | Excl. Left        | Thru<br>G =                           | & RT                        | 03<br>G =  | 3        | G =          | )4             |                                    | SB (                  | _             |                 | IB Only<br>= <i>37.0</i> |                                              | 07                                               | G =         | 08                                               |
| Timing                                               | G = 11.0<br>Y = 4 | Y = .                                 |                             | Y=         |          | Y=           |                |                                    | <u>σ = χ</u><br>Y = ∠ |               |                 | = 37.0<br>= 4            | Y =                                          |                                                  | Y=          |                                                  |
| Duration of                                          | Analysis (hr      |                                       | <del>-</del>                | •          |          | 1 '          |                |                                    |                       |               |                 | cle Len                  |                                              |                                                  | <del></del> |                                                  |
|                                                      | up Capac          |                                       |                             | l Dela     | av. a    | and L        | OS             | De <sup>1</sup>                    | term                  | ina           | ation           |                          | <u>*                                    </u> |                                                  |             |                                                  |
|                                                      |                   | ľ                                     | EB                          |            | Ť        |              | W              |                                    |                       |               |                 | NB                       |                                              |                                                  | SB          |                                                  |
| Adj. flow rat                                        | е                 | 102                                   | 649                         | 321        | 1        | 289          | 39             | 9                                  |                       | 30            | 26              | 304                      | 189                                          |                                                  | 160         | Т                                                |
| Lane group                                           |                   | 177                                   | 922                         | 401        | 3        | 344          | 89             | 99                                 |                       | 63            | 34              | 641                      | 557                                          |                                                  | 265         |                                                  |
| v/c ratio                                            |                   | 0.58                                  | 0.70                        | 0.80       | C        | ).84         | 0.4            | 44                                 |                       | 0.4           | 48              | 0.47                     | 0.34                                         |                                                  | 0.60        |                                                  |
| Green ratio                                          |                   | 0.10                                  | 0.26                        | 0.26       | C        | ).10         | 0.2            | 26                                 |                       | 0.            | 36              | 0.36                     | 0.36                                         |                                                  | 0.08        |                                                  |
| Unif. delay                                          | <u></u><br>d1     | 43.0                                  | 33.5                        | 34.6       | 4        | 14.2         | 31.            | .0                                 |                       | 24            | 1.8             | 24.7                     | 23.3                                         |                                                  | 44.5        |                                                  |
| Delay factor                                         | ·k                | 0.17                                  | 0.27                        | 0.34       | C        | ).38         | 0.1            | 11                                 |                       | 0.            | 11              | 0.11                     | 0.11                                         |                                                  | 0.19        |                                                  |
| Increm. dela                                         | ay d2             | 4.6                                   | 2.5                         | 11.0       | 1        | 6.7          | 0.             | 4                                  |                       | 0.            | .6              | 0.6                      | 0.4                                          |                                                  | 3.9         |                                                  |
| PF factor                                            |                   | 0.926                                 | 0.766                       | 0.76       | 6 0      | .926         | 0.7            | 766                                |                       | 1.0           | 000             | 1.000                    | 1.000                                        |                                                  | 1.000       |                                                  |
| Control dela                                         | ıy                | 44.4                                  | 28.1                        | 37.5       | 5        | 57. <i>7</i> | 24             | .1                                 |                       | 25            | 5.4             | 25.3                     | 23.7                                         |                                                  | 48.3        |                                                  |
| Lane group                                           | LOS               | D                                     | С                           | D          |          | Ε            | C              | )                                  |                       | (             | )               | С                        | С                                            |                                                  | D           |                                                  |
| Apprch. dela                                         | ay                | 3                                     | 2.5                         |            |          | 38           | 3.2            |                                    |                       |               | 24              | 1.9                      |                                              |                                                  | 48.3        |                                                  |
| Approach L                                           | os                |                                       | С                           |            |          | L            | )              |                                    |                       |               | (               | )                        |                                              |                                                  | D           |                                                  |
| Intersec. de                                         | lay               |                                       |                             |            |          | Ir           | nterse         | ctio                               | n LO                  | 3             |                 |                          | С                                            |                                                  |             |                                                  |
| HC\$2000TM                                           |                   |                                       | C                           | to minht @ | 2000     | University   | u o f I        | Elorido                            | A 11 Die              | hta D         |                 |                          |                                              |                                                  | 1           | ersion 4.1                                       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |              |            | ,                           |          | S        | HOF       | RT R            | EP(                                | )F              | ₹T           |      |          |                                             |                           |                     |            |              |
|------------------------------------------------------|--------------|------------|-----------------------------|----------|----------|-----------|-----------------|------------------------------------|-----------------|--------------|------|----------|---------------------------------------------|---------------------------|---------------------|------------|--------------|
| General Inf                                          | ormation     |            |                             |          |          |           | S               | ite In                             | fo              | rmati        |      |          |                                             |                           |                     |            |              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med          | U:<br>08/2 | SAI<br>SAI<br>27/12<br>PEAK |          |          |           | Ai<br>Ju        | iterse<br>rea T<br>urisdi<br>nalys | yp<br>cti       | e            |      | 0        | A WAY(<br>ON :<br>All otl<br>CEANS<br>ALT1/ | RAMF<br>her are<br>IDE-II | PS<br>eas<br>NT.#17 |            |              |
| Volume an                                            | d Timing In  | put        |                             |          |          |           |                 |                                    |                 |              |      |          |                                             |                           |                     |            |              |
|                                                      |              |            |                             | EB       |          |           | ·               | WE                                 | 3               |              |      |          | NB                                          |                           |                     | SB         |              |
|                                                      |              |            | LT                          | TH       | R        | Т         | LT              | <u> </u>                           | <u> </u>        | RT           |      | <u>T</u> | TH                                          | RT                        | LT                  | TH         | RT           |
| Num. of Lar                                          | nes          |            | 1                           | 2        | 1        |           | 2               | 2                                  |                 | 0            |      | 1        | 1                                           | 1                         | 0                   | 2          | 0            |
| Lane group                                           |              |            | L                           | Τ        | R        | ,         | L               | TR                                 |                 |              |      | <u>'</u> | LT                                          | R                         |                     | LTR        |              |
| Volume (vpl                                          |              |            | 85                          | 520      | 31       |           | 350             | 425                                | 5               | 45           | _    | 35       | 35                                          | 120                       | 65                  | 55         | 55           |
| % Heavy v                                            | eh           |            | 2                           | 2        | 2        |           | 2               | 2                                  | _               | 2            | _    | 2        | 2                                           | 2                         | 2                   | 2          | 2            |
| PHF                                                  | /A \         |            | 0.95                        | 0.95     | 0.9      |           | 0.95<br>A       | 0.98<br>A                          | <u> </u>        | 0.95         | 0.   | _        | 0.95<br>A                                   | 0.95<br>A                 | 0.95<br>A           | 0.95<br>A  | 0.95<br>A    |
| Actuated (P<br>Startup lost                          |              |            | A<br>3.0                    | A<br>3.0 | 3.0      |           | <u>A</u><br>3.0 | 3.0                                |                 | Α            | _    | 0        | 3.0                                         | 3.0                       | +^-                 | 3.0        | A            |
| Ext. eff. gre                                        |              |            | 2.0                         | 2.0      | 2.0      |           | 2.0             | 2.0                                |                 |              |      | 0        | 2.0                                         | 2.0                       |                     | 2.0        | <del> </del> |
| Arrival type                                         |              |            | 5                           | 5        | 5        |           | 5               | 5                                  |                 |              |      | 3        | 3                                           | 3                         |                     | 3          |              |
| Unit Extens                                          | ion          |            | 3.0                         | 3.0      | 3.0      | )         | 3.0             | 3.0                                | )               |              | 3    | .0       | 3.0                                         | 3.0                       |                     | 3.0        |              |
| Ped/Bike/R                                           | TOR Volume   | )          | 5                           |          | 0        |           | 5               | 10                                 |                 | 0            | ,    | 5        | 10                                          | 0                         | 5                   | 10         | 0            |
| Lane Width                                           |              |            | 12.0                        | 12.0     | 12.      | 0 7       | 12.0            | 12.0                               | )               |              | 12   | 2.0      | 12.0                                        | 12.0                      |                     | 12.0       |              |
| Parking/Gra                                          | de/Parking   |            | Ν                           | 0        | N        | 1         | Ν               | 0                                  |                 | Ν            | 1    | ٧        | 0                                           | Ν                         | N                   | 0          | Ν            |
| Parking/hr                                           |              |            |                             |          |          |           |                 |                                    |                 |              |      |          |                                             |                           |                     |            |              |
| Bus stops/h                                          | r            |            | 0                           | 0        | 0        |           | 0               | 0                                  |                 |              |      | 0        | 0                                           | 0                         |                     | 0          |              |
| Unit Extens                                          | ion          |            | 3.0                         | 3.0      | 3.0      | )         | 3.0             | 3.0                                | )               |              | 3    | .0       | 3.0                                         | 3.0                       |                     | 3.0        |              |
| Phasing                                              | Excl. Left   |            | Only                        | Thru &   |          | Γ         | 04              |                                    |                 | SB O         |      | l N      | IB Only                                     |                           | 07                  |            | 08           |
| Timing                                               | G = 10.0     | G =        |                             | G = 2    |          | _         | =               |                                    | _               | i = 7.       | 0    |          | = 43.0                                      | G:                        |                     | G =        |              |
|                                                      | Y = 4        | Y = A      | •                           | Y = 4    |          | <u> </u>  | =               |                                    | Y               | = 4          |      |          | = <i>4</i><br>cle Len                       | Y =                       |                     | Y =        |              |
|                                                      | Analysis (hr |            |                             | I Dala   |          |           |                 | c D                                | . 4 .           |              | 4    |          | cie Len                                     | gui C                     | - 110.              | 0          |              |
| Lane Gro                                             | up Capac     | ity, C     |                             | Dela     | ay,<br>⊤ | anu       |                 |                                    | <del>!</del> [( | 37711111<br> | nau  | OII      | ND                                          |                           | _                   | CD         |              |
|                                                      |              |            | EB                          |          |          |           |                 | VB                                 | _               |              |      |          | NB                                          | 1 400                     |                     | SB         | T            |
| Adj. flow rat                                        | e            | 89         | 547                         | 326      | -+       | 368       | <del></del>     | 94                                 | _               |              | 385  | -        | 352                                         | 126                       |                     | 184        |              |
| Lane group                                           | cap.         | 145        | 613                         | 878      |          | 719       | 10              | )43                                |                 |              | 672  |          | 678                                         | 592                       | $\bot$              | 176        |              |
| v/c ratio                                            |              | 0.61       | 0.89                        | 0.37     |          | 0.51      | 0.              | 47                                 |                 |              | 0.57 |          | 0.52                                        | 0.21                      |                     | 1.05       |              |
| Green ratio                                          |              | 0.08       | 0.17                        | 0.55     | 5        | 0.21      | 0.              | .30                                | T               |              | 0.38 |          | 0.38                                        | 0.38                      |                     | 0.05       |              |
| Unif. delay                                          | d1           | 48.8       | 44.5                        | 13.7     | 7        | 38.5      | 3               | 1.4                                | T               |              | 26.9 |          | 26.2                                        | 22.9                      |                     | 52.0       |              |
| Delay factor                                         | · k          | 0.20       | 0.42                        | 0.11     | '        | 0.12      | 0.              | .11                                | T               |              | 0.17 |          | 0.12                                        | 0.11                      |                     | 0.50       |              |
| Increm. dela                                         | ay d2        | 7.5        | 15.4                        | 0.3      |          | 0.6       | 0               | ).3                                | T               |              | 1.2  |          | 0.7                                         | 0.2                       |                     | 80.3       |              |
| PF factor                                            |              | 0.941      | 0.861                       | 0.17     | 0 0      | 0.824     | <i>1</i> 0.     | 714                                | T               |              | 1.00 | 0        | 1.000                                       | 1.000                     | ,                   | 1.000      |              |
| Control dela                                         | ay           | 53.4       | 53.7                        | 2.6      |          | 32.4      | 2.              | 2.8                                | Ţ               |              | 28.1 |          | 26.9                                        | 23.1                      |                     | 132.3      |              |
| Lane group                                           | LOS          | D          | D                           | Α        |          | С         |                 | С                                  |                 |              | С    |          | С                                           | С                         |                     | F          |              |
| Apprch. dela                                         | ay           | 3          | 6.3                         |          |          |           | 26.9            |                                    |                 |              |      | 26       | i.9                                         |                           |                     | 132.3      | }            |
| Approach L                                           | os           |            | D                           |          |          |           | С               |                                    |                 |              |      | (        | )                                           |                           |                     | F          |              |
| Inte <b>r</b> sec. de                                | lay          | 3          | 6.8                         |          |          |           |                 |                                    | Int             | ersec        | tion | LOS      | 3                                           |                           |                     | D          |              |
| HCS2000 <sup>TM</sup>                                |              | Co         | ругight ©                   | 2000     | ) Unive  | ersity of | f Florid        | a, A                               | All Right       | s Rese       | rved |          |                                             | •                         |                     | ersion 4.1 |              |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                       |                    |            | • , .                       |              | S          | НС       | RTI       | REP                                | OF          | ₹T           |         |           |                                           |                           |                    |        |         |            |
|-------------------------------------------------------|--------------------|------------|-----------------------------|--------------|------------|----------|-----------|------------------------------------|-------------|--------------|---------|-----------|-------------------------------------------|---------------------------|--------------------|--------|---------|------------|
| General Inf                                           | ormation           |            | •                           |              |            |          |           | Site Ir                            | ηfo         | rmat         |         |           |                                           |                           |                    |        |         |            |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med                | U:<br>08/2 | SAI<br>SAI<br>27/12<br>PEAK |              |            |          | 4         | nterso<br>Area<br>Jurisd<br>Analys | Гур<br>icti | e<br>ion     |         | 0         | A WAY<br>ON<br>All oti<br>CEANS<br>ALT1/V | RAMF<br>ner are<br>IDE-II | PS<br>eas<br>NT.#1 | 7      | 7.      |            |
| Volume an                                             | d Timing In        | put        |                             |              |            |          |           |                                    |             |              |         |           |                                           |                           |                    |        |         |            |
|                                                       |                    |            |                             | EB           |            |          |           | W                                  |             |              |         |           | NB                                        |                           |                    |        | SB      |            |
|                                                       | <del></del>        |            | LT                          | TH           | R          | T        | LT        | TI                                 |             | RT           | _       | LT        | TH                                        | RT                        | LT                 |        | TH      | RT         |
| Num. of Lar                                           | nes                |            | 1                           | 2            | 1          | <u> </u> | 2         | 2                                  |             | 0            | _       | 1         | 1                                         | 1                         | 0                  |        | 2       | 0          |
| Lane group                                            |                    |            | L                           | T            | F          |          | L         | TF                                 |             |              | $\perp$ | L         | LT                                        | R                         |                    |        | TR      |            |
| Volume (vpl                                           |                    |            | 89                          | 526          | 31         |          | 350       | 43                                 |             | 45           |         | 709       | 35                                        | 120                       | 65                 |        | 55      | 63         |
| % Heavy ve                                            | eh                 |            | 2                           | 2            | 2          |          | 2         | 2                                  |             | 2            |         | 2         | 2                                         | 2                         | 2                  |        | 2       | 2          |
| PHF                                                   | /A )               |            | 0.95                        | 0.95         | 0.9<br>A   | _        | 0.95<br>A | 0.9<br>A                           | 5           | 0.95<br>A    | , (     | 0.95<br>A | 0.95<br>A                                 | 0.95<br>A                 | 0.95<br>A          |        | 95<br>A | 0.95<br>A  |
| Actuated (P. Startup lost                             |                    |            | A<br>3.0                    | <i>A</i> 3.0 | <i>3</i> . |          | 3.0       | 3.0                                | <del></del> | +~           | +       | 3.0       | 3.0                                       | 3.0                       | +~                 |        | 3.0     | ├─         |
| Ext. eff. gree                                        |                    |            | 2.0                         | 2.0          | 2.         |          | 2.0       | 2.0                                |             | $\dagger$    |         | 2.0       | 2.0                                       | 2.0                       | †                  |        | .0      |            |
| Arrival type                                          |                    |            | 5                           | 5            | 5          |          | 5         | 5                                  |             |              |         | 3         | 3                                         | 3                         |                    |        | 3       |            |
| Unit Extensi                                          | on                 |            | 3.0                         | 3.0          | 3.         | 0        | 3.0       | 3.0                                | <u> </u>    |              |         | 3.0       | 3.0                                       | 3.0                       |                    | 3      | 3.0     |            |
| Ped/Bike/R1                                           | ΓOR Volume         | )          | 5                           |              | 0          |          | 5         | 10                                 | )           | 0            |         | 5         | 10                                        | 0                         | 5                  |        | 10      | 0          |
| Lane Width                                            |                    |            | 12.0                        | 12.0         | 12         | .0       | 12.0      | 12.                                | 0           |              | ·       | 12.0      | 12.0                                      | 12.0                      |                    | 1.     | 2.0     |            |
| Parking/Gra                                           | de/Parking         |            | Ν                           | 0            | ٨          | Ĺ        | Ν         | (                                  | )           | Ν            |         | Ν         | 0                                         | N                         | N                  |        | 0       | Ν          |
| Parking/hr                                            |                    |            |                             |              |            |          |           |                                    |             |              |         | ,         |                                           |                           |                    |        |         |            |
| Bus stops/h                                           | r                  |            | 0                           | 0            | 0          | )        | 0         | 0                                  |             |              |         | 0         | 0                                         | 0                         |                    |        | 0       |            |
| Unit Extensi                                          | on                 |            | 3.0                         | 3.0          | 3.         | 0        | 3.0       | 3.0                                | 0           |              |         | 3.0       | 3.0                                       | 3.0                       |                    |        | 3.0     |            |
| Phasing                                               | Excl. Left         |            | Only                        | Thru d       |            | _        | 04        | 4                                  | _           | SB O         |         |           | NB Only                                   |                           | 07                 |        |         | )8         |
| Timing                                                | G = 10.0           | G =        |                             | G = 2        |            |          | G =       |                                    |             | <b>3</b> = 7 | .0      | _         | = 43.0                                    | G                         |                    | _      | G =     |            |
|                                                       | Y = 4              | Y = A      | _                           | Y = 4        |            | _L`      | Y =       |                                    | ΙY          | ′ = 4        |         |           | = <i>4</i><br>cle Len                     | Y :                       |                    |        | Y =     |            |
|                                                       | Analysis (hr       |            |                             | I Dala       |            |          | 410       | 16 D                               |             | o rmi        | in a    |           |                                           | yui C                     |                    | 0.0    |         |            |
| Lane Gro                                              | up Capac           | ity, C     |                             | Dela         | ay,        | an       |           | WB                                 | eu          | emm          | na      | tion      | NB                                        |                           |                    |        | SB      |            |
| Adi flavores                                          | <u> </u>           | 0.4        | EB<br>T <sub>EE4</sub>      | 226          |            | 260      | -         |                                    | Т           |              | 11      | 0         |                                           | 126                       | - -                | 1,     |         | <u> </u>   |
| Adj. flow rat                                         |                    | 94         | 554                         | 326          | -          | 368      | _         | 508                                | +           |              | 41      |           | 373                                       | 126                       |                    |        | 92      | +          |
| Lane group                                            | сар.               | 145        | 613                         | 878          |            | 719      | -+        | 1043                               | +           |              | 67      |           | 678                                       | 592                       | +                  | _      | 75      | $+\!-\!$   |
| v/c ratio                                             |                    | 0.65       | 0.90                        | 0.37         |            | 0.5      |           | 0.49                               | 4           |              | 0.6     |           | 0.55                                      | 0.21                      | +                  | -      | .10     | ₩          |
| Green ratio                                           |                    | 0.08       | 0.17                        | 0.55         | 5          | 0.2      | 1 (       | 0.30                               | ┵           |              | 0.3     | 38        | 0.38                                      | 0.38                      |                    | 0      | .05     | ╄          |
| Unif. delay o                                         | <b>1</b> 1         | 49.0       | 44.6                        | 13.7         | 7          | 38.      | 5         | 31.6                               | ┙           |              | 27.     | .4        | 26.6                                      | 22.9                      |                    | 5      | 2.0     |            |
| Delay factor                                          | k                  | 0.23       | 0.42                        | 0.11         | ′          | 0.1      | 2 (       | 0.11                               |             |              | 0.2     | 20        | 0.15                                      | 0.11                      |                    | 0      | .50     | 1          |
| Increm. dela                                          | ay d2              | 9.7        | 16.9                        | 0.3          |            | 0.6      | 3         | 0.4                                | T           |              | 1.      | 6         | 1.0                                       | 0.2                       |                    | 9      | 6.4     |            |
| PF factor                                             |                    | 0.941      | 0.861                       | 0.17         | o'         | 0.82     | 24 (      | ).714                              | T           |              | 1.0     | 00        | 1.000                                     | 1.000                     | 7                  | 1.     | .000    |            |
| Control dela                                          | Control delay 55.8 |            |                             | 2.6          |            | 32.      | 4         | 22.9                               | †           |              | 29.     | .0        | 27.6                                      | 23.1                      |                    | 1.     | 48.4    | 1          |
|                                                       | ane group LOS E    |            |                             |              |            | С        |           | С                                  | 十           |              | С       | ;         | С                                         | С                         |                    | $\top$ | F       | 1          |
| Apprch. dela                                          | ay                 | 3          | 7.7                         | •            |            |          | 26.       | 9                                  |             |              |         | 2         | 7.6                                       |                           |                    | 1      | 48.4    |            |
| Approach L                                            | os                 |            | D                           |              |            |          | С         |                                    |             |              |         |           | С                                         |                           |                    |        | F       |            |
| Intersec. de                                          | lay                | 3          | 8.6                         |              |            |          |           |                                    | Inf         | terse        | ctio    | n LO      | S                                         |                           | $\top$             |        | D       |            |
| HCS2000 <sup>TM</sup>                                 |                    |            |                             | opyright ©   | 200        | 0 Uni    | iversity  | of Flori                           | da, /       | All Righ     | nts Re  | eserved   |                                           |                           |                    |        | ν       | ersion 4.1 |

|                                                      |              |            |                             |           | SH                                               | ORT F        | REP(                                 | DR1            | Γ        |             |     |                       | _                |                         |        |          |                                                  |
|------------------------------------------------------|--------------|------------|-----------------------------|-----------|--------------------------------------------------|--------------|--------------------------------------|----------------|----------|-------------|-----|-----------------------|------------------|-------------------------|--------|----------|--------------------------------------------------|
| General Inf                                          | formation    |            |                             |           |                                                  |              |                                      |                | matic    | n           |     |                       |                  | · · · · · · · · ·       |        |          |                                                  |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med          | U.<br>08/2 | SAI<br>SAI<br>27/12<br>PEAK |           |                                                  | J            | nterse<br>area T<br>urisdi<br>analys | ype<br>ictio   | :<br>n   |             | 0   | OFF<br>All of<br>CEAN | -O<br>the<br>SIL | N RA<br>er are<br>DE-IN |        |          |                                                  |
| Volume an                                            | nd Timing In | put        |                             |           |                                                  | -            | 107                                  |                |          | <del></del> |     | NID                   |                  |                         | T      | 0.0      |                                                  |
|                                                      |              |            | LT                          | EB<br>TH  | RT                                               | LT           | WI<br>∃T⊢                            |                | RT       | L           | _   | NB<br>TH              | _                | RT                      | LT     | SB<br>TH | RT                                               |
| Num, of Lar                                          | nes          |            | 2                           | 2         | 0                                                | 1            | 1 2                                  | +              | 0        | 1           |     | 1                     | t                | 1                       | 1      | 1        | 0                                                |
| Lane group                                           |              |            | L                           | TR        |                                                  | 1            | TR                                   | _              |          |             |     | LT                    | 十                | R                       | L      | TR       | <del>                                     </del> |
| Volume (vp                                           | h)           |            | 775                         | 220       | 25                                               | 30           | 345                                  |                | 45       | 20          |     | 5                     | ╁                | 10                      | 85     | 10       | 45                                               |
| % Heavy v                                            |              |            | 2                           | 2         | 2                                                | 2            | 2                                    | +              | 2        | 2           |     | 2                     | ╁                | 2                       | 2      | 2        | 2                                                |
| PHF                                                  |              |            | 0.95                        | 0.95      | 0.95                                             | 0.95         | 0.95                                 | 5 0            | ).95     | 0.9         | 5   | 0.95                  | 0                | .95                     | 0.95   | 0.95     | 0.95                                             |
| Actuated (P                                          |              |            | Α                           | Α         | Α                                                | Α            | Α                                    |                | Α        | Α           |     | Α                     |                  | Α                       | Α      | Α        | Α                                                |
| Startup lost                                         |              |            | 3.0                         | 3.0       |                                                  | 3.0          | 3.0                                  | _              |          | 3.0         |     | 3.0                   | _                | 3.0                     | 3.0    | 3.0      |                                                  |
| Ext. eff. gre                                        | en           |            | 2.0                         | 2.0       | <u> </u>                                         | 2.0          | 2.0                                  |                |          | 2.0         | )   | 2.0                   | ╀                | 2.0                     | 2.0    | 2.0      | <u> </u>                                         |
| Arrival type Unit Extens                             | ion          |            | 5<br>3.0                    | 5<br>3.0  | <del>                                     </del> | 3.0          | 3.0                                  |                |          | 3.0         | `   | 3<br>3.0              | ╀                | 3<br>3.0                | 3.0    | 3.0      |                                                  |
|                                                      | TOR Volume   | 3          | 5                           | 10        | 0                                                | 5            | 10                                   | +              | 0        | 5.0         | _   | 10                    |                  | 0                       | 5      | 10       | 0                                                |
| Lane Width                                           | TOR VOIGING  | ,          | 12.0                        | 12.0      | <del>-                                    </del> | 12.0         | 12.0                                 | <del>,  </del> |          | 12.         | 0   | 12.0                  | -                | 2.0                     | 12.0   | 12.0     | <del>                                     </del> |
| Parking/Gra                                          | de/Parking   |            | N                           | 0         | N                                                | N            | 0                                    |                | N        | N           |     | 0                     | ┿┈               | N                       | N      | 0        | N                                                |
| Parking/hr                                           | -            |            |                             |           |                                                  |              |                                      |                |          |             |     |                       | T                |                         |        |          |                                                  |
| Bus stops/h                                          | r            |            | 0                           | 0         |                                                  | 0            | 0                                    |                |          | 0           |     | 0                     | T                | 0                       | 0      | 0        |                                                  |
| Unit Extens                                          | ion          |            | 3.0                         | 3.0       |                                                  | 3.0          | 3.0                                  | ,              |          | 3.0         | )   | 3.0                   | 1,               | 3.0                     | 3.0    | 3.0      |                                                  |
| Phasing                                              | Excl. Left   | EB         | Only                        | Thru &    | RT.                                              | 04           |                                      |                | 3 Onl    |             | N   | B Only                | /                |                         | 07     |          | 08                                               |
| Timing                                               | G = 6.0      | G =        |                             | G = 1     |                                                  | G =          |                                      |                | 9.0      |             |     | = 4.0                 |                  | G =                     |        | G =      |                                                  |
|                                                      | Y = 4        | Y =        | ·                           | Y = 4     |                                                  | Y =          |                                      | Y =            | : 4      |             | _   | - 4                   | 41               | Y =                     |        | Υ=       |                                                  |
|                                                      | Analysis (hr |            |                             | I Dala    |                                                  | 1 1 0        | <u> </u>                             | 4              |          |             | _   | le Len                | ıgtı             | n C =                   | : 100. | 0        |                                                  |
| Lane Gro                                             | up Capac     | ity, C     |                             | n Dela    | ay, aı                                           |              |                                      | ter            | min      | atic        |     | (D                    |                  |                         | 1      | 00       |                                                  |
|                                                      |              |            | EB                          | 1         | <b>-</b>                                         | WE           |                                      |                | +        |             |     | √B                    |                  |                         |        | SB       |                                                  |
| Adj. flow rat                                        | ,            | 816        | 258                         |           | 32                                               | 410          | $\rightarrow$                        |                | 12       |             | 1   | <del></del>           | 11               |                         | 89     | 58       |                                                  |
| Lane group                                           | cap.         | 1750       | 2228                        |           | 89                                               | 625          |                                      |                | 50       |             | 5   | _                     | 42               |                         | 142    | 128      |                                                  |
| v/c ratio                                            |              | 0.47       | 0.12                        |           | 0.36                                             |              |                                      |                | 0.2      |             | 0.2 | <del></del>           | 0.2              |                         | 0.63   | 0.45     |                                                  |
| Green ratio                                          |              | 0.51       | 0.64                        |           | 0.05                                             | 0.18         | 8                                    |                | 0.0      | 3           | 0.0 | 03                    | 0.0              | )3                      | 0.08   | 0.08     |                                                  |
| Unif. delay                                          | d1           | 15.8       | 7.0                         |           | 46.0                                             | 38.          | 1                                    |                | 47.      | 4           | 47  | .4                    | 47.              | .4                      | 44.6   | 43.9     |                                                  |
| Delay factor                                         | ·k           | 0.11       | 0.11                        |           | 0.11                                             | 0.2          | 3                                    |                | 0.1      | 1           | 0.  | 11                    | 0.1              | 1                       | 0.21   | 0.11     |                                                  |
| Increm. dela                                         | ay d2        | 0.2        | 0.0                         |           | 2.0                                              | 2.0          | )                                    |                | 2.5      | 5           | 2.  | 8                     | 3.               | 3                       | 6.8    | 2.0      |                                                  |
| PF factor                                            |              | 0.306      | 0.139                       | )         | 0.96                                             | 5 0.85       | 54                                   |                | 1.00     | 00          | 1.0 | 000                   | 1.0              | 00                      | 1.000  | 1.000    |                                                  |
| Control dela                                         | ay           | 5.0        | 1.0                         |           | 46.3                                             | 34.0         | 6                                    |                | 49.      | 9           | 50  | .2                    | 50.              | .7                      | 51.4   | 45.9     |                                                  |
| Lane group                                           | LOS          | Α          | Α                           |           | D                                                | С            |                                      |                | D        |             | Ĺ   |                       | D                |                         | D      | D        |                                                  |
| Apprch. dela                                         | ay           | 4          | 1.1                         |           |                                                  | 35.4         |                                      |                |          | 50          | 0.3 |                       |                  |                         |        | 49.2     |                                                  |
| Approach L                                           | os           |            | A                           |           |                                                  | D            |                                      |                |          | i           | D   | <del></del>           | ••••             |                         |        | D        |                                                  |
| Intersec. de                                         | lay          | 1          | 7.1                         |           |                                                  |              | Int                                  | erse           | ection   | LO:         | s   | •                     |                  |                         |        | В        |                                                  |
| HCS2000 <sup>TM</sup>                                |              | •          | C                           | nuriaht @ | 2000 11                                          | niversity of | FUloride                             | A 11           | Dichte l | Docora      | ođ  |                       |                  |                         |        | τ.       | ersion 4.1                                       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                       |                                       |            |                     |              | SH                                               | ORT R       | EPO                       | DRT   |          |     |     |                                  |           |             |       |       | •                                                |
|---------------------------------------|---------------------------------------|------------|---------------------|--------------|--------------------------------------------------|-------------|---------------------------|-------|----------|-----|-----|----------------------------------|-----------|-------------|-------|-------|--------------------------------------------------|
| General Inf                           | ormation                              |            |                     |              |                                                  | S           | ite Ir                    | forn  | natio    | n   |     |                                  |           |             |       |       |                                                  |
| Analyst<br>Agency or C<br>Date Perfor |                                       | U:<br>08/2 | SAI<br>SAI<br>27/12 |              |                                                  | A           | nterse<br>rea 1<br>urisdi | уре   |          | F   |     | ZA BL<br>OFF-<br>All ot<br>CEANS | ON<br>her | l RA<br>are | as    | B     |                                                  |
| Time Period                           | 1                                     | AM I       | PEAK                |              |                                                  |             | nalys                     |       |          | В   |     |                                  |           |             | ROJE  | CT    |                                                  |
| Volume an                             | d Timing In                           | put        |                     |              |                                                  |             |                           | ·     |          |     |     |                                  |           |             |       |       |                                                  |
|                                       |                                       |            |                     | EB           |                                                  |             | W                         | 3     |          |     |     | NB                               |           | •           |       | SB    |                                                  |
|                                       |                                       |            | LT                  | TH           | RT                                               | LT          | Th                        |       | RT       | L   | T   | TH                               | F         | ₹T          | LT    | TH    | RT                                               |
| Num. of Lar                           | nes                                   |            | 2                   | 2            | 0                                                | 1           | 2                         |       | 0        | 1   |     | 1                                | 1         | 1           | 1     | 1     | 0                                                |
| Lane group                            |                                       |            | L                   | TR           |                                                  | L           | TR                        |       |          | L   |     | LT                               | F         | ₹           | L     | TR    |                                                  |
| Volume (vpl                           | n)                                    |            | 814                 | 232          | 35                                               | 30          | 349                       |       | 45       | 24  |     | 5                                | 1         |             | 85    | 10    | 45                                               |
| % Heavy ve                            | eh                                    |            | 2                   | 2            | 2                                                | 2           | 2                         |       | 2        | 2   |     | 2                                | 2         |             | 2     | 2     | 2                                                |
| PHF                                   | 700                                   |            | 0.95                | 0.95         | 0.95                                             | 0.95        | 0.9                       | _     | .95      | 0.9 | 5   | 0.95                             | 0.9       |             | 0.95  | 0.95  | 0.95                                             |
| Actuated (P.<br>Startup lost          |                                       |            | A<br>3.0            | <i>A</i> 3.0 | A                                                | 3.0         | 3.0                       |       | <u>A</u> | 3.0 | า   | <i>A</i> 3.0                     | <i>3.</i> |             | 3.0   | 3.0   | A                                                |
| Ext. eff. gree                        |                                       |            | 2.0                 | 2.0          | <b>_</b>                                         | 2.0         | 2.0                       |       |          | 2.0 |     | 2.0                              | 3.<br>2.  |             | 2.0   | 2.0   | <del>                                     </del> |
| Arrival type                          | <u> </u>                              |            | 5                   | 5            |                                                  | 5           | 5                         |       |          | 3   |     | 3                                | 3         |             | 3     | 3     |                                                  |
| Unit Extensi                          | ion                                   |            | 3.0                 | 3.0          |                                                  | 3.0         | 3.0                       | ,     |          | 3.0 | 0   | 3.0                              | 3.        | .0          | 3.0   | 3.0   | <u> </u>                                         |
| Ped/Bike/R                            | ΓOR Volume                            | )          | 5                   | 10           | 0                                                | 5           | 10                        |       | 0        | 5   |     | 10                               | (         | )           | 5     | 10    | 0                                                |
| Lane Width                            |                                       |            | 12.0                | 12.0         |                                                  | 12.0        | 12.0                      | )     |          | 12. | 0   | 12.0                             | 12        | 2.0         | 12.0  | 12.0  |                                                  |
| Parking/Gra                           | de/Parking                            |            | Ν                   | 0            | Ν                                                | Ν           | 0                         |       | Ν        | Ν   |     | 0                                | ٨         | V           | N     | 0     | N                                                |
| Parking/hr                            |                                       |            |                     |              |                                                  |             |                           |       |          |     |     |                                  |           |             |       |       |                                                  |
| Bus stops/h                           | r                                     |            | 0                   | 0            |                                                  | 0           | 0                         |       |          | 0   |     | 0                                | (         | )           | 0     | 0     |                                                  |
| Unit Extensi                          | ion                                   |            | 3.0                 | 3.0          |                                                  | 3.0         | 3.0                       | )     |          | 3.0 | 0   | 3.0                              | 3.        | .0          | 3.0   | 3.0   |                                                  |
| Phasing                               | Excl. Left                            | EB         | Only                | Thru 8       | ₹ RT                                             | 04          |                           |       | 3 Onl    |     |     | B Only                           |           |             | 07    |       | 08                                               |
| Timing                                | G = 5.0                               | G =        |                     | G = 1        |                                                  | G =         |                           |       | 9.0      |     |     | = 4.0                            | _         | G =         |       | G =   |                                                  |
|                                       | Y = 4                                 | Y = 7      |                     | Y = 4        |                                                  | Y =         |                           | Y =   | 4        |     |     | : 4                              |           | Y =         |       | Y =   |                                                  |
| Duration of                           |                                       |            |                     | l Dala       |                                                  | -410        | e D.                      | .10=  | malm     |     |     | ie Len                           | gui       | <u> </u>    | 100.  | U     |                                                  |
| Lane Gro                              | up Capac                              | ity, C     |                     | o Dela       | ay, aı                                           | WE          |                           | eter  | 1        | auc |     | NB                               |           |             |       | SB    |                                                  |
| A -1:1                                |                                       | 057        | EB                  | <u> </u>     | 20                                               | 414         |                           |       | 1        |     |     | -                                | 11        |             | 90    | _     | $\overline{}$                                    |
| Adj. flow rat                         |                                       | 857        | 281                 |              | 32                                               |             | -                         |       | 25       |     | ╌   | 5                                | 11        |             | 89    | 58    |                                                  |
| Lane group                            | cap.                                  | 1753       | 2251                | _            | 71                                               | 628         |                           |       | 50       |     | ⊢   | 6                                | 42        | _           | 139   | 125   |                                                  |
| v/c ratio                             |                                       | 0.49       | 0.12                |              | 0.45                                             |             | $\overline{}$             |       | 0.5      |     | ₩   | -                                | 0.26      | _           | 0.64  | 0.46  |                                                  |
| Green ratio                           |                                       | 0.51       | 0.65                |              | 0.04                                             |             | _                         |       | 0.0      |     | ┼—  |                                  | 0.03      | _           | 0.08  | 0.08  |                                                  |
| Unif. delay o                         | d1                                    | 16.0       | 6.7                 |              | 46.9                                             | 38.         | 2                         |       | 47.      | 8   | 47  | '.2                              | 17.4      | 1           | 44.6  | 44.0  |                                                  |
| Delay factor                          | · k                                   | 0.11       | 0.11                |              | 0.11                                             | 0.2         | 4                         |       | 0.1      | 1   | 0.  | 11 (                             | ).11      | 1           | 0.22  | 0.11  |                                                  |
| Increm. dela                          | ay d2                                 | 0.2        | 0.0                 |              | 4.5                                              | 2.6         | 3                         |       | 7.7      | 7   | 0.  | .7                               | 3.3       |             | 9.6   | 2.7   |                                                  |
| PF factor                             |                                       | 0.306      | 0.143               | 3            | 0.97                                             | 2 0.88      | 54                        |       | 1.00     | 00  | 1.0 | 000 1                            | .00       | 0           | 1.000 | 1.000 |                                                  |
| Control dela                          | ıy                                    | 5.1        | 1.0                 |              | 50.1                                             | 35          | 2                         |       | 55.      | 4   | 47  | '.9                              | 50.7      | 7           | 54.2  | 46.7  |                                                  |
| Lane group                            | LOS                                   | Α          | Α                   |              | D                                                | D           |                           |       | E        |     | I   | )                                | D         |             | D     | D     | 1                                                |
| Apprch. dela                          | ay                                    |            | 1.1                 | А            | -                                                | 36.3        | 1                         |       |          | 5   | 3.2 | <u></u>                          |           |             |       | 51.2  | •                                                |
| Approach L                            | ·                                     | }          | <u>A</u>            |              | <del>                                     </del> | D           |                           |       | 1        |     | D   |                                  |           |             |       | D     |                                                  |
| Intersec. de                          | · · · · · · · · · · · · · · · · · · · | 1          | 7.2                 |              |                                                  |             | In                        | terse | ection   |     |     |                                  |           |             | -     | В     |                                                  |
| HCS2000 <sup>TM</sup>                 | · ,                                   | · '        |                     | nvright ©    | 2000 II                                          | níversity o |                           |       |          |     |     |                                  |           |             | I     |       | ersion 4.1                                       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |             |               |                             |           | SH           | ORT R        | EPO                                | DRT          | -            |          |              |                       |                   |                        |               |               |             |
|-------------------------------------------------------|-------------|---------------|-----------------------------|-----------|--------------|--------------|------------------------------------|--------------|--------------|----------|--------------|-----------------------|-------------------|------------------------|---------------|---------------|-------------|
| General Info                                          | ormation    |               |                             |           |              | S            | ite In                             | forn         | natio        |          |              |                       |                   |                        |               |               |             |
| Analyst<br>Agency or C<br>Date Perforr<br>Time Period | med         | U:<br>08/2    | SAI<br>SAI<br>27/12<br>PEAK |           |              | A<br>Ji      | iterse<br>rea T<br>urisdi<br>nalys | ype<br>ctior | ו            |          | 0            | OFF<br>All of<br>CEAN | -Ol<br>the<br>SIE | N RA<br>r are<br>DE-IN |               |               |             |
| Volume an                                             | d Timing In | put           |                             |           |              |              |                                    |              |              |          |              |                       |                   |                        |               |               |             |
|                                                       |             |               |                             | EΒ        |              |              | W                                  |              |              |          |              | NB                    |                   |                        |               | SB            |             |
|                                                       |             |               | LT                          | TH        | RT           | LT           | TH                                 |              | RT_          | L        |              | TH                    | 1                 | RT                     | LT            | TH            | RT          |
| Num. of Lan                                           | es          |               | 2                           | 2         | 0            | 1            | 2                                  | _            | 0            | 1        |              | 1                     | _                 | 1                      | 1             | 1             | 0           |
| Lane group                                            |             |               | L                           | TR        |              | L            | TR                                 |              |              | L        |              | LT                    |                   | R                      | L             | TR            |             |
| Volume (vpl                                           |             |               | 740                         | 345       | 80           | 115          | 485                                |              | 35           | 16       |              | 50                    | _                 | 15                     | 176           | 65            | 40          |
| % Heavy ve                                            | eh          |               | 2                           | 2         | 2            | 2            | 2                                  |              | 2            | 2        |              | 2                     |                   | 2                      | 2             | 2<br>0.95     | 2<br>0.95   |
| PHF<br>Actuated (P/                                   | /A \        |               | 0.95<br>A                   | 0.95<br>A | 0.95<br>A    | 0.95<br>A    | 0.98<br>A                          |              | .95<br>A     | 0.9<br>A | _            | 0.95<br>A             | _                 | .95<br>A               | 0.95<br>A     | 0.95<br>A     | 0.95<br>A   |
| Startup lost                                          |             |               | 3.0                         | 3.0       |              | 3.0          | 3.0                                | _            | Α            | 3.0      | _            | 3.0                   | _                 | 3.0                    | 3.0           | 3.0           |             |
| Ext. eff. gree                                        |             |               | 2.0                         | 2.0       |              | 2.0          | 2.0                                | _            |              | 2.0      |              | 2.0                   | —                 | 2.0                    | 2.0           | 2.0           |             |
| Arrival type                                          |             |               | 5                           | 5         |              | 5            | 5                                  |              |              | 3        |              | 3                     |                   | 3                      | 3             | 3             |             |
| Unit Extensi                                          | on          |               | 3.0                         | 3.0       |              | 3.0          | 3.0                                |              |              | 3.       | 0            | 3.0                   | 3                 | 3.0                    | 3.0           | 3.0           |             |
| Ped/Bike/RT                                           | OR Volume   | )             | 5                           | 10        | 0            | 5            | 10                                 |              | 0            | 5        |              | 10                    |                   | 0                      | 5             | 10            | 0           |
| Lane Width                                            |             |               | 12.0                        | 12.0      |              | 12.0         | 12.0                               | )            |              | 12.      | 0            | 12.0                  | 1:                | 2.0                    | 12.0          | 12.0          |             |
| Parking/Gra                                           | de/Parking  |               | Ν                           | 0         | Ν            | Ν            | 0                                  |              | N            | ~        | '            | 0                     |                   | N                      | Ν             | 0             | Ν           |
| Parking/hr                                            |             |               |                             |           |              |              |                                    |              |              |          |              |                       |                   |                        |               |               |             |
| Bus stops/hi                                          | ſ           |               | 0                           | 0         |              | 0            | 0                                  |              |              | 0        |              | 0                     |                   | 0                      | 0             | 0             |             |
| Unit Extensi                                          | on          |               | 3.0                         | 3.0       |              | 3.0          | 3.0                                |              |              | 3.       | 0            | 3.0                   | ] 3               | 3.0                    | 3.0           | 3.0           |             |
| Phasing                                               | Excl. Left  |               | Only                        | Thru 8    |              | 04           |                                    |              | 3 Only       | _        |              | B Only                |                   |                        | 07            |               | 08          |
| Timing                                                | G = 14.0    | G = .         |                             | G = 2     | 3.0          | G =          |                                    |              | 15.0         |          |              | = 12.0                |                   | <b>G</b> )             |               | G =           |             |
| Duration of A                                         | Y = 4       | Y = A         |                             | Y = 4     |              | Υ =          |                                    | Υ=           | 4            |          | •            | = 4                   | o th              | Υ=                     | = 110.        | Y =           |             |
|                                                       |             |               |                             | l Dolo    | V 01         | 4 I O        | S D                                | tor          | min          |          |              | ie Lei                | ıyıı              | 10-                    | - 110.        |               |             |
| Lane Gro                                              | ир Сарас    | ity, C        | EB                          | Dela      | ly, ai       | WE           |                                    | ter          | T            | atic     | •            | NB                    |                   |                        |               | SB            |             |
| ۸ ما: ۴۱ م سمه                                        |             | 770           | т —                         |           | 404          |              | — т                                |              | 100          |          | _            |                       | 46                | ,                      | 405           | 1             | 1           |
| Adj. flow rate                                        |             | 779           | 447                         |           | 121          | 653          | -                                  |              | 96           |          | 13           | <del></del>           | 16                |                        | 185           | 110           |             |
| Lane group                                            | сар.        | 1344          | 1620                        |           | 209          | 682          | $\rightarrow$                      |              | 174          |          | ₩            | -                     | 15                |                        | 223           | 220           |             |
| v/c ratio                                             |             | 0.58          | 0.28                        |           | 0.58         |              |                                    |              | 0.5          |          | 0.           |                       | 0.1               |                        | 0.83          | 0.50          |             |
| Green ratio                                           |             | 0.39          | 0.47                        | _         | 0.12         |              | -                                  | ·····        | 0.10         |          | ┢            |                       | 0.1               |                        | 0.13          | 0.13          |             |
| Unif. delay d                                         |             | 26.4          | 17.6                        |           | 45.9         |              |                                    |              | 47.          |          | 48           | <del></del>           | 45.               |                        | 46.8          | 44.7          |             |
| Delay factor                                          |             | 0.17          | 0.11                        |           | 0.17         |              | $\rightarrow$                      |              | 0.1          |          | ╄            |                       | 0.1               |                        | 0.37          | 0.11          |             |
| Increm. dela                                          | ıy d2       | 0.6           | 0.1                         | ,         | 4.0          | 24.4         | $\rightarrow$                      |              | 3.8          |          | ₩            | 1.3                   | 0.3               |                        | 22.3          | 1.8           |             |
| PF factor                                             |             | 0.572<br>15.7 | 0.402<br>7.2                | -         | 0.91<br>45.8 |              |                                    |              | 1.00<br>50.1 |          | <del> </del> |                       | 1.00<br>45.       |                        | 1.000<br>69.2 | 1.000<br>46.5 | -           |
| Control dela                                          |             | 15.7<br>B     | 1.2<br>  A                  | +         | 45.8<br>D    | 60.          | <del></del> _                      |              | D            | 7        | ╄            |                       | 45.<br>D          |                        | 09.2<br>E     | 40.5<br>D     |             |
| Lane group<br>Apprch. dela                            | -           |               | <u> </u> А<br>2.6           |           |              | 58.3         |                                    |              | 10           | F        | 6.7          |                       | ט                 |                        | <u> </u>      | 60.7          |             |
| Approach Lo                                           |             | <b></b>       | 2.0<br>B                    |           |              | <br>         |                                    |              | $\vdash$     |          | 6.7<br>E     |                       |                   |                        |               | 60.7<br>E     |             |
| Intersec. del                                         |             | <del> </del>  | 6.4                         |           | <u> </u>     |              | l n l                              | orco         | ction        |          |              |                       |                   |                        |               | <br>D         |             |
| HCS2000 <sup>TM</sup>                                 | ay          | L 3           |                             | an airthe | 2000 11      | niversity of |                                    |              |              |          |              |                       |                   |                        |               |               | ersion 4.11 |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |               |            |                             | · · · · · · · · · · · · · · · · · · · | SH       | ORT R       | EPO                                | DRT          | -        |          |          |                        |                  |                         |          | •        |            |
|------------------------------------------------------|---------------|------------|-----------------------------|---------------------------------------|----------|-------------|------------------------------------|--------------|----------|----------|----------|------------------------|------------------|-------------------------|----------|----------|------------|
| General Inf                                          | ormation      |            | ·                           |                                       |          | S           | ite Ir                             | forn         | natio    | n        |          |                        |                  |                         |          |          |            |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med           | U-<br>08/2 | SAI<br>SAI<br>27/12<br>PEAK |                                       |          | J           | nterse<br>rea T<br>urisdi<br>nalys | ype<br>ctior | 1        |          | 0        | OFF<br>All of<br>CEANS | -O<br>the<br>SIL | N RA<br>er are<br>DE-IN |          |          |            |
| Volume an                                            | d Timing In   | put        |                             |                                       |          |             |                                    |              |          |          |          |                        |                  |                         |          |          |            |
|                                                      |               |            | 1 ""                        | EB                                    | D.T.     | 1           | WI                                 |              | <u> </u> | <u> </u> |          | NB                     | _                | DT                      | 1.7      | SB       | LDT        |
| Num. of Lar                                          | nes           |            | LT<br>2                     | TH<br>2                               | RT<br>0  | LT<br>1     | T⊦<br>  2                          | _            | RT<br>0  | L 1      | <u> </u> | TH<br>1                | ╁                | RT<br>1                 | LT<br>1  | TH<br>1  | RT<br>0    |
| Lane group                                           |               |            | L                           | TR                                    |          | L           | TR                                 | _            |          | L        |          | LT                     | t                | R                       | L        | TR       | 1          |
| Volume (vpl                                          | h)            |            | 761                         | 351                                   | 85       | 115         | 498                                |              | 35       | 16       | 5        | 50                     | _                | <del>1</del> 5          | 176      | 65       | 40         |
| % Heavy v                                            |               |            | 2                           | 2                                     | 2        | 2           | 2                                  | _            | 2        | 2        |          | 2                      |                  | 2                       | 2        | 2        | 2          |
| PHF                                                  |               |            | 0.95                        | 0.95                                  | 0.95     | 0.95        | 0.98                               | 5 0          | .95      | 0.9      | 5        | 0.95                   | 0                | .95                     | 0.95     | 0.95     | 0.95       |
| Actuated (P                                          |               |            | Α                           | Α                                     | Α        | Α           | Α                                  |              | Α        | Α        |          | Α                      | _                | Α                       | Α        | A        | Α          |
| Startup lost                                         |               |            | 3.0                         | 3.0                                   |          | 3.0         | 3.0                                |              |          | 3.0      |          | 3.0                    | _                | 3.0                     | 3.0      | 3.0      | ļ          |
| Ext. eff. gre                                        | en            |            | 2.0<br>5                    | 2.0<br>5                              |          | 2.0<br>5    | 2.0<br>5                           | -            |          | 2.0      | <u> </u> | 2.0                    | ╀                | 2.0<br>3                | 2.0      | 2.0      | 1          |
| Arrival type Unit Extens                             | ion           |            | 3.0                         | 3.0                                   |          | 3.0         | 3.0                                | ,            |          | 3.0      | <u> </u> | 3.0                    | +                | 3.0                     | 3.0      | 3.0      |            |
|                                                      | ΓOR Volume    | 2          | 5                           | 10                                    | 0        | 5           | 10                                 |              | 0        | 5        | ,        | 10                     |                  | 0                       | 5        | 10       | 0          |
| Lane Width                                           | TOTA VOIGITIE |            | 12.0                        | 12.0                                  |          | 12.0        | 12.0                               |              | <u> </u> | 12.      | 0        | 12.0                   | _                | 2.0                     | 12.0     | 12.0     | Ť          |
| Parking/Gra                                          | de/Parking    |            | N                           | 0                                     | N        | Ν           | 0                                  |              | Ν        | N        |          | 0                      | Ĺ                | Ν                       | N        | 0        | N          |
| Parking/hr                                           |               |            |                             |                                       |          |             |                                    |              |          |          |          |                        |                  |                         |          |          |            |
| Bus stops/h                                          | r             |            | 0                           | 0                                     |          | 0           | 0                                  |              |          | 0        |          | 0                      |                  | 0                       | 0        | 0        |            |
| Unit Extens                                          | ion           |            | 3.0                         | 3.0                                   |          | 3.0         | 3.0                                |              |          | 3.0      | )        | 3.0                    | ,                | 3.0                     | 3.0      | 3.0      |            |
| Phasing                                              | Excl. Left    | _          | Only                        | Thru 8                                |          | 04          |                                    |              | 3 Onl    |          |          | B Only                 |                  |                         | 07       |          | 08         |
| Timing                                               | G = 14.0      | G =        |                             | G = 2                                 |          | G =         |                                    |              | 15.0     |          |          | = 12.0                 | )                | G =                     |          | G =      |            |
| Duration of                                          | Y = 4         | Y = .      | -                           | Y = 4                                 |          | Y =         |                                    | Y =          | 4        |          |          | : 4                    | otl              | Y =                     | = 110.   | Y =      |            |
|                                                      | up Capac      |            |                             | l Dola                                | 37 31    | 24 I O      | s D                                | tor          | min      |          | _        | ie Lei                 | ıgu              | 10-                     | - 110.   | <u> </u> |            |
| Lane Oro                                             | up Capac      | l C        | EB                          | I Dele                                | ly, ai   | WE          |                                    | , LG I       | T        | atic     | -        | NB                     |                  |                         | <u> </u> | SB       |            |
| Adj. flow rat                                        | e             | 801        | 458                         |                                       | 121      |             |                                    |              | 96       |          | 13       |                        | 16               | 3                       | 185      | 110      |            |
| Lane group                                           |               | 1344       | 1617                        |                                       | 209      | -           | _                                  |              | 174      | 1        | 17       | 79                     | 15               | 1                       | 223      | 220      |            |
| v/c ratio                                            |               | 0.60       | 0.28                        |                                       | 0.58     | 0.9         | 8                                  |              | 0.5      | 5        | 0.       | 73                     | 0.1              | 11                      | 0.83     | 0.50     |            |
| Green ratio                                          |               | 0.39       | 0.47                        |                                       | 0.12     | 0.2         | 0                                  |              | 0.1      | 0        | 0.       | 10                     | 0.1              | 10                      | 0.13     | 0.13     |            |
| Unif. delay                                          | <b>d1</b>     | 26.6       | 17.7                        |                                       | 45.9     | 43.         | 7                                  |              | 47.      | 2        | 48       | 3.1                    | 45.              | .0                      | 46.8     | 44.7     |            |
| Delay factor                                         | · k           | 0.18       | 0.11                        |                                       | 0.17     | 0.4         | 8                                  |              | 0.1      | 5        | 0        | 29                     | 0.1              | 11                      | 0.37     | 0.11     |            |
| Increm. dela                                         | ay d2         | 0.7        | 0.1                         |                                       | 4.0      | 28.         | 6                                  |              | 3.8      | }        | 14       | .3                     | 0.               | 3                       | 22.3     | 1.8      |            |
| PF factor                                            |               | 0.572      | 0.402                       | ?                                     | 0.91     | 1 0.83      | 33                                 |              | 1.00     | 00       | 1.0      | 000                    | 1.0              | 00                      | 1.000    | 1.000    |            |
| Control dela                                         | ay            | 15.9       |                             | 45.8                                  | 65.      | 0           |                                    | 50.          | 9        | 62       | 2.3      | 45.                    | .3               | 69.2                    | 46.5     |          |            |
| Lane group                                           | LOS           | В          | Α                           |                                       | D        | Ε           |                                    |              | D        | ·        | E        | <b>=</b>               | D                | )                       | Ε        | D        |            |
| Apprch. dela                                         | ay            | 1          | 2.8                         |                                       | <u> </u> | 62.1        |                                    |              |          | 5        | 6.7      |                        |                  |                         |          | 60.7     | <u>.</u>   |
| Approach L                                           | os            |            | В                           |                                       |          | Е           |                                    |              |          |          | E        |                        |                  |                         |          | Е        |            |
| Intersec. de                                         | lay           | 3          |                             |                                       |          | In          | terse                              | ection       | LO       | S        |          |                        |                  |                         | D        |          |            |
| HCS2000 <sup>TM</sup>                                |               |            | Co                          | nvright ©                             | 2000 11  | niversity o | f Florid                           | a A11.1      | Rights 1 | Reserv   | ved      |                        |                  |                         |          | τ        | ersion 4.1 |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                             |                             |        |               |           | SH                                               | ORT        | RFP                         | OR           | T       |       |           |                            |                                                  |          |       |             |
|-----------------------------|-----------------------------|--------|---------------|-----------|--------------------------------------------------|------------|-----------------------------|--------------|---------|-------|-----------|----------------------------|--------------------------------------------------|----------|-------|-------------|
| General Inf                 | ormation                    |        |               |           |                                                  |            | Site In                     |              |         | on    |           |                            |                                                  |          |       |             |
| Analyst<br>Agency or C      |                             |        | SAI<br>SAI    |           |                                                  | i          | nterse                      | ectic        | on      |       | AK        |                            | DR.                                              | IUNDEI   | ₹     |             |
| Date Perfori<br>Time Period | med                         | 08/2   | 27/12<br>PEAK |           |                                                  | Ţ          | ∖rea T<br>lurisdi<br>∖nalys | ctio         | n       | Б     |           | All oth<br>EANS:<br>ALT1/l | IDE-IN                                           |          | Γ     |             |
| Volume an                   | d Timing In                 | put    | <del>.</del>  |           |                                                  | <u>I</u> _ |                             |              |         |       |           |                            |                                                  |          |       |             |
|                             |                             |        |               | EB        |                                                  |            | W                           | В            |         |       |           | NB                         |                                                  |          | SB    |             |
|                             |                             |        | LT            | TH        | RT                                               | LT         | Th                          | <del> </del> | RT      | L     | T         | TH                         | RT                                               | LT       | TH    | RT          |
| Num. of Lar                 | nes                         |        | 1             | 2         | 0                                                | 1          | 2                           |              | 0       | 1     |           | 1                          | 0                                                | 1        | 1     | 0           |
| Lane group                  |                             |        | L             | TR        |                                                  | L          | TR                          | <b>,</b>     |         | L     |           | TR                         |                                                  | L        | TR    |             |
| Volume (vpl                 | كالتراث المستوال المستوالية |        | 150           | 270       | 10                                               | 5          | 580                         | )            | 90      | 5     |           | 5                          | 5                                                | 60       | 5     | 200         |
| % Heavy ve                  | eh                          |        | 2             | 2         | 2 ·                                              | 2          | 2                           | _            | 2       | 2     |           | 2                          | 2                                                | 2        | 2     | 2           |
| PHF                         | /A \                        |        | 0.92          | 0.92      | 0.92                                             | 0.92       |                             | 2            | 0.92    | 0.9   |           | 0.92                       | 0.92                                             | 0.92     | 0.92  | 0.92        |
| Actuated (P<br>Startup lost |                             |        | <i>A</i> 3.0  | A<br>3.0  | Α                                                | 3.0        | 3.0                         | $\dashv$     | Α       | 2.    |           | A<br>3.0                   | Α                                                | 3.0      | 3.0   | Α           |
| Ext. eff. gree              |                             |        | 2.0           | 2.0       |                                                  | 2.0        | 2.0                         | _            |         | 2.    |           | 2.0                        | <del>                                     </del> | 2.0      | 2.0   | -           |
| Arrival type                | <del></del>                 |        | 3             | 3         | <del>                                     </del> | 3          | 3                           | _            |         | 3     |           | 3                          |                                                  | 3        | 3     |             |
| Unit Extensi                | ion                         |        | 3.0           | 3.0       |                                                  | 3.0        | 3.0                         | )            |         | 3.    | 0         | 3.0                        |                                                  | 3.0      | 3.0   |             |
| Ped/Bike/R                  | TOR Volume                  |        | 5             | 10        | 0                                                | 5          | 10                          |              | 0       | 5     | i         |                            | 0                                                | 5        |       | 0           |
| Lane Width                  |                             |        | 12.0          | 12.0      |                                                  | 12.0       | 12.0                        | 2            |         | 12    | .0        | 12.0                       |                                                  | 12.0     | 12.0  |             |
| Parking/Gra                 | de/Parking                  |        | N             | 0         | Ν                                                | Ν          | 0                           |              | Ν       | ٨     | l         | 0                          | Ν                                                | N        | 0     | N           |
| Parking/hr                  |                             |        |               |           |                                                  |            |                             |              |         |       |           |                            |                                                  |          |       |             |
| Bus stops/h                 | r                           |        | 0             | 0         |                                                  | 0          | 0                           |              |         | .(    | )         | 0                          |                                                  | 0        | 0     |             |
| Unit Extensi                | ion                         |        | 3.0           | 3.0       |                                                  | 3.0        | 3.0                         | )            |         | 3.    | 0         | 3.0                        |                                                  | 3.0      | 3.0   |             |
| Phasing                     | Excl. Left                  | Thru   | & RT          | 03        | 3                                                | 04         | 4                           | E            | xcl. L  | .eft  | Th        | ru & R                     |                                                  | 07       |       | )8          |
| Timing                      | G = 13.0                    | G =    |               | G=        |                                                  | G =        |                             | _            | = 8.0   |       |           | = 19.1                     | G =                                              |          | G =   |             |
|                             | Y = 4.2                     | Υ =    |               | Υ =       |                                                  | Y =        |                             | Υ            | = 4.2   | 2     | _         | = 4.2                      | Y =                                              |          | Y =   |             |
|                             | Analysis (hrs               |        |               |           |                                                  |            |                             | _            |         |       |           | cie Len                    | gtn C =                                          | = 100.   | 0     |             |
| Lane Gro                    | up Capaci                   | ity, C |               | l Dela    | ay, aı                                           |            |                             | <u>ete</u>   | rmir    | natio | <u>on</u> |                            |                                                  | <u> </u> |       |             |
|                             |                             |        | EB            |           | —                                                |            | NΒ                          | _            |         |       |           | NB                         |                                                  |          | SB    | _           |
| Adj. flow rat               | е                           | 163    | 304           |           | 5                                                | 7          | 28                          | <u> </u>     |         | 5     | _         | 10                         |                                                  | 65       | 222   |             |
| Lane group                  | сар.                        | 212    | 1444          | 1         | 21:                                              | 2 1.       | 418                         | L            | 1       | 142   |           | 312                        |                                                  | 124      | 288   |             |
| v/c ratio                   |                             | 0.77   | 0.21          |           | 0.0                                              | 2 0        | .51                         | Π            | C       | 0.04  | (         | 0.03                       |                                                  | 0.52     | 0.77  |             |
| Green ratio                 |                             | 0.12   | 0.41          |           | 0.1                                              | 2 0        | .41                         | Π            | C       | 0.08  | (         | 0.18                       |                                                  | 0.07     | 0.18  |             |
| Unif. delay o               | <del>1</del> 1              | 42.7   | 19.0          |           | 38.                                              | 8 2        | 2.0                         | Г            | 4       | 12.4  |           | 33.7                       |                                                  | 44.9     | 39.0  |             |
| Delay factor                | ·k                          | 0.32   | 0.11          | ·         | 0.1                                              | 1 0        | .12                         |              | C       | 0.11  | (         | 0.11                       |                                                  | 0.13     | 0.32  | 1           |
| Increm. dela                | ay d2                       | 15.7   | 0.1           |           | 0.0                                              | ) (        | 0.3                         | T            | (       | 0.1   |           | 0.0                        |                                                  | 4.0      | 12.1  | 1           |
| PF factor                   |                             | 1.000  | 1.00          | 0         | 1.0                                              | 00 1.      | 000                         | T            | 1.      | .000  | 1         | .000                       |                                                  | 1.000    | 1.000 |             |
| Control dela                | ıy                          | 58.3   | 19.1          |           | 38.                                              | 9 2        | 2.4                         | T            | 4       | 12.5  | ,         | 33.8                       |                                                  | 48.9     | 51.1  |             |
| Lane group                  | <del></del>                 | Е      | В             |           | D                                                |            | С                           | T            | $\top$  | D     | $\top$    | С                          |                                                  | D        | D     | 1           |
| Apprch. dela                |                             |        | 32.8          | L         |                                                  | 22.5       | <del></del>                 |              |         |       | 36.       | 7                          |                                                  |          | 50.6  |             |
| Approach L                  | os                          |        | С             |           |                                                  | С          |                             |              |         |       | D         |                            |                                                  |          | D     |             |
| Intersec. de                |                             |        | 31.2          |           | $\top$                                           | •          | lr                          | ıter         | section | on LC | os        |                            |                                                  |          | С     | <del></del> |
| HCS2000 <sup>TM</sup>       | -                           |        |               | pyright © | 2000 II                                          | niversity. |                             |              |         |       |           |                            |                                                  | l        | ν     | ersion 4.1  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                       |            |                             |                                                                             | SH       | ORT               | RI             | EPC                               | R            | T             |           | _            |                          |                 |              |             |          |                                                  |
|------------------------------------------------------|---------------------------------------|------------|-----------------------------|-----------------------------------------------------------------------------|----------|-------------------|----------------|-----------------------------------|--------------|---------------|-----------|--------------|--------------------------|-----------------|--------------|-------------|----------|--------------------------------------------------|
| General Inf                                          | formation                             |            |                             |                                                                             |          |                   |                |                                   |              | natio         | n         |              |                          |                 |              |             |          |                                                  |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                                   | U-<br>08/2 | SAI<br>SAI<br>27/12<br>PEAK |                                                                             |          |                   | Are<br>Jur     | ersed<br>ea Ty<br>risdic<br>alysi | pe<br>tio    | n             | 1         | oc           | I<br>All oth<br>EANS:    | OR<br>er<br>IDI | area<br>E-IN |             |          |                                                  |
| Volume ar                                            | nd Timing In                          | put        |                             |                                                                             |          |                   |                |                                   |              |               | 1         |              |                          |                 |              |             |          |                                                  |
|                                                      |                                       |            | LT                          | EB<br>TH                                                                    | RT       |                   | - 1            | WE                                | <del> </del> | RT            | <br>  L1  | _            | NB<br>TH                 | r 7             | ₹T           | LT          | SB<br>TH | RT                                               |
| Num. of Lar                                          | nes                                   |            | 1                           | 2                                                                           | 0        | 1                 | 씜              | 2                                 | $\dashv$     | 0             | 1         |              | 1                        | _               | 0            | 1           | 1        | 0                                                |
| Lane group                                           |                                       |            | L                           | TR                                                                          | <u> </u> |                   | $\dashv$       | TR                                | 十            |               |           |              | TR                       |                 |              | L           | TR       | •                                                |
| Volume (vp                                           |                                       |            | 152                         | 282                                                                         | 10       | 5                 | $\dashv$       | 584                               | +            | 90            | 5         |              | 5                        | <u> </u>        | 5            | 60          | 5        | 201                                              |
| % Heavy v                                            |                                       |            | 2                           | 2                                                                           | 2        | 2                 |                | 2                                 | +            | 2             | 2         |              | 2                        |                 | 2            | 2           | 2        | 2                                                |
| PHF                                                  | 011                                   |            | 0.92                        | 0.92                                                                        | 0.92     | 0.9               | 2              | 0.92                              | 1            | 0.92          | 0.9       | 2            | 0.92                     | _               | 92           | 0.92        | 0.92     | 0.92                                             |
| Actuated (P                                          | P/A)                                  |            | Α                           | Α                                                                           | Α        | Α                 |                | Α                                 | 1            | Α             | Α         |              | Α                        | _               | 4            | Α           | Α        | Α                                                |
| Startup lost                                         |                                       |            | 3.0                         | 3.0                                                                         |          | 3.0               |                | 3.0                               | Ţ            |               | 2.0       |              | 3.0                      |                 |              | 3.0         | 3.0      |                                                  |
| Ext. eff. gre                                        | en                                    |            | 2.0                         | 2.0                                                                         | <u> </u> | 2.0               | 2              | 2.0                               | 4            | -i            | 2.0       | •            | 2.0                      |                 |              | 2.0         | 2.0      |                                                  |
| Arrival type Unit Extens                             | ion                                   | '          | 3<br>3.0                    | 3<br>3.0                                                                    | $\vdash$ | 3.0               | $\dashv$       | 3<br>3.0                          | +            |               | 3.0       | <u> </u>     | 3<br>3.0                 | <del> </del>    |              | 3.0         | 3.0      |                                                  |
|                                                      | TOR Volume                            |            | 5.0<br>5                    | 10                                                                          | 0        | 5.0               | <del>'  </del> | 10                                | +            | 0             | 5.0       |              | 3.0                      | -               | 0            | 5           | 3.0      | 0                                                |
| Lane Width                                           |                                       |            | 12.0                        | 12.0                                                                        | <u> </u> | 12.               | 0              | 12.0                              | +            |               | 12.0      | <del>-</del> | 12.0                     |                 |              | 12.0        | 12.0     | <del>                                     </del> |
| Parking/Gra                                          | ade/Parking                           |            | N                           | 0                                                                           | N        | N                 | -              | 0                                 | 1            | Ν             | N         |              | 0                        | 7               | V            | N           | 0        | N                                                |
| Parking/hr                                           |                                       |            |                             |                                                                             |          |                   |                |                                   | T            |               |           |              |                          |                 |              | İ           |          |                                                  |
| Bus stops/h                                          | ır                                    |            | 0                           | 0                                                                           |          | 0                 |                | 0                                 | 7            |               | 0         |              | 0                        |                 |              | 0           | 0        |                                                  |
| Unit Extens                                          | ion                                   |            | 3.0                         | 3.0                                                                         |          | 3.0               | ,              | 3.0                               | T            |               | 3.0       | )            | 3.0                      |                 |              | 3.0         | 3.0      |                                                  |
| Phasing                                              | Excl. Left                            |            | & RT                        | 03                                                                          | 3        |                   | 04             |                                   | E            | ccl. Le       |           |              | ru & R                   | Γ               |              | 07          |          | )8                                               |
| Timing                                               | G = 13.0                              | G =        |                             | G =                                                                         |          | G=                |                |                                   |              | = 8.0         |           |              | = 19.1                   |                 | G =          |             | G =      |                                                  |
|                                                      | Y = 4.2<br>Analysis (hrs              | Y = 0.3    |                             | Υ =                                                                         |          | Y =               |                |                                   | Υ:           | = 4.2         |           |              | = <i>4.2</i><br>:le Leng | ath             | Y =          |             | Y =      |                                                  |
|                                                      | up Capaci                             |            |                             | l Dola                                                                      | )V 2     | nd I              | ΛS             | : Do                              | to           | rmin          |           |              | O LON                    | gu.             | 0            | 100.        |          |                                                  |
| Lane Oro                                             | up Capac                              | lty, C     | EB                          | Deic                                                                        | l l      | iiu L             | WE             |                                   | LC           | 1 1 1 1 1 1 1 | auc       |              | NB                       |                 |              | -           | SB       |                                                  |
| Adj. flow rat                                        |                                       | 165        | 318                         |                                                                             | 5        |                   | 733            |                                   |              |               | 5         | Т            | 10                       | Π               |              | 65          | 223      |                                                  |
| Lane group                                           |                                       | 212        | 1445                        | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 21       |                   | 141            |                                   |              |               | <u>42</u> | +            | 312                      |                 |              | 124         | 288      |                                                  |
| v/c ratio                                            | Сар.                                  | 0.78       | 0.22                        | _                                                                           | 0.0      | $\longrightarrow$ | 0.5            |                                   |              | -             | .04       | -            | 0.03                     | <del> </del>    |              | 0.52        | 0.77     |                                                  |
| Green ratio                                          | · · · · · · · · · · · · · · · · · · · | 0.12       | 0.41                        | -                                                                           | 0.1      | $\rightarrow$     | 0.4            |                                   |              | -             | .08       | +            | 0.18                     | ļ               |              | 0.07        | 0.18     |                                                  |
| Unif. delay                                          |                                       | 42.7       | 19.1                        |                                                                             | 38.      |                   | 22.            |                                   |              |               | 2.4       | +            | 33.7                     |                 |              | 44.9        | 39.0     | 1                                                |
| Delay factor                                         |                                       | 0.33       | 0.11                        | <del></del>                                                                 | 0.1      |                   | 0.1            |                                   |              |               | 11        | +            | 0.11                     |                 |              | 0.13        | 0.32     |                                                  |
| Increm. dela                                         |                                       | 16.7       | 0.1                         | +                                                                           | 0.0      |                   | 0.3            |                                   |              | _             | ). 1      | ┵            | 0.0                      | F               |              | 4.0         | 12.4     |                                                  |
| PF factor                                            | _                                     | 1.000      |                             | 0                                                                           | 1.0      |                   | 1.00           | _                                 |              |               | 000       | +            | .000                     | T               |              | 1.000       | 1.000    | <del> </del>                                     |
| Control dela                                         | ay                                    | 59.4       | 19.2                        |                                                                             | 38.      | 9                 | 22.4           | 4                                 |              | 4.            | 2.5       | †            | 33.8                     | Г               |              | 48.9        | 51.4     |                                                  |
| Lane group                                           | LOS                                   | E          | В                           |                                                                             | D        | ·                 | С              |                                   |              | $\top$        | D         | T            | С                        | Γ               |              | D           | D        |                                                  |
| Apprch. del                                          | ay                                    | ;          | 32.9                        |                                                                             | $\top$   | 22.               | 5              |                                   |              |               |           | 36.          | 7                        |                 |              |             | 50.8     | •                                                |
| Approach L                                           | os                                    |            | С                           |                                                                             |          | С                 |                | •                                 |              |               |           | D            |                          |                 |              |             | D        |                                                  |
| Intersec. de                                         | lay                                   | ,          | 31.3                        |                                                                             |          |                   |                | Int                               | ers          | ectio         | n LO      | s            |                          |                 |              | <del></del> | С        |                                                  |
| HCS2000TM                                            |                                       |            |                             | nvright ©                                                                   | 2000 13  | lais connits      | v of I         | Elorido                           | A 11         | 1 Dioleta     | Dogory    | ođ           |                          |                 | •            |             | 3.7      | ersion 4.1                                       |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                       |               |           |                     |          | SH       | ORT I         | REP                         | OF           | ₹T        |         |           |           |                 |           |           |            |
|---------------------------------------|---------------|-----------|---------------------|----------|----------|---------------|-----------------------------|--------------|-----------|---------|-----------|-----------|-----------------|-----------|-----------|------------|
| General Inf                           | ormation      |           |                     |          |          |               | ite In                      |              |           | ion     |           |           |                 |           |           |            |
| Analyst<br>Agency or C<br>Date Perfor | med           | U<br>08/2 | SAI<br>SAI<br>27/12 |          |          | A             | nterse<br>Area T<br>Jurisdi | yp.          | е         |         |           | I         | DR.<br>ier area |           | 7         |            |
| Time Period                           | [             | PM :      | PEAK                |          |          |               | nalys                       |              |           |         |           |           |                 | ROJECT    | Γ         |            |
| Volume an                             | d Timing In   | put       |                     |          |          |               |                             |              |           |         |           |           |                 |           |           |            |
|                                       |               |           |                     | EB       |          |               | W                           |              |           |         |           | NB        |                 |           | SB        |            |
|                                       |               |           | LT                  | TH       | RT       | LT            | <u>  T</u>                  |              | RT        | _       | LŢ        | TH        | RT              | LT        | TH        | RT         |
| Num. of Lar                           | ies           |           | 1                   | 2        | 0        | 1             | 2                           |              | 0         |         | 1         | 1         | 0               | 1         | 1         | 0          |
| Lane group                            |               |           | L                   | TR       |          | L             | TF                          | }            |           |         | L         | TR        |                 | L         | TR        |            |
| Volume (vpl                           |               |           | 275                 | 820      | 15       | 10            | 500                         |              | 110       | $\perp$ | 5         | 5         | 5               | 135       | 5         | 135        |
| % Heavy ve                            | <u>eh</u>     |           | 2                   | 2        | 2        | 2             | 2                           |              | 2         |         | 2         | 2         | 2               | 2         | 2         | 2          |
| PHF                                   | /A \          |           | 0.92                | 0.92     | 0.92     | 0.92<br>A     | 0.9                         | 2_           | 0.92      | 2 10    | ).92<br>A | 0.92<br>A | 0.92<br>A       | 0.92<br>A | 0.92<br>A | 0.92<br>A  |
| Actuated (P<br>Startup lost           |               |           | A<br>3.0            | A<br>3.0 | Α        | 3.0           | 3.0                         | <del></del>  | Α         | +       | 3.0       | 3.0       | A               | 3.0       | 3.0       | A_         |
| Ext. eff. gree                        |               |           | 2.0                 | 2.0      |          | 2.0           | 2.0                         |              |           |         | 2.0       | 2.0       |                 | 2.0       | 2.0       | $\vdash$   |
| Arrival type                          |               |           | 3                   | 3        |          | 3             | 3                           |              | 1         | T       | 3         | 3         |                 | 3         | 3         |            |
| Unit Extensi                          | on            |           | 3.0                 | 3.0      |          | 3.0           | 3.0                         | )            |           |         | 3.0       | 3.0       |                 | 3.0       | 3.0       |            |
| Ped/Bike/R                            | ΓOR Volume    |           | 5                   | 10       | 0        | 5             | 10                          | <u> </u>     | 0         |         | 5         |           | 0               | 5         |           | 0          |
| Lane Width                            |               |           | 12.0                | 12.0     |          | 12.0          | 12.                         | ō_           |           | 1       | 2.0       | 12.0      |                 | 12.0      | 12.0      |            |
| Parking/Gra                           | de/Parking    |           | N                   | 0        | N        | Ν             | 0                           |              | Ν         |         | Ν         | 0         | Ν               | N         | 0         | Ν          |
| Parking/hr                            |               |           |                     |          |          |               |                             |              |           |         |           |           |                 |           |           |            |
| Bus stops/h                           | r             |           | 0                   | 0        |          | 0             | 0                           |              |           |         | 0         | 0         |                 | 0         | 0         |            |
| Unit Extensi                          | ion           |           | 3.0                 | 3.0      |          | 3.0           | 3.0                         | )            |           |         | 3.0       | 3.0       |                 | 3.0       | 3.0       |            |
| Phasing                               | Excl. Left    | EW        | Perm                | Thru &   | & RT     | 04            | 1                           | E            | Excl.     | Left    | Tr        | ıru & R   | Т               | 07        |           | 08         |
| Timing                                | G = 4.0       | G=        |                     | G = 4    |          | G =           |                             | _            | i = 1     |         |           | = 14.8    |                 |           | G =       |            |
|                                       | Y = 4.2       | Y =       |                     | Y = 5    | .3       | Y =           |                             | <u>ΓΥ</u>    | = 4.      | .2      |           | = 4.2     | Y =             |           | Y =       |            |
|                                       | Analysis (hrs |           |                     |          |          |               | <u> </u>                    | <del>_</del> |           |         |           | cie Len   | gth C =         | = 110.    | U         |            |
| Lane Gro                              | up Capaci     | ity, C    |                     | l Dela   | ay, a    |               |                             | <u>ete</u>   | ermi      | ına     | tion      |           |                 |           |           |            |
|                                       |               | ļ         | E.B                 |          |          |               | VB_                         | _            |           |         |           | NB        |                 |           | SB        | <u> </u>   |
| Adj. flow rat                         | е             | 299       | 907                 |          | 11       | 6             | 63                          | ┸            |           | 5       |           | 10        |                 | 147       | 152       |            |
| Lane group                            | cap.          | 357       | 1906                | 3        | 11       | 6 12          | 215                         |              |           | 193     | }         | 216       |                 | 193       | 200       |            |
| v/c ratio                             |               | 0.84      | 0.48                | 7        | 0.0      | 9 0.          | .55                         | Τ            |           | 0.03    | 3         | 0.05      |                 | 0.76      | 0.76      |            |
| Green ratio                           |               | 0.20      | 0.54                |          | 0.2      | 0 0.          | .35                         | T            |           | 0.1     | 1         | 0.13      |                 | 0.11      | 0.13      |            |
| Unif. delay                           | d1            | 42.2      | 15.7                |          | 37.      | 0 2           | 8.4                         | Т            |           | 43.8    | 3         | 42.3      |                 | 47.6      | 46.5      |            |
| Delay factor                          | ·k            | 0.37      | 0.11                |          | 0.1      | 1 0.          | .15                         | Т            |           | 0.1     | 1         | 0.11      |                 | 0.31      | 0.31      |            |
| increm. dela                          | ay d2         | 15.9      | 0.2                 |          | 0.4      | 4 (           | ).5                         |              |           | 0.1     |           | 0.1       |                 | 16.3      | 15.6      |            |
| PF factor                             |               | 1.000     | 1.00                | 0        | 1.0      | 00 1.         | 000                         | Ι            |           | 1.00    | 00        | 1.000     |                 | 1.000     | 1.000     |            |
| Control dela                          |               |           |                     |          | 37.      | 3 2           | 8.9                         |              |           | 43.8    | 3         | 42.4      |                 | 63.9      | 62.1      |            |
| Lane group                            | LOS           | Ε         | В                   |          | D        |               | С                           |              |           | D       |           | D         |                 | Ε         | Е         |            |
| Apprch. dela                          | ay            |           | 26.4                |          |          | 29.1          |                             |              |           |         | 42        | .9        |                 |           | 63.0      |            |
| Approach L                            | os            |           | С                   |          |          | С             |                             |              |           |         | E         | )         |                 |           | E         |            |
| Intersec. de                          | lay           |           | 32.3                |          |          |               | Ir                          | nter         | rsect     | ion l   | os        |           |                 |           | С         |            |
| rresonatM                             |               |           |                     |          | - 2000 T | Iniversity of | - CT211-                    | 1_ /         | 11 D : ~1 | -4- D-  | 1         |           |                 |           |           | ersion 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                         |           |                             |            | SH           | ORT              | R        | EPC                                 | )R          | RT       |          |            |                        |                                                  |                 |             | •                |
|------------------------------------------------------|-----------------------------------------|-----------|-----------------------------|------------|--------------|------------------|----------|-------------------------------------|-------------|----------|----------|------------|------------------------|--------------------------------------------------|-----------------|-------------|------------------|
| General Inf                                          | formation                               |           |                             |            |              |                  | Sit      | te Inf                              | or          | mat      | ion      |            |                        |                                                  |                 |             |                  |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                                     | U<br>08/2 | SAI<br>SAI<br>27/12<br>PEAK |            |              |                  | Ar<br>Ju | tersed<br>ea Ty<br>risdic<br>nalysi | ype<br>ctio | e<br>on  |          | 0          | L<br>All oth<br>CEANS: | DR.<br>er are<br>IDE-II                          |                 |             |                  |
| Volume ar                                            | nd Timing In                            | out       |                             |            |              |                  |          |                                     |             |          |          |            |                        |                                                  |                 |             |                  |
|                                                      |                                         |           | ,                           | EB         |              | <del>.  </del>   | <b>—</b> | WE                                  | _           |          | _        | ı <b>-</b> | NB_                    |                                                  | , <sub>+</sub>  | SB          | T DT             |
| Nive of Lev                                          |                                         |           | LT                          | TH<br>2    | RT<br>0      |                  |          | TH                                  | $\dashv$    | RT<br>0  | ┵        | LT<br>1    | TH<br>1                | RT<br>0                                          | LT<br>1         | TH<br>1     | RT<br>0          |
| Num. of La                                           |                                         |           | 1                           |            | 0            | +-               |          | 2                                   |             | U        | ┵        |            | <del> </del>           | 0                                                | + -             | <u> </u>    | ┼-               |
| Lane group                                           |                                         |           | L 070                       | TR         | 45           | L                |          | TR                                  |             | 110      | +        | L          | TR                     |                                                  | L 425           | TR          | 427              |
| Volume (vp<br>% Heavy v                              |                                         |           | 276<br>2                    | 826<br>2   | 15<br>2      | 10               | _        | 513<br>2                            | $\dashv$    | 110<br>2 | +        | 5<br>2     | 5 2                    | 5<br>2                                           | 135<br>2        | 5<br>2      | 137<br>2         |
| PHF                                                  | GII                                     |           | 0.92                        | 0.92       | 0.92         | 0.9              |          | 0.92                                | ,           | 0.92     | 2 6      | 0.92       | 0.92                   | 0.92                                             | 0.92            | 0.92        | 0.92             |
| Actuated (F                                          | P/A)                                    |           | A                           | A          | A            | A                | _        | A                                   | $\dashv$    | A        |          | A          | A                      | A                                                | A               | A           | A                |
| Startup lost                                         | : time                                  |           | 3.0                         | 3.0        |              | 3.0              | _        | 3.0                                 |             |          | _        | 3.0        | 3.0                    |                                                  | 3.0             | 3.0         |                  |
| Ext. eff. gre                                        |                                         |           | 2.0                         | 2.0        |              | 2.0              |          | 2.0                                 | $\Box$      |          | $\bot$   | 2.0        | 2.0                    |                                                  | 2.0             | 2.0         |                  |
| Arrival type                                         |                                         |           | 3                           | 3          |              | 3                |          | 3                                   | 4           |          | $\dashv$ | 3          | 3                      | <u> </u>                                         | 3               | 3           | ₩                |
| Unit Extens                                          |                                         |           | 3.0                         | 3.0        | <u> </u>     | 3.0              |          | 3.0                                 | 4           | ^        | $\dashv$ | 3.0        | 3.0                    |                                                  | 3.0<br>5        | 3.0         | 0                |
| Ped/Blke/R<br>Lane Width                             | TOR Volume                              |           | 5<br>12.0                   | 10<br>12.0 | 0            | 5<br>12.         |          | 10<br>12.0                          | $\dashv$    | 0        |          | 5<br>12.0  | 12.0                   | 0                                                | 12.0            | 12.0        | +                |
|                                                      | ade/Parking                             | , ,       | 12.0<br>N                   | 0          | N            | 12.<br>N         |          | 0                                   | -           | N        | -        | N N        | 0                      | N                                                | N 12.0          | 0           | l <sub>N</sub>   |
| Parking/Gra<br>Parking/hr                            | aue/r arking                            |           | , v                         |            | , v          | <del>- / `</del> |          |                                     | $\dashv$    | / \      | $\dashv$ | , v        | 1                      | <del>                                     </del> | <del>  '`</del> | -           | <del>  ^``</del> |
| Bus stops/h                                          | nr                                      |           | 0                           | 0          |              | 0                |          | 0                                   | $\dashv$    |          | 十        | 0          | 0                      |                                                  | 0               | 0           | <del> </del>     |
| Unit Extens                                          |                                         |           | 3.0                         | 3.0        |              | 3.0              |          | 3.0                                 | _           |          | _        | 3.0        | 3.0                    | <u> </u>                                         | 3.0             | 3.0         | ╈                |
| Phasing                                              | Excl. Left                              | FW        | Perm                        | Thru 8     | RT           | _                | 04       | 1                                   | _           | xcl.     | Lef      |            | iru & R                | <u> </u>                                         | 07              | <del></del> | 08               |
| . *                                                  | G = 4.0                                 | G =       |                             | G = 4      |              | G =              | •        |                                     |             | = 1      |          |            | = 14.8                 | G                                                |                 | G =         |                  |
| Timing                                               | Y = 4.2                                 | Y =       |                             | Y = 5      | .3           | Y =              |          |                                     | Υ           | = 4      | .2       |            | = 4.2                  | Υ                                                |                 | Y =         |                  |
|                                                      | Analysis (hrs                           | -         |                             | <u> </u>   | <del> </del> |                  |          | •••                                 | _           |          |          |            |                        | gth C                                            | = 110.          | 0           |                  |
| Lane Gro                                             | oup Capaci                              | ity, C    |                             | l Dela     | ay, a        | nd L             |          |                                     | te          | rm       | ina      | tion       |                        |                                                  |                 |             |                  |
|                                                      |                                         |           | EB                          |            |              |                  | W        | В                                   | _           |          |          |            | NB                     |                                                  |                 | SB          |                  |
| Adj. flow ra                                         | te                                      | 300       | 914                         |            | 11           | 1                | 67       | 8                                   | _           |          | 5        |            | 10                     |                                                  | 147             | 154         |                  |
| Lane group                                           | сар.                                    | 357       | 1906                        | 3          | 11           | 6                | 121      | 16                                  |             |          | 193      | 3          | 216                    |                                                  | 193             | 200         |                  |
| v/c ratio                                            |                                         | 0.84      | 0.48                        | 3          | 0.0          | 9                | 0.5      | 6                                   |             |          | 0.0      | 3          | 0.05                   |                                                  | 0.76            | 0.77        |                  |
| Green ratio                                          | ·                                       | 0.20      | 0.54                        | !          | 0.2          | 20               | 0.3      | 35                                  | Γ           |          | 0.1      | 1          | 0.13                   |                                                  | 0.11            | 0.13        |                  |
| Unif. delay                                          | d1                                      | 42.2      | 15.8                        | 3          | 36.          | .8               | 28.      | .6                                  | Γ           |          | 43.      | 8          | 42.3                   |                                                  | 47.6            | 46.6        |                  |
| Delay facto                                          | r k                                     | 0.38      | 0.11                        | ,          | 0.1          | 1                | 0.1      | 5                                   |             |          | 0.1      | 1          | 0.11                   |                                                  | 0.31            | 0.32        |                  |
| Increm. del                                          |                                         | 16.3      | 0.2                         | -          | 0.           |                  | 0.0      |                                     | Г           |          | 0.1      |            | 0.1                    |                                                  | 16.3            | 16.6        | +                |
| PF factor                                            | <u>,</u>                                | 1.000     |                             |            | 1.0          |                  | 1.0      |                                     | T           |          | 1.00     |            | 1.000                  |                                                  | 1.000           | 1.000       | +                |
| Control dela                                         | <br>ay                                  | 58.4      | 15.9                        |            | 37.          |                  | 29.      | -                                   | T           |          | 43.      |            | 42.4                   |                                                  | 63.9            | 63.2        |                  |
|                                                      | ontrol delay 58<br>ine group LOS E      |           |                             | $\dashv$   | D            |                  | C        |                                     | Γ           | $\neg$   | D        |            | D                      |                                                  | E               | E           | +-               |
| Apprch. del                                          | · · · · - · · · · · · · · · · · · · · · |           | B<br>26.5                   |            |              | 1<br>29          |          |                                     | <u></u>     |          |          | 42         |                        | <u> </u>                                         |                 | 63.5        |                  |
| Approach L                                           |                                         |           | С                           |            | $\top$       | (                |          |                                     |             |          |          | E          | •                      |                                                  |                 | E           |                  |
| Intersec. de                                         |                                         |           | 32.5                        |            | +            |                  |          | Int                                 | ter         | sect     | ion      | LOS        |                        |                                                  |                 |             |                  |
| HCS2000 <sup>TM</sup>                                | ~ <u>J</u>                              | <u> </u>  |                             | opyright © | 1 2000 I     | T_1              | tr of    |                                     |             |          |          |            |                        |                                                  |                 |             | /ersion 4.       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |            |               |                                                  |                                       | SH          | ORTR                                             | EPC                                | R          | Т           |                 |               |                             |                        |                                                  |                |              |
|-------------------------------------------------------|------------|---------------|--------------------------------------------------|---------------------------------------|-------------|--------------------------------------------------|------------------------------------|------------|-------------|-----------------|---------------|-----------------------------|------------------------|--------------------------------------------------|----------------|--------------|
| General Inf                                           | ormation   |               |                                                  |                                       |             | S                                                | ite In                             | foi        | rmatio      | n               |               |                             |                        |                                                  |                |              |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med        | L<br>08/      | ISAI<br>ISAI<br>/24/12<br>PEAK                   |                                       |             | A<br>ال                                          | iterse<br>rea T<br>urisdi<br>nalys | yp<br>ctic | e<br>on     |                 | V<br>A<br>OCE | VAR<br>II oti<br>ANS<br>OUT | RING<br>her a<br>SIDE- | reas<br>-INT#20<br>.#1-AM/                       | )              |              |
| Valuma an                                             | d Timina I | a na urk      |                                                  | · · · · · · · · · · · · · · · · · · · |             |                                                  |                                    |            |             |                 |               | Pr                          | KUJE                   | C                                                |                |              |
| Volume an                                             | a runing i | ipuι          | Т                                                | EB                                    |             | T                                                | WE                                 | _          |             |                 | N             | ΙΒ                          |                        |                                                  | SB             |              |
|                                                       |            |               | LT                                               | TH                                    | RT          | LT                                               | TH                                 | 7          | RT          | LT              |               | H                           | RT                     | LT                                               | TH             | RT           |
| Num. of Lan                                           | nes        |               | 0                                                | 1                                     | 1           | 1                                                | 1                                  | 1          | 0           | 2               | 7             |                             | 1                      | 1                                                | 2              | 1            |
| Lane group                                            |            |               |                                                  | LT                                    | R           | L                                                | TR                                 | 7          |             | L               | 7             | -                           | R                      | L                                                | T              | R            |
| Volume (vpl                                           | n)         |               | 30                                               | 35                                    | 180         | 110                                              | 50                                 | 7          | 45          | 440             | 63            | 30                          | 200                    | 75                                               | 1200           | 140          |
| % Heavy ve                                            |            |               | 2                                                | 2                                     | 2           | 2                                                | 2                                  | 1          | 2           | 2               | 2             | ?                           | 2                      | 2                                                | 2              | 2            |
| PHF                                                   |            |               | 0.92                                             | 0.92                                  | 0.92        | 0.92                                             | 0.92                               |            | 0.92        | 0.92            | 0.9           | 92                          | 0.92                   | 0.92                                             | 0.92           | 0.92         |
| Actuated (P.                                          | /A)        |               | Α                                                | Α                                     | Α           | Α                                                | Α                                  |            | Α           | Α               | P             |                             | Α                      | Α                                                | Α              | Α            |
| Startup lost                                          |            |               |                                                  | 2.0                                   | 2.0         | 2.0                                              | 2.0                                |            |             | 2.0             | 2.            |                             | 2.0                    | 2.0                                              | 2.0            | 2.0          |
| Ext. eff. gree                                        | en         |               |                                                  | 2.0                                   | 2.0         | 2.0                                              | 2.0                                | 4          |             | 2.0             | 2.            |                             | 2.0                    | 2.0                                              | 2.0            | 2.0          |
| Arrival type                                          |            |               |                                                  | 4                                     | 4           | 4                                                | 4                                  | 4          |             | 5               | 5             |                             | 5                      | 5                                                | 5              | 5            |
| Unit Extensi<br>Ped/Bike/R1                           |            |               | 5                                                | 3.0<br>5                              | 3.0         | 3.0<br>5                                         | 3.0<br>5                           | +          | 0           | 3.0<br>5        | 3.            |                             | 3.0<br>0               | 3.0<br>5                                         | 3.0<br>5       | 3.0          |
| Lane Width                                            | IOR Volum  | <del>U</del>  | 13                                               | 12.0                                  | 12.0        | 12.0                                             | 12.0                               | ╅          | 0           | 12.0            | _             |                             | 12.0                   |                                                  | 12.0           | 12.0         |
| Parking/Gra                                           | de/Parking |               | N                                                | 0                                     | N           | N                                                | 0                                  | ┪          | Ν           | N               | 0             |                             | N                      | N N                                              | 0              | N            |
| Parking/hr                                            |            |               | <del>                                     </del> | Ť                                     |             | <del>                                     </del> | ١                                  | †          |             |                 | Ť             |                             |                        | <del>                                     </del> |                | †            |
| Bus stops/h                                           | r          |               |                                                  | 0                                     | 0           | 0                                                | 0                                  | ┪          |             | 0               |               | )                           | 0                      | 0                                                | 0              | 0            |
| Unit Extensi                                          |            |               |                                                  | 3.0                                   | 3.0         | 3.0                                              | 3.0                                | 7          |             | 3.0             | 3.            | 0                           | 3.0                    | 3.0                                              | 3.0            | 3.0          |
| Phasing                                               | EB Only    | WE            | Only                                             | 0:                                    | 3           | 04                                               | <u> </u>                           | E          | xcl. Le     | ft              | hru d         | § R                         | r I                    | 07                                               | İ              | 08           |
| Timing                                                | G = 14.0   | G =           |                                                  | G =                                   |             | G =                                              |                                    | _          | = 15.       |                 | ) = 4         |                             | G                      |                                                  | G =            |              |
|                                                       | Y = 4.6    | Y =           | -                                                | Y =                                   |             | Y =                                              |                                    | Y          | = 4.6       |                 | ′ = 6         |                             | Y                      |                                                  | Y =            |              |
| Duration of                                           | <u> </u>   |               |                                                  | <u> </u>                              |             | 1 1 0                                            | 0.0                                | 4 -        |             |                 |               | Len                         | gtn C                  | = 100                                            | ).0            |              |
| Lane Gro                                              | up Capac   | city, C       |                                                  | oi Dei                                | ay, ar<br>I |                                                  | s De                               | те         | rmin        | -               | •             |                             |                        | <u> </u>                                         | CD             |              |
|                                                       |            |               | EB                                               | 400                                   | 400         | WB                                               | -                                  |            | <u> </u>    | _               | NB            | Lad                         |                        | 00                                               | SB             | 1.50         |
| Adj. flow rate                                        |            | _             | 71                                               | 196                                   | 120         | 103                                              | _                                  |            | 478         | <del>-</del>    | 85            | 21                          |                        | 82                                               | 1304           | 152          |
| Lane group                                            | сар.       |               | 254                                              | 449                                   | 121         | 118                                              |                                    |            | 519         | -               | 61            | 67                          |                        | 267                                              | 1561           | 684          |
| v/c ratio                                             |            |               | 0.28                                             | 0.44                                  | 0.99        | 0.87                                             |                                    | _          | 0.92        |                 | 44            | 0.3                         |                        | 0.31                                             | 0.84           | 0.22         |
| Green ratio                                           |            | _             | ).14                                             | 0.29                                  | 0.07        | 0.07                                             |                                    |            | 0.15        | <del>-</del> }- | 44            | 0.4                         |                        | 0.15                                             | 0.44           | 0.44         |
| Unif. delay o                                         |            | $\rightarrow$ | 38.5                                             | 28.8                                  | 46.5        | 46.1                                             | _                                  |            | 41.9        |                 | ).4           | 18                          |                        | 37.8                                             | 24.8           | 17.4         |
| Delay factor                                          |            |               |                                                  | 0.11                                  | 0.49        | 0.40                                             | _                                  |            | 0.44        | -               | 11            | 0.1                         |                        | 0.11                                             | 0.37           | 0.11         |
| Increm. dela                                          | ay d2      |               | 0.6                                              | 0.7                                   | 79.1        | 46.4                                             |                                    |            | 21.9        | -               | .2            | 0.                          |                        | 0.7                                              | 4.1            | 0.2          |
| PF factor                                             |            | -             |                                                  | 0.993                                 | 1.000       |                                                  |                                    |            | 0.881       | +               | 476           | ╄                           |                        | 0.881                                            | 0. <b>47</b> 6 | 0.476        |
| Control dela                                          |            | 3             | 39.1                                             | 29.3                                  | 125.6       | _                                                |                                    |            | 58.8        | 9               | .5            | 9.                          | 0                      | 34.0                                             | 15.9           | 8. <b>4</b>  |
| Lane group                                            | LOS        |               | D                                                | С                                     | F           | F                                                |                                    |            | E           |                 | 4             | A                           | ١                      | C                                                | В              | Α            |
| Apprch. dela                                          | ay         | 3             | 1.9                                              |                                       |             | 110.3                                            |                                    |            |             | 26.5            |               |                             |                        | · · · · · · · · · · · · · · · · · · ·            | 16.1           |              |
| Approach Lo                                           | os         |               | С                                                |                                       |             | F                                                |                                    |            |             | С               |               |                             |                        |                                                  | В              |              |
| Intersec. de                                          | lay        | 2             | 7.7                                              |                                       |             |                                                  | Inte                               | rse        | ection l    | LOS             |               |                             |                        |                                                  | С              |              |
| HCS2000 <sup>TM</sup>                                 |            |               | C                                                | Copyright ©                           | 2000 U      | niversity of                                     | Florida                            | , Al       | Il Rights l | Reserve         | :d            |                             |                        |                                                  |                | Version 4.1f |

 $HCS2000^{\mathrm{TM}}$ 

|                                                       |                                       |         |                                  |            | SH       | ORT R        | REPO                               | R          | T           |          |                                                  |                               |                                 |       |          |             |
|-------------------------------------------------------|---------------------------------------|---------|----------------------------------|------------|----------|--------------|------------------------------------|------------|-------------|----------|--------------------------------------------------|-------------------------------|---------------------------------|-------|----------|-------------|
| General Inf                                           | ormation                              |         |                                  |            |          | S            | ite In                             | for        | rmatio      | n        |                                                  |                               |                                 |       |          |             |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med                                   | U<br>08 | USAI<br>USAI<br>V24/12<br>I PEAK |            |          | A<br>J       | nterse<br>rea T<br>urisdi<br>nalys | yp<br>ctic | e<br>on     |          | OC<br>BL                                         | WAF<br>All of<br>EAN:<br>JILD | RING<br>her a<br>SIDE-<br>DUT A |       | )        |             |
| Volume an                                             | d Timing In                           | put     |                                  |            |          |              |                                    |            |             |          |                                                  |                               |                                 |       |          |             |
|                                                       | <u></u>                               |         |                                  | EB         |          |              | WE                                 |            |             |          |                                                  | NB                            |                                 |       | SB       |             |
|                                                       |                                       |         | LT                               | TH         | RT       | LT           | TH                                 | 4          | RT          | L        | <u> </u>                                         | TH                            | RT                              | LT    | TH       | RT          |
| Num. of Lan                                           | ies                                   |         | 0                                | 1          | 1        | 1            | 1                                  | _          | 0           | 2        |                                                  | 2                             | 1                               | 1     | 2        | 1           |
| Lane group                                            |                                       |         |                                  | LT         | R        | L            | TR                                 |            |             | L        |                                                  | T                             | R                               | L     | T        | R           |
| Volume (vpl                                           |                                       |         | 30                               | 35         | 184      | 110          | 50                                 |            | 45          | 45       | $o \in \epsilon$                                 | 349                           | 200                             | 75    | 1207     | 140         |
| % Heavy ve                                            | eh                                    |         | 2                                | 2          | 2        | 2            | 2                                  | _          | 2           | 2        |                                                  | 2                             | 2                               | 2     | 2        | 2           |
| PHF                                                   | ( 5 )                                 |         | 0.92                             | 0.92       | 0.92     | 0.92         | 0.92                               | ·          | 0.92        | 0.9      |                                                  | .92                           | 0.92                            | 0.92  | 0.92     | 0.92        |
| Actuated (P                                           |                                       |         | A                                | A          | A 2.0    | A 2.0        | A 2.0                              | 4          | Α           | A        |                                                  | <u>A</u>                      | A                               | A 2.0 | A 2.0    | A 2.0       |
| Startup lost                                          |                                       |         | _                                | 2.0        | 2.0      | 2.0          | 2.0                                | $\dashv$   |             | 2.0      |                                                  | 2.0<br>2.0                    | 2.0                             | 2.0   | 2.0      | 2.0         |
| Ext. eff. gree<br>Arrival type                        | en                                    |         | <del>- </del>                    | 2.0        | 2.0<br>4 | 4            | 4                                  | +          |             | 2.0<br>5 | <del>′                                    </del> | <u>2.0</u><br>5               | <i>2.0</i><br>5                 | 5     | 2.0<br>5 | 5           |
| Unit Extensi                                          | on                                    |         | <u> </u>                         | 3.0        | 3.0      | 3.0          | 3.0                                | -          |             | 3.0      | 7                                                | 3.0                           | 3.0                             | 3.0   | 3.0      | 3.0         |
| Ped/Bike/R1                                           |                                       |         | 5                                | 5          | 0        | 5            | 5                                  | _          | 0           | 5        | <del>-    </del>                                 | 5                             | 0                               | 5.0   | 5        | 0           |
| Lane Width                                            | OT VOIGITIE                           |         | + -                              | 12.0       | 12.0     | 12.0         | 12.0                               | 7          |             | 12.      | 0 1                                              | 2.0                           | 12.0                            |       | 12.0     | 12.0        |
| Parking/Gra                                           | de/Parking                            |         | $+_{N}$                          | 0          | N        | N            | 0                                  | $\dashv$   | N           | N        | -                                                | 0                             | N                               | N N   | 0        | N           |
| Parking/hr                                            |                                       |         |                                  |            |          | 1            | Ť                                  | 7          |             | <u> </u> | 1                                                |                               |                                 |       |          | 1           |
| Bus stops/h                                           | · · · · · · · · · · · · · · · · · · · |         | 1                                | 0          | 0        | 0            | 0                                  |            |             | 0        | $\neg$                                           | 0                             | 0                               | 0     | 0        | 0           |
| Unit Extensi                                          |                                       |         | 1                                | 3.0        | 3.0      | 3.0          | 3.0                                | +          |             | 3.0      |                                                  | 3.0                           | 3.0                             | 3.0   | 3.0      | 3.0         |
| Phasing                                               | EB Only                               | W       | 3 Only                           | 0          | <u> </u> | 04           | <del>_</del>                       | F          | xcl. Le     |          |                                                  | & R                           | <u> </u>                        | 07    |          | 08          |
| _                                                     | G = 14.0                              |         | 7.0                              | G =        |          | G =          |                                    | *****      | = 15.       |          |                                                  | 44.0                          |                                 |       | G =      | ·           |
| Timing                                                | Y = 4.6                               | Y =     | 4                                | Y =        |          | Y =          |                                    | Υ          | = 4.6       |          | Y =                                              | 6.7                           | Υ                               | =     | Υ=       | ·           |
| Duration of                                           | Analysis (hr                          | s) = 0  | .25                              |            |          |              |                                    |            |             |          | Cycle                                            | Len                           | gth C                           | = 100 | 0.0      |             |
| Lane Gro                                              | up Capac                              | ity, (  | Contro                           | ol Del     | ay, aı   | nd LO        | S De                               | te         | rmin        | atic     | n                                                |                               |                                 |       |          |             |
|                                                       |                                       |         | EB                               |            |          | WB           |                                    |            |             |          | NB                                               |                               |                                 |       | SB       |             |
| Adj. flow rat                                         | e                                     |         | 71                               | 200        | 120      | 103          |                                    |            | 489         |          | 705                                              | 21                            | 17                              | 82    | 1312     | 152         |
| Lane group                                            | сар.                                  |         | 254                              | 449        | 121      | 118          |                                    |            | 519         | 1        | 561                                              | 67                            | 76                              | 267   | 1561     | 684         |
| v/c ratio                                             |                                       | 1       | 0.28                             | 0.45       | 0.99     | 0.87         |                                    |            | 0.94        | (        | ).45                                             | 0.3                           | 32                              | 0.31  | 0.84     | 0.22        |
| Green ratio                                           |                                       |         | 0.14                             | 0.29       | 0.07     | 0.07         |                                    |            | 0.15        | 7        | ).44                                             | 0.4                           | 44                              | 0.15  | 0.44     | 0.44        |
| Unif. delay o                                         | 11                                    | 1       | 38.5                             | 28.9       | 46.5     | 46.1         |                                    |            | 42.0        | 1        | 19.6                                             | 18                            | 3.3                             | 37.8  | 24.9     | 17.4        |
| Delay factor                                          | k                                     |         | 0.11                             | 0.11       | 0.49     | 0.40         |                                    |            | 0.45        | 7        | 0.11                                             | 0.                            | 11                              | 0.11  | 0.38     | 0.11        |
| Increm. dela                                          | y d2                                  |         | 0.6                              | 0.7        | 79.1     | 46.4         |                                    |            | 25.8        |          | 0.2                                              | 0.                            | 3                               | 0.7   | 4.3      | 0.2         |
| PF factor                                             |                                       | 7       | 1.000                            | 0.993      | 1.000    | 1.000        | )                                  |            | 0.881       | O        | .476                                             | 0.4                           | 176                             | 0.881 | 0.476    | 0.476       |
| Control dela                                          | Control delay                         |         |                                  | 29.4       | 125.6    | 92.4         |                                    |            | 62.9        |          | 9.5                                              | 9.                            | .0                              | 34.0  | 16.2     | 8.4         |
| Lane group                                            | ane group LOS                         |         |                                  | С          | F        | F            |                                    |            | E           |          | Α                                                | 1                             | A                               | С     | В        | Α           |
| Apprch. dela                                          | ау                                    | 3       | 31.9                             |            |          | 110.3        |                                    |            |             | 27.      | 9                                                |                               |                                 |       | 16.3     |             |
| Approach Lo                                           | os                                    |         | С                                |            |          | F            |                                    |            |             | С        |                                                  |                               |                                 |       | В        |             |
| Intersec. de                                          | lay                                   | - 2     | 28.4                             |            |          |              | Inte                               | rse        | ection l    | _os      |                                                  |                               |                                 |       | С        |             |
| HCS2000 <sup>TM</sup>                                 |                                       |         |                                  | opyright ( | å 2000 U | niversity of | f Florida                          | a. A1      | Il Rights l | Reser    | ved                                              |                               |                                 |       |          | Version 4.1 |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                              |                     |              |                                   | 4           | SHO       | ORT R        | EPO                                | DR          | T              |           | •              |                                |                           |                          |            |             |
|--------------------------------------------------------------|---------------------|--------------|-----------------------------------|-------------|-----------|--------------|------------------------------------|-------------|----------------|-----------|----------------|--------------------------------|---------------------------|--------------------------|------------|-------------|
| General Inf                                                  | ormation            |              |                                   |             |           | S            | ite In                             | for         | rmatio         | n         |                |                                |                           |                          |            |             |
| Analyst<br>Agency <i>o</i> r C<br>Date Perfon<br>Time Period | med                 | 08           | USAI<br>USAI<br>8/23/12<br>1 PEAK |             |           | A<br>Ji      | iterse<br>rea T<br>urisdi<br>nalys | ypo<br>ctic | e<br>on        |           | OCE            | WAR<br>All oti<br>ANSI<br>DOUT | RING I<br>her ai<br>DE-IN | reas<br>VT#20P<br>#1-PM/ | 'M         |             |
| Volume an                                                    | d Timing Ir         | put          |                                   |             | •         |              |                                    |             |                |           |                |                                |                           |                          |            |             |
|                                                              |                     |              |                                   | EB          | ,         |              | WE                                 |             |                |           |                | NB                             |                           |                          | SB         |             |
|                                                              | <b>.</b>            |              | LT                                | TH          | RT        | LT           | TH                                 | 4           | RT             | L         |                | TH                             | RT                        | LT_                      | TH         | RT          |
| Num. of Lan                                                  | nes                 |              | 0                                 | 1           | 1         | 1            | 1                                  | 4           | 0              | 2         | $\bot$         | 2                              | 1                         | 1                        | 2          | 1           |
| Lane group                                                   |                     |              |                                   | LT          | R         | L            | TR                                 |             |                | L         |                | T                              | R                         | L                        | T          | R           |
| Volume (vpl                                                  |                     |              | 105                               | 55          | 390       | 130          | 55                                 | 4           | 120            | 380       | ) 1            | 415                            | 165                       | 70                       | 795        | 80          |
| % Heavy ve<br>PHF                                            | eh                  |              | 0.92                              | 1<br>0.92   | 1<br>0.92 | 1<br>0.92    | 1<br>0.92                          | _           | 1<br>0.92      | 0.9.      | <del>.  </del> | 2<br>0.92                      | 1<br>0.92                 | 0.92                     | 2<br>0.92  | 0.92        |
| Actuated (P                                                  | /Δ \                |              | 0.92<br>A                         | 0.92<br>A   | 0.92<br>A | 0.92<br>A    | 0.92<br>A                          | +           | 0.92<br>A      | 0.9.<br>A | <del>-  </del> | 7.92<br>A                      | 0.92<br>A                 | 0.92<br>A                | 0.92<br>A  | 0.92<br>A   |
| Startup lost                                                 |                     |              | +^-                               | 2.0         | 2.0       | 2.0          | 2.0                                | $\dashv$    | <i>,</i> ,     | 2.0       | 7              | 2.0                            | 2.0                       | 2.0                      | 2.0        | 2.0         |
| Ext. eff. gree                                               |                     |              |                                   | 2.0         | 2.0       | 2.0          | 2.0                                | T           |                | 2.0       |                | 2.0                            | 2.0                       | 2.0                      | 2.0        | 2.0         |
| Arrival type                                                 |                     |              |                                   | 4           | 4         | 4            | 4                                  |             |                | 5         |                | 5                              | 5                         | 5                        | 5          | 5           |
| Unit Extensi                                                 |                     |              |                                   | 3.0         | 3.0       | 3.0          | 3.0                                |             |                | 3.0       | )              | 3.0                            | 3.0                       | 3.0                      | 3.0        | 3.0         |
| Ped/Bike/R1                                                  | FOR Volume          | 9            | 5                                 | 5           | 0         | 5            | 5                                  | 4           | 0              | 5         | 4              | 5                              | 0                         | 5                        | 5          | 0           |
| Lane Width                                                   |                     |              |                                   | 12.0        | 12.0      | 12.0         | 12.0                               | 4           |                | 12.       | 9              | 12.0                           | 12.0                      |                          | 12.0       | 12.0        |
| Parking/Gra                                                  | de/Parking          |              | N                                 | 0           | N         | N            | 0                                  | _           | Ν              | Ν         | 4              | 0                              | Ν                         | N                        | 0          | N           |
| Parking/hr                                                   |                     |              |                                   |             |           |              |                                    | 4           |                |           | 4              |                                |                           |                          |            | <u> </u>    |
| Bus stops/h                                                  |                     |              |                                   | 0           | 0         | 0            | 0                                  | 4           |                | 0         | 4              | 0                              | 0                         | 0                        | 0          | 0           |
| Unit Extensi                                                 |                     |              |                                   | 3.0         | 3.0       | 3.0          | 3.0                                |             |                | 3.0       |                | 3.0                            | 3.0                       | 3.0                      | 3.0        | 3.0         |
| Phasing                                                      | EB Only             |              | B Only                            | 0:          | 3         | 04           |                                    |             | xcl. Le        |           |                | Only                           |                           | nru & R                  |            | 80          |
| Timing                                                       | G = 12.0<br>Y = 4.6 | G =<br>  Y = | 10.0                              | G =<br>Y =  |           | G =<br>Y =   |                                    |             | = 10.<br>= 4.6 |           | G =<br>Y =     | 11.1                           |                           | = 42.0<br>= 6.7          | G =<br>Y = |             |
| Duration of                                                  |                     |              |                                   | 1 -         |           | η            |                                    | Ť           | - 4.0          |           |                |                                |                           | = 0.7                    |            |             |
|                                                              | up Capac            |              |                                   | ı Del:      | av ar     | nd I O       | S Da                               | ate.        | rmin           |           | _              | 0 20                           | 9                         |                          |            |             |
| Lane Oro                                                     | up Gapac            | JILY,        | EB                                | JI DCI      | <br>      | WB           | <u> </u>                           | ,,,,,       | 1              | atic      | NB             |                                |                           |                          | SB         |             |
| Adj. flow rat                                                | Α                   |              | 174                               | 424         | 141       | 190          |                                    |             | 413            | 1         | 538            |                                | '9                        | 76                       | 864        | 87          |
| Lane group                                                   |                     |              | 197                               | 532         | 160       | 149          | $\dashv$                           |             | 811            | -         | 873            |                                |                           | 162                      | 1354       | 599         |
| v/c ratio                                                    | оар.                |              |                                   | 0.80        | 0.88      | 1.28         | ╫                                  |             | 0.51           |           | ).82           |                                |                           | 0.47                     | 0.64       | 0.15        |
| Green ratio                                                  |                     |              |                                   | 0.34        | 0.09      | 0.09         | -                                  |             | 0.23           |           | ),53           | 0.5                            |                           | 0.09                     | 0.38       | 0.38        |
| Unif. delay o                                                | <u></u>             | -            |                                   | 32.7        | 49.4      | 50.0         |                                    |             | 36.7           |           | 21.6           | 13                             | .8                        | 47.5                     | 27.8       | 22.3        |
| Delay factor                                                 |                     |              | 0.41                              | 0.34        | 0.41      | 0.50         |                                    |             | 0.12           | (         | 2.36           | 0.1                            | 11                        | 0.11                     | 0.22       | 0.11        |
| Increm. dela                                                 | ay d2               |              | 34.2                              | 8.3         | 39.2      | 165.7        | <del>,</del>                       | •           | 0.5            | 1         | 3.1            | 0.                             | 1                         | 2.1                      | 1.0        | 0.1         |
| PF factor                                                    |                     |              | 1.000                             | 0.950       | 1.000     | 1.000        | 7                                  |             | 0.797          | 7 0       | .254           | 1 0.2                          | 254                       | 0.933                    | 0.588      | 0.588       |
| Control dela                                                 | ıy                  |              | 82.5                              | 39.4        | 88.6      | 215.7        | 7                                  |             | 29.8           |           | 8.5            | 3.                             | 6                         | 46.5                     | 17.4       | 13.2        |
| Lane group                                                   | LOS                 |              | F                                 | D           | F         | F            |                                    |             | С              |           | Α              | 1                              | 1                         | D                        | В          | В           |
| Apprch. dela                                                 | ay                  |              | 51.9                              |             | 1         | 161.6        |                                    |             |                | 12.       | 2              |                                |                           |                          | 19.2       |             |
| Approach L                                                   | os                  |              | D                                 |             |           | F            |                                    |             |                | В         |                |                                |                           |                          | В          |             |
| Intersec. de                                                 | lay                 | ,            | 31.9                              |             |           |              | Inte                               | rse         | ection l       | LOS       |                |                                |                           |                          | С          |             |
| HCS2000 <sup>TM</sup>                                        |                     |              |                                   | Copyright © | 2000 U    | niversity of | f Florid                           | a, Al       | ll Rights      | Reser     | ved            |                                |                           |                          |            | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

|                                                      |                     | -       |                                   |            | SHO                                           | ORT R                                 | EPO                                  | R          | Ť                                     |            | * ***                |                              |                                   |                         |           |             |
|------------------------------------------------------|---------------------|---------|-----------------------------------|------------|-----------------------------------------------|---------------------------------------|--------------------------------------|------------|---------------------------------------|------------|----------------------|------------------------------|-----------------------------------|-------------------------|-----------|-------------|
| General Inf                                          | formation           |         |                                   |            |                                               | S                                     | ite In                               | foi        | rmatio                                | n          |                      |                              |                                   |                         |           |             |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                 | 08      | USAI<br>USAI<br>1/23/12<br>1 PEAK |            |                                               | A<br>Ji                               | nterse<br>.rea T<br>urisdi<br>.nalys | yp<br>ctic | e<br>on                               | c          | V<br>A<br>CEA<br>BUI | VAR<br>II oti<br>NSII<br>LDC | ING I<br>her ar<br>DE-IN<br>OUT A |                         | M         |             |
| Volume an                                            | nd Timing I         | nput    |                                   |            |                                               |                                       |                                      |            | ··· · · · · · · · · · · · · · · · · · |            |                      |                              |                                   |                         |           |             |
|                                                      |                     | •       |                                   | EB         |                                               |                                       | WE                                   |            |                                       |            |                      | lΒ                           |                                   |                         | SB        |             |
|                                                      |                     |         | LT                                | TH         | RT                                            | ĿТ                                    | TH                                   |            | RT                                    | LT         |                      | Ή                            | RT                                | LT                      | TH        | RT          |
| Num. of Lar                                          | nes                 |         | 0                                 | 1          | 1                                             | 1                                     | 1                                    | _          | 0                                     | 2          | —                    | 2                            | 1                                 | 1                       | 2         | 1           |
| Lane group                                           |                     |         |                                   | LT         | R                                             | L                                     | TR                                   |            |                                       | L          |                      | Γ                            | R                                 | L                       | T         | R           |
| Volume (vpl                                          |                     |         | 105                               | 55         | 401                                           | 130                                   | 55                                   | 4          | 120                                   | 386        | 14                   |                              | 165                               | 70                      | 816       | 80          |
| % Heavy v                                            | eh                  |         | 0.92                              | 0.92       | 1<br>0.92                                     | 0.92                                  | 0.92                                 | ,          | 1<br>0.92                             | 1<br>0.92  | 0.9                  |                              | 1<br>0.92                         | 0.92                    | 2<br>0.92 | 0.92        |
| Actuated (P                                          | P/A)                |         | 0.92<br>A                         | 0.92<br>A  | 0.92<br>A                                     | 0.92<br>A                             | 0.92<br>A                            | +          | 0.92<br>A                             | 0.92<br>A  | - U.S                |                              | 0.92<br>A                         | 0.92<br>A               | 0.92<br>A | 0.92<br>A   |
| Startup lost                                         |                     |         | 1                                 | 2.0        | 2.0                                           | 2.0                                   | 2.0                                  | 十          |                                       | 2.0        | 2.                   |                              | 2.0                               | 2.0                     | 2.0       | 2.0         |
| Ext. eff. gre                                        |                     |         |                                   | 2.0        | 2.0                                           | 2.0                                   | 2.0                                  | カ          |                                       | 2.0        | 2.                   |                              | 2.0                               | 2.0                     | 2.0       | 2.0         |
| Arrival type                                         | ,                   |         |                                   | 4          | 4                                             | 4                                     | 4                                    |            |                                       | 5          |                      |                              | 5                                 | 5                       | 5         | 5           |
| Unit Extens                                          |                     |         |                                   | 3.0        | 3.0                                           | 3.0                                   | 3.0                                  |            |                                       | 3.0        |                      | .0                           | 3.0                               | 3.0                     | 3.0       | 3.0         |
| Ped/Bike/R                                           | TOR Volum           | e       | 5                                 | 5          | 0                                             | 5                                     | 5                                    | _          | 0                                     | 5          |                      |                              | 0                                 | 5                       | 5         | 0           |
| Lane Width                                           |                     |         |                                   | 12.0       | 12.0                                          | 12.0                                  | 12.0                                 | 4          |                                       | 12.0       |                      |                              | 12.0                              | 12.0                    | 12.0      | 12.0        |
| Parking/Gra                                          | ade/Parking         |         | N                                 | 0          | N                                             | N                                     | 0                                    | 4          | N                                     | Ν          | 0                    |                              | Ν                                 | N                       | 0         | N           |
| Parking/hr                                           |                     |         |                                   |            | ļ <u>.</u>                                    | +                                     | <u> </u>                             | 4          |                                       | _          |                      |                              |                                   |                         |           | <u> </u>    |
| Bus stops/h                                          |                     |         | -                                 | 0          | 0                                             | 0                                     | 0                                    | 4          |                                       | 0          |                      | )                            | 0                                 | 0                       | 0         | 0           |
| Unit Extens                                          |                     |         | <u> </u>                          | 3.0        | 3.0                                           | 3.0                                   | 3.0                                  |            |                                       | 3.0        |                      | .0                           | 3.0                               | 3.0                     | 3.0       | 3.0         |
| Phasing                                              | EB Only             |         | 3 Only<br>: 10.0                  | 0:<br>G =  | 3                                             | 04<br>G =                             |                                      |            | xcl. Le<br>= 10.6                     |            | NB (                 |                              |                                   | ru & R<br>= <i>42.0</i> |           | 08          |
| Timing                                               | G = 12.0<br>Y = 4.6 | Y =     |                                   | Y =        |                                               | Y=                                    |                                      |            | $\frac{-10.6}{-4.6}$                  |            | 3 -                  |                              |                                   | - 42.0<br>= 6.7         | Y =       |             |
| Duration of                                          |                     |         |                                   | <u> </u>   |                                               |                                       |                                      | ··         | 1.0                                   |            |                      |                              |                                   | = 110                   |           |             |
| Lane Gro                                             | up Capac            | city, ( | Contro                            | ol Dela    | ay, ar                                        | nd LO                                 | S De                                 | ete        | rmin                                  | atio       | n                    |                              |                                   |                         |           |             |
|                                                      |                     | ,       | EB                                |            | <u>, , , , , , , , , , , , , , , , , , , </u> | WB                                    |                                      |            |                                       |            | NB                   |                              |                                   | •                       | SB        |             |
| Adj. flow rat                                        | te                  | Т       | 174                               | 436        | 141                                           | 190                                   |                                      |            | 420                                   | 13         | 549                  | 17                           | 9                                 | 76                      | 887       | 87          |
| Lane group                                           | cap.                |         | 197                               | 532        | 160                                           | 149                                   | 1                                    |            | 811                                   | 18         | 373                  | 82                           | 1                                 | 162                     | 1354      | 599         |
| v/c ratio                                            |                     |         | 0.88                              | 0.82       | 0.88                                          | 1.28                                  |                                      |            | 0.52                                  | 0          | 83                   | 0.2                          | 22                                | 0.47                    | 0.66      | 0.15        |
| Green ratio                                          |                     |         | 0.11                              | 0.34       | 0.09                                          | 0.09                                  |                                      |            | 0.23                                  | 0          | 53                   | 0.5                          | 53                                | 0.09                    | 0.38      | 0.38        |
| Unif. delay                                          | d1                  |         | 48.3                              | 33.0       | 49.4                                          | 50.0                                  |                                      |            | 36.7                                  | 2          | 1.7                  | 13                           | .8                                | 47.5                    | 28.0      | 22.3        |
| Delay factor                                         |                     |         | 0.41                              | 0.36       | 0.41                                          | 0.50                                  |                                      |            | 0.12                                  | 0          | 37                   | 0.1                          | 11                                | 0.11                    | 0.23      | 0.11        |
| Increm. dela                                         | ay d2               |         | 34.2                              | 9.8        | 39.2                                          | 165.7                                 | 7                                    |            | 0.6                                   | 13         | 3.2                  | 0.                           | 1                                 | 2.1                     | 1.2       | 0.1         |
| PF factor                                            | -                   |         | 1.000                             | 0.950      | 1.000                                         | 1.000                                 | <del>,  </del>                       |            | 0.797                                 | <i>O</i> . | 254                  | 0.2                          | 54                                | 0.933                   | 0.588     | 0.588       |
| Control dela                                         | Control delay       |         |                                   | 41.2       | 88.6                                          | 215.                                  | 7                                    |            | 29.9                                  | 1          | 3.7                  | 3.                           | 6                                 | 46.5                    | 17.6      | 13.2        |
| Lane group                                           | LOS                 |         | F                                 | D          | F                                             | F                                     |                                      |            | С                                     |            | A                    | A                            |                                   | D                       | В         | В           |
| Apprch. del                                          | ay                  |         | 53.0                              |            | 1                                             | 161.6                                 |                                      | •          |                                       | 12.4       | Į.                   | -                            |                                   |                         | 19.4      | _           |
| Approach L                                           | os                  |         | D                                 |            |                                               | F                                     |                                      |            |                                       | В          |                      | _                            | _                                 |                         | В         |             |
| Intersec. de                                         | lay                 | ,       | 32.1                              |            |                                               | · · · · · · · · · · · · · · · · · · · | Inte                                 | rse        | ection I                              | os         |                      |                              | _                                 |                         | С         |             |
| HCS2000 <sup>™</sup>                                 |                     | -       | C                                 | opyright © | 2000 Ui                                       | niversity of                          | f Florid:                            | a. Al      | ll Rights l                           | Reserv     | ed                   |                              |                                   |                         | ,         | Version 4.1 |

Page 1 of 1 Short Report

|                                                      |                                         |            |                             |            | SH        | ORT R      | EPOI                                         | ₹T                |           | IERT NI                             |                                      |                                  |            |                |
|------------------------------------------------------|-----------------------------------------|------------|-----------------------------|------------|-----------|------------|----------------------------------------------|-------------------|-----------|-------------------------------------|--------------------------------------|----------------------------------|------------|----------------|
| General Inf                                          | formation                               |            |                             |            |           | S          | ite Info                                     | rmati             | on        |                                     |                                      |                                  |            |                |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | rmed                                    | US<br>08/2 | SAI<br>SAI<br>24/12<br>PEAK |            |           | A<br>Ju    | ntersect<br>vrea Typ<br>urisdict<br>vnalysis | pe<br>tion        | DII       | All oth<br>CEANSIDE<br>N<br>IILDOUT | PING RI<br>her are<br>E-INT#<br>MIT. | PD.<br>Pas<br>#20/WI7<br>#1-AM/N |            |                |
| Volume ar                                            | nd Timing Inp                           | put        |                             |            |           |            |                                              |                   |           |                                     |                                      | - 3                              |            |                |
|                                                      |                                         |            |                             | EB         |           |            | WB                                           |                   | 4         | NB                                  |                                      |                                  | SB         |                |
|                                                      | 11111                                   |            | LT                          | TH         | RT        | LT         | TH                                           | RT                | LT        |                                     | RT                                   | LT                               | TH         | RT             |
| Num. of Lar                                          | *************************************** |            | 0                           | 1          | 1         | 1          | 1                                            | 0                 | 2         | 3                                   | 0                                    | 1                                | 2          | 1              |
| Lane group                                           |                                         |            |                             | LT         | R         | L          | TR                                           | -                 | L         | TR                                  | 220                                  | L                                | T          | R              |
| Volume (vp                                           |                                         |            | 30                          | 35         | 180       | 110        | 50                                           | 45                | 440       |                                     | 200                                  | 75<br>2                          | 1200       | 140            |
| % Heavy v<br>PHF                                     | eh                                      |            | 2<br>0.92                   | 2<br>0.92  | 2<br>0.92 | 2<br>0.92  | 2<br>0.92                                    | 2<br>0.92         | 0.92      | 2 0.92                              | 0.92                                 | 0.92                             | 2<br>0.92  | 2<br>0.92      |
| Actuated (F                                          | P/A)                                    | -          | 0.92<br>A                   | 0.92<br>A  | 0.92<br>A | 0.92<br>A  | A                                            | A                 | 0.92<br>A | A A                                 | A                                    | A                                | A          | A              |
| Startup lost                                         |                                         |            | 1                           | 2.0        | 2.0       | 2.0        | 2.0                                          |                   | 2.0       |                                     |                                      | 2.0                              | 2.0        | 2.0            |
| Ext. eff. gre                                        |                                         |            |                             | 2.0        | 2.0       | 2.0        | 2.0                                          | 19                | 2.0       |                                     |                                      | 2.0                              | 2.0        | 2.0            |
| Arrival type                                         |                                         |            |                             | 4          | 4         | 4          | 4                                            | 1                 | 5         | 5                                   |                                      | 5                                | 5          | 5              |
| Unit Extens                                          | 175.75                                  |            |                             | 3.0        | 3.0       | 3.0        | 3.0                                          |                   | 3.0       |                                     |                                      | 3.0                              | 3.0        | 3.0            |
|                                                      | TOR Volume                              | X = 1      | 5                           | 5          | 0         | 5          | 5                                            | 0                 | 5         | 5                                   | 0                                    | 5                                | 5          | 0              |
| Lane Width                                           |                                         |            |                             | 12.0       | 12.0      | 12.0       | 12.0                                         | -                 | 12.0      |                                     | -                                    | 12.0                             | 12.0       | 12.0           |
|                                                      | ade/Parking                             |            | N                           | 0          | N         | N          | 0                                            | N                 | N         | 0                                   | Ν                                    | N                                | 0          | N              |
| Parking/hr                                           |                                         |            |                             |            |           |            | _                                            |                   | _         |                                     | -                                    |                                  | -          | <del>  _</del> |
| Bus stops/h                                          |                                         |            |                             | 0          | 0         | 0          | 0                                            |                   | 0         | 0                                   |                                      | 0                                | 0          | 0              |
| Unit Extens                                          |                                         | 1 2 2      |                             | 3.0        | 3.0       | 3.0        | 3.0                                          |                   | 3.0       |                                     |                                      | 3.0                              | 3.0        | 3.0            |
| Phasing                                              | EB Only                                 |            | Only                        | 03         |           | 04         |                                              | Excl. Le          |           | Thru & RT                           | _                                    | 07                               |            | 08             |
| Timing                                               | G = 14.0<br>Y = 4.6                     | G =        |                             | G =<br>Y = |           | G =<br>Y = |                                              | G = 15. $G = 4.6$ |           | G = 44.0 $G = 6.7$                  | G =                                  |                                  | G =<br>Y = |                |
| Duration of                                          | Analysis (hrs                           |            |                             | 1/-        |           | 1 =        |                                              | - 7.0             |           | ycle Leng                           |                                      |                                  |            |                |
|                                                      | oup Capaci                              |            |                             | Dela       | v an      | 4108       | Dete                                         | rmin              |           |                                     | Jun                                  |                                  |            |                |
| Lano O.                                              | rup oupue.                              | Ly, J      | EB                          |            | T         | WE         |                                              | Thurs.            | 1110      | NB                                  | $\neg \tau$                          |                                  | SB         |                |
| Adj. flow ra                                         | to                                      | 1          | 71                          | 196        | 120       |            |                                              | 1                 | 78        | 902                                 | 1                                    | 82                               | 1304       | 152            |
|                                                      |                                         |            |                             |            | _         |            |                                              | _                 |           |                                     | $\rightarrow$                        |                                  | 1561       | 684            |
| Lane group                                           | cap.                                    |            | 254                         | 449        | 121       |            |                                              | _                 |           | 2137                                |                                      |                                  |            |                |
| v/c ratio                                            |                                         |            | 0.28                        | 0.44       | 0.99      |            |                                              |                   |           | 0.42                                | _                                    |                                  | 0.84       | 0.22           |
| Green ratio                                          |                                         |            | 0.14                        | 0.29       | 0.07      |            |                                              | -                 |           | 0.44                                |                                      |                                  | 0.44       | 0.44           |
| Unif. delay                                          | d1                                      |            | 38.5                        | 28.8       | 46.5      | 5 46.      | 1                                            | 41                | 1.9       | 19.3                                |                                      | 37.8                             | 24.8       | 17.4           |
| Delay facto                                          | rk                                      |            | 0.11                        | 0.11       | 0.49      | 9 0.40     | 0                                            | 0.                | 44        | 0.11                                | j j                                  | 0.11                             | 0.37       | 0.11           |
| Increm. dela                                         | ay d2                                   |            | 0.6                         | 0.7        | 79.1      | 1 46.4     | 4                                            | 21                | 1.9       | 0.1                                 |                                      | 0.7                              | 4.1        | 0.2            |
| PF factor                                            |                                         |            | 1.000                       | 0.993      | 1.00      | 00 1.00    | 00                                           | 0.1               | 881       | 0.476                               |                                      | 0.881                            | 0.476      | 0.476          |
| Control dela                                         | av                                      |            | 39.1                        | 29.3       | 125.      |            |                                              |                   | 8.8       | 9.3                                 |                                      |                                  | 15.9       | 8.4            |
| Lane group                                           |                                         |            | D                           | С          | F         | F          |                                              |                   | E         | Α                                   |                                      | С                                | В          | Α              |
| raile arear                                          |                                         | -          | 31.9                        |            | 1         | 110.3      |                                              |                   | 26.       |                                     |                                      |                                  | 16.1       | 34.            |
| Approb del                                           |                                         |            |                             |            |           | 110.0      |                                              |                   | 20        |                                     |                                      |                                  | 10.1       |                |
| Approach I                                           |                                         | <u> </u>   |                             |            | +         |            |                                              |                   | _         | V                                   |                                      |                                  | D          |                |
| Apprch. del<br>Approach L<br>Intersec. de            | os                                      |            | C<br>27.7                   |            |           | F          |                                              | rsection          | - 0       |                                     |                                      |                                  | B<br>C     |                |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

MIT " CONVERT N'B RTO LAWE TO THROW N'B THROUGH/RIGHT

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            |                            |            | SH        | ORT       | REI           | PÓI      | RT       |        |           |                                                           |                                 |                                  |                              |           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|----------------------------|------------|-----------|-----------|---------------|----------|----------|--------|-----------|-----------------------------------------------------------|---------------------------------|----------------------------------|------------------------------|-----------|-----------|
| General Inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ormation                        |            |                            |            |           |           | Site          | Info     | orma     | tion   |           |                                                           | 200                             |                                  |                              |           |           |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | med                             | US<br>08/2 | SAI<br>SAI<br>4/12<br>PEAK |            |           |           | Area<br>Juris | sdict    | ре       |        | OCE.      | COLLEC<br>WAR<br>All oth<br>ANSID<br>I<br>BUILDC<br>M/WIT | INC<br>ner<br>E-li<br>MIT<br>UT | G Ri<br>are<br>NT#<br>r.<br>r AL | D.<br>as<br>‡20/WI<br>.T.#1- | ТН        |           |
| Volume an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d Timing Inp                    | out        |                            |            |           |           |               |          |          |        |           |                                                           |                                 |                                  |                              |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            |                            | EB         |           |           |               | WB       |          | 4      |           | NB                                                        |                                 |                                  | -                            | SB        | Loz       |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | -          | LT                         | TH         | RT        | LT        | +             | TH       | RT       | +      | LT        | TH                                                        | _                               | RT.                              | LT                           | TH        | RT<br>1   |
| Num. of Lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nes                             |            | 0                          | 1          | 1         | 1         | +             | 1        | 0        | +      | 2         | 3                                                         | -                               | 0                                | 1                            | 2         | -         |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |            |                            | LT         | R         | L         | _             | TR       | - 15     | 4      | L         | TR                                                        |                                 | 00                               | L 75                         | T         | R         |
| Volume (vp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |            | 30                         | 35<br>2    | 184       | 110       |               | 50<br>2  | 45<br>2  | - 1    | 450<br>2  | 649<br>2                                                  | -                               | 00<br>2                          | 75                           | 1207      | 140       |
| % Heavy v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | en                              |            | 0.92                       | 0.92       | 0.92      | 0.9       | _             | .92      | 0.92     | 2 (    | 0.92      | 0.92                                                      |                                 | 92                               | 0.92                         | 0.92      | 0.92      |
| Actuated (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /A)                             |            | A                          | A          | A         | A         | _             | A        | A        | +      | A         | A                                                         | ,                               | _                                | A                            | A         | A         |
| Startup lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |            |                            | 2.0        | 2.0       | 2.0       |               | 2.0      |          |        | 2.0       | 2.0                                                       |                                 |                                  | 2.0                          | 2.0       | 2.0       |
| Ext. eff. gre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | en                              |            |                            | 2.0        | 2.0       | 2.0       | _             | 2.0      |          |        | 2.0       | 2.0                                                       |                                 |                                  | 2.0                          | 2.0       | 2.0       |
| Arrival type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |            |                            | 4          | 4         | 4         | _             | 4        |          | _      | 5         | 5                                                         | -                               |                                  | 5                            | 5         | 5         |
| Unit Extens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALF ALES                        |            | 5                          | 3.0        | 3.0       | 3.0       |               | 3.0      | -        | -      | 3.0       | 3.0                                                       |                                 | ^                                | 3.0                          | 3.0       | 3.0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed/Bike/RTOR Volume<br>ne Width |            |                            | 5          | 0<br>12.0 | 5<br>12.0 | _             | 5<br>2.0 | 0        | +      | 5<br>12.0 | 5<br>12.0                                                 | H                               | 0                                | 5<br>12.0                    | 5<br>12.0 | 12.0      |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                 |            |                            | 12.0       | 12.0<br>N | 12.0<br>N | 1             | _        | N        | _      | N         | 0                                                         | -                               | V                                | N                            | 0         | N         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rking/Grade/Parking             |            |                            | U          | ./٧       | - N       | +             | 0        | 10       | +      | IV        | U                                                         | -                               | V                                | 10                           | 10        | - IV      |
| Parking/hr<br>Bus stops/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r                               | -          |                            | 0          | 0         | 0         | +             | 0        | 1        | +      | 0         | 0                                                         | -                               |                                  | 0                            | 0         | 0         |
| Unit Extens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |            |                            | 3.0        | 3.0       | 3.0       | +             | 3.0      | 1        | +      | 3.0       | 3.0                                                       | -                               |                                  | 3.0                          | 3.0       | 3.0       |
| Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EB Only                         | I WR       | Only                       | 03         |           |           | )4            |          | Excl.    |        |           | ru & R                                                    | -                               | -                                | 07                           |           | 08        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G = 14.0                        | G =        |                            | G =        |           | G =       | /             | _        | G = 1    |        |           | = 44.0                                                    |                                 | G=                               |                              | G =       | 00        |
| Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y = 4.6                         | Y = .      |                            | Y =        |           | Y =       |               |          | Y = 4    | _      | _         | - 6.7                                                     |                                 | Y =                              |                              | Y =       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis (hrs                   |            |                            |            |           |           |               |          |          |        |           | le Len                                                    | gth                             | C=                               | = 100.                       | 0         |           |
| Lane Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | up Capaci                       | ty, C      | ontro                      | Dela       | y, an     | d LC      | S D           | )ete     | ermir    | nati   | on        |                                                           |                                 |                                  |                              |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            | EB                         |            |           |           | WB            |          |          |        | 1         | NB                                                        |                                 |                                  |                              | SB        |           |
| Adj. flow rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e                               |            | 71                         | 200        | 120       | ) 1       | 03            |          |          | 489    | 9         | 22                                                        |                                 |                                  | 82                           | 1312      | 152       |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | сар.                            |            | 254                        | 449        | 121       | 1 1       | 118           |          |          | 519    | 21        | 139                                                       |                                 |                                  | 267                          | 1561      | 684       |
| v/c ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |            | 0.28                       | 0.45       | 0.9       | 9 0       | .87           |          | -        | 0.94   | 0.        | 43                                                        |                                 |                                  | 0.31                         | 0.84      | 0.22      |
| Green ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |            | 0.14                       | 0.29       | 0.0       | 7 0       | .07           |          | (        | 0.15   | 0.        | 44                                                        |                                 |                                  | 0.15                         | 0.44      | 0.44      |
| Unif. delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d1                              |            | 38.5                       | 28.9       | 46.       | 5 4       | 6.1           |          |          | 42.0   | 1:        | 9.3                                                       | ì                               |                                  | 37.8                         | 24.9      | 17.4      |
| Delay factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rk                              |            | 0.11                       | 0.11       | 0.49      | 9 0       | .40           |          |          | 0.45   | 0.        | .11                                                       |                                 |                                  | 0.11                         | 0.38      | 0.11      |
| Increm. dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ay d2                           |            | 0.6                        | 0.7        | 79.       | 1 4       | 6.4           |          |          | 25.8   | 0         | ).1                                                       | F                               |                                  | 0.7                          | 4.3       | 0.2       |
| PF factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |            | 1.000                      | 0.993      | 1.00      | 00 1      | .000          |          | 0        | ).88°  | 1 0.      | 476                                                       |                                 | (                                | 0.881                        | 0.476     | 0.476     |
| Control dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ау                              |            | 39.1                       | 29.4       | 125       | .6        | 2.4           |          |          | 62.9   | 9         | 0.4                                                       |                                 |                                  | 34.0                         | 16.2      | 8.4       |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOS                             |            | D                          | C          | F         |           | F             |          |          | Ε      |           | Α                                                         |                                 |                                  | C                            | В         | Α         |
| Apprch. del                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ay                              | 3          | 31.9                       |            |           | 110.      | 3             |          |          |        | 27.9      |                                                           |                                 |                                  |                              | 16.3      |           |
| Approach L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | os                              |            | C                          |            |           | F         |               |          |          |        | С         |                                                           |                                 |                                  |                              | В         |           |
| Intersec. de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lay                             | 2          | 28.4                       |            |           |           |               | Inte     | rsecti   | on L   | .os       |                                                           |                                 |                                  |                              | С         |           |
| HC\$2000 <sup>TM</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |            | (                          | opyright © | 2000 I    | Iniversit | v of Flo      | orida.   | All Righ | nts Re | served    |                                                           |                                 |                                  |                              | 7         | Version 4 |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

MIT. ! CONVERT NB RTO LANE TO THIRD THROUGH RIGHT SHORT REPORT Site Information General Information COLLEGE BLVD.@ Intersection WARING RD. USAI Analyst Area Type All other areas Agency or Co. USAI OCEANSIDE-Date Performed 08/23/12 Jurisdiction INT#20PM/WITH MIT. Time Period PM PEAK BUILDOUT ALT.#1-PM/NO Analysis Year **PROJEC Volume and Timing Input** EB WB NB SB RT LT RT LT TH RT LT TH RT LT TH TH 1 1 1 1 0 2 3 0 1 2 1 Num. of Lanes 0 TR L T R LT R L TR L Lane group 795 390 130 55 120 380 1415 165 70 80 105 55 Volume (vph) 1 1 2 1 2 1 % Heavy veh 1 1 1 1 1 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 PHF A Actuated (P/A) A A A A A A A A A A A 2.0 2.0 2.0 2.0 2.0 2.0 Startup lost time 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Ext. eff. green 5 5 5 5 Arrival type 4 4 4 4 5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Unit Extension 5 Ped/Bike/RTOR Volume 5 0 5 5 0 5 5 0 5 0 5 12.0 12.0 12.0 12.0 12.0 12.0 Lane Width 12.0 12.0 12.0 N N 0 N N N 0 Parking/Grade/Parking N 0 N N 0 Parking/hr 0 0 0 0 0 0 0 0 0 Bus stops/hr Unit Extension 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Excl. Left NB Only Thru & RT 08 Phasing EB Only WB Only 03 04 G = G = 10.0G = 11.1G = 42.0G = G = 12.0G = 10.0G = Timina Y = 4.6Y = 56.7 Y = 4.6Y = 4Y = Y = Y = Y = Duration of Analysis (hrs) = 0.25 Cycle Length C = 110.0 Lane Group Capacity, Control Delay, and LOS Determination WB SB EB NB 141 190 413 1717 76 864 87 174 424 Adj. flow rate 197 532 160 149 811 2633 162 1354 599 Lane group cap. 0.65 0.47 0.64 0.15 0.80 0.88 1.28 0.51 v/c ratio 0.88 0.34 0.09 0.09 0.23 0.53 0.09 0.38 0.38 0.11 Green ratio 50.0 36.7 18.7 47.5 27.8 22.3 Unif. delay d1 48.3 32.7 49.4 0.41 0.50 0.12 0.23 0.11 0.22 0.11 0.41 0.34 Delay factor k 1.0 0.1 34.2 8.3 39.2 165.7 0.5 0.6 2.1 Increm. delay d2 0.254 0.933 0.588 0.588 0.950 1.000 1.000 0.797 PF factor 1.000 215.7 17.4 13.2 29.8 5.3 46.5 Control delay 82.5 39.4 88.6 F F F C A D B B D Lane group LOS 19.2 51.9 161.6 10.1 Apprch. delay F B Approach LOS D B Intersec. delay 30.7 Intersection LOS C

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1 Short Report

MIT, CONVOCT NB RTO LAVE TO THIRD THROUGH/RIGHT

| 14 = -                                                |                      |            |                             |             | SHO       | ORT F       | REPO                                 | )R       | Γ΄                                      |     |     |                                                              |                             |                                       |                          |       |             |
|-------------------------------------------------------|----------------------|------------|-----------------------------|-------------|-----------|-------------|--------------------------------------|----------|-----------------------------------------|-----|-----|--------------------------------------------------------------|-----------------------------|---------------------------------------|--------------------------|-------|-------------|
| General Info                                          | ormation             |            |                             |             |           | S           | ite In                               | for      | matio                                   | n   |     |                                                              |                             |                                       |                          |       |             |
| Analyst<br>Agency or C<br>Date Perforr<br>Time Period | ned                  | US<br>08/2 | SAI<br>SAI<br>23/12<br>PEAK |             |           | A<br>Ji     | nterse<br>irea T<br>urisdi<br>inalys | ype      | n                                       | BU  | IN  | COLLEG<br>WARI<br>All oth<br>OCEA<br>T#20PM<br>DOUT A<br>PRO | NC<br>er<br>AN<br>1/V<br>L7 | G RD<br>area<br>SIDE<br>VITH<br>T.#1- | ).<br>as<br>E-<br>I MIT. | ⁄ІΤН  |             |
| Volume an                                             | d Timing In          | out        |                             |             |           |             |                                      |          |                                         |     |     |                                                              |                             |                                       | ļ                        |       |             |
|                                                       |                      |            |                             | EB          |           | 1.5         | WE                                   |          |                                         |     |     | NB                                                           |                             |                                       |                          | SB    |             |
|                                                       | in the second        |            | LT                          | TH          | RT        | LT          | TH                                   | 4        | RT                                      | L   | _   | TH                                                           | _                           | RT                                    | LT                       | TH    | RT          |
| Num. of Lan                                           | es                   |            | 0                           | 1           | 1         | 1           | 1                                    | $\dashv$ | 0                                       | 2   | _   | 3                                                            |                             | 0                                     | 1                        | 2     | 1           |
| Lane group                                            |                      |            |                             | LT          | R         | L           | TR                                   | _        |                                         | L   |     | TR                                                           |                             | 2.01                                  | L                        | T     | R           |
| Volume (vph                                           |                      |            | 105                         | 55          | 401       | 130         | 55<br>1                              | -        | 120                                     | 38  |     | 1425                                                         | _                           | 65                                    | 70                       | 816   | 80          |
| % Heavy ve                                            | en                   | _          | 0.92                        | 0.92        | 0.92      | 0.92        | 0.92                                 | +        | 0.92                                    | 0.9 | _   | 0.92                                                         | _                           | 1<br>92                               | 0.92                     | 0.92  | 0.92        |
| Actuated (P/                                          | (A)                  | -          | 0.92<br>A                   | 0.92<br>A   | 0.92<br>A | 0.92<br>A   | A                                    | +        | A                                       | A   |     | A                                                            | _                           | 92<br>A                               | A                        | A     | A           |
| Startup lost                                          |                      |            |                             | 2.0         | 2.0       | 2.0         | 2.0                                  |          |                                         | 2.  |     | 2.0                                                          |                             |                                       | 2.0                      | 2.0   | 2.0         |
| Ext. eff. gree                                        |                      |            |                             | 2.0         | 2.0       | 2.0         | 2.0                                  |          |                                         | 2.  |     | 2.0                                                          |                             |                                       | 2.0                      | 2.0   | 2.0         |
| Arrival type                                          |                      |            |                             | 4           | 4         | 4           | 4                                    | $\Box$   |                                         | 5   | _   | 5                                                            |                             |                                       | 5                        | 5     | 5           |
| Unit Extensi                                          |                      |            |                             | 3.0         | 3.0       | 3.0         | 3.0                                  |          |                                         | 3.  |     | 3.0                                                          |                             |                                       | 3.0                      | 3.0   | 3.0         |
|                                                       | OR Volume            |            | 5                           | 5           | 0         | 5           | 5                                    | 4        | 0                                       | 5   | _   | 5                                                            |                             | 0                                     | 5                        | 5     | 0           |
| Lane Width                                            | 7.130 (10.00)        |            |                             | 12.0        | 12.0      | 12.0        | 12.0                                 | -        |                                         | 12  |     | 12.0                                                         | L                           |                                       | 12.0                     | 12.0  | 12.0        |
|                                                       | arking/Grade/Parking |            |                             | 0           | N         | N           | 0                                    | _        | Ν                                       | ٨   | _   | 0                                                            |                             | N                                     | N                        | 0     | N           |
| Parking/hr                                            |                      |            |                             |             |           | 3.3         |                                      |          |                                         |     |     |                                                              | L                           |                                       |                          |       | -           |
| Bus stops/hr                                          |                      |            |                             | 0           | 0         | 0           | 0                                    |          |                                         | (   | _   | 0                                                            | L                           | _                                     | 0                        | 0     | 0           |
| Unit Extensi                                          |                      |            |                             | 3.0         | 3.0       | 3.0         | 3.0                                  |          |                                         | 3.  |     | 3.0                                                          | L                           |                                       | 3.0                      | 3.0   | 3.0         |
| Phasing                                               | EB Only              |            | Only                        | 0:          | 3         | 04          |                                      |          | kcl. Le                                 |     |     | IB Only                                                      | -                           |                                       | u & R                    |       | 80          |
| Timing                                                | G = 12.0<br>Y = 4.6  | G =        | 10.0                        | G =<br>Y =  |           | G =<br>Y =  |                                      |          | = 10.<br>= 4.6                          | 0   |     | = 11.1<br>= 5                                                | -                           | _                                     | 42.0<br>6.7              | G =   |             |
| Duration of A                                         | Analysis (hrs        |            |                             | 1.5         |           | -           | -                                    |          | 4.0                                     |     |     | cle Leng                                                     | ath                         |                                       |                          |       |             |
|                                                       | up Capaci            |            |                             | l Dela      | v. and    | d LOS       | Det                                  | eri      | mina                                    |     | _   |                                                              |                             |                                       |                          |       |             |
|                                                       |                      | 1          | EB                          |             | 1         | W           |                                      |          |                                         |     |     | NB                                                           |                             | T                                     |                          | SB    |             |
| Adj. flow rate                                        | Δ                    |            | 174                         | 436         | 141       | 19          |                                      |          | 42                                      | 0   | _   | 728                                                          | Ť                           | +                                     | 76                       | 887   | 87          |
| Lane group                                            |                      |            | 197                         | 532         | 160       |             |                                      |          | 81                                      |     | -   | 634                                                          | -                           | -                                     | 162                      | 1354  | 599         |
| v/c ratio                                             | сар.                 |            | 0.88                        | 0.82        | 0.88      |             |                                      |          | 0.5                                     | -   | -   | .66                                                          | -                           | _                                     | 0.47                     | 0.66  | 0.15        |
| Green ratio                                           |                      |            | 0.11                        | 0.34        | 0.09      |             |                                      |          | 0.2                                     |     | +   | .53                                                          | -                           | -                                     | 0.09                     | 0.38  | 0.38        |
| Unif. delay d                                         | 11                   |            | 48.3                        | 33.0        | 49.4      |             | _                                    |          | 36                                      |     | -   | 8.7                                                          | -                           | _                                     | 17.5                     | 28.0  | 22.3        |
| Delay factor                                          |                      |            | 0.41                        | 0.36        | 0.41      |             | -                                    |          | 0.1                                     | -   | +   | .23                                                          | -                           | -                                     | 0.11                     | 0.23  | 0.11        |
| Increm. dela                                          |                      |            | 34.2                        | 9.8         | 39.2      |             | -                                    |          | 0.                                      | _   | +   | 0.6                                                          | -                           | _                                     | 2.1                      | 1.2   | 0.1         |
| PF factor                                             | ,,                   |            | 1.000                       | 0.950       | _         |             | -                                    |          | -                                       | 97  | +   | 254                                                          |                             | -                                     | .933                     | 0.588 | 0.588       |
| Control dela                                          | v                    |            | 82.5                        | 41.2        | 88.6      |             | _                                    |          | 29                                      |     | +   | 5.4                                                          |                             | -                                     | 16.5                     | 17.6  | 13.2        |
|                                                       | ane group LOS        |            |                             | D           | F         | F           | -                                    |          | 0                                       | _   | +   | Α                                                            |                             | -                                     | D                        | В     | В           |
| Apprch. dela                                          |                      |            | <i>F</i><br>53.0            | 4           | 1         | 161.6       |                                      |          |                                         |     | 10. |                                                              |                             | +                                     |                          | 19.4  |             |
|                                                       | pproach LOS D        |            |                             |             |           |             |                                      |          |                                         |     | В   |                                                              |                             | 1                                     |                          | В     |             |
|                                                       | tersec. delay 30.9   |            |                             |             |           |             | Int                                  | ers      | ection                                  | LO  | -   |                                                              | -                           |                                       |                          | С     |             |
| HCS2000 <sup>TM</sup>                                 | - ,                  |            | 00000                       | Copyright ( | 2000 Li   | niversity o | _                                    | -        | 200000000000000000000000000000000000000 |     | -   |                                                              |                             | _                                     |                          |       | Version 4   |
| 1002000                                               |                      |            |                             | La D        |           |             |                                      |          | 0                                       |     | 100 |                                                              |                             |                                       |                          |       | e compage ( |

Page 1 of 1

|                                                      |                    |                  |                             |            | SH             | ORT R        | EP(             | DRT                             |          |           |               |               |                         |                    |              |              |
|------------------------------------------------------|--------------------|------------------|-----------------------------|------------|----------------|--------------|-----------------|---------------------------------|----------|-----------|---------------|---------------|-------------------------|--------------------|--------------|--------------|
| General Inf                                          | ormation           |                  |                             |            |                | S            | ite In          | form                            | atio     |           |               |               |                         |                    |              |              |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                | <i>U</i><br>06/0 | SAI<br>SAI<br>06/12<br>PEAK |            |                | A<br>Ju      | rea T<br>urisdi | ection<br>ype<br>ction<br>is Ye |          |           | A.            | REL<br>II oth | EK C'<br>ner ar<br>ANSI | eas                |              |              |
| Volume an                                            | d Timing I         | nput             |                             |            |                | -            |                 |                                 |          |           |               |               |                         |                    |              |              |
|                                                      |                    |                  |                             | EB         |                |              | WI              |                                 |          |           |               | ΙB            |                         |                    | SB           |              |
|                                                      |                    |                  | LT                          | TH         | RT             | LT           | TH              | l F                             | ₹Т       | LT        |               | Ή             | RT                      | <u>LT</u>          | TH           | RT           |
| Num. of Lar                                          | ies                |                  | 2                           | 2          | 0              | 2            | 2               |                                 | 1        | 0         |               | 1             | 1                       | 1                  | 1            | 1            |
| Lane group                                           |                    |                  | L                           | TR         |                | L            | T               | 1                               | 7        |           | L7            | R             | R                       | L                  | LT           | R            |
| Volume (vpl                                          |                    |                  | 84                          | 137        | 56             | 104          | 392             |                                 | )4       | 35        |               |               | 49                      | 98                 | 5            | 35           |
| % Heavy ve                                           | <del>e</del> h     |                  | 2                           | 2          | 2              | 2            | 2               |                                 | 2        | 2         | 2             |               | 2                       | 2                  | 2            | 2            |
| PHF<br>Actuated (P                                   | / <b>/</b> \\      |                  | 0.92<br>A                   | 0.92<br>A  | 0.92<br>A      | 0.92<br>A    | 0.92<br>A       | 2 0.                            | 92       | 0.92<br>A | 2 O.S         |               | 0.92<br>A               | 0.92<br>A          | 0.92<br>A    | 0.92<br>A    |
| Startup lost                                         |                    |                  | 2.0                         | 2.0        | <del>  ^</del> | 2.0          | 2.0             |                                 | .0       | <u> </u>  | 2.            |               | 2.0                     | 2.0                | 2.0          | 2.0          |
| Ext. eff. gree                                       |                    |                  | 2.0                         | 2.0        |                | 2.0          | 2.0             |                                 | .0       |           | 2.            |               | 2.0                     | 2.0                | 2.0          | 2.0          |
| Arrival type                                         |                    |                  | 3                           | 3          |                | 3            | 3               |                                 | 3        |           | 3             | }             | 3                       | 3                  | 3            | 3            |
| Unit Extensi                                         | on                 |                  | 3.0                         | 3.0        |                | 3.0          | 3.0             | ) 3                             | .0       |           | 3.            | .0            | 3.0                     | 3.0                | 3.0          | 3.0          |
| Ped/Bike/R                                           | ΓOR Volum          | е                | 5                           | 10         | 0              | 5            | 10              | (                               | 0        | 5         | 1             | 0             | 0                       | 5                  | 10           | 0            |
| Lane Width                                           |                    |                  | 12.0                        | 12.0       |                | 12.0         | 12.0            | ) 12                            | 2.0      |           | 12            | .0            | 12.0                    | 12.0               | 12.0         | 12.0         |
| Parking/Gra                                          | de/Parking         |                  | N                           | 0          | N              | N            | 0               | 1                               | N        | Ν         | 0             |               | N                       | N                  | 0            | N            |
| Parking/hr                                           |                    |                  |                             |            |                |              | <u> </u>        |                                 |          |           |               |               |                         |                    |              |              |
| Bus stops/h                                          |                    |                  | 0                           | 0          |                | 0            | 0               | '                               | 0        |           |               | )             | 0                       | 0                  | 0            | 0            |
| Unit Extensi                                         | on                 |                  | 3.0                         | 3.0        | <u> </u>       | 3.0          | 3.0             | ) 3                             | .0       |           | 3             |               | 3.0                     | 3.0                | 3.0          | 3.0          |
| Phasing                                              | Excl. Left         |                  | & RT                        | 0.         | 3              | 04           |                 |                                 | Onl      | _         | SB C          |               |                         | 07                 |              | 08           |
| Timing                                               | G = 10.0 $Y = 5$   | G =<br>Y =       |                             | G =<br>Y = |                | G =<br>Y =   |                 | G =<br>Y =                      |          |           | G = 1 $Y = 5$ |               | G<br>Y                  |                    | G =<br>Y =   |              |
| Duration of                                          |                    | _                | _                           | 1 -        |                | T -          |                 | 1 -                             | 0        |           |               |               |                         | = 70.0             |              |              |
| Lane Gro                                             |                    |                  |                             | l Del:     | av aı          | nd I O       | S D             | terr                            | nin      |           |               |               | <i>y</i> (11) O         | , , , ,            | <del>-</del> |              |
| Lane Oil                                             | up Capa            | l                | EB                          | i Dei      | ay, ai         | WE           |                 | , (01)                          | T        | atio      | NB            | •             |                         |                    | SB           |              |
| Adj. flow rat                                        | <u> </u>           | 91               | 210                         |            | 113            | 426          |                 | 13                              | $\vdash$ | $\top$    | 13            | 53            | ,                       | 70                 | 42           | 38           |
| Lane group                                           |                    | 491              | 962                         |            | 491            | 1013         | _               | 63                              | H        | +         | 53            | 21.           | _                       | 249                | 251          | 218          |
| v/c ratio                                            |                    | 0.19             | 0.22                        |            | 0.23           | 0.42         | -               | 17                              |          | -         | 17            | 0.2           |                         | 0.28               | 0.17         | 0.17         |
| Green ratio                                          |                    | 0.14             | 0.29                        |            | 0.14           | 0.29         | <del></del>     | 43                              | ┧        |           | 14            | 0.1           |                         | 0.14               | 0.14         | 0.14         |
| Unif. delay                                          | 11                 | 26.4             | 19.0                        |            | 26.6           | 20.3         | -               | 2.3                             | <u> </u> |           | 6.4           | 26.           | -                       | 26.8               | 26.3         | 26.4         |
| Delay factor                                         |                    | 0.11             | 0.11                        | $\top$     | 0.11           | 0.11         | —               | 11                              |          | -         | 11            | 0.1           | _                       | 0.11               | 0.11         | 0.11         |
| Increm. dela                                         |                    | 0.2              | 0.1                         | 1          | 0.2            | 0.3          |                 | ). 1                            |          | +         | ).3           | 0.0           | -                       | 0.6                | 0.3          | 0.4          |
| PF factor                                            |                    | 1.000            | 1.000                       | 1          | 1.000          | 1.000        | ) 1.            | 000                             |          | 1.        | 000           | 1.0           | 00                      | 1.000              | 1.000        | 1.000        |
| Control dela                                         | Control delay 26.6 |                  |                             | 1          | 26.8           | 20.6         | 1:              | 2.5                             |          | 2         | 6.7           | 27,           | 3                       | 27.4               | 26.7         | 26.8         |
| Lane group                                           | LOS                | С                | В                           |            | С              | С            | 十               | В                               |          | 十         | С             | С             |                         | С                  | С            | С            |
| Apprch. dela                                         | —————<br>ау        | 21               | 1.4                         |            |                | 20.3         |                 |                                 |          | 2         | 7.0           |               |                         |                    | 27.0         |              |
| Approach L                                           | os                 | (                | <u> </u>                    |            |                | С            |                 |                                 |          |           | С             |               |                         |                    | С            |              |
| Intersec. de                                         | lay                | 21               | 1.9                         |            |                |              | Inte            | rsect                           | ion L    | os        |               |               |                         |                    | С            |              |
| HCS2000 <sup>TM</sup>                                |                    |                  | Co                          | pyright @  | 2000 U         | niversity of | f Florid        | a, All R                        | ights I  | Reserv    | ed            |               |                         | - W W W W W W W W. |              | Version 4.11 |

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                      | <del></del>                         |                                         |                             |            | SHO                                              | ORT R        | EPO                                   | RT          |                |          |                        |                         |                     |                                       | ·         |             |
|------------------------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------|------------|--------------------------------------------------|--------------|---------------------------------------|-------------|----------------|----------|------------------------|-------------------------|---------------------|---------------------------------------|-----------|-------------|
| General Inf                                          | ormation                            |                                         |                             |            |                                                  | S            | ite Inf                               | orma        | atior          |          |                        |                         |                     |                                       |           |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | ned                                 | U<br>06/0                               | SAI<br>SAI<br>06/12<br>PEAK |            |                                                  | Aı<br>Ju     | tersed<br>rea Ty<br>urisdic<br>nalysi | /pe<br>tion | ar             |          | CF<br>All<br>O<br>B.O. | REE<br>oth<br>CEA<br>AL | K C<br>er ar<br>NSI | eas<br>DE<br>WITH                     | RY        |             |
| Volume an                                            | d Timing li                         | nput                                    |                             |            |                                                  |              | •                                     |             |                |          |                        |                         |                     |                                       |           |             |
|                                                      |                                     |                                         |                             | EB         |                                                  |              | WB                                    |             |                |          | NE                     |                         |                     | <u> </u>                              | SB        |             |
|                                                      |                                     |                                         | LT                          | TH         | RT                                               | LT           | TH                                    | R           | $\overline{}$  | LT       | Th                     | +                       | RT                  | LT                                    | TH        | RT          |
| Num. of Lan                                          | ies                                 |                                         | 2                           | 2          | 0                                                | 2            | 2                                     | 1           | -              | 0        | 1                      | +                       | 1                   | 1                                     | 1         | 1           |
| Lane group                                           |                                     |                                         | L                           | TR         |                                                  | L            | T 100                                 | F           |                | 405      | LTF                    | `\                      | R                   | L                                     | LT        | R           |
| Volume (vpl<br>% Heavy ve                            |                                     |                                         | 94<br>2                     | 239<br>2   | 63                                               | 104<br>2     | 429<br>2                              | 10          |                | 135<br>2 | 5<br>2                 |                         | <i>4</i> 9          | 98                                    | 5<br>2    | 37<br>2     |
| 76 Fleavy Ve                                         | <del> </del>                        |                                         | 0.92                        | 0.92       | 0.92                                             | 0.92         | 0.92                                  | 0.9         |                | 0.92     | 0.9                    | 2 1                     | 0.92                | 0.92                                  | 0.92      | 0.92        |
| Actuated (P                                          | /A)                                 |                                         | A                           | A          | A                                                | A            | A                                     | A           | _              | A        | A                      | 1                       | A                   | A                                     | A         | A           |
| Startup lost                                         | time                                |                                         | 2.0                         | 2.0        |                                                  | 2.0          | 2.0                                   | 2.          | 0              |          | 2.0                    |                         | 2.0                 | 2.0                                   | 2.0       | 2.0         |
| Ext. eff. gree                                       | en                                  |                                         | 2.0                         | 2.0        |                                                  | 2.0          | 2.0                                   | 2.          | _              |          | 2.0                    |                         | 2.0                 | 2.0                                   | 2.0       | 2.0         |
| Arrival type                                         |                                     |                                         | 3                           | 3          | -                                                | 3            | 3                                     | 3           | -              |          | 3                      | $\dashv$                | 3                   | 3                                     | 3         | 3           |
| Unit Extensi                                         |                                     |                                         | 3.0<br>5                    | 3.0        | 0                                                | 3.0<br>5     | 3.0                                   | 3.          |                | 5        | 3.0<br>10              | _                       | 3.0<br>0            | 3.0<br>5                              | 3.0<br>10 | 3.0         |
| Ped/Bike/R1<br>Lane Width                            | OR Volum                            | e                                       | 12.0                        | 10<br>12.0 | 10                                               | 12.0         | 10<br>12.0                            | 12          |                | <u> </u> | 12.0                   | _                       | 12.0                | 12.0                                  | 12.0      | 12.0        |
|                                                      | Parking/Grade/Parking               |                                         |                             |            | N                                                | N            | 0                                     | 1/2         |                | N        | 0                      | ╧                       | N N                 | N N                                   | 0         | N N         |
|                                                      | Parking/Grade/Parking<br>Parking/hr |                                         |                             | 0          | '\ <b>'</b>                                      | + "          | ۳                                     | +'          | <del>`  </del> | 7.4      | l                      | $\dashv$                |                     | +"                                    | + -       | +''         |
| Bus stops/h                                          | <u> </u>                            |                                         | 0                           | 0          | ╁                                                | 0            | 0                                     |             | ,              |          | 0                      | +                       | 0                   | 0                                     | 0         | 0           |
| Unit Extensi                                         |                                     |                                         | 3.0                         | 3.0        | <del>                                     </del> | 3.0          | 3.0                                   | 3.          |                |          | 3.0                    | , †                     | 3.0                 | 3.0                                   | 3.0       | 3.0         |
| Phasing                                              | Excl. Left                          | Thru                                    | & RT                        | 0.0        | 3 1                                              | 0.0          | J 0.0                                 |             | Only           | ,   5    | B O                    |                         | T                   | 07                                    |           | 08          |
| *                                                    | G = 10.0                            | G =                                     |                             | G =        | <u> </u>                                         | G =          | $\dashv$                              | G =         |                |          | = 10                   |                         | G                   |                                       | G =       |             |
| Timing                                               | Y = 5                               | Y =                                     |                             | Y =        | j                                                | Y =          |                                       | Y =         |                |          | = 5                    |                         | Υ                   | =                                     | Y =       |             |
| Duration of A                                        |                                     |                                         |                             |            |                                                  |              |                                       |             |                |          | cle L                  | eng                     | th C                | = 70.0                                | )         |             |
| Lane Gro                                             | up Capa                             | city, C                                 | ontro                       | l Dela     | ay, ar                                           | nd LO        | S De                                  | tern        | nina           | ation    |                        |                         |                     |                                       |           |             |
|                                                      |                                     |                                         | EB                          |            |                                                  | WB           |                                       |             |                |          | NΒ                     |                         |                     |                                       | SB        |             |
| Adj. flow rat                                        | e                                   | 102                                     | 328                         |            | 113                                              | 466          | 11                                    | 3           |                | 152      | ?                      | 53                      |                     | 80                                    | 32        | 40          |
| Lane group                                           | cap.                                | 491                                     | 977                         |            | 491                                              | 1013         | 66                                    | 3           |                | 251      | · T                    | 212                     | ?                   | 249                                   | 252       | 218         |
| v/c ratio                                            |                                     | 0.21                                    | 0.34                        |            | 0.23                                             | 0.46         | 0.1                                   | 17          |                | 0.6      | 1                      | 0.28                    | 5                   | 0.32                                  | 0.13      | 0.18        |
| Green ratio                                          |                                     | 0.14                                    | 0.29                        |            | 0.14                                             | 0.29         | 0.4                                   | <b>4</b> 3  |                | 0.1      | 4                      | 0.14                    | 4                   | 0.14                                  | 0.14      | 0.14        |
| Unif. delay o                                        | <u></u><br>11                       | 26.5                                    | 19.8                        |            | 26.6                                             | 20.6         | 12                                    | .3          |                | 28.      | 1                      | 26.7                    | 7                   | 27.0                                  | 26.2      | 26.4        |
| Delay factor                                         |                                     | 0.11                                    | 0.11                        | 1          | 0.11                                             | 0.11         | 0.1                                   | 11          |                | 0.1      | ,                      | 0.11                    | 1                   | 0.11                                  | 0.11      | 0.11        |
| Increm. dela                                         |                                     | 0.2                                     | 0.2                         |            | 0.2                                              | 0.3          | o.                                    | 1           |                | 4.1      |                        | 0.6                     | ;                   | 0.8                                   | 0.2       | 0.4         |
| PF factor                                            | -                                   | 1.000                                   | 1.000                       |            | 1.000                                            | 1.000        | 1.0                                   | 000         |                | 1.00     | 0                      | 1.00                    | 00                  | 1.000                                 | 1.000     | 1.000       |
| Control dela                                         | у                                   | 26.7                                    | 20.0                        |            | 26.8                                             | 20.9         | 12                                    | .5          |                | 32.      | 3                      | 27.3                    | 3                   | 27.7                                  | 26.4      | 26.8        |
|                                                      | ane group LOS C                     |                                         | В                           |            | С                                                | С            | Ē                                     | 3           |                | С        |                        | С                       |                     | С                                     | С         | С           |
| Apprch. dela                                         | <u></u><br>эу                       | 21                                      | 1.6                         |            |                                                  | 20.5         |                                       |             |                | 31.      | )                      |                         |                     | · · · · · · · · · · · · · · · · · · · | 27.2      |             |
| Approach L                                           | os                                  | (                                       | c                           |            |                                                  | С            |                                       |             |                | С        |                        |                         |                     |                                       | С         |             |
| Intersec. de                                         | lay                                 | 22                                      | 2.9                         |            |                                                  | ·            | Inter                                 | secti       | on L           | .os      |                        |                         |                     |                                       | С         | •           |
| HCS2000 <sup>TM</sup>                                |                                     | 1 · · · · · · · · · · · · · · · · · · · | Co                          | pyright ©  | •<br>2000 Uı                                     | niversity of | `Florida,                             | All Ri      | ghts R         | leserved |                        |                         |                     |                                       | ,         | Version 4.1 |

|                                                       |                   |            |                             |           | SH           | ORT R                                         | EPC                               | RT           |            |              |         |                     |                          |          |           |             |
|-------------------------------------------------------|-------------------|------------|-----------------------------|-----------|--------------|-----------------------------------------------|-----------------------------------|--------------|------------|--------------|---------|---------------------|--------------------------|----------|-----------|-------------|
| General Inf                                           | ormation          |            |                             |           |              | Si                                            | te In                             | form         | atio       | n            |         |                     |                          |          |           |             |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med               | U.<br>06/0 | SAI<br>SAI<br>06/12<br>PEAK |           |              | Aı<br>Ju                                      | terse<br>rea T<br>urisdi<br>nalys | ype<br>ction |            |              | AI<br>C | REE<br>I oth<br>CEA | EK CT<br>er ard<br>ANSII | eas      |           |             |
| Volume an                                             | d Timing I        | nput       |                             |           |              |                                               |                                   |              |            |              |         |                     |                          |          |           |             |
|                                                       |                   |            |                             | EB        | <b>,</b>     |                                               | WE                                |              |            |              |         | IB                  |                          | <u> </u> | SB        |             |
|                                                       |                   |            | LT                          | TH        | RT           | LT                                            | TH                                | _            | RT         | LT           | _       | Ή                   | RT                       | LT ,     | TH        | RT          |
| Num. of Lar                                           | nes               |            | 2                           | 2         | 0            | 2                                             | 2                                 | _            | 1          | 0            | 1       |                     | 1                        | 1        | 1         | 1 -         |
| Lane group                                            |                   |            | L                           | TR        | <u> </u>     | L                                             | T                                 |              | R          |              | L7      |                     | R                        | L        | LT        | R           |
| Volume (vpl                                           | <del></del>       |            | 177                         | 488       | 118          | 220                                           | 512                               |              | 20         | 127          | 5       | _                   | 178                      | 355      | 5         | 126         |
| % Heavy ve                                            | en                |            | 2<br>0.92                   | 2<br>0.92 | 2<br>0.92    | 0.92                                          | 0.92                              |              | 2<br>.92   | 2<br>0.92    | 0.9     |                     | 2<br>0.92                | 0.92     | 0.92      | 2<br>0.92   |
| Actuated (P.                                          | /Δ)               |            | 0.92<br>A                   | 0.92<br>A | 0.92<br>A    | 0.92<br>A                                     | 0.92<br>A                         | _            | .92<br>A   | 0.92<br>A    | 10.8    | _                   | 0.92<br>A                | A        | 0.92<br>A | 0.92<br>A   |
| Startup lost                                          |                   |            | 2.0                         | 2.0       | <del>É</del> | 2.0                                           | 2.0                               |              | 2.0        | <del>–</del> | 2.      |                     | 2.0                      | 2.0      | 2.0       | 2.0         |
| Ext. eff. gree                                        |                   |            | 2.0                         | 2.0       |              | 2.0                                           | 2.0                               | _            | 2.0        |              | 2.      | _                   | 2.0                      | 2.0      | 2.0       | 2.0         |
| Arrival type                                          |                   |            | 3                           | 3         |              | 3                                             | 3                                 | _            | 3          |              | 3       |                     | 3                        | 3        | 3         | 5           |
| Unit Extensi                                          |                   |            | 3.0                         | 3.0       |              | 3.0                                           | 3.0                               |              | 3.0        |              | 3.      |                     | 3.0                      | 3.0      | 3.0       | 3.0         |
| Ped/Bike/R                                            | FOR Volum         | е          | 5                           | 10        | 0            | 5                                             | 10                                | _            | 0          | 5            | 10      |                     | 40                       | 5        | 10        | 0           |
| Lane Width                                            | . /=              |            | 12.0                        | 12.0      |              | 12.0                                          | 12.0                              | _            | 2.0        |              | 12      |                     | 12.0                     | 12.0     | 12.0      | 12.0        |
| Parking/Gra                                           | de/Parking        |            | N                           | 0         | N            | N                                             | 0                                 | +            | N          | Ν            | 10      |                     | N                        | N        | 0         | N           |
| Parking/hr                                            |                   |            |                             |           | <u> </u>     |                                               | _                                 | +            | •          |              | +       | ,                   |                          | _        | + -       |             |
| Bus stops/h                                           |                   |            | 0                           | 0         | -            | 0                                             | 0                                 |              | 0          |              | —       | )                   | 0                        | 0        | 0         | 0           |
| Unit Extensi                                          |                   |            | 3.0                         | 3.0       | <u> </u>     | 3.0                                           | 3.0                               |              | 3.0        | <u> </u>     | 3.      |                     | 3.0                      | 3.0      | 3.0       | 3.0         |
| Phasing                                               | Excl. Left        | G =        | & RT                        | 0:<br>G = | 3            | 04<br>G =                                     |                                   |              | Onl<br>18. |              | SBC     |                     | G                        | 07       | G =       | 80          |
| Timing                                                | G = 10.0<br>Y = 5 | Y =        |                             | Y=        |              | Y =                                           |                                   | Y =          |            |              | r = 5   |                     | Y                        |          | Y =       |             |
| Duration of                                           |                   |            | _                           | •         |              | <u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u> |                                   | •            |            |              |         |                     | th C                     |          |           |             |
| Lane Gro                                              |                   |            |                             | l Dela    | av. aı       | nd LO                                         | S De                              | teri         | min        | atio         | 1       |                     |                          |          |           |             |
|                                                       | •                 |            | EB                          |           | <u> </u>     | WB                                            |                                   |              |            |              | NB      |                     |                          |          | SB        |             |
| Adj. flow rat                                         | е                 | 192        | 658                         |           | 239          | 557                                           | 2                                 | 39           | <b>-</b>   | 19           | 95      | 98                  | ,                        | 270      | 121       | 137         |
| Lane group                                            | сар.              | 344        | 925                         |           | 344          | 958                                           | 8                                 | 05           |            | 30           | )5      | 27                  | 0                        | 439      | 441       | 385         |
| v/c ratio                                             |                   | 0.56       | 0.71                        |           | 0.69         | 0.58                                          | 0.                                | 30           |            | 0.           | 34      | 0.3                 | 6                        | 0.62     | 0.27      | 0.36        |
| Green ratio                                           |                   | 0.10       | 0.27                        |           | 0.10         | 0.27                                          | 0.                                | 52           |            | 0.           | 18      | 0.1                 | 8                        | 0.25     | 0.25      | 0.25        |
| Unif. delay                                           | d1                | 42.9       | 33.0                        |           | 43.5         | 31.6                                          | 1;                                | 3.6          |            | 38           | .0      | 36.                 | 0                        | 33.2     | 30.2      | 30.9        |
| Delay factor                                          | ·k                | 0.16       | 0.27                        |           | 0.26         | 0.17                                          | 0.                                | 11           | 1          | 0.           | 22      | 0.1                 | 1                        | 0.20     | 0.11      | 0.11        |
| increm. dela                                          | ay d2             | 2.0        | 2.6                         |           | 6.0          | 0.9                                           | 70                                | .2           | T          | 4.           | 5       | 0.8                 | 9                        | 2.6      | 0.3       | 0.6         |
| PF factor                                             |                   | 1.000      | 1.000                       |           | 1.000        | 1.000                                         | 1.                                | 000          | T          | 1.0          | 000     | 1.0                 | 00                       | 1.000    | 1.000     | 0.778       |
| Control dela                                          | ontrol delay 44.9 |            |                             |           | 49.5         | 32.5                                          | 1.                                | 3.8          |            | 42           | .4      | 36.                 | 8                        | 35.8     | 30.5      | 24.6        |
| Lane group                                            | LOS               | D          | D                           |           | D            | С                                             |                                   | В            |            | l            |         | D                   |                          | D        | С         | С           |
| Apprch. dela                                          | ay                | 37         | 7.7                         |           |              | 32.1                                          |                                   |              |            | 40           | .6      |                     |                          |          | 31.7      |             |
| Approach L                                            | os                | ı          | ס                           |           |              | С                                             |                                   |              |            | I            | )       |                     |                          |          | С         |             |
| Intersec. de                                          | lay               | 34         | 4.7                         |           |              |                                               | Inte                              | rsec         | tion l     | LOS          |         |                     |                          |          | С         |             |
| rrcc2000TM                                            |                   |            |                             | 1.1.0     |              | Iniversity of                                 |                                   |              | n:aLta     | Dagamer      | _       |                     |                          | •        |           | Version 4.1 |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                       |                    |            |                             |             | SHO         | ORT R       | EPC             | DRT        |              |           |                |                   |                                         |           |            |             |
|-------------------------------------------------------|--------------------|------------|-----------------------------|-------------|-------------|-------------|-----------------|------------|--------------|-----------|----------------|-------------------|-----------------------------------------|-----------|------------|-------------|
| General Inf                                           | ormation           |            |                             |             |             | S           | ite In          | forma      | ation        |           |                |                   |                                         |           |            |             |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med                | U.<br>06/0 | SAI<br>SAI<br>06/12<br>PEAK |             |             | Aı<br>Ju    | rea T<br>urisdi |            | ar           |           | CI<br>All<br>O | REE<br>oth<br>CE/ | EK CT<br>er are<br>ANSIE                | as        |            |             |
| Volume an                                             | d Timing Ir        | nput       |                             |             |             |             |                 |            |              |           |                |                   | • • • • • • • • • • • • • • • • • • • • |           |            |             |
|                                                       |                    |            |                             | EB          |             |             | W               |            |              |           | N              |                   |                                         |           | SB         |             |
|                                                       |                    |            | LT                          | TH          | RT          | LT          | T⊢              | l R        | T            | LT        | Th             | 1                 | RT                                      | LT        | TH         | RT          |
| Num. of Lar                                           | nes                |            | 2                           | 2           | 0           | 2           | 2               | 1          |              | 0         | 1              | _                 | 1                                       | 1         | 1          | 1           |
| Lane group                                            |                    |            | L                           | TR          |             | L           | T               | F          |              |           | LTI            | R                 | R                                       | L         | LT         | R           |
| Volume (vpl                                           |                    | w.         | 183                         | 543         | 122         | 220         | 626             |            |              | 135       | 5              |                   | 178                                     | 355       | 5          | 134         |
| % Heavy ve                                            | eh                 |            | 2                           | 2           | 2           | 2           | 2               | 2          |              | 2         | 2              | $\dashv$          | 2                                       | 2         | 2          | 2           |
| PHF                                                   | /A \               |            | 0.92                        | 0.92        | 0.92        | 0.92<br>A   | 0.92<br>A       | ? 0.9<br>A |              | 0.92<br>A | 0.9<br>A       | 2                 | 0.92<br>A                               | 0.92<br>A | 0.92<br>A  | 0.92<br>A   |
| Actuated (P.<br>Startup lost                          |                    | -          | A<br>2.0                    | A<br>2.0    | A_          | 2.0         | 2.0             | 2.         |              |           | 2.0            | )                 | 2.0                                     | 2.0       | 2.0        | 2.0         |
| Ext. eff. gree                                        |                    |            | 2.0                         | 2.0         | 1           | 2.0         | 2.0             | 2.         | _            |           | 2.0            |                   | 2.0                                     | 2.0       | 2.0        | 2.0         |
| Arrival type                                          |                    |            | 3                           | 3           |             | 3           | 3               | 3          |              |           | 3              |                   | 3                                       | 3         | 3          | 5           |
| Unit Extensi                                          | ion                |            | 3.0                         | 3.0         |             | 3.0         | 3.0             | 3.         | 0            |           | 3.0            | 0                 | 3.0                                     | 3.0       | 3.0        | 3.0         |
| Ped/Bike/R                                            | ΓOR Volum          | е          | 5                           | 10          | 0           | 5           | 10              | C          | )            | 5         | 10             | )                 | 40                                      | 5         | 10         | 0           |
| Lane Width                                            |                    |            | 12.0                        | 12.0        |             | 12.0        | 12.0            | ) 12       | .0           |           | 12.            | 0                 | 12.0                                    | 12.0      | 12.0       | 12.0        |
| Parking/Gra                                           | de/Parking         |            | N                           | 0           | N           | N           | 0               |            | V            | Ν         | 0              |                   | Ν                                       | N         | 0          | N           |
| Parking/hr                                            |                    |            |                             |             |             |             |                 |            |              |           | <u> </u>       |                   |                                         |           |            |             |
| Bus stops/h                                           | r                  |            | 0                           | 0           |             | 0           | 0               | (          | )            |           | 0              |                   | 0                                       | 0         | 0          | 0           |
| Unit Extensi                                          | ion                |            | 3.0                         | 3.0         |             | 3.0         | 3.0             | 3.         | 0            |           | 3.6            | 0                 | 3.0                                     | 3.0       | 3.0        | 3.0         |
| Phasing                                               | Excl. Left         |            | & RT                        | 0           | 3           | 04          |                 |            | Only         |           | B O            | _                 |                                         | 07        |            | 08          |
| Timing                                                | G = 10.0           | G =        |                             | G =         |             | G =         |                 | G =        |              |           | = 23<br>= 5    | 5.0               | G :                                     |           | G =<br>Y = |             |
| Duration of                                           | Y = 5              | (c) = 0 '  |                             | Y =         |             | Y =         |                 | Y =        | 0            | _         |                | enc               |                                         | = 100     |            |             |
| Lane Gro                                              |                    | -          |                             | I Dal       | 21/ 21      | 24 I O      | S D             | storn      | ains         |           |                | .eng              | Jul O                                   | 100       | .0         |             |
| Lane Gro                                              | up Capat           | rity, C    | EB                          | n Dei       | ay, aı<br>İ | WE          |                 | , teili    | 11116        |           | NB             |                   | $\neg$                                  |           | SB         |             |
| A di flavores                                         |                    | 100        | 723                         | <del></del> | 220         | 680         | _               | 39         | <del> </del> | 204       |                | 98                | , +                                     | 282       | 109        | 146         |
| Adj. flow rat                                         |                    | 199        | -                           | _           | 239         |             | _               |            | ┝            |           | -              |                   |                                         |           | 441        |             |
| Lane group                                            | cap.               | 344        | 927                         |             | 344         | 958         |                 | 05         | _            | 30        |                | 27                | -                                       | 439       |            | 385         |
| v/c ratio                                             |                    | 0.58       | 0.78                        |             | 0.69        | 0.71        |                 | 30         |              | 0.6       |                | 0.3               | $\rightarrow$                           | 0.64      | 0.25       | 0.38        |
| Green ratio                                           |                    | 0.10       | 0.27                        |             | 0.10        | 0.27        | 0.              | .52        |              | 0.1       | 8              | 0.1               | -                                       | 0.25      | 0.25       | 0.25        |
| Unif. delay                                           | d1                 | 43.0       | 33.8                        |             | 43.5        | 33.0        | 1.              | 3.6        |              | 38.       | 2              | 36.               | 0                                       | 33.5      | 30.0       | 31.1        |
| Delay factor                                          | · k                | 0.17       | 0.33                        |             | 0.26        | 0.27        | 0.              | 11         |              | 0.2       | 4              | 0.1               | 1                                       | 0.22      | 0.11       | 0.11        |
| Increm. dela                                          | ay d2              | 2.4        | 4.3                         |             | 6.0         | 2.5         | 0               | .2         |              | 5.6       | 3              | 0.8               | 9                                       | 3.2       | 0.3        | 0.6         |
| PF factor                                             | • •                | 1.000      | 1.000                       |             | 1.000       | 1.000       | ) 1.            | 000        |              | 1.0       | 00             | 1.0               | 00                                      | 1.000     | 1.000      | 0.778       |
| Control dela                                          | Control delay 45.4 |            |                             |             | 49.5        | 35.4        | 1.              | 3.8        |              | 43.       | 8              | 36.               | 8                                       | 36.7      | 30.3       | 24.8        |
| Lane group                                            |                    | D          | D                           |             | D           | D           | $\top$          | В          |              | D         |                | D                 |                                         | D         | С          | С           |
| Apprch. del                                           | ay                 | 39         | 9.7                         |             |             | 33.9        |                 |            |              | 41.       | 5              |                   |                                         |           | 32.2       |             |
| Approach L                                            | os                 | ,          | D                           |             |             | С           | -               | •          |              | D         |                |                   |                                         |           | С          |             |
| Intersec. de                                          | lay                | 30         | 5.2                         |             |             |             | Inte            | rsecti     | on L         | os        |                | •                 |                                         |           | D          |             |
| HCS2000 <sup>TM</sup>                                 | -                  |            | C                           | opyright (  | © 2000 U    | niversity o | f Florid        | a, All Ri  | ights R      | .eserved  |                |                   |                                         |           |            | Version 4.1 |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                     |                                              |            |                                                 | SH             | HOI     | RT R                                          | EPC                             | R           | T             |          |                                                  |                                                  |             |              |             |
|------------------------------------------------------|---------------------|----------------------------------------------|------------|-------------------------------------------------|----------------|---------|-----------------------------------------------|---------------------------------|-------------|---------------|----------|--------------------------------------------------|--------------------------------------------------|-------------|--------------|-------------|
| General Inf                                          | formation           |                                              |            |                                                 |                |         | Sit                                           | te In                           | for         | matior        | 1        |                                                  |                                                  |             |              |             |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med<br>d            | US.<br>US.<br>09/04<br>AM P.                 | AI<br>1/12 |                                                 |                |         | Ar<br>Ju                                      | erse<br>ea T<br>risdie<br>nalys | ype<br>ctic | Э             |          | All oti<br>CAF<br>B.O.AL                         | her a<br>RLSB                                    | AD<br>-WITH | В            |             |
| Volume ar                                            | nd Timing In        | put                                          |            |                                                 |                |         |                                               | 10                              | <u> </u>    |               |          | ND                                               |                                                  |             | <u> </u>     |             |
|                                                      |                     |                                              | LT         | EB<br>TH                                        | T F            | ₹T      | LT                                            | W<br>TH                         |             | RT            | LT       | NB<br>TH                                         | RT                                               | LT          | SB<br>TH     | RT          |
| Num. of Lar                                          | nes                 |                                              | 1          | 2                                               | _              | )       | 0                                             | 2                               | <u> </u>    | 0             | 0        | 0                                                | 0                                                | 1           | 0            | 1           |
| Lane group                                           |                     |                                              | L          | T                                               | $\top$         |         |                                               | TE                              |             |               |          |                                                  |                                                  | 1 7         |              | R           |
| Volume (vp                                           |                     |                                              | 44         | 396                                             | +              |         |                                               | 508                             |             | 42            |          |                                                  |                                                  | 118         |              | 122         |
| % Heavy v                                            |                     |                                              | 2          | 2                                               |                |         |                                               | 2                               |             | 2             |          |                                                  |                                                  | 2           |              | 2           |
| PHF                                                  |                     |                                              | 0.92       | 0.92                                            |                |         |                                               | 0.9                             | 2           | 0.92          |          |                                                  |                                                  | 0.92        |              | 0.92        |
| Actuated (P                                          |                     |                                              | <u>A</u>   | A                                               | +              |         |                                               | A                               |             | Α             |          | <u> </u>                                         | -                                                | A 2.0       | _            | A           |
| Startup lost<br>Ext. eff. gre                        |                     |                                              | 2.0        | 2.0                                             | +              |         |                                               | 2.0                             |             |               |          | <del> </del>                                     | $\vdash$                                         | 2.0         | <del> </del> | 2.0         |
| Arrival type                                         | GII                 |                                              | 3          | 3                                               | +              |         |                                               | 3                               |             |               |          | <del>                                     </del> | <del>                                     </del> | 3           | <del> </del> | 5           |
| Unit Extens                                          | ìon                 |                                              | 3.0        | 3.0                                             | 一              |         |                                               | 3.0                             | )           | <u> </u>      |          |                                                  |                                                  | 3.0         | l            | 3.0         |
| Ped/Bike/R                                           | TOR Volume          |                                              |            |                                                 | 1              |         | 5                                             | 10                              |             | 0             | 5        | †                                                |                                                  | 5           | 10           | 0           |
| Lane Width                                           |                     |                                              |            | 12.0                                            |                |         |                                               | 12.                             | 0           |               |          |                                                  |                                                  | 12.0        |              | 12.0        |
| Parking/Gra                                          | rking/Grade/Parking |                                              |            | 0                                               | 1              | V       | Ν                                             | 0                               |             | Ν             | Ν        |                                                  | N                                                | N           | 0            | Ν           |
| Parking/hr                                           |                     |                                              |            |                                                 |                |         |                                               |                                 |             |               |          |                                                  |                                                  |             |              |             |
| Bus stops/h                                          |                     |                                              | 0          | 0                                               |                |         |                                               | 0                               |             |               |          |                                                  |                                                  | 0           |              | 0           |
| Unit Extens                                          | ion                 |                                              | 3.0        | 3.0                                             |                |         |                                               | 3.0                             | )           |               |          |                                                  |                                                  | 3.0         |              | 3.0         |
| Phasing                                              | EB Only             | Thru 8                                       |            | 00                                              | 3              | $\perp$ | 04                                            |                                 |             | B Only        |          | 06                                               |                                                  | 07          |              | 08          |
| Timing                                               | G = 10.0<br>Y = 5   | G = 3<br>Y = 5                               | 8.0        | G =<br>Y =                                      | ·····          |         | = =                                           | _                               |             | = 19.0<br>= 5 | G =      |                                                  | G<br>Y                                           |             | G =<br>Y =   | <del></del> |
| Duration of                                          | Analysis (hrs       | <u>.                                    </u> |            | <u>r –                                     </u> |                | ļ ī     |                                               |                                 | Τ.          | - 3           |          |                                                  |                                                  | = 82.0      |              |             |
|                                                      | up Capaci           |                                              |            | l Dela                                          | av. a          | and     | LOS                                           | . De                            | te          | rmina         |          | TO LON                                           | 9 0                                              | 02.0        |              |             |
| Lane Oro                                             | up cupuo            | 1                                            | El         | <del></del>                                     | ,,,,<br>T      | 4110    |                                               | VB                              |             |               | (CIOII   | NB                                               |                                                  |             | SB           |             |
| Adj. flow rat                                        | re                  | 48                                           | 43         |                                                 | $\dashv$       |         | 59                                            |                                 | Τ           |               |          | <u> </u>                                         |                                                  | 128         |              | 133         |
| Lane group                                           |                     | 216                                          | 229        | <del></del>                                     | $\dashv$       |         | 162                                           |                                 | t           |               |          |                                                  |                                                  | 410         |              | 357         |
| v/c ratio                                            |                     | 0.22                                         | 0.1        | -+                                              | $\dashv$       |         | 0.3                                           |                                 | t           |               |          |                                                  |                                                  | 0.31        |              | 0.37        |
| Green ratio                                          |                     | 0.12                                         | 0.6        | <del></del>                                     | $\neg$         |         | 0.4                                           |                                 | t           |               |          |                                                  |                                                  | 0.23        |              | 0.23        |
| Unif. delay                                          |                     | 32.5                                         | 5.8        |                                                 |                |         | 14.                                           |                                 | ╁           |               | $\dashv$ |                                                  |                                                  | 26.1        |              | 26.5        |
| Delay factor                                         |                     | 0.11                                         | 0.1        |                                                 |                |         | 0.1                                           |                                 | t           |               | $\dashv$ |                                                  |                                                  | 0.11        |              | 0.11        |
| Increm. dela                                         |                     | 0.5                                          | 0.0        | -                                               |                |         | 0.                                            |                                 | t           |               |          |                                                  |                                                  | 0.4         |              | 0.7         |
| PF factor                                            |                     | 1.000                                        | 1.0        | 00                                              |                |         | 1.0                                           | 00                              | T           |               |          |                                                  |                                                  | 1.000       |              | 0.799       |
| Control dela                                         |                     |                                              |            | <del>,</del>                                    |                |         | 14.                                           | 4                               | T           |               |          | -                                                | •                                                | 26.5        |              | 21.8        |
| Lane group                                           | LOS                 | С                                            | A          |                                                 |                |         | В                                             |                                 | T           |               |          |                                                  |                                                  | С           |              | С           |
| Apprch. del                                          | ay                  | 1                                            | 8.6        |                                                 | $\neg \dagger$ |         | 14.4                                          | [                               |             |               |          |                                                  |                                                  |             | 24.1         |             |
| Approach L                                           | os                  |                                              | Α          |                                                 | 寸              |         | В                                             |                                 |             |               |          |                                                  |                                                  |             | С            |             |
| Intersec. de                                         | elay                |                                              | 14.2       |                                                 | $\neg$         |         | , , <u>, , , , , , , , , , , , , , , , , </u> | lr                              | ter         | section       | LOS      |                                                  |                                                  |             | В            |             |
| теплолоТМ                                            |                     |                                              |            |                                                 |                | ·       |                                               |                                 |             | l Piahte P    |          |                                                  |                                                  | 1           |              | Version A 1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                       |               |                           |            |           | SH        | Ю            | RT R       | EPC                              | R           | T               |          |           |        |                |           |             |             |
|-------------------------------------------------------|---------------|---------------------------|------------|-----------|-----------|--------------|------------|----------------------------------|-------------|-----------------|----------|-----------|--------|----------------|-----------|-------------|-------------|
| General inf                                           | ormation      |                           |            |           |           |              | Si         | te In                            | for         | matio           | n        |           |        |                |           |             |             |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med           | US<br>US<br>09/0-<br>PM F | AI<br>4/12 |           |           |              | Ar<br>Ju   | erse<br>ea T<br>risdic<br>nalysi | ype<br>ctio | Э               |          |           | All of | her al<br>RLSB |           |             |             |
| Volume an                                             | d Timing In   | out                       |            |           |           | •            |            |                                  |             |                 |          |           |        |                |           | ,           |             |
|                                                       |               |                           |            | EB        |           |              |            | W                                |             |                 | L        |           | NB     |                |           | SB          |             |
|                                                       |               | *                         | LT         | TH        | -         | ₹T           | LT         | Th                               | <u> </u>    | RT              | 1        | _T_       | TH     | RT             |           | TH          | RT          |
| Num. of Lar                                           | nes           |                           | 1          | 2         | (         | )            | 0          | 2                                |             | 0               | <u> </u> | )         | 0      | 0              | 1         | 0           | 1           |
| Lane group                                            |               |                           | L          | T         | 丄         |              |            | TR                               |             |                 |          |           |        | <u> </u>       | L         | <u> </u>    | R           |
| Volume (vpl                                           |               |                           | 135        | 784       | ╄         |              |            | 832                              | ?           | 131             | ┡        |           |        |                | 64        | <u> </u>    | 66          |
| % Heavy ve                                            | eh            |                           | 2          | 2         | ┿         |              | <u> </u>   | 2                                | _           | 2               | ╄        |           | ļ      | <del></del>    | 2         |             | 2           |
| PHF<br>Actuated (P.                                   | /Λ)           |                           | 0.92<br>A  | 0.92<br>A | +         |              |            | 0.92<br>A                        |             | 0.92<br>A       | ┢        |           |        | <del> </del>   | 0.92<br>A | -           | 0.92<br>A   |
| Startup lost                                          |               | <del></del>               | 2.0        | 2.0       | ┿         |              | <u> </u>   | 2.0                              |             | <del>- ^-</del> | ╁        |           |        | +              | 2.0       | +           | 2.0         |
| Ext. eff. gre                                         |               |                           | 2.0        | 2.0       | +         |              |            | 2.0                              | _           |                 | +        |           |        | ╅              | 2.0       | 1           | 2.0         |
| Arrival type                                          |               |                           | 3          | 3         | T         |              |            | 3                                |             |                 | 1        |           |        | 1              | 3         | 1           | 5           |
| Unit Extensi                                          | on            |                           | 3.0        | 3.0       | T         |              |            | 3.0                              | )           |                 |          |           |        |                | 3.0       |             | 3.0         |
| Ped/Bike/R1                                           | ΓOR Volume    |                           |            |           | 1         |              | 5          | 10                               |             | 0               |          | 5         |        | <del> </del>   | 5         | 10          | 0           |
| Lane Width                                            |               |                           | 12.0       | 12.0      |           |              |            | 12.0                             | )           |                 |          |           |        |                | 12.0      |             | 12.0        |
| Parking/Gra                                           | de/Parking    |                           | Ν          | 0         | 7         | <b>V</b>     | N          | 0                                |             | N               | 7        | ٧         |        | N              | N         | 0           | N           |
| Parking/hr                                            |               |                           |            |           |           |              |            |                                  |             |                 |          |           |        |                |           |             |             |
| Bus stops/h                                           | r             |                           | 0          | 0         | 1         |              |            | 0                                |             |                 |          |           |        |                | 0         |             | 0           |
| Unit Extensi                                          | on            |                           | 3.0        | 3.0       | $\top$    |              |            | 3.0                              | )           |                 |          |           |        |                | 3.0       |             | 3.0         |
| Phasing                                               | EB Only       | Thru &                    | RT.        | 03        | •         | Τ            | 04         | Ī                                | S           | B Only          | <u> </u> |           | 06     | T              | 07        | T           | 08          |
| Timing                                                | G = 10.0      | G = 3                     |            | G =       |           |              | <b>}</b> = |                                  |             | = 19.0          |          | G =       |        | G              |           | G =         |             |
|                                                       | Y = 5         | Y = 5                     |            | Y =       |           | <u>  Y</u>   | <u> </u>   |                                  | Υ:          | = 5             | _        | Y =       |        | Υ              |           | Υ=          |             |
|                                                       | Analysis (hrs |                           |            | <u> </u>  |           |              |            |                                  |             |                 |          |           | le Len | gth C          | = 82.0    |             |             |
| Lane Gro                                              | up Capaci     | ity, Co                   | ontro      | ol Dela   | y, a      | anc          | LOS        | De                               | te          | <u>rmina</u>    | atic     | n         |        |                | _         |             |             |
|                                                       |               |                           | Е          | В         |           |              | ٧          | ٧B                               |             |                 |          |           | NB     |                |           | SB          |             |
| Adj. flow rat                                         | e             | 147                       | 85         | 52        |           |              | 104        | 16                               |             |                 |          |           |        |                | 70        |             | 72          |
| Lane group                                            | сар.          | 216                       | 22         | 93        | $\Box$    |              | 160        | )3                               | Π           |                 |          |           |        |                | 410       |             | 357         |
| v/c ratio                                             |               | 0.68                      | 0.3        | 37        | _         | ···          | 0.6        | 55                               | T           |                 |          | $\top$    |        |                | 0.17      |             | 0.20        |
| Green ratio                                           | B             | 0.12                      |            |           | 1         |              | 0.4        |                                  | $\vdash$    |                 |          | $\dagger$ |        |                | 0.23      |             | 0.23        |
| Unif. delay o                                         | <br>11        | 34.5                      | _          |           | 1         |              | 16.        | .9                               | T           |                 |          | $\dagger$ |        |                | 25.2      |             | 25.4        |
| Delay factor                                          | ·k            | 0.25                      | 0.1        | 11        | $\exists$ |              | 0.2        | 23                               | T           |                 |          | $\dagger$ |        |                | 0.11      |             | 0.11        |
| Increm. dela                                          | ay d2         | 8.4                       | О.         | 1         | 一         |              | 1.0        | 0                                | T           |                 |          | 1         |        |                | 0.2       |             | 0.3         |
| PF factor                                             |               | 1.000                     | ) 1.0      | 000       | 一         |              | 1.0        | 00                               | Γ           |                 |          | 1         |        | <del></del>    | 1.000     |             | 0.799       |
| Control dela                                          | y             | 42.9                      | 6.         |           |           |              | 17.        | 9                                | T           | 1               |          | $\top$    | 1      |                | 25.4      |             | 20.6        |
| Lane group                                            | LOS           | S D A                     |            | 一         |           | В            |            |                                  |             |                 | 十        |           |        | С              |           | С           |             |
| Apprch. dela                                          | ay            |                           | 12.2       |           | _         | 17.9         |            |                                  |             |                 | •        |           | 22.9   |                |           |             |             |
| Approach Lo                                           | os            |                           | В          |           |           | В            |            |                                  |             |                 |          | С         |        |                |           |             |             |
| Intersec. de                                          | lay           |                           | 15.6       |           | $\dashv$  |              |            | ln                               | ter         | section         | ı L(     | os        |        |                |           | В           | <del></del> |
| HCS2000 <sup>TM</sup>                                 |               |                           |            | 2000      | Univ      | rersity of l | Florida    | , All                            | Rights R    | leser           | ved      |           |        |                |           | Version 4.1 |             |

Copyright © 2000 University of Florida, All Rights Reserved

## COLLEGE BLVD. (VISTAWAY TO PLAZA BR.) SECMENT ALT. #1

I. TOTAL VOLUME AT BUILDOUT

BUILDOUT WITH PROJECT 52,000 ADT BUILDOUT WITHOUT PROJECT -50,900 ADT

PROJECT ONLY INCREASE = 1,100 ADT

IF. EXISTING VOLUME

EXISTING 44,884 ADT

III. TOTAL INCREME

BUILDOUT 571000 ADT

TOTAL INCREASE = 7,116 ADT

II . PROJECT PERCENTAGE OF TOTAL INCREASE

PROJECT ONLY = 1,100 AbT = 15.5 %

## FAIR-SHARE 70 BASED ON ADT COLLEGE BLVO. (PLAZA DR. TO MARRIM RA) SECMENT ALT. #1

I. TOTAL VOLUME AT BUILDOUT

BUILDOUT WITH PROSECT 41,100 ADT

BUILDOUT WITHOUT PROSECT - 39,500 ADT

PROSECT ONLY INCREASE = 1,600 ADT

F. EXISTING VOLUME

EXISTING 36,219 ADT

III. TOTAL INCREASE

BUILDOUT

EXISTING

TOTAL INCREASE = 4:881 ADT

II. PROJECT PERCENTAGE OF TOTAL INCREASE

PROJECT UNLY = 1,600 6T = 32.8 70

FAIR- SHARE %

COLLEGE BLYD (MARRON/LAKE TO CITY LIMIT)

SEGMENT ALT. #1

## I. TOTAL VOLUME AT BUILDOUT

BUILDOUT WITH PROJECT 43,300 ADT - 42,100 407 BUILDOUT WITHOUT PROJECT 1,200ADT PROJECT ONLY INCREASE =

IF. EXISTING VOLUME

EXISTING

24, 475 ADT

III. TOTAL INCREASE

BUILDOUT 43,300 ADT -24,475 ADT EXISTING TOTAL INCREASE -

18,825 ADT

II . PROJECT PERCENTAGE OF TOTAL INCREASE

PROJECT ONLY = 1,200 ADT = 6,4%

FAIR. SHARE 70

ALT. - 1

INTERSECTION (COLLEGE / MARRON - LAKE)

EXISTING

BUILDOUT WITH PROJECT

BUILDOUT WITH PROJECT

PROJECT ONLY INCREASE

EXISTING

BUILDOUT

EXISTING

BUILDOUT

EXISTING

S937

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

-5707

II . PROJECT PERCENTAGE OF TOTAL INCREASE

PROJECT UNLY = 230 = 13,3% PM

ARTERIAL ANALYSIS WORK SHEETS

(16 PAGES

| General Information                                                                  |         |       | Site Inf                                        | ormatio         | n       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
|--------------------------------------------------------------------------------------|---------|-------|-------------------------------------------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 09/04/12<br>Time Period AM PEAK He | OUR     |       | Urban St<br>Direction<br>Jurisdicti<br>Analysis | of Travel<br>on | OCEANS  | und<br>SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OJECT/AL | _T-1  |
| Project Description: QUARRY                                                          | CREEK/C | OLL   |                                                 |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Input Parameters                                                                     |         |       |                                                 |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Analysis David (h) T = 0.05                                                          |         |       |                                                 | Segmer          | nts     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Analysis Period(h) T = 0.25                                                          | 1       | 2     | 3                                               | 4               | 5       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7        | 8     |
| Cycle length, C (s)                                                                  | 100.0   | 100.0 | 100.0                                           | 100.0           | 100.0   | 1 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       |
| Eff. green to cycle ratio, g/C                                                       | 0.270   | 0.300 | 0.617                                           | 0.420           | 0.440   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| v/c ratio for lane group, X                                                          | 0.783   | 0.762 | 0.281                                           | 0.415           | 0.439   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Cap of lane group, c (veh/h)                                                         | 958     | 1463  | 4174                                            | 2131            | 1561    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Pct Veh on Grn., PVG                                                                 |         |       |                                                 |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Arrival type, AT                                                                     | 5       | 5     | 5                                               | 5               | 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Unit Extension, UE (sec)                                                             | 3.0     | 3.0   | 3.0                                             | 3.0             | 3.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Length of segment, L (mi)                                                            | 0.34    | 0.27  | 0.05                                            | 0.10            | 0.16    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Initial Queue, Qb (veh)                                                              | 0       | 0     | 0                                               | 0               | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Urban street class, SC                                                               | 2       | 2     | 2                                               | 2               | 2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Free-flow speed, FSS (mi/h)                                                          | 40      | 40    | 40                                              | 40              | 40      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Running Time, TR (s)                                                                 | 33.9    | 28.8  | 5.8                                             | 11.5            | 18.4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Other delay, (s)                                                                     | 0.0     | 0.0   | 0.0                                             | 0.0             | 0.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Delay Computation                                                                    |         |       |                                                 |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Uniform delay, d1 (s)                                                                | 33.8    | 31.8  | 8.9                                             | 20.4            | 19.4    | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.4      | 5.4   |
| Incremental delay adj, k                                                             | 0.33    | 0.31  | 0.11                                            | 0.11            | 0.11    | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50     | 0.50  |
| Upstream filtering adj factor, I                                                     | 1.000   | 0.528 | 0.561                                           | 0.970           | 0.914   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Incremental delay, d2 (s)                                                            | 4.3     | 1.3   | 0.0                                             | 0.1             | 0.2     | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |
| Initial queue delay, d3 (s)                                                          | 0       | 0     | 0                                               | 0               | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Progression adj factor, PF                                                           | 0.753   | 0.714 | 0.000                                           | 0.517           | 0.476   | 0.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.256    | 0.256 |
| Control delay, d (s)                                                                 | 29.7    | 24.0  | 0.0                                             | 10.7            | 9.4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Segment LOS Determina                                                                | tion    |       |                                                 |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Travel time, ST (s)                                                                  | 63.6    | 52.8  | 5.8                                             | 22.2            | 27.8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Travel speed, SA (mi/h)                                                              | 19.2    | 18.4  | 31.2                                            | 16.2            | 20.7    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1     |
| Segment LOS                                                                          | D       | Di    | В                                               | E               | D       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Urban Street LOS Deterr                                                              |         |       |                                                 |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Total travel time (s)                                                                | 172.2   |       |                                                 |                 |         | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |          |       |
| Total length (mi)                                                                    | 0.92    |       | now )                                           |                 | S VISTA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |
| Total travel speed, SA (mi/h)                                                        | 19.2    | 1     | LN ZA                                           |                 | ( WAR   | INV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |
|                                                                                      |         | V     | -                                               |                 | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |

HCS2000<sup>TM</sup>

Total urban street LOS

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                         |         |       | Site Info | ormatio                | n                             |                                         |          |       |
|-----------------------------------------------------------------------------|---------|-------|-----------|------------------------|-------------------------------|-----------------------------------------|----------|-------|
| Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period AM PEAK HO | OUR     |       | Urban Str | eet<br>of Travel<br>on | COLLEG<br>North-box<br>OCEANS | und                                     | PROJECT/ | ⁄ALT- |
| Project Description: QUARRY                                                 | CREEK/C | OLL   |           |                        |                               |                                         |          |       |
| Input Parameters                                                            |         |       |           |                        |                               |                                         |          |       |
| A . I                                                                       |         |       |           | Segmen                 | nts                           |                                         |          |       |
| Analysis Period(h) T = 0.25                                                 | 1       | 2     | 3         | 4                      | - 5                           | 6                                       | 7        | 8     |
| Cycle length, C (s)                                                         | 100.0   | 100.0 | 100.0     | 100.0                  | 100.0                         |                                         |          |       |
| Eff. green to cycle ratio, g/C                                              | 0.270   | 0.300 | 0.640     | 0.420                  | 0.440                         |                                         |          |       |
| //c ratio for lane group, X                                                 | 0.799   | 0.805 | 0.283     | 0.432                  | 0.452                         |                                         |          | 10    |
| Cap of lane group, c (veh/h)                                                | 958     | 1459  | 4330      | 2131                   | 1561                          |                                         |          |       |
| Pct Veh on Grn., PVG                                                        |         |       |           |                        |                               |                                         |          | 0.0   |
| Arrival type, AT                                                            | 5       | 5     | 5         | 5                      | 5                             |                                         |          | 14-   |
| Unit Extension, UE (sec)                                                    | 3.0     | 3.0   | 3.0       | 3.0                    | 3.0                           |                                         |          | /     |
| ength of segment, L (mi)                                                    | 0.34    | 0.27  | 0.05      | 0.10                   | 0.16                          |                                         |          |       |
| nitial Queue, Qb (veh)                                                      | 0       | 0     | 0         | 0                      | 0                             |                                         |          | 1     |
| Urban street class, SC                                                      | 2       | 2     | 2         | 2                      | 2                             |                                         |          |       |
| Free-flow speed, FSS (mi/h)                                                 | 40      | 40    | 40        | 40                     | 40                            |                                         |          |       |
| Running Time, TR (s)                                                        | 33.9    | 28.8  | 5.8       | 11.5                   | 18.4                          |                                         |          |       |
| Other delay, (s)                                                            | 0.0     | 0.0   | 0.0       | 0.0                    | 0.0                           |                                         |          |       |
| Delay Computation                                                           |         |       |           |                        |                               |                                         |          |       |
| Uniform delay, d1 (s)                                                       | 34.0    | 32.3  | 7.9       | 20.6                   | 19.6                          | 5.4                                     | 5.4      | 5.4   |
| Incremental delay adj, k                                                    | 0.34    | 0.35  | 0.11      | 0.11                   | 0.11                          | 0.50                                    | 0.50     | 0.50  |
| Upstream filtering adj factor, I                                            | 1.000   | 0.502 | 0.491     | 0.969                  | 0.904                         |                                         |          |       |
| ncremental delay, d2 (s)                                                    | 4.8     | 1.7   | 0.0       | 0.1                    | 0.2                           | 3.9                                     |          |       |
| Initial queue delay, d3 (s)                                                 | 0       | 0     | 0         | 0                      | 0                             |                                         |          |       |
| Progression adj factor, PF                                                  | 0.753   | 0.714 | 0.000     | 0.517                  | 0.476                         | 0.256                                   | 0.256    | 0.256 |
| Control delay, d (s)                                                        | 30.4    | 24.8  | 0.0       | 10.8                   | 9.5                           |                                         |          | 90    |
| Segment LOS Determina                                                       |         |       |           |                        |                               |                                         |          |       |
| Travel time, ST (s)                                                         | 64.3    | 53.7  | 5.8       | 22.3                   | 27.9                          |                                         |          | 0     |
| Travel speed, SA (mi/h)                                                     | 19.0    | 18.1  | 31.2      | 16.2                   | 20.6                          |                                         |          | 1     |
| Segment LOS                                                                 | D       | D     | В         | E                      | D                             |                                         |          |       |
| Urban Street LOS Deterr                                                     |         |       |           |                        | 1                             |                                         | *        |       |
| Total travel time (s)                                                       | 173.9   |       | 1         |                        | 1                             | ind)                                    |          |       |
| Total length (mi)                                                           | 0.92    | 1 DA  | 0001      |                        | VISTA                         | 0.                                      |          |       |
| Total travel speed, SA (mi/h)                                               | 19.0    | > mo  | 1516      |                        | > WAG                         | (N) (N) (N) (N) (N) (N) (N) (N) (N) (N) |          |       |
| Total urban street LOS                                                      | D       | 1 32  | 1 416     |                        | 10                            | (510)                                   |          |       |

|                                                                            | UKB         | ANSIR  | EET WO                                          | NAME OF THE OWNER. | Course                                    |         |        |             |  |
|----------------------------------------------------------------------------|-------------|--------|-------------------------------------------------|--------------------|-------------------------------------------|---------|--------|-------------|--|
| General Information                                                        |             |        | Site Inf                                        | ormatio            | n                                         |         |        |             |  |
| Analyst USAI Agency/Co. USAI Date Performed 9/4/2012 Time Period PM PEAK H |             |        | Urban St<br>Direction<br>Jurisdicti<br>Analysis | of Travel<br>on    | COLLEG<br>North-boo<br>OCEANS<br>2030 ALT | und     | ROJECT |             |  |
| Project Description: QUARRY                                                | CREEK       |        |                                                 |                    |                                           |         |        |             |  |
| Input Parameters                                                           | 1           |        |                                                 |                    |                                           |         |        |             |  |
| Analysis Period(h) T = 0.25                                                |             |        | 1 0                                             | Segmen             |                                           |         |        | 5.4<br>0.50 |  |
|                                                                            | 11          | 2      | 3                                               | 4                  | 5                                         | 6       | 7      | 8           |  |
| Cycle length, C (s)                                                        | 99.5        | 110.0  | 110.0                                           | 110.0              | 110.0                                     |         |        |             |  |
| Eff. green to cycle ratio, g/C                                             | 0.341       | 0.347  | 0.565                                           | 0.379              | 0.528                                     |         |        |             |  |
| v/c ratio for lane group, X                                                | 1.055       | 1.040  | 0.469                                           | 0.777              | 0.821                                     |         |        |             |  |
| Cap of lane group, c (veh/h)                                               | 1208        | 1704   | 3825                                            | 1924               | 1873                                      |         |        |             |  |
| Pct Veh on Grn., PVG                                                       |             |        | -                                               | _                  |                                           |         |        |             |  |
| Arrival type, AT                                                           | 5           | 5      | 5                                               | 5                  | 5                                         |         |        |             |  |
| Unit Extension, UE (sec)                                                   | 3.0         | 3.0    | 3.0                                             | 3.0                | 3.0                                       |         |        | -           |  |
| Length of segment, L (mi)                                                  | 0.34        | 0.27   | 0.05                                            | 0.10               | 0.16                                      |         |        |             |  |
| Initial Queue, Qb (veh)                                                    | 0           | 2      | 0                                               | 0                  | 2                                         |         | -      | -           |  |
| Urban street class, SC                                                     | 40          | 40     | 2                                               | 2                  | 40                                        | -       | -      |             |  |
| Free-flow speed, FSS (mi/h)                                                |             |        | 40<br>5.8                                       | 40                 | 18.4                                      | -       |        | -           |  |
| Running Time, TR (s) Other delay, (s)                                      | 33.9<br>0.0 | 28.8   | 0.0                                             | 11.5<br>0.0        | 0.0                                       |         | _      | +           |  |
|                                                                            | 0.0         | 0.0    | 0.0                                             | 0.0                | 0.0                                       |         |        | -           |  |
| Delay Computation                                                          | 1 00 0      | 1 05 0 | 1 272                                           | 1 00 4             | 1 04 0                                    | 1 5 4   | T 5.4  | 1 54        |  |
| Uniform delay, d1 (s)                                                      | 32.8        | 35.9   | 14.1                                            | 30.1               | 21.6                                      | 5.4     | 5.4    |             |  |
| Incremental delay adj, k                                                   | 0.50        | 0.50   | 0.11                                            | 0.33               | 0.36                                      | 0.50    | 0.50   | 0.50        |  |
| Upstream filtering adj factor, I                                           | 1.000       | 0.090  | 0.090                                           | 0.880              | 0.537                                     |         |        |             |  |
| Incremental delay, d2 (s)                                                  | 41.6        | 20.2   | 0.0                                             | 1.8                | 1.7                                       | 2.1     |        |             |  |
| Initial queue delay, d3 (s)                                                | 0           | 0      | 0                                               | 0                  | 0                                         |         |        |             |  |
| Progression adj factor, PF                                                 | 0.655       | 0.645  | 0.132                                           | 0.593              | 0.253                                     | 0.256   | 0.256  | 0.256       |  |
| Control delay, d (s)                                                       | 63.1        | 43.3   | 1.9                                             | 19.7               | 7.2                                       |         |        |             |  |
| Segment LOS Determina                                                      | ation       |        |                                                 |                    |                                           |         |        |             |  |
| Travel time, ST (s)                                                        | 96.9        | 72.2   | 7.6                                             | 31.2               | 25.6                                      |         |        |             |  |
| Travel speed, SA (mi/h)                                                    | 12.6        | 13.5   | 23.6                                            | 11.6               | 22.5 1                                    |         |        |             |  |
| Segment LOS                                                                | F           | ΕŤ     | С                                               | F                  | C                                         |         |        |             |  |
| Urban Street LOS Deterr                                                    | nination    |        |                                                 |                    | 1                                         | 1       | 1      |             |  |
| Total travel time (s)                                                      | 233.4       | 1      | us                                              | 1                  | ( VIS                                     | TH WAY  | )      |             |  |
| Total length (mi)                                                          | 0.92        | MARRO  | N-LAKE<br>N-LAKE                                |                    |                                           | ARING ) |        |             |  |
| Total travel speed, SA (mi/h)                                              | 14.2        | J pr   | WEA )                                           |                    |                                           | 1       |        |             |  |
| Total urban street LOS                                                     | E           |        |                                                 |                    |                                           | _       |        |             |  |
|                                                                            |             |        |                                                 |                    |                                           |         |        |             |  |

HCS2000<sup>TM</sup>

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                        |       |       | Site Inf  | ormatio                 | n                              |            |         |       |
|----------------------------------------------------------------------------|-------|-------|-----------|-------------------------|--------------------------------|------------|---------|-------|
| Analyst USAI Agency/Co. USAI Date Performed 9/4/2012 Fime Period PM PEAK H | OUR   |       | Urban St  | reet<br>of Travel<br>on | COLLEGI<br>North-bou<br>OCEANS | ınd<br>IDE | PROJECT |       |
| Project Description: QUARRY                                                | CREEK |       |           |                         |                                |            |         |       |
| nput Parameters                                                            |       |       |           |                         |                                |            |         |       |
| Analysis Deried(b) T = 0.25                                                |       |       |           | Segmer                  | nts                            |            |         |       |
| Analysis Period(h) $T = 0.25$                                              | 1     | 2     | 3         | 4                       | 5                              | 6          | 7       | 8     |
| Cycle length, C (s)                                                        | 99.5  | 110.0 | 110.0     | 110.0                   | 110.0                          |            |         |       |
| Eff. green to cycle ratio, g/C                                             | 0.367 | 0.329 | 0.565     | 0.379                   | 0.528                          |            |         |       |
| //c ratio for lane group, X                                                | 1.045 | 1.091 | 0.477     | 0.788                   | 0.827                          |            |         | 1     |
| Cap of lane group, c (veh/h)                                               | 1301  | 1612  | 3825      | 1924                    | 1873                           |            |         | 1     |
| Pct Veh on Grn., PVG                                                       |       |       |           |                         |                                | ! ====     | 1       | ,     |
| Arrival type, AT                                                           | 5     | 5     | 5         | 5                       | 5                              |            |         |       |
| Jnit Extension, UE (sec)                                                   | 3.0   | 3.0   | 3.0       | 3.0                     | 3.0                            |            |         |       |
| ength of segment, L (mi)                                                   | 0.34  | 0.27  | 0.05      | 0.10                    | 0.16                           |            |         | 1     |
| nitial Queue, Qb (veh)                                                     | 0     | 0     | 0         | 0                       | 0                              |            |         | 10    |
| Jrban street class, SC                                                     | 2     | 2     | 2         | 2                       | 2                              |            |         |       |
| ree-flow speed, FSS (mi/h)                                                 | 40    | 40    | 40        | 40                      | 40                             |            |         |       |
| Running Time, TR (s)                                                       | 33.9  | 28.8  | 5.8       | 11.5                    | 18.4                           |            |         |       |
| Other delay, (s)                                                           | 0.0   | 0.0   | 0.0       | 0.0                     | 0.0                            |            |         |       |
| Delay Computation                                                          |       |       |           |                         |                                |            |         |       |
| Jniform delay, d1 (s)                                                      | 31.5  | 36.9  | 14.2      | 30.2                    | 21.7                           | 5.4        | 5.4     | 5.4   |
| ncremental delay adj, k                                                    | 0.50  | 0.50  | 0.11      | 0.33                    | 0.37                           | 0.50       | 0.50    | 0.50  |
| Jpstream filtering adj factor, I                                           | 1.000 | 0.090 | 0.090     | 0.875                   | 0.520                          |            |         |       |
| ncremental delay, d2 (s)                                                   | 37.7  | 42.2  | 0.0       | 2.0                     | 1.7                            | 2.0        |         |       |
| nitial queue delay, d3 (s)                                                 | 0     | 0     | 0         | 0                       | 0                              |            |         |       |
| Progression adj factor, PF                                                 | 0.614 | 0.673 | 0.132     | 0.593                   | 0.253                          | 0.256      | 0.256   | 0.256 |
| Control delay, d (s)                                                       | 57.0  | 67.0  | 1.9       | 19.9                    | 7.2                            |            |         | -     |
| Segment LOS Determina                                                      | ation |       |           |                         |                                |            |         |       |
| Fravel time, ST (s)                                                        | 90.9  | 95.9  | 7.6       | 31.4                    | 25.6                           |            |         |       |
| Fravel speed, SA (mi/h)                                                    | 13.5  | 10.1  | 23.6      | 11.5                    | 22.5                           |            |         |       |
| Segment LOS                                                                | E     | F     | С         | F                       | C                              |            |         |       |
| Jrban Street LOS Deteri                                                    |       |       |           |                         |                                |            |         |       |
| Fotal travel time (s)                                                      | 251.4 |       | -         | 1                       |                                | 1          | 1       |       |
| Fotal length (mi)                                                          | 0.92  | SI.   | PROU-LAKE | - 7                     | CVIS                           | TAWA"      | 4       |       |
| Γotal travel speed, SA (mi/h)                                              | 13.2  | (1)   | PLAZA 13  | 3                       | ) (                            | INBING     | )       |       |
| Fotal urban street LOS                                                     | E     |       | -31       | SIENKIUM                |                                | NOT 516    |         |       |

| General Information                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Site Info                | ormatio         | n                                       |            |                                         |       |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|-----------------|-----------------------------------------|------------|-----------------------------------------|-------|
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 09/04/12<br>Time Period AM PEAK HO | Carl Charles Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment |         | Jurisdiction<br>Analysis | of Travel<br>on | COLLEG<br>South-bo<br>OCEANS<br>BUILDOL | und<br>IDE | OJECT/AL                                | .T-1  |
| Project Description: QUARRY                                                          | CREEK/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OLL2AM\ | WPSB                     |                 |                                         |            |                                         |       |
| Input Parameters                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                          |                 |                                         |            |                                         |       |
| A11- D11/L) T - 0.05                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                          | Segmer          | nts                                     |            |                                         |       |
| Analysis Period(h) T = 0.25                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2       | 3                        | 4               | 5                                       | 6          | 7                                       | 8     |
| Cycle length, C (s)                                                                  | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.0   | 100.0                    | 100.0           | 100.0                                   |            |                                         |       |
| Eff. green to cycle ratio, g/C                                                       | 0.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.420   | 0.617                    | 0.530           | 0.400                                   |            |                                         |       |
| //c ratio for lane group, X                                                          | 0.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.717   | 0.420                    | 0.527           | 0.923                                   |            |                                         |       |
| Cap of lane group, c (veh/h)                                                         | 1561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2120    | 4174                     | 2647            | 1419                                    |            |                                         |       |
| Pct Veh on Grn., PVG                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                          |                 |                                         |            |                                         |       |
| Arrival type, AT                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5       | 5                        | 5               | 5                                       |            |                                         |       |
| Jnit Extension, UE (sec)                                                             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0     | 3.0                      | 3.0             | 3.0                                     |            |                                         |       |
| ength of segment, L (mi)                                                             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16    | 0.10                     | 0.05            | 0.27                                    |            |                                         |       |
| nitial Queue, Qb (veh)                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0                        | 0               | 0                                       |            | -                                       |       |
| Jrban street class, SC                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2       | 2                        | 2               | 2                                       |            |                                         |       |
| ree-flow speed, FSS (mi/h)                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40      | 40                       | 40              | 40                                      |            |                                         |       |
| Running Time, TR (s)                                                                 | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.4    | 11.5                     | 5.8             | 28.8                                    |            |                                         |       |
| Other delay, (s)                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0     | 0.0                      | 0.0             | 0.0                                     |            |                                         |       |
| Delay Computation                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                          |                 |                                         |            |                                         | _     |
| Jniform delay, d1 (s)                                                                | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.1    | 9.9                      | 15.3            | 28.5                                    | 5.4        | 5.4                                     | 5.4   |
| ncremental delay adj, k                                                              | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.28    | 0.11                     | 0.13            | 0.44                                    | 0.50       | 0.50                                    | 0.50  |
| Jpstream filtering adj factor, I                                                     | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.438   | 0.626                    | 0.911           | 0.836                                   |            |                                         |       |
| ncremental delay, d2 (s)                                                             | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5     | 0.0                      | 0.2             | 8.9                                     | 1.2        |                                         |       |
| nitial queue delay, d3 (s)                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | 0                        | 0               | 0                                       |            |                                         |       |
| Progression adj factor, PF                                                           | 0.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.517   | 0.000                    | 0.248           | 0.555                                   | 0.256      | 0.256                                   | 0.256 |
| Control delay, d (s)                                                                 | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.0    | 0.0                      | 4.0             | 24.8                                    |            |                                         |       |
| Segment LOS Determina                                                                | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                          |                 |                                         | -          |                                         |       |
| Travel time, ST (s)                                                                  | 43.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.4    | 11.5                     | 9.7             | 53.6                                    |            |                                         |       |
| Travel speed, SA (mi/h)                                                              | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.4    | 31.2                     | 18.5            | 18.1                                    |            |                                         |       |
| Segment LOS                                                                          | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DR      | В                        | D               | Di                                      |            |                                         |       |
| Urban Street LOS Deterr                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                          |                 | 1-                                      |            | *************************************** |       |
| Fotal travel time (s)                                                                | 149.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /       | SING Y                   |                 | PLUZA                                   | -          |                                         |       |
| Total length (mi)                                                                    | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Milk   | to att                   |                 | 10                                      | 7          |                                         |       |
| Total travel speed, SA (mi/h)                                                        | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7119    | 10 WAY<br>NOTSIG.        |                 | LAK!                                    | 16-        |                                         |       |
| Total urban street LOS                                                               | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                          |                 | lant                                    | - )        |                                         |       |

| Conoral Information                                                                              |          |        | Site Inf | ormatia         | n                            |             |         |       |
|--------------------------------------------------------------------------------------------------|----------|--------|----------|-----------------|------------------------------|-------------|---------|-------|
| General Information  Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period AM PEAK HO | OUR      |        | Urban St | of Travel<br>on | COLLEG<br>South-bo<br>OCEANS | und<br>SIDE | PROJECT | /ALT- |
| Project Description: QUARRY                                                                      | CREEK/C  | OLL2AM | WPSB     |                 |                              |             |         |       |
| Input Parameters                                                                                 |          |        |          |                 |                              |             |         |       |
| Analysis Pariod(h) T = 0.25                                                                      |          |        | 9        | Segmer          | nts                          |             |         | 3-1-  |
| Analysis Period(h) T = 0.25                                                                      | 1        | 2      | 3        | 4               | 5                            | 6           | 7       | 8     |
| Cycle length, C (s)                                                                              | 100.0    | 100.0  | 100.0    | 100.0           | 100.0                        |             |         |       |
| Eff. green to cycle ratio, g/C                                                                   | 0.440    | 0.420  | 0.640    | 0.530           | 0.400                        |             |         |       |
| v/c ratio for lane group, X                                                                      | 0.840    | 0.722  | 0.330    | 0.541           | 0.951                        |             |         |       |
| Cap of lane group, c (veh/h)                                                                     | 1561     | 2120   | 5412     | 2640            | 1419                         |             |         |       |
| Pct Veh on Grn., PVG                                                                             |          |        |          |                 |                              |             |         | · V   |
| Arrival type, AT                                                                                 | 5        | 5      | 5        | 5               | 5                            |             |         |       |
| Unit Extension, UE (sec)                                                                         | 3.0      | 3.0    | 3.0      | 3.0             | 3.0                          |             |         |       |
| Length of segment, L (mi)                                                                        | 0.25     | 0.16   | 0.10     | 0.05            | 0.27                         |             |         |       |
| Initial Queue, Qb (veh)                                                                          | 0        | 0      | 0        | 0               | 0                            |             |         |       |
| Urban street class, SC                                                                           | 2        | 2      | 2        | 2               | 2                            |             |         |       |
| Free-flow speed, FSS (mi/h)                                                                      | 40       | 40     | 40       | 40              | 40                           |             |         | 1     |
| Running Time, TR (s)                                                                             | 27.5     | 18.4   | 11.5     | 5.8             | 28.8                         |             |         |       |
| Other delay, (s)                                                                                 | 0.0      | 0.0    | 0.0      | 0.0             | 0.0                          |             |         | 1     |
| Delay Computation                                                                                |          |        | 1        |                 |                              |             |         |       |
| Uniform delay, d1 (s)                                                                            | 24.9     | 24.1   | 8.2      | 15.5            | 29.1                         | 5.4         | 5.4     | 5.4   |
| Incremental delay adj, k                                                                         | 0.38     | 0.28   | 0.11     | 0.14            | 0.46                         | 0.50        | 0.50    | 0.50  |
| Upstream filtering adj factor, I                                                                 | 1.000    | 0.429  | 0.620    | 0.953           | 0.824                        |             |         |       |
| Incremental delay, d2 (s)                                                                        | 4.3      | 0.5    | 0.0      | 0.2             | 12.2                         | 0.9         |         |       |
| Initial queue delay, d3 (s)                                                                      | 0        | 0      | 0        | 0               | 0                            |             |         |       |
| Progression adj factor, PF                                                                       | 0.476    | 0.517  | 0.000    | 0.248           | 0.555                        | 0.256       | 0.256   | 0.256 |
| Control delay, d (s)                                                                             | 16.1     | 13.0   | 0.0      | 4.1             | 28.3                         |             |         |       |
| Segment LOS Determina                                                                            | ition    |        |          |                 |                              |             |         |       |
| Travel time, ST (s)                                                                              | 43.6     | 31.4   | 11.5     | 9.8             | 57.1                         |             |         |       |
| Travel speed, SA (mi/h)                                                                          | 20.6     | 18.30  | 31.2     | 18.4            | 17.0                         |             |         | 3=-   |
| Segment LOS                                                                                      | D        | D      | В        | D               | D                            | 2           |         |       |
| Urban Street LOS Detern                                                                          | nination |        |          |                 | 1                            | 1.          |         |       |
| Total travel time (s)                                                                            | 153.5    |        | ~        |                 | PLAZZA                       | 2           |         |       |
| Total length (mi)                                                                                | 0.83     | WAR    | ING J    | 1               | LAKE                         | 1           |         |       |
| Total travel speed, SA (mi/h)                                                                    | 19.5     | VIST   | Awy)     | 1               | 7                            | /           |         |       |
| Total urban street LOS                                                                           | D        |        |          |                 |                              |             |         |       |

HCS2000<sup>TM</sup>

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                                                     |        |          | Site Inf                              | ormatio                                                                                                                        | n      |       |       |       |  |  |
|---------------------------------------------------------------------------------------------------------|--------|----------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|-------|--|--|
| Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period PM PEAK HO Project Description: QUARRY |        | COLL 2AM | Direction<br>Jurisdiction<br>Analysis | Urban Street COLLEGE BLVD. Direction of Travel South-bound Jurisdiction OCEANSIDE Analysis Year BUILDOUT NO PROJECT/ALT-1 /PSB |        |       |       |       |  |  |
| Input Parameters                                                                                        | CKEENC | OLLZAWI  | WF3D                                  |                                                                                                                                |        |       |       |       |  |  |
|                                                                                                         |        |          |                                       | Segmer                                                                                                                         | nts    |       |       |       |  |  |
| Analysis Period(h) T = 0.25                                                                             | 1      | 2        | 3                                     | 1 4                                                                                                                            | 5      | 6     | 7     | 8     |  |  |
| Cycle length, C (s)                                                                                     | 110.0  | 110.0    | 110.0                                 | 110.0                                                                                                                          | 99.5   |       |       |       |  |  |
| Eff. green to cycle ratio, g/C                                                                          | 0.382  | 0.283    | 0.565                                 | 0.504                                                                                                                          | 0.341  |       |       |       |  |  |
| v/c ratio for lane group, X                                                                             | 0.638  | 0.945    | 0.417                                 | 0.528                                                                                                                          | 0.693  |       |       |       |  |  |
| Cap of lane group, c (veh/h)                                                                            | 1354   | 1415     | 3825                                  | 2534                                                                                                                           | 1208   | 1     |       |       |  |  |
| Pct Veh on Grn., PVG                                                                                    |        |          |                                       |                                                                                                                                |        | 1     |       |       |  |  |
| Arrival type, AT                                                                                        | 5      | 5        | 5                                     | 5                                                                                                                              | 5      |       |       |       |  |  |
| Unit Extension, UE (sec)                                                                                | 3.0    | 3.0      | 3.0                                   | 3.0                                                                                                                            | 3.0    |       |       |       |  |  |
| Length of segment, L (mi)                                                                               | 0.25   | 0.16     | 0.10                                  | 0.05                                                                                                                           | 0.27   |       |       |       |  |  |
| nitial Queue, Qb (veh)                                                                                  | 0      | 0        | 0                                     | 0                                                                                                                              | 0      |       |       |       |  |  |
| Urban street class, SC                                                                                  | 2      | 2        | 2                                     | 2                                                                                                                              | 2      |       |       |       |  |  |
| Free-flow speed, FSS (mi/h)                                                                             | 40     | 40       | 40                                    | 40                                                                                                                             | 40     |       |       |       |  |  |
| Running Time, TR (s)                                                                                    | 27.5   | 18.4     | 11.5                                  | 5.8                                                                                                                            | 28.8   |       |       | 1     |  |  |
| Other delay, (s)                                                                                        | 0.0    | 0.0      | 0.0                                   | 0.0                                                                                                                            | 0.0    |       |       | 7     |  |  |
| Delay Computation                                                                                       |        |          |                                       |                                                                                                                                |        |       |       |       |  |  |
| Uniform delay, d1 (s)                                                                                   | 27.8   | 38.6     | 13.6                                  | 18.5                                                                                                                           | 28.3   | 5.4   | 5.4   | 5.4   |  |  |
| Incremental delay adj, k                                                                                | 0.22   | 0.46     | 0.11                                  | 0.13                                                                                                                           | 0.26   | 0.50  | 0.50  | 0.50  |  |  |
| Upstream filtering adj factor, I                                                                        | 1.000  | 0.727    | 0.218                                 | 0.913                                                                                                                          | 0.836  |       |       |       |  |  |
| Incremental delay, d2 (s)                                                                               | 1.0    | 10.3     | 0.0                                   | 0.2                                                                                                                            | 1.4    | 2.9   |       |       |  |  |
| Initial queue delay, d3 (s)                                                                             | 0      | 0        | 0                                     | 0                                                                                                                              | 0      |       |       |       |  |  |
| Progression adj factor, PF                                                                              | 0.588  | 0.737    | 0.132                                 | 0.323                                                                                                                          | 0.655  | 0.256 | 0.256 | 0.256 |  |  |
| Control delay, d (s)                                                                                    | 17.4   | 38.7     | 1.8                                   | 6.2                                                                                                                            | 20.0   |       |       |       |  |  |
| Segment LOS Determina                                                                                   | tion   |          |                                       |                                                                                                                                |        |       |       |       |  |  |
| Travel time, ST (s)                                                                                     | 44.9   | 57.1     | 13.3                                  | 11.9                                                                                                                           | 48.8   |       |       |       |  |  |
| Travel speed, SA (mi/h)                                                                                 | 20.1   | 10.1     | 27.0                                  | 15.1                                                                                                                           | 19.9   |       |       | 1-    |  |  |
| Segment LOS                                                                                             | D      | F        | С                                     | Ε                                                                                                                              | D k    |       |       |       |  |  |
| Urban Street LOS Detern                                                                                 |        |          |                                       | ***************************************                                                                                        |        | 00.   |       |       |  |  |
| Total travel time (s)                                                                                   | 176.0  |          | 16                                    |                                                                                                                                | Sou H. | 2.A   | 4 = - |       |  |  |
| Total length (mi)                                                                                       | 0.83   | JWAR!    | NG YAWAY                              |                                                                                                                                | ( LT   | 0     | )     |       |  |  |
| Total travel speed, SA (mi/h)                                                                           | 17.0   | ( VIST   | Awal                                  | )                                                                                                                              | 7 -    | AKE   | /     |       |  |  |
| i otal diditol opood, or (illini)                                                                       | 17.0   | -        |                                       |                                                                                                                                | 1      | . /   |       |       |  |  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                         |                                                                     |        | Site Inf   | ormatio                 | n                            |            |               |       |  |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------|--------|------------|-------------------------|------------------------------|------------|---------------|-------|--|
| Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period PM PEAK HO | OUR                                                                 |        | Urban St   | reet<br>of Travel<br>on | COLLEG<br>South-bo<br>OCEANS | und<br>IDE | PROJECT/      | ALT-  |  |
| Project Description: QUARRY                                                 | CREEK/C                                                             | OLL2AM | WPSB       |                         |                              |            |               |       |  |
| Input Parameters                                                            | 7                                                                   |        |            |                         |                              |            |               |       |  |
|                                                                             | 9                                                                   |        |            | Segmen                  | nts                          |            |               |       |  |
| Analysis Period(h) $T = 0.25$                                               | 1                                                                   | 2      | 3          | 4                       | 5                            | 6          | 7             | 8     |  |
| Cycle length, C (s)                                                         | 110.0                                                               | 110.0  | 110.0      | 110.0                   | 99.5                         |            |               | 1     |  |
| Eff. green to cycle ratio, g/C                                              | 0.382                                                               | 0.283  | 0.565      | 0.504                   | 0.367                        |            |               |       |  |
| v/c ratio for lane group, X                                                 | 0.655                                                               | 0.968  | 0.444      | 0.576                   | 0.681                        |            |               |       |  |
| Cap of lane group, c (veh/h)                                                | 1354                                                                | 1416   | 3825       | 2513                    | 1301                         |            |               |       |  |
| Pct Veh on Grn., PVG                                                        |                                                                     |        |            |                         |                              |            |               |       |  |
| Arrival type, AT                                                            | 5                                                                   | 5      | 5          | 5                       | 5                            |            |               |       |  |
| Unit Extension, UE (sec)                                                    | 3.0                                                                 | 3.0    | 3.0        | 3.0                     | 3.0                          |            |               |       |  |
| Length of segment, L (mi)                                                   | 0.25                                                                | 0.16   | 0.10       | 0.05                    | 0.27                         |            |               |       |  |
| nitial Queue, Qb (veh)                                                      | 0                                                                   | 0      | 0          | 0                       | 0                            |            |               |       |  |
| Urban street class, SC                                                      | 2                                                                   | 2      | 2          | 2                       | 2                            |            |               |       |  |
| Free-flow speed, FSS (mi/h)                                                 | 40                                                                  | 40     | 40         | 40                      | 40                           |            |               |       |  |
| Running Time, TR (s)                                                        | 27.5                                                                | 18.4   | 11.5       | 5.8                     | 28.8                         |            |               |       |  |
| Other delay, (s)                                                            | 0.0                                                                 | 0.0    | 0.0        | 0.0                     | 0.0                          |            |               |       |  |
| Delay Computation                                                           |                                                                     |        | _          |                         | _                            |            | 1 - 7 - 7 - 7 |       |  |
| Uniform delay, d1 (s)                                                       | 28.0                                                                | 39.0   | 13.9       | 19.1                    | 26.6                         | 5.4        | 5.4           | 5.4   |  |
| Incremental delay adj, k                                                    | 0.23                                                                | 0.47   | 0.11       | 0.17                    | 0.25                         | 0.50       | 0.50          | 0.50  |  |
| Upstream filtering adj factor, I                                            | 1.000                                                               | 0.707  | 0.167      | 0.896                   | 0.792                        |            |               |       |  |
| Incremental delay, d2 (s)                                                   | 1.2                                                                 | 13.3   | 0.0        | 0.3                     | 1.2                          | 3.0        |               |       |  |
| Initial queue delay, d3 (s)                                                 | 0                                                                   | 0      | 0          | 0                       | 0                            |            |               |       |  |
| Progression adj factor, PF                                                  | 0.588                                                               | 0.737  | 0.132      | 0.323                   | 0.614                        | 0.256      | 0.256         | 0.256 |  |
| Control delay, d (s)                                                        | 17.6                                                                | 42.0   | 1.8        | 6.5                     | 17.5                         |            |               |       |  |
| Segment LOS Determina                                                       | ition                                                               |        |            |                         |                              |            |               |       |  |
| Travel time, ST (s)                                                         | 45.1                                                                | 60.4   | 13.3       | 12.2                    | 46.3                         |            |               |       |  |
| Travel speed, SA (mi/h)                                                     | 19.9                                                                | 9.5    | 27.0       | 14.7                    | 21.0                         |            |               |       |  |
| Segment LOS                                                                 | D                                                                   | FI     | С          | E                       | DA                           |            |               |       |  |
| Urban Street LOS Deterr                                                     | nination                                                            | 1      |            |                         |                              |            |               |       |  |
| Total travel time (s)                                                       | 177.4                                                               |        |            |                         | 1                            | 174        |               |       |  |
| Total length (mi)                                                           | 0.83                                                                |        | 2610.      | 1                       | (PL                          | TO         | 4             |       |  |
| Total travel speed, SA (mi/h)                                               | 16.8                                                                | 51     | NEW WISTAW | MA                      | 7.                           | AZA,       | )             |       |  |
| Total urban street LOS                                                      | E                                                                   |        | VISTAW     | 1                       |                              |            |               |       |  |
| HCS2000 <sup>TM</sup>                                                       | Copyright © 2003 University of Plorida, All Rights Reserved Version |        |            |                         |                              |            |               |       |  |

|                                                                                      | URBA        | N STR       | EET WO     | RKSHE                      | ET #1 |       |       |             |  |  |  |  |
|--------------------------------------------------------------------------------------|-------------|-------------|------------|----------------------------|-------|-------|-------|-------------|--|--|--|--|
| General Information                                                                  |             |             | Site Inf   | ormatio                    | n     |       |       | 5.4<br>0.50 |  |  |  |  |
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 9/4/2012<br>Time Period AM PEAK Ho | OUR         |             | Jurisdicti | ction of Travel East-bound |       |       |       |             |  |  |  |  |
| Project Description:                                                                 |             |             |            |                            |       |       |       |             |  |  |  |  |
| Input Parameters                                                                     |             |             |            |                            |       |       |       |             |  |  |  |  |
| Analysis Period(h) T = 0.25                                                          |             |             |            | Segmer                     | nts   |       |       |             |  |  |  |  |
| Analysis Feriod(II) 1 = 0.25                                                         | 1           | 2           | 3          | 4                          | 5     | 6     | 7     | 8           |  |  |  |  |
| Cycle length, C (s)                                                                  | 100.0       | 100.0       |            |                            |       |       |       |             |  |  |  |  |
| Eff. green to cycle ratio, g/C                                                       | 0.070       | 0.260       |            |                            |       |       |       | lu -        |  |  |  |  |
| v/c ratio for lane group, X                                                          | 0.573       | 0.691       |            |                            |       |       |       |             |  |  |  |  |
| Cap of lane group, c (veh/h)                                                         | 248         | 922         |            |                            |       |       |       |             |  |  |  |  |
| Pct Veh on Grn., PVG                                                                 |             |             |            |                            |       |       |       |             |  |  |  |  |
| Arrival type, AT                                                                     | 5           | 5           |            |                            |       |       |       |             |  |  |  |  |
| Unit Extension, UE (sec)                                                             | 3.0         | 3.0         |            |                            |       |       |       | -           |  |  |  |  |
| Length of segment, L (mi)                                                            | 0.15        | 0.09        |            |                            |       |       |       |             |  |  |  |  |
| Initial Queue, Qb (veh)                                                              | 0           | 0           |            |                            |       |       |       |             |  |  |  |  |
| Urban street class, SC                                                               | 2           | 2           |            | 4                          |       | -     |       | -           |  |  |  |  |
| Free-flow speed, FSS (mi/h)                                                          | 40          | 40          | -          |                            |       |       |       | -           |  |  |  |  |
| Running Time, TR (s)                                                                 | 17.3<br>0.0 | 10.4<br>0.0 |            | _                          | -     | -     | -     | -           |  |  |  |  |
| Other delay, (s)                                                                     | 0.0         | 0.0         |            |                            | 1     | _     |       | -           |  |  |  |  |
| Delay Computation                                                                    | 1 2-2       | 1 00 4      | T e z      | To F.4                     | 1     | 1 51  | 1 51  | 1 51        |  |  |  |  |
| Uniform delay, d1 (s)                                                                | 45.1        | 33.4        | 5.4        | 5.4                        | 5.4   | 5.4   | 5.4   | -           |  |  |  |  |
| Incremental delay adj, k                                                             | 0.17        | 0.26        | 0.50       | 0.50                       | 0.50  | 0.50  | 0.50  | 0.50        |  |  |  |  |
| Upstream filtering adj factor, I                                                     | 1.000       | 0.796       |            |                            | -     |       |       |             |  |  |  |  |
| Incremental delay, d2 (s)                                                            | 3.2         | 1.8         | 2.9        |                            |       |       |       |             |  |  |  |  |
| Initial queue delay, d3 (s)                                                          | 0           | 0           |            |                            |       |       |       |             |  |  |  |  |
| Progression adj factor, PF                                                           | 0.950       | 0.766       | 0.256      | 0.256                      | 0.256 | 0.256 | 0.256 | 0.256       |  |  |  |  |
| Control delay, d (s)                                                                 | 46.0        | 27.3        |            | 100                        |       |       |       |             |  |  |  |  |
| Segment LOS Determina                                                                | tion        | 1           |            |                            |       |       |       |             |  |  |  |  |
| Travel time, ST (s)                                                                  | 63.2        | 37.7        | ) E = = =  |                            |       |       |       |             |  |  |  |  |
| Travel speed, SA (mi/h)                                                              | 8.5         | 8.6         |            |                            |       |       |       | 1           |  |  |  |  |
| Segment LOS                                                                          | F           | F           |            |                            |       |       |       | -           |  |  |  |  |
| Urban Street LOS Deterr                                                              | nination    | 7           |            |                            |       |       |       |             |  |  |  |  |
| Total travel time (s)                                                                | 100.9       | 1           | -          |                            |       |       |       |             |  |  |  |  |
| Total length (mi)                                                                    | 0.24        | / Col       | LASWE F    | samps y                    |       |       |       |             |  |  |  |  |
| Total travel speed, SA (mi/h)                                                        | 8.6         | ( Em        | -18WB      |                            |       |       |       |             |  |  |  |  |
| Total urban street LOS                                                               | F           | 1           | ^          | /                          |       |       |       |             |  |  |  |  |

 $HCS2000^{\text{TM}}$ 

Copyright © 2003 University of Florida, All Rights Reserved

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | URBA     | AN STR | EET WO                | RKSHE     | ET #1   |            |         |             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------------------|-----------|---------|------------|---------|-------------|--|--|--|
| General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | Site Inf              | ormatio   | n       |            |         |             |  |  |  |
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 9/4/2012<br>Time Period AM PEAK He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OUR      |        | Jurisdicti            | of Travel | OCEANS  | nd<br>SIDE | PROJECT | . V         |  |  |  |
| Project Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |        |                       |           |         |            |         |             |  |  |  |
| Input Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |        |                       |           |         |            |         |             |  |  |  |
| Analysis Period(h) T = 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |        |                       | Segmer    | nts     |            |         | 5.4<br>0.50 |  |  |  |
| Allalysis Fellod(II) 1 = 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        | 2      | 3                     | 4         | 5       | 6          | 7       | 8           |  |  |  |
| Cycle length, C (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.0    | 100.0  |                       |           |         |            |         |             |  |  |  |
| Eff. green to cycle ratio, g/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.070    | 0.260  |                       |           |         |            |         |             |  |  |  |
| v/c ratio for lane group, X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.573    | 0.704  |                       |           |         |            |         |             |  |  |  |
| Cap of lane group, c (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 248      | 922    |                       |           |         |            |         |             |  |  |  |
| Pct Veh on Grn., PVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 7 - 7  |                       |           | 1       | Y          |         |             |  |  |  |
| Arrival type, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5        | 5      |                       |           |         |            |         |             |  |  |  |
| Unit Extension, UE (sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0      | 3.0    |                       | 1-        |         |            |         |             |  |  |  |
| Length of segment, L (mi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15     | 0.09   |                       |           |         |            |         |             |  |  |  |
| Initial Queue, Qb (veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0        | 0      |                       |           |         |            |         |             |  |  |  |
| Urban street class, SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2        | 2      |                       |           |         |            |         |             |  |  |  |
| Free-flow speed, FSS (mi/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40       | 40     |                       |           |         |            |         |             |  |  |  |
| Running Time, TR (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.3     | 10.4   |                       |           |         |            |         |             |  |  |  |
| Other delay, (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0      | 0.0    |                       |           |         |            |         | <u> </u>    |  |  |  |
| Delay Computation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        | T                     |           |         |            |         | 1           |  |  |  |
| Uniform delay, d1 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.1     | 33.5   | 5.4                   | 5.4       | 5.4     | 5.4        | 5.4     |             |  |  |  |
| Incremental delay adj, k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.17     | 0.27   | 0.50                  | 0.50      | 0.50    | 0.50       | 0.50    | 0.50        |  |  |  |
| Upstream filtering adj factor, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.000    | 0.796  |                       |           |         |            |         |             |  |  |  |
| Incremental delay, d2 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.2      | 2.0    | 2.9                   |           |         |            |         |             |  |  |  |
| Initial queue delay, d3 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0        | 0      |                       |           |         |            |         |             |  |  |  |
| Progression adj factor, PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.950    | 0.766  | 0.256                 | 0.256     | 0.256   | 0.256      | 0.256   | 0.256       |  |  |  |
| Control delay, d (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.0     | 27.6   |                       |           |         |            | 7 10-   |             |  |  |  |
| Segment LOS Determina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ation    |        |                       |           |         |            |         |             |  |  |  |
| Travel time, ST (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.2     | 38.0   |                       |           |         |            |         |             |  |  |  |
| Travel speed, SA (mi/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.5      | 8.5    |                       |           |         |            |         |             |  |  |  |
| Segment LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F        | F      |                       | 1         | -       |            |         |             |  |  |  |
| Urban Street LOS Deterr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nination |        |                       |           |         |            |         |             |  |  |  |
| Total travel time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.2    |        | 115                   | 1         |         |            |         |             |  |  |  |
| Total length (mi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.24     | > Coli | HOE<br>TO<br>TO TO TO | CEgn      |         |            |         |             |  |  |  |
| Total travel speed, SA (mi/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.5      | ( SIL  | TRIVER                | )         |         |            |         |             |  |  |  |
| Total urban street LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F        | 7      |                       | 1         |         |            |         |             |  |  |  |
| 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 10 | 710 1711 |        |                       |           | AT-1-17 |            |         | 627.7%      |  |  |  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2003 University of Florida, All Rights Reserved

|                                                                            | UKDA     | AN SIK | EETWO      | RKSHE     | =1 #1  |       |        |       |
|----------------------------------------------------------------------------|----------|--------|------------|-----------|--------|-------|--------|-------|
| General Information                                                        |          |        | Site Inf   | ormatio   | n      |       |        |       |
| Analyst USAI Agency/Co. USAI Date Performed 9/4/2012 Time Period PM PEAK H | OUR      |        | Jurisdicti | of Travel | OCEANS | nd    | ROJECT |       |
| Project Description:                                                       |          |        |            |           |        |       |        |       |
| Input Parameters                                                           |          |        |            |           |        |       |        |       |
| Analysis Period(h) T = 0.25                                                |          |        |            | Segmer    | nts    |       |        |       |
| Analysis Fellou(II) 1 = 0.20                                               | 1        | 2      | 3          | 4         | 5      | 6     | 7      | 8     |
| Cycle length, C (s)                                                        | 110.0    | 110.0  |            |           |        |       |        |       |
| Eff. green to cycle ratio, g/C                                             | 0.091    | 0.173  | 1 =        |           |        |       |        |       |
| v/c ratio for lane group, X                                                | 0.391    | 0.892  | 1          |           |        |       |        |       |
| Cap of lane group, c (veh/h)                                               | 322      | 613    |            |           |        |       |        |       |
| Pct Veh on Grn., PVG                                                       |          |        |            |           | W.     |       |        |       |
| Arrival type, AT                                                           | 5        | 5      | 1          |           |        |       |        |       |
| Unit Extension, UE (sec)                                                   | 3.0      | 3.0    |            |           |        |       |        |       |
| Length of segment, L (mi)                                                  | 0.15     | 0.09   |            |           |        |       |        | 1     |
| Initial Queue, Qb (veh)                                                    | 0        | 0      |            |           |        |       |        | 1     |
| Urban street class, SC                                                     | 2        | 2      |            |           |        |       |        |       |
| Free-flow speed, FSS (mi/h)                                                | 40       | 40     |            |           |        |       |        |       |
| Running Time, TR (s)                                                       | 17.3     | 10.4   |            |           |        |       |        | +     |
| Other delay, (s)                                                           | 0.0      | 0.0    |            |           |        |       |        |       |
| Delay Computation                                                          |          |        |            |           |        |       |        | T -   |
| Uniform delay, d1 (s)                                                      | 47.1     | 44.5   | 5.4        | 5.4       | 5.4    | 5.4   | 5.4    | 5.4   |
| Incremental delay adj, k                                                   | 0.11     | 0.42   | 0.50       | 0.50      | 0.50   | 0.50  | 0.50   | 0.50  |
| Upstream filtering adj factor, I                                           | 1.000    | 0.926  |            |           |        |       |        |       |
| Incremental delay, d2 (s)                                                  | 0.8      | 14.4   | 1.5        |           |        |       |        |       |
| Initial queue delay, d3 (s)                                                | 0        | 0      |            |           |        |       |        |       |
| Progression adj factor, PF                                                 | 0.933    | 0.861  | 0.256      | 0.256     | 0.256  | 0.256 | 0.256  | 0.256 |
| Control delay, d (s)                                                       | 44.8     | 52.8   | 17         |           |        |       |        |       |
| Segment LOS Determina                                                      | ation    | 101    | 1          |           |        |       |        |       |
| Travel time, ST (s)                                                        | 62.0     | 63.1   |            |           |        |       |        |       |
| Travel speed, SA (mi/h)                                                    | 8.7      | 5.1    |            |           |        |       |        | 0     |
| Segment LOS                                                                | F        | F      |            |           |        |       |        | 1/    |
| Urban Street LOS Deterr                                                    | nination |        | -          |           |        |       |        |       |
| Total travel time (s)                                                      | 125.1    |        | 166        | 10        |        |       |        |       |
| Total length (mi)                                                          | 0.24     | (COT   | TO WE P    | mr )      |        |       |        |       |
| Total travel speed, SA (mi/h)                                              | 6.9      | ( 50   | 7-10       | 1         |        |       |        |       |
| Total urban street LOS                                                     | F        |        | 1          |           |        |       |        |       |

HCS2000<sup>TM</sup>

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                         |       |       | Site Inf | ormatio                 | n                             |       |         |       |
|-----------------------------------------------------------------------------|-------|-------|----------|-------------------------|-------------------------------|-------|---------|-------|
| Analyst USAI Agency/Co. USAI Date Performed 9/4/2012 Time Period PM PEAK He | OUR   |       | Urban St | reet<br>of Travel<br>on | VISTA W<br>East-bou<br>OCEANS | nd    | PROJECT |       |
| Project Description:                                                        |       |       |          |                         |                               |       |         |       |
| Input Parameters                                                            |       |       |          |                         |                               |       |         |       |
| Analysis Period(h) T = 0.25                                                 |       |       |          | Segmen                  | nts                           |       |         |       |
| Analysis Period(II) 1 = 0.25                                                | 1     | 2     | 3        | 4                       | 5                             | 6     | 7       | 8     |
| Cycle length, C (s)                                                         | 110.0 | 110.0 |          |                         |                               |       |         |       |
| Eff. green to cycle ratio, g/C                                              | 0.091 | 0.173 |          |                         |                               |       |         |       |
| v/c ratio for lane group, X                                                 | 0.391 | 0.904 |          |                         |                               |       |         |       |
| Cap of lane group, c (veh/h)                                                | 322   | 613   |          |                         |                               |       |         |       |
| Pct Veh on Grn., PVG                                                        |       | Yes   |          |                         |                               |       |         |       |
| Arrival type, AT                                                            | 5     | 5     |          |                         |                               |       |         |       |
| Unit Extension, UE (sec)                                                    | 3.0   | 3.0   |          |                         |                               |       |         |       |
| Length of segment, L (mi)                                                   | 0.15  | 0.09  |          |                         | T .                           |       |         |       |
| Initial Queue, Qb (veh)                                                     | 0     | 0     |          |                         |                               |       |         |       |
| Urban street class, SC                                                      | 2     | 2     |          |                         |                               |       |         |       |
| Free-flow speed, FSS (mi/h)                                                 | 40    | 40    |          |                         |                               |       |         | 1     |
| Running Time, TR (s)                                                        | 17.3  | 10.4  |          |                         |                               |       |         | 1     |
| Other delay, (s)                                                            | 0.0   | 0.0   |          |                         |                               |       |         | 1     |
| Delay Computation                                                           |       |       |          |                         |                               |       |         |       |
| Uniform delay, d1 (s)                                                       | 47.1  | 44.6  | 5.4      | 5.4                     | 5.4                           | 5.4   | 5.4     | 5.4   |
| Incremental delay adj, k                                                    | 0.11  | 0.42  | 0.50     | 0.50                    | 0.50                          | 0.50  | 0.50    | 0.50  |
| Upstream filtering adj factor, I                                            | 1.000 | 0.926 |          |                         |                               |       |         |       |
| Incremental delay, d2 (s)                                                   | 0.8   | 15.9  | 1.4      |                         |                               |       |         |       |
| Initial queue delay, d3 (s)                                                 | 0     | 0     |          |                         |                               |       |         |       |
| Progression adj factor, PF                                                  | 0.933 | 0.861 | 0.256    | 0.256                   | 0.256                         | 0.256 | 0.256   | 0.256 |
| Control delay, d (s)                                                        | 44.8  | 54.3  |          |                         |                               | 1) 7  | 1       | 1     |
| Segment LOS Determina                                                       | tion  |       | 4        |                         |                               |       |         |       |
| Travel time, ST (s)                                                         | 62.0  | 64.6  |          |                         |                               |       |         |       |
| Travel speed, SA (mi/h)                                                     | 8.7   | 5.0   |          |                         | - 32                          |       | 1       |       |
| Segment LOS                                                                 | F     | FA    |          |                         |                               |       |         |       |
| Urban Street LOS Deterr                                                     |       |       |          |                         |                               | •     |         |       |
| Total travel time (s)                                                       | 126.7 | 1     |          |                         | 1                             |       |         |       |
| Total length (mi)                                                           | 0.24  | 1     | ohle66   | - RAMPS                 | (Com                          |       |         |       |
| Total travel speed, SA (mi/h)                                               | 6.8   | (     | SPL-T8 L | - SIENIS                | 100                           |       |         |       |
| Total urban street LOS                                                      | F     | 7     | (N       | 21 31                   |                               |       |         |       |

| General Information                                                                  |          |                | Site Inf                            | ormatio           | n                                     |       |          |        |
|--------------------------------------------------------------------------------------|----------|----------------|-------------------------------------|-------------------|---------------------------------------|-------|----------|--------|
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 8/23/2012<br>Time Period AM PEAK H | OUR      |                | Urban St<br>Direction<br>Jurisdicti | reet<br>of Travel | VISTA W<br>RAMP<br>West-boo<br>OCEANS | ınd   | EGE TO 7 | 8WB    |
| Project Description:                                                                 |          |                | pomoren y esse                      |                   |                                       |       |          |        |
| Input Parameters                                                                     |          |                |                                     |                   |                                       |       |          |        |
|                                                                                      |          |                |                                     | Segmer            | nts                                   |       |          |        |
| Analysis Period(h) $T = 0.25$                                                        | 1        | 2              | 3                                   | 4                 | 5                                     | 6     | 7        | 8      |
| Cycle length, C (s)                                                                  | 100.0    | 100.0          |                                     |                   |                                       |       |          |        |
| Eff. green to cycle ratio, g/C                                                       | 0.260    | 0.206          |                                     |                   |                                       |       |          |        |
| v/c ratio for lane group, X                                                          | 0.440    | 0.532          |                                     |                   |                                       |       |          |        |
| Cap of lane group, c (veh/h)                                                         | 898      | 647            |                                     |                   |                                       |       |          |        |
| Pct Veh on Grn., PVG                                                                 |          |                |                                     | 101 7             |                                       |       |          |        |
| Arrival type, AT                                                                     | 5        | 5              |                                     |                   |                                       |       |          | 8      |
| Unit Extension, UE (sec)                                                             | 3.0      | 3.0            |                                     |                   |                                       | 4     |          |        |
| Length of segment, L (mi)                                                            | 0.09     | 0.09           |                                     |                   |                                       |       |          |        |
| Initial Queue, Qb (veh)                                                              | 0        | 0              |                                     |                   |                                       |       |          |        |
| Urban street class, SC                                                               | 2        | 2              |                                     |                   |                                       |       |          |        |
| Free-flow speed, FSS (mi/h)                                                          | 40       | 40             |                                     |                   |                                       |       |          |        |
| Running Time, TR (s)                                                                 | 10.4     | 10.4           |                                     |                   |                                       |       |          |        |
| Other delay, (s)                                                                     | 0.0      | 0.0            | 1                                   |                   |                                       | L     |          |        |
| Delay Computation                                                                    | 1        | 1 7            | 1 - 1                               |                   | 1                                     | 1 - 2 |          | 1      |
| Uniform delay, d1 (s)                                                                | 30.9     | 35.4           | 5.4                                 | 5.4               | 5.4                                   | 5.4   | 5.4      | 5.4    |
| Incremental delay adj, k                                                             | 0.11     | 0.13           | 0.50                                | 0.50              | 0.50                                  | 0.50  | 0.50     | 0.50   |
| Upstream filtering adj factor, I                                                     | 1.000    | 0.899          |                                     |                   |                                       |       |          |        |
| Incremental delay, d2 (s)                                                            | 0.3      | 0.8            | 3.7                                 |                   |                                       |       |          |        |
| Initial queue delay, d3 (s)                                                          | 0        | 0              |                                     |                   |                                       |       |          |        |
| Progression adj factor, PF                                                           | 0.766    | 0.827          | 0.256                               | 0.256             | 0.256                                 | 0.256 | 0.256    | 0.256  |
| Control delay, d (s)                                                                 | 24.0     | 30.0           |                                     |                   |                                       |       |          |        |
| Segment LOS Determina                                                                | ation    |                |                                     |                   |                                       |       |          |        |
| Travel time, ST (s)                                                                  | 34.4     | 40.4           |                                     |                   |                                       |       |          |        |
| Travel speed, SA (mi/h)                                                              | 9.4 "    | 8.0            |                                     |                   |                                       |       |          |        |
| Segment LOS                                                                          | F        | F              |                                     |                   |                                       |       |          |        |
| Urban Street LOS Deterr                                                              | nination | 1              |                                     |                   |                                       |       |          |        |
| Total travel time (s)                                                                | 74.8     | 7001           | NB \                                |                   |                                       |       |          |        |
| Total length (mi)                                                                    | 0.18     | Sp. 78 1       | PS                                  | 1                 |                                       |       |          |        |
| Total travel speed, SA (mi/h)                                                        | 8.7      | (              | LEGE BLY                            | )                 |                                       |       |          |        |
| Total urban street LOS                                                               | F        | Lot            | 4                                   |                   |                                       |       |          |        |
| HCS2000 <sup>TM</sup>                                                                |          | tht © 2003 Uni |                                     |                   |                                       |       |          | Versio |

HCS2000<sup>TM</sup>

| General Information                                                          |          |         | Site Inf                            | ormatio           | n                                     |       |       |       |
|------------------------------------------------------------------------------|----------|---------|-------------------------------------|-------------------|---------------------------------------|-------|-------|-------|
| Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period AM PEAK HO | OUR      |         | Urban St<br>Direction<br>Jurisdicti | reet<br>of Travel | VISTA W<br>RAMP<br>West-bou<br>OCEANS |       |       |       |
| Project Description:                                                         |          |         | joyo.o                              |                   |                                       |       |       |       |
| Input Parameters                                                             |          |         |                                     |                   |                                       |       |       |       |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                     | 14       |         |                                     | Segmer            | nts                                   |       |       |       |
| Analysis Period(h) $T = 0.25$                                                | 1        | 2       | 3                                   | 4                 | 5                                     | 6     | 7     | 8     |
| Cycle length, C (s)                                                          | 100.0    | 100.0   | 1                                   |                   |                                       |       |       |       |
| Eff. green to cycle ratio, g/C                                               | 0.260    | 0.206   |                                     |                   |                                       |       |       |       |
| v/c ratio for lane group, X                                                  | 0.444    | 0.532   |                                     |                   |                                       |       |       |       |
| Cap of lane group, c (veh/h)                                                 | 899      | 647     |                                     |                   |                                       |       |       |       |
| Pct Veh on Grn., PVG                                                         |          |         |                                     |                   |                                       |       |       |       |
| Arrival type, AT                                                             | 5        | 5       |                                     |                   |                                       |       |       |       |
| Unit Extension, UE (sec)                                                     | 3.0      | 3.0     |                                     |                   |                                       |       |       |       |
| Length of segment, L (mi)                                                    | 0.09     | 0.09    |                                     |                   |                                       |       |       |       |
| Initial Queue, Qb (veh)                                                      | 0        | 0       |                                     |                   |                                       |       |       |       |
| Urban street class, SC                                                       | 2        | 2       |                                     |                   |                                       |       |       |       |
| Free-flow speed, FSS (mi/h)                                                  | 40       | 40      |                                     |                   |                                       |       |       |       |
| Running Time, TR (s)                                                         | 10.4     | 10.4    |                                     |                   |                                       |       |       |       |
| Other delay, (s)                                                             | 0.0      | 0.0     |                                     |                   |                                       |       |       |       |
| Delay Computation                                                            |          |         |                                     |                   |                                       |       |       | 1     |
| Uniform delay, d1 (s)                                                        | 31.0     | 35.4    | 5.4                                 | 5.4               | 5.4                                   | 5.4   | 5.4   | 5.4   |
| Incremental delay adj, k                                                     | 0.11     | 0.13    | 0.50                                | 0.50              | 0.50                                  | 0.50  | 0.50  | 0.50  |
| Upstream filtering adj factor, I                                             | 1.000    | 0.897   |                                     |                   |                                       |       |       |       |
| Incremental delay, d2 (s)                                                    | 0.4      | 0.8     | 3.7                                 |                   |                                       |       |       |       |
| Initial queue delay, d3 (s)                                                  | 0        | 0       |                                     |                   |                                       |       |       |       |
| Progression adj factor, PF                                                   | 0.766    | 0.827   | 0.256                               | 0.256             | 0.256                                 | 0.256 | 0.256 | 0.256 |
| Control delay, d (s)                                                         | 24.0     | 30.0    |                                     |                   |                                       |       | 17-5  | h-1   |
| Segment LOS Determina                                                        | ition    |         |                                     |                   |                                       |       |       |       |
| Travel time, ST (s)                                                          | 34.4     | 40.4    |                                     |                   |                                       |       |       |       |
| Travel speed, SA (mi/h)                                                      | 9.4      | 8.0     |                                     |                   |                                       |       |       | 0     |
| Segment LOS                                                                  | F        | F       |                                     |                   |                                       | 17    |       | R=    |
| Urban Street LOS Detern                                                      | nination |         | •                                   |                   |                                       |       |       |       |
| Total travel time (s)                                                        | 74.8     | 1       | ~                                   |                   |                                       |       |       |       |
| Total length (mi)                                                            | 0.18     | 121     | WBS                                 | 1                 |                                       |       |       |       |
| Total travel speed, SA (mi/h)                                                | 8.7      | SIL- PI | WBS BLY                             | 1                 |                                       |       |       |       |
| Total urban street LOS                                                       | F        | 7 10    | -L-E60                              |                   |                                       |       |       |       |
| Total ulball street LOS                                                      |          |         |                                     |                   |                                       |       |       |       |

|                                                                                       | - 11, 12,   | Value V     | law .                                           |                 |                            |          |       |        |
|---------------------------------------------------------------------------------------|-------------|-------------|-------------------------------------------------|-----------------|----------------------------|----------|-------|--------|
| General Information                                                                   |             |             | Site In                                         | ormatio         |                            | AT-186 W |       |        |
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 8/23/2012<br>Time Period PM PEAK Ho | OUR         |             | Urban St<br>Direction<br>Jurisdicti<br>Analysis | of Travel<br>on | RAMP<br>West-bou<br>OCEANS |          |       | 8WB    |
| Project Description:                                                                  |             |             | -                                               |                 |                            |          |       |        |
| Input Parameters                                                                      |             |             |                                                 |                 |                            |          |       |        |
|                                                                                       |             |             |                                                 | Segmer          | nts                        |          |       |        |
| Analysis Period(h) T = $0.25$                                                         | 1           | 2           | 3                                               | 4               | 5                          | 6        | 7     | 8      |
| Cycle length, C (s)                                                                   | 110.0       | 110.0       |                                                 |                 |                            |          |       |        |
| Eff. green to cycle ratio, g/C                                                        | 0.300       | 0.287       |                                                 |                 |                            |          |       |        |
| v/c ratio for lane group, X                                                           | 0.474       | 0.736       |                                                 |                 |                            |          |       |        |
| Cap of lane group, c (veh/h)                                                          | 1043        | 923         |                                                 |                 |                            |          |       |        |
| Pct Veh on Grn., PVG                                                                  |             |             |                                                 |                 |                            |          |       |        |
| Arrival type, AT                                                                      | 5           | 5           |                                                 |                 |                            |          |       |        |
| Unit Extension, UE (sec)                                                              | 3.0         | 3.0         |                                                 |                 |                            |          |       | 1 -    |
| Length of segment, L (mi)                                                             | 0.09        | 0.09        |                                                 |                 |                            |          |       |        |
| Initial Queue, Qb (veh)                                                               | 0           | 0           | -                                               |                 |                            |          |       |        |
| Urban street class, SC                                                                | 2           | 2           |                                                 |                 |                            |          |       |        |
| Free-flow speed, FSS (mi/h)                                                           | 40          | 40<br>10.4  | 1                                               | 1               |                            |          |       | 1      |
| Running Time, TR (s) Other delay, (s)                                                 | 10.4<br>0.0 | 0.0         |                                                 |                 | -                          |          |       |        |
| Delay Computation                                                                     | 0.0         | 0.0         | 4                                               |                 | 1                          |          |       |        |
|                                                                                       | 1 24.4      | 25.4        | 1 51                                            | T = 1           | 5.4                        | 5.4      | 5.4   | 5.4    |
| Uniform delay, d1 (s)                                                                 | 31.4        | 35.4        | 5.4                                             | 5.4             |                            |          |       |        |
| Incremental delay adj, k                                                              | 0.11        | 0.29        | 0.50                                            | 0.50            | 0.50                       | 0.50     | 0.50  | 0.50   |
| Upstream filtering adj factor, I                                                      | 1.000       | 0.877       | 0.7                                             |                 |                            | -        |       |        |
| Incremental delay, d2 (s)                                                             | 0.3         | 2.7         | 2.7                                             | -               |                            |          |       |        |
| Initial queue delay, d3 (s)                                                           | 0           | 0           | 2222                                            | -               | 1 2 2 2 2                  |          | 0.000 | -      |
| Progression adj factor, PF                                                            | 0.714       | 0.731       | 0.256                                           | 0.256           | 0.256                      | 0.256    | 0.256 | 0.256  |
| Control delay, d (s)                                                                  | 22.8        | 28.6        |                                                 |                 |                            |          |       |        |
| Segment LOS Determina                                                                 |             |             |                                                 | _               |                            |          |       |        |
| Travel time, ST (s)                                                                   | 33.1        | 39.0        |                                                 |                 |                            |          |       |        |
| Travel speed, SA (mi/h)                                                               | 9.8         | 8.3         |                                                 |                 |                            |          |       |        |
| Segment LOS                                                                           | F           | F           |                                                 |                 |                            |          |       |        |
| Urban Street LOS Detern                                                               | nination    | 1           |                                                 | 10              |                            |          |       |        |
| Total travel time (s)                                                                 | 72.1        | ~           | 10 WB 05                                        | 4               |                            |          |       |        |
| Total length (mi)                                                                     | 0.18        | 19          | 5-Labrani                                       | Bry b.          |                            |          |       |        |
| Total travel speed, SA (mi/h)                                                         | 9.0         |             | PLANTS PLANTS                                   |                 |                            |          |       |        |
| Total urban street LOS                                                                | F           | 7           | Co                                              | /               |                            |          |       |        |
| HCS2000 <sup>TM</sup>                                                                 | Converiab   | + @ 2002 Na | iversity of Flori                               | 1 411 05 14     | D. Construction            |          |       | Versio |

| General Information                                                          |          |       | Site Inf   | ormatio   | n                          |       |       |       |
|------------------------------------------------------------------------------|----------|-------|------------|-----------|----------------------------|-------|-------|-------|
| Analyst USAI Agency/Co. USAI Date Performed 8/23/2012 Time Period PM PEAK HO | DUR      |       | Jurisdicti | of Travel | RAMP<br>West-bou<br>OCEANS |       |       |       |
| Project Description:                                                         |          |       |            |           |                            |       |       |       |
| Input Parameters                                                             |          |       |            |           |                            |       |       |       |
|                                                                              |          |       |            | Segmen    | nts                        |       |       |       |
| Analysis Period(h) $T = 0.25$                                                | 1        | 2     | 3          | 4         | 5                          | 6     | 7     | 8     |
| Cycle length, C (s)                                                          | 110.0    | 110.0 |            |           |                            |       |       |       |
| Eff. green to cycle ratio, g/C                                               | 0.300    | 0.287 |            |           |                            |       | U     |       |
| v/c ratio for lane group, X                                                  | 0.487    | 0.736 |            |           |                            |       |       |       |
| Cap of lane group, c (veh/h)                                                 | 1043     | 923   |            |           |                            |       |       |       |
| Pct Veh on Grn., PVG                                                         |          |       |            |           |                            |       | ====  |       |
| Arrival type, AT                                                             | 5        | 5     |            |           |                            |       |       |       |
| Unit Extension, UE (sec)                                                     | 3.0      | 3.0   |            |           |                            |       |       |       |
| Length of segment, L (mi)                                                    | 0.09     | 0.09  |            |           |                            |       | 1     | 1     |
| Initial Queue, Qb (veh)                                                      | 0        | 0     |            |           |                            |       |       |       |
| Urban street class, SC                                                       | 2        | 2     |            |           |                            |       |       |       |
| Free-flow speed, FSS (mi/h)                                                  | 40       | 40    |            |           |                            |       | 1     |       |
| Running Time, TR (s)                                                         | 10.4     | 10.4  |            |           |                            |       |       |       |
| Other delay, (s)                                                             | 0.0      | 0.0   |            |           |                            |       |       |       |
| Delay Computation                                                            |          |       |            |           |                            |       |       |       |
| Uniform delay, d1 (s)                                                        | 31.6     | 35.4  | 5.4        | 5.4       | 5.4                        | 5.4   | 5.4   | 5.4   |
| Incremental delay adj, k                                                     | 0.11     | 0.29  | 0.50       | 0.50      | 0.50                       | 0.50  | 0.50  | 0.50  |
| Upstream filtering adj factor, I                                             | 1.000    | 0.868 |            |           |                            |       |       |       |
| Incremental delay, d2 (s)                                                    | 0.4      | 2.7   | 2.7        |           | -                          |       |       |       |
| Initial queue delay, d3 (s)                                                  | 0        | 0     |            |           |                            |       |       |       |
| Progression adj factor, PF                                                   | 0.714    | 0.731 | 0.256      | 0.256     | 0.256                      | 0.256 | 0.256 | 0.256 |
| Control delay, d (s)                                                         | 22.9     | 28.6  |            |           |                            | 14    |       |       |
| Segment LOS Determina                                                        | tion     |       |            |           |                            |       |       |       |
| Travel time, ST (s)                                                          | 33.2     | 39.0  | 11 1       |           |                            |       |       |       |
| Travel speed, SA (mi/h)                                                      | 9.7 D    | 8.3   |            |           | 14                         |       |       |       |
| Segment LOS                                                                  | F        | F     |            |           | H                          |       |       |       |
| Urban Street LOS Detern                                                      | nination |       | -          |           |                            |       |       |       |
| Total travel time (s)                                                        | 72.2     | 1     |            |           |                            |       |       |       |
| Total length (mi)                                                            | 0.18     | X     | 2 UBC      | 7         | 1                          |       |       |       |
| Total travel speed, SA (mi/h)                                                | 9.0      | 132-  | (delege    | BLYD      | 6.5                        |       |       |       |
| Total urban street LOS                                                       | F        |       | (deleter   | NoT-3     | - )                        |       |       |       |

## APPENDIX E – ALTERNATIVE 2

- SANDAG SERIES 11 COMBINED NORTH COUNTY MODEL FORECAST ADT VOLUME PLOT (MCMILLIN -2 / 4-26-11)
- INTERSECTION LOS WORKSHEETS WITHOUT AND WITH PROJECT
- FAIR SHARE CALCULATIONS
- ARTERIAL ANALYSIS WORKSHEETS



City of CARLSBAD

Functional Classifications: Freeway Prime Major Collector Local Collector Rural Collector Local

Ramp Zone Connector

Adjusted Volume

April 27, 2011



|                                                       |             |            |                             |           | S          | НО     | RT F        | REPO                          | R           | Т        |       |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |  |  |  |  |
|-------------------------------------------------------|-------------|------------|-----------------------------|-----------|------------|--------|-------------|-------------------------------|-------------|----------|-------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
| General Inf                                           | ormation    |            |                             |           |            |        | 5           | ite In                        | orı         | mati     |       |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |  |  |  |  |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med         | U:<br>08/1 | SAI<br>SAI<br>15/12<br>PEAK |           |            |        | م<br>ل      | nterse<br>Area Ty<br>Iurisdio | ype<br>ctio | e<br>n   |       | C        | All of | <i>NA</i> Y<br>her a<br>SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /<br>are<br>∃-li | as<br>NT.#1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |  |  |  |  |
| Num. of Lanes                                         |             |            |                             |           |            |        |             |                               | <del></del> |          |       |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |  |  |  |  |
| volume an                                             | a riming in | put        |                             | FB        |            | Т      |             | WB                            |             |          | Τ     |          | NB     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Π           | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |  |  |  |  |
|                                                       |             |            | LT                          |           | R          | Т      | LT          |                               | Τ           | RT       | L     | _        |        | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Γ                | LŢ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RT                                               |  |  |  |  |
| Num. of Lar                                           | ies         |            | 1                           | 2         | 1          |        | 2           | 2                             |             | 0        | 2     |          | 3      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 2           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                |  |  |  |  |
| Lane group                                            |             |            | L                           | Т         | R          | ?      | L           | TR                            |             |          | L     |          | TR     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | L           | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |  |  |  |  |
| Volume (vpl                                           | 1)          |            | 35                          | 75        | 93         | 5      | 405         | 160                           | 1           | 100      | 18    | 5        | 1010   | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                | 160         | 1735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                                               |  |  |  |  |
|                                                       | ∍h          |            |                             |           |            |        |             |                               |             |          |       |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | <u> </u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                |  |  |  |  |
|                                                       |             |            |                             |           | _          | _      |             |                               | _           |          |       | 2        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92                                             |  |  |  |  |
|                                                       |             |            |                             |           |            | _      |             |                               | +           | Α        |       | <u> </u> |        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             | 92 0.92 0.<br>A A A<br>.0 3.0<br>.8 5.8<br>5 5<br>.0 3.0<br>5 10 0<br>2.0 12.0<br>N 0 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |  |  |  |  |
|                                                       |             |            |                             |           |            |        |             |                               | +           |          |       |          |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             | SB T TH F 3 3 6 7R 9 9 9 0 0 0 38 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |  |  |  |  |
|                                                       | ψ1 t        |            |                             |           |            |        |             | _                             | $\dagger$   |          | _     | _        |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> |  |  |  |  |
|                                                       | on          |            |                             |           | _          | -      |             | +                             | $\dagger$   |          |       | )        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |  |  |  |  |
| Ped/Bike/R                                            | ΓOR Volume  | )          | 5                           | 10        | 0          |        | 5           | 10                            |             | 0        | 5     |          | 10     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 5           | SB T TH F 2 3 - TR 30 1735 3 2 2 92 0.92 0. A A A A 0 3.0 8 5.8 5 0 3.0 9 8 5.8 5 0 10 9 0 12.0 0 0 12.0 0 0 12.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 3.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 12.0 0 0 |                                                  |  |  |  |  |
| Lane Width                                            | •           |            | 12.0                        | 12.0      | 12.        | .0     | 12.0        | 12.0                          |             |          | 12.   | 0        | 12.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 12.0        | TH F  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |  |  |  |  |
| Parking/Gra                                           | de/Parking  |            | Ν                           | 0         | Ν          | 1      | Ν           | 0                             |             | N        | N     |          | 0      | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | N           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                                |  |  |  |  |
| Parking/hr                                            |             |            |                             |           |            |        |             |                               |             |          |       |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |  |  |  |  |
| Bus stops/h                                           | r           |            | 0                           | 0         | 0          |        | 0           | 0                             |             |          | 0     |          | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 0           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |  |  |
| Unit Extensi                                          | on          |            | 3.0                         | 3.0       | 3.         | 0      | 3.0         | 3.0                           |             |          | 3.0   | )        | 3.0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 3.0         | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |  |  |  |  |
| Phasing                                               |             |            |                             |           |            | _      |             | $\overline{}$                 |             |          |       |          |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08                                               |  |  |  |  |
| Timina                                                |             |            |                             |           |            |        |             |                               |             |          |       |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |  |  |  |  |
| Ť                                                     |             |            |                             | Y = 5     | 0.6        | 1)     | <i>/</i> =  |                               | Υ =         | 5.2      |       |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |  |  |  |  |
|                                                       |             |            |                             | I Dal     |            |        | 410         | S Da                          | 40.         | rmir     |       |          |        | gurv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | - 100.1     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |  |  |  |  |
| Larie Gro                                             | ир Сарас    | ity, C     | EB                          | n Dei     | ay,<br>I   | anic   |             | WB                            | (G)         | <u> </u> | iau   | <i>)</i> | NB     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Γ           | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |  |  |  |  |
| Adi floures                                           |             | 38         | 82                          | 103       | -          | 440    |             | 283                           | Т-          | _        | 201   |          | 1489   | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 174         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                         |  |  |  |  |
| Adj. flow rat                                         | <del></del> |            | +                           | _         | -          |        | -+          |                               | ├           |          |       | $\dashv$ |        | ╁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 342         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                |  |  |  |  |
| Lane group                                            | cap.        | 136        | 446                         | 426       |            | 720    | -           | 389                           | ⊢           | -+       | 352   |          | 1836   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <del></del> | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                |  |  |  |  |
| v/c ratio                                             |             | 0.28       | 0.18                        | 0.24      |            | 0.61   |             | 0.32                          | ⊢           | -+       | 0.57  |          | 0.81   | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 0.51        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                |  |  |  |  |
| Green ratio                                           |             | 0.08       | 0.13                        | 0.28      |            | 0.21   | <del></del> | .27                           | 卜           |          | 0.10  |          | 0.38   | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 0.10        | ╄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                         |  |  |  |  |
| Unif. delay o                                         |             | 58.1       | 52.3                        | 37.4      |            | 47.9   | _           | 9.1                           | Ļ           |          | 57.1  |          | 37.2   | lacksquare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 57.1        | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |  |  |  |  |
| Delay factor                                          | k           | 0.11       | 0.11                        | 0.11      |            | 0.20   | 0           | ).11                          | L           | (        | 0.17  |          | 0.35   | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |                  | 0.12        | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |  |  |  |  |
| Increm. dela                                          | ay d2       | 1.1        | 0.2                         | 0.3       |            | 1.5    | (           | 0.2                           |             |          | 2.2   |          | 2.9    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 1.3         | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |  |  |  |  |
| PF factor                                             |             | 1.000      | 1.000                       | 1.00      | 0          | 1.00   | 0 1.        | .000                          |             |          | ).924 |          | 0.594  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 0.926       | 0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |  |  |  |  |
| Control dela                                          | ıy          | 59.3       | 52.5                        | 37.7      | 7          | 49.4   | 1 3         | 9.3                           |             | 7        | 55.0  |          | 25.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 54.1        | 41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |  |  |  |  |
| Lane group                                            | LOS         | E          | D                           | D         |            | D      |             | D                             | Γ           |          | E     |          | С      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | D           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |  |  |
| Apprch. dela                                          | ay          | 4          | 6.8                         |           |            |        | 45.4        | 1                             | •           | $\dashv$ |       | 28       | 3.5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             | 42.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |  |  |  |  |
| Approach L                                            |             | -          | D                           |           |            |        | D           |                               |             | 十        |       | (        | 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |  |  |
| Intersec. de                                          |             |            | 8.2                         |           |            |        |             | [n                            | ters        | section  | on L  |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |             | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |  |  |
| HCS2000 <sup>TM</sup>                                 | · - · J     | ı          |                             | pyright © | <b>200</b> | O Univ | versity o   |                               |             |          |       |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | <u> </u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ersion 4.1                                       |  |  |  |  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |             |            |                             |              | S        | НО    | RT F       | REPO                                  | )F        | ₹T         | • •       |                |                   |                         |              |                                                                                                                                                                                                     |           |  |  |  |
|-------------------------------------------------------|-------------|------------|-----------------------------|--------------|----------|-------|------------|---------------------------------------|-----------|------------|-----------|----------------|-------------------|-------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| General Inf                                           | ormation    |            |                             |              |          |       | 5          | Site In                               | fo        | rmati      |           |                |                   |                         |              |                                                                                                                                                                                                     |           |  |  |  |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med         | U:<br>08/1 | SAI<br>SAI<br>15/12<br>PEAK |              |          |       | 4          | nterse<br>Area T<br>Jurisdi<br>Analys | yp<br>cti | e<br>on    |           |                | W.<br>othe<br>VSI | 'AY<br>er are<br>IDE-li | eas<br>NT.#1 |                                                                                                                                                                                                     |           |  |  |  |
| Volume an                                             | d Timing In | put        |                             | ******       |          |       |            |                                       | _         |            |           |                |                   |                         |              |                                                                                                                                                                                                     |           |  |  |  |
|                                                       |             | •          |                             | EB           |          |       |            | WE                                    | _         | ·          |           | NB             |                   |                         |              | SB                                                                                                                                                                                                  |           |  |  |  |
|                                                       |             |            | LT                          | TH           | R        | -     | LT         | TH                                    | _         | RT         | LT        | TH             | 4                 | RT                      | <del>1</del> |                                                                                                                                                                                                     | RT        |  |  |  |
| Num, of Lar                                           | es          |            | 1                           | 2            | 1        |       | 2          | 2                                     |           | 0          | 2         | 3              | ┸                 | 0                       | _            | 3                                                                                                                                                                                                   | 0         |  |  |  |
| Lane group                                            |             |            | L                           | Τ            | F        | ₹     | L          | TR                                    |           |            | L         | TR             |                   |                         |              | TR                                                                                                                                                                                                  |           |  |  |  |
| Volume (vpl                                           |             |            | 35                          | 76           | 96       |       | 408        | 163                                   |           | 103        | 187       | 1012           | Ľ                 | 362                     | 161          | 1736                                                                                                                                                                                                | 35<br>2   |  |  |  |
| % Heavy ve                                            | eh          |            | 2                           | 2            | 2        |       | 2          | 2                                     | $\dashv$  | 2          | 2         | 2              | 4                 | 2                       |              | SB LT TH 2 3 61 1736 5 2 2 2 992 0 A A A 992 0 B 5.8 5 5 5 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                   |           |  |  |  |
| PHF                                                   | /A )        |            | 0.92                        | 0.92         | 0.9<br>A |       | 0.92<br>A  | 0.92<br>A                             | $\dashv$  | 0.92<br>A  | 0.92<br>A | 0.92<br>A      | _                 | ).92<br>A               |              | SB LT TH 2 3 61 1736 3 2 2 92 0.92 0 A A A 6.0 3.0 0 B 5.8 5.8 5 5 10 2.0 12.0 N 0 0 0 0 3.0 3.0 0 7 08 G = Y = 133.6  133.6  SB 75 1925 42 1946 51 0.99 10 0.38 7.1 40.8 12 0.49 .3 17.8 926 0.583 |           |  |  |  |
| Actuated (P.<br>Startup lost                          |             |            | A<br>3.0                    | <i>A</i> 3.0 | 3.       | _     | 3.0        | 3.0                                   | $\dashv$  | А          | 3.0       | 3.0            | ┿                 | A                       | 3.0          | #1 DJECT  SB T                                                                                                                                                                                      |           |  |  |  |
| Ext. eff. gree                                        |             |            | 3.0                         | 2.0          | 1        |       | 2.0        | 2.0                                   | $\dashv$  |            | 1.2       | 5.0            | 十                 |                         | 0.8          |                                                                                                                                                                                                     |           |  |  |  |
| Arrival type                                          |             |            | 3                           | 3            | 3        |       | 3          | 3                                     | T         |            | 5         | 5              | T                 |                         | -            | #1 JECT  SB T TH 3 TR 11 1736 2 2 0.92 0.92 0 A 0 3.0 8 5.8 5 0 3.0 8 5.8 5 0 3.0 0 0 0 12.0 0 0 0 12.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                         |           |  |  |  |
| Unit Extensi                                          | on          |            | 3.0                         | 3.0          | 3.       | 0     | 3.0        | 3.0                                   |           |            | 3.0       | 3.0            | Т                 | <u> </u>                | 3.0          | 3.0                                                                                                                                                                                                 |           |  |  |  |
| Ped/Bike/R                                            | OR Volume   | )          | 5                           | 10           | 0        |       | 5          | 10                                    |           | 0          | 5         | 10             |                   | 0                       | 5            | 10                                                                                                                                                                                                  | 0         |  |  |  |
| Lane Width                                            |             |            | 12.0                        | 12.0         | 12       | .0    | 12.0       | 12.0                                  | <u>'</u>  |            | 12.0      | 12.0           |                   |                         | 12.0         | 12.0                                                                                                                                                                                                |           |  |  |  |
| Parking/Gra                                           | de/Parking  |            | N                           | 0            | ٨        | Ī     | N          | 0                                     |           | N          | N         | 0              |                   | N .                     | N            | 0                                                                                                                                                                                                   | N         |  |  |  |
| Parking/hr                                            |             |            |                             |              |          |       |            |                                       |           |            |           |                |                   |                         |              |                                                                                                                                                                                                     |           |  |  |  |
| Bus stops/h                                           | Ť           |            | 0                           | 0            | 0        |       | 0          | 0                                     |           |            | 0         | 0              |                   |                         | 0            | 0                                                                                                                                                                                                   |           |  |  |  |
| Unit Extensi                                          | on          |            | 3.0                         | 3.0          | 3.       | 0     | 3.0        | 3.0                                   |           |            | 3.0       | 3.0            |                   |                         | 3.0          | 3.0                                                                                                                                                                                                 |           |  |  |  |
| Phasing                                               | Excl. Left  | WB         | Only                        | Thru         | & R      |       | 04         | 1                                     | E         | xcl. L     |           | Γhru & I       |                   |                         | 07           |                                                                                                                                                                                                     | 08        |  |  |  |
| Timing                                                | G = 10.3    | G =        |                             | G = '        |          |       | G =        |                                       |           | = 15       |           | 3 = <i>48.</i> | 6                 | G =                     |              | _                                                                                                                                                                                                   |           |  |  |  |
| Ū                                                     | Y = 5.2     | Y = .      |                             | $Y = \xi$    | 5.6      |       | Y =        |                                       | Y         | = 5.2      |           | f = 6.3        |                   | Y =                     |              |                                                                                                                                                                                                     |           |  |  |  |
| Duration of                                           |             |            |                             |              |          |       | 410        | C D                                   | . 4.      | !          |           |                | ngı               | .11 C -                 | - 133.       | U                                                                                                                                                                                                   |           |  |  |  |
| Lane Gro                                              | up Capac    | ity, C     |                             | o Dela       | ay,      | an    |            |                                       | ) t e     | FLLLIIL.   | iatio     |                |                   |                         | 1            | <u> </u>                                                                                                                                                                                            |           |  |  |  |
|                                                       |             |            | EB                          | T            |          |       |            | WB                                    | _         |            |           | NB             | _                 |                         | /            | · -                                                                                                                                                                                                 |           |  |  |  |
| Adj. flow rat                                         | e           | 38         | 83                          | 104          |          | 443   |            | 289                                   | +         | -          | 203       | 1493           | _                 |                         |              | +                                                                                                                                                                                                   |           |  |  |  |
| Lane group                                            | сар.        | 136        | 446                         | 426          | 3        | 720   | ) [8       | 389                                   |           |            | 352       | 1835           | 4                 |                         | 342          | +                                                                                                                                                                                                   | _         |  |  |  |
| v/c ratio                                             |             | 0.28       | 0.19                        | 0.24         | 4        | 0.6   | 2 (        | 0.33                                  |           | (          | 0.58      | 0.81           |                   |                         | 0.51         | 0.99                                                                                                                                                                                                |           |  |  |  |
| Green ratio                                           |             | 0.08       | 0.13                        | 0.28         | 3        | 0.2   | 1 0        | 0.27                                  | T         | 7          | 0.10      | 0.38           |                   |                         | 0.10         | 0.38                                                                                                                                                                                                |           |  |  |  |
| Unif. delay                                           | 11          | 58.1       | 52.3                        | 37.4         | 4        | 47.9  | 9 3        | 39.1                                  | T         |            | 57.2      | 37.3           |                   |                         | 57.1         | 40.8                                                                                                                                                                                                |           |  |  |  |
| Delay factor                                          |             | 0.11       | 0.11                        | 0.1          | 1        | 0.20  | 0 0        | 0.11                                  | T         | 7          | 0.17      | 0.35           | 1                 |                         | 0.12         | 0.49                                                                                                                                                                                                |           |  |  |  |
| Increm. dela                                          | ay d2       | 1.1        | 0.2                         | 0.3          | ,        | 1.6   | ;          | 0.2                                   | T         |            | 2.3       | 2.9            | 寸                 |                         | 1.3          | 17.8                                                                                                                                                                                                |           |  |  |  |
| PF factor                                             |             | 1.000      | 1.000                       | 1.00         | 00       | 1.00  | 00 1       | .000                                  | †         | C          | 0.924     | 0.594          | 1                 |                         | 0.926        | 0.583                                                                                                                                                                                               | :         |  |  |  |
| Control dela                                          | ıy          | 59.3       | 52.5                        | 37.7         | 7        | 49.   | 5 3        | 39.4                                  | T         | 7          | 55.2      | 25.1           | T                 | ·                       | 54.2         | 41.6                                                                                                                                                                                                |           |  |  |  |
| Lane group                                            | LOS         | E          | D                           | D            |          | D     |            | D                                     | T         |            | Ε         | С              | 1                 |                         | D            | D                                                                                                                                                                                                   |           |  |  |  |
| Apprch. dela                                          | ay          | 4          | 6.8                         | -            |          |       | 45.8       | 5                                     |           |            |           | 28.7           |                   |                         |              | 42.7                                                                                                                                                                                                |           |  |  |  |
| Approach L                                            | os          |            | D                           |              |          |       | D          |                                       |           |            |           | С              |                   |                         |              | D                                                                                                                                                                                                   |           |  |  |  |
| Intersec. de                                          | lay         | 3          | 8.3                         |              |          |       |            | lı                                    | nte       | rsecti     | on LC     | S              |                   |                         |              | D                                                                                                                                                                                                   |           |  |  |  |
| HCS2000 <sup>TM</sup>                                 |             | •          | C                           | opyright @   | © 200    | 0 Uni | iversity ( | of Florid                             | a, A      | All Rights | Reserv    | eđ             |                   |                         |              | ,                                                                                                                                                                                                   | ersion 4. |  |  |  |

 $HCS2000^{\mathrm{TM}}$ 

|                                       |                                   |            |                     |            | S             | HORT       | ΓR                                    | EPC                       | )R        | RT             |           |                        |           |               |             |            | <u></u>         |
|---------------------------------------|-----------------------------------|------------|---------------------|------------|---------------|------------|---------------------------------------|---------------------------|-----------|----------------|-----------|------------------------|-----------|---------------|-------------|------------|-----------------|
| General Inf                           | ormation                          |            |                     |            |               |            | S                                     | ite In                    | fo        | rmatio         |           |                        |           |               |             |            |                 |
| Analyst<br>Agency or C<br>Date Perfor | med                               | U:<br>08/1 | SAI<br>SAI<br>15/12 |            |               |            | A                                     | nterse<br>rea T<br>urisdi | ур        | e              | EL        | CAMIN<br>All o<br>OCEA | И<br>oth  | VAY<br>er are | as          | TA         |                 |
| Time Period                           | 1                                 | PM I       | PEAK                |            |               |            |                                       |                           |           | Year           | В         | O-ALT-                 |           |               |             | Τ          |                 |
| Volume an                             | d Timing In                       | put        |                     |            |               |            |                                       | ···                       | •         |                |           |                        |           |               |             |            |                 |
|                                       |                                   |            |                     | EB         |               |            |                                       | WE                        | _         |                |           | NB                     |           |               |             | SB         |                 |
|                                       |                                   |            | LT                  | TH         | R.            |            |                                       | TH                        | 4         | RT             | LT        | TH                     | 4         | RT            | LT          | TH         | RT              |
| Num. of Lar                           | nes                               |            | 1                   | 2          | 1             | 2          |                                       | 2                         | 4         | 0              | 2         | 3                      | 4         | 0             | 2           | 3          | 0               |
| Lane group                            |                                   |            | L                   | T          | R             | L          |                                       | TR                        | Ц         |                | L         | TR                     | 4         |               | L           | TR         |                 |
| Volume (vpl                           |                                   |            | 225                 | 315        | 400           |            |                                       | 290                       | 4         | 180            | 475       | 1855                   | 4         | 465           | 180         | 1475       | 95              |
| % Heavy vo                            | <u>eh</u>                         |            | 2<br>0.92           | 2<br>0.92  | 0.9.          | 2<br>2 0.9 |                                       | 2<br>0.92                 | $\dashv$  | 2<br>0.92      | 2<br>0.92 | 0.92                   | 4         | 2<br>0.92     | 2<br>0.92   | 2<br>0.92  | 2<br>0.92       |
| Actuated (P                           | <u>/Δ</u> )                       |            | 0.92<br>A           | 0.92<br>A  | 0.9.<br>A     | 2 0.9<br>A |                                       | 0.92<br>A                 | $\dashv$  | 0.92<br>A      | 0.92<br>A | 0.92<br>A              | +         | 0.92<br>A     | 0.92<br>A   | 0.92<br>A  | 0.92<br>A       |
| Startup lost                          |                                   |            | 3.0                 | 3.0        | 3.0           |            |                                       | 3.0                       | $\dashv$  | 77             | 3.0       | 3.0                    | $\forall$ | , ·           | 3.0         | 3.0        | <del>  ^`</del> |
| Ext. eff. gre                         |                                   |            | 3.0                 | 2.0        | 1.2           |            |                                       | 2.0                       | _†        |                | 1.2       | 5.0                    | ┪         |               | 0.8         | 5.8        |                 |
| Arrival type                          |                                   |            | 3                   | 3          | 3             | 3          | · · · · · · · · · · · · · · · · · · · | 3                         |           |                | 5         | 5                      |           |               | 5           | 5          |                 |
| Unit Extensi                          | ion                               |            | 3.0                 | 3.0        | 3.0           | 3.0        | 0                                     | 3.0                       |           |                | 3.0       | 3.0                    |           |               | 3.0         | 3.0        |                 |
| Ped/Bike/R                            | TOR Volume                        | )          | 5                   | 10         | 0             | 5          |                                       | 10                        |           | 0              | 5         | 10                     |           | 0             | 5           | 10         | 0               |
| Lane Width                            |                                   |            | 12.0                | 12.0       | 12.           |            |                                       | 12.0                      | ╚         |                | 12.0      |                        | 4         |               | 12.0        | 12.0       |                 |
| Parking/Gra                           | ide/Parking                       |            | N                   | 0          | Ν             | Ν          | 1                                     | 0                         | _         | N              | N         | 0                      |           | N             | N           | 0          | N               |
| Parking/hr                            |                                   |            |                     |            | _             |            |                                       | <u> </u>                  | ┙         |                |           | 4                      | 4         |               |             |            | <u> </u>        |
| Bus stops/h                           |                                   |            | 0                   | 0.         | 0             | 0          |                                       | 0                         |           |                | 0         | 0                      | 4         |               | 0           | 0          | <u> </u>        |
| Unit Extens                           | ion                               |            | 3.0                 | 3.0        | 3.0           | 3.0        | 0                                     | 3.0                       |           |                | 3.0       | 3.0                    |           |               | 3.0         | 3.0        |                 |
| Phasing                               | Excl. Left                        |            | & RT                | 03         | 3             |            | 04                                    |                           |           | xcl. Le        |           | NB On                  |           |               | u & RT      |            | 08              |
| Timing                                | G = 16.0<br>Y = 5.2               | G = .      |                     | G =<br>Y = |               | G =<br>Y = |                                       |                           |           | = 12.<br>= 5.2 |           | 3 = 12.<br>( = 6.3     |           |               | 41.7<br>6.3 | G =<br>Y = |                 |
| Duration of                           | <u>I 1 − 5.∠</u><br>Analysis (hrs |            |                     | T -        |               | 11-        |                                       |                           |           | - 0.2          |           | ycle Le                |           |               |             |            |                 |
|                                       | up Capac                          |            |                     | l Dela     | av            | and I      | O:                                    | S De                      | te        | rmin           |           |                        | 9         |               |             | <u>*</u>   |                 |
| Lane Oro                              | ир оприс                          |            | EB                  |            |               | and E      |                                       | VB                        |           | <u> </u>       | 41.0      | NB                     |           |               |             | SB         |                 |
| Adj. flow rat                         | e                                 | 245        | 342                 | 435        | -             | 359        |                                       | 11                        | Т         |                | 516       | 2521                   |           |               | 196         | 1706       |                 |
| Lane group                            |                                   | 212        | 566                 | 650        | $\rightarrow$ | 386        | ╌                                     | 26                        | $\dagger$ |                | 731       | 2304                   | ┪         |               | 257         | 1672       | _               |
| v/c ratio                             | <del>- Сар.</del>                 | 1.16       | 0.60                | 0.67       | $\rightarrow$ | 0.93       | +-                                    | <u></u><br>.97            | t         | -+             | ).71      | 1.09                   |           |               | 0.76        | 1.02       |                 |
| Green ratio                           |                                   | 0.12       | 0.16                | 0.42       |               | 0.11       | +                                     | .16                       | +         | <del></del>    | ).21      | 0.47                   | -         |               | 0.07        | 0.33       | _               |
| Unif. delay                           | <del></del>                       | 58.8       | 52.2                | 31.1       | $\rightarrow$ | 58.8       |                                       | 5.8                       | ╁         |                | 8.7       | 35.4                   |           |               | 60.6        | 44.6       |                 |
| Delay factor                          |                                   | 0.50       | 0.19                | 0.24       | -+            | 0.45       | +-                                    | .48                       | +         |                | ).27      | 0.50                   |           |               | 0.31        | 0.50       |                 |
| Increm. dela                          |                                   | 110.1      | 1.8                 | 2.7        | -             | 28.8       | +                                     | 1.9                       | $\dagger$ | -+             | 3.1       | 50.1                   |           |               | 12.7        | 27.3       |                 |
| PF factor                             | -, <del></del>                    | 1.000      | 1.000               |            | -             | 1.000      | +                                     | 000                       | +         |                | .820      | 0.409                  |           |               | 0.946       | 0.667      |                 |
| Control dela                          | av                                | 168.9      | 54.1                | 33.8       | -+            | 87.6       |                                       | 7.8                       | t         |                | 13.1      | 64.5                   | $\dashv$  |               | 70.0        | 57.0       |                 |
| Lane group                            | <del></del> -                     | F          | D                   | C          | $\dashv$      | F          |                                       | F                         | †         |                | D         | E                      |           |               | E           | E          |                 |
| Apprch. dela                          |                                   | ļ          | 3.0                 |            | 寸             |            | 7.7                                   |                           |           |                |           | 50.9                   |           |               |             | 58.3       | I               |
| Approach L                            |                                   | _          | E                   |            | 寸             |            | F                                     |                           |           |                |           | E                      |           |               |             | E          |                 |
| Intersec. de                          |                                   |            | <br>5.4             |            | 十             |            |                                       | lr                        | nte       | rsection       | on LO     |                        |           |               |             | E          |                 |
| HCS2000 <sup>TM</sup>                 |                                   |            |                     | nvright @  | <u>2000</u>   | Universi   | ity of                                |                           |           |                |           |                        |           |               | <u> </u>    |            | ersion 4.1      |

 $HCS2000^{TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                       |               |        |                     |            | ŞH        | IORT       | REP               | 5R           | RT        |                                       |                   |                |           |           |                                              |
|---------------------------------------|---------------|--------|---------------------|------------|-----------|------------|-------------------|--------------|-----------|---------------------------------------|-------------------|----------------|-----------|-----------|----------------------------------------------|
| General Inf                           | ormation      |        |                     |            |           |            | Site Ir           | ıfo          | rmatio    | on                                    |                   |                |           |           |                                              |
| Analyst<br>Agency or C<br>Date Perfor |               | U      | SAI<br>SAI<br>15/12 |            |           |            | Interse<br>Area 1 | Гур          | е         |                                       | All of            | WAY<br>her are | eas       | TA        |                                              |
| Time Period                           |               |        | PEAK                |            |           |            | Jurisd<br>Analys  |              |           |                                       | OCEAN<br>-ALT-2/\ |                |           | CT        |                                              |
| Volume an                             | ıd Timing In  | put    |                     |            |           |            |                   |              |           | <b>,</b>                              |                   |                |           |           |                                              |
|                                       |               |        | 17                  | EB         |           | LT         | WE                |              | RT        | LT                                    | NB<br>TH          | RT             | LT        | SB<br>TH  | RT                                           |
| Num, of Lar                           | 168           |        | LT<br>1             | TH<br>2    | RT<br>1   | 2          | T⊦<br>            | ╁            | 0         | 2                                     | 3                 | 0              | 2         | 3         | 0                                            |
|                                       | 103           |        | L                   | T          | R         |            | TR                | $\dashv$     |           | L                                     | TR                |                | L         | TR        |                                              |
| Lane group<br>Volume (vpl             | h\            |        | 225                 | 318        | 403       | 331        | 291               | _            | 181       | 476                                   | 1856              | 466            | 183       | 1478      | 95                                           |
| % Heavy v                             |               |        | 2                   | 2          | 2         | 2          | 291               | ᆉ            | 2         | 2                                     | 2                 | 2              | 2         | 2         | 2                                            |
| PHF                                   | G11           |        | 0.92                | 0.92       | 0.92      | _          | _                 | <del>,</del> | 0.92      | 0.92                                  | 0.92              | 0.92           | 0.92      | 0.92      | 0.92                                         |
| Actuated (P                           | /A)           |        | A                   | A          | A         | A          | A                 | $\dashv$     | A         | A                                     | A                 | A              | A         | A         | A                                            |
| Startup lost                          |               |        | 3.0                 | 3.0        | 3.0       | 3.0        | 3.0               | コ            | _         | 3.0                                   | 3.0               |                | 3.0       | 3.0       |                                              |
| Ext. eff. gre                         | en            |        | 3.0                 | 2.0        | 1.2       | 2.0        | 2.0               | $\Box$       |           | 1.2                                   | 5.0               |                | 0.8       | 5.8       |                                              |
| Arrival type                          |               |        | 3                   | 3          | 3         | 3          | 3                 | _            |           | 5                                     | 5                 | ļ              | 5         | 5         |                                              |
| Unit Extens                           |               |        | 3.0                 | 3.0        | 3.0       | 3.0        | 3.0               | _            |           | 3.0                                   | 3.0               |                | 3.0       | 3.0       |                                              |
|                                       | TOR Volume    | )      | 5                   | 10         | 0         | 5          | 10                | $\dashv$     | 0         | 5                                     | 10                | 0              | 5         | 10        | 0                                            |
| Lane Width                            | do/Dorking    |        | 12.0<br>N           | 12.0<br>0  | 12.0<br>N | 12.0<br>N  | 12.0              | $\dashv$     | N         | 12.0<br>N                             | 12.0<br>0         | N              | 12.0<br>N | 12.0<br>0 | N                                            |
| Parking/Gra                           | ide/Parking   |        | 7.0                 | 0          | 74        | 174        | + 0               |              | IV        | 11                                    | + -               | /4             | //        |           | 'V                                           |
| Parking/hr<br>Bus stops/h             | r             |        | 0                   | 0          | 0         | 0          | 10                | ᆉ            |           | 0                                     | 0                 |                | 0         | 0         |                                              |
| Unit Extens                           |               |        | 3.0                 | 3.0        | 3.0       | 3.0        | 3.0               | $\dashv$     |           | 3.0                                   | 3.0               | -              | 3.0       | 3.0       |                                              |
| Phasing                               | Excl. Left    | Thru   | & RT                | 0.0        |           | T 0        | <del></del>       | _            | xcl. L    |                                       | NB Only           | Thr            | u & RT    |           | <u>.                                    </u> |
|                                       | G = 16.0      | G =    |                     | G =        |           | G =        | •                 | _            | = 12      |                                       | = 12.8            |                | 41.7      | G =       |                                              |
| Timing                                | Y = 5.2       | Y =    |                     | Y =        |           | Y =        |                   | Υ            | = 5.2     |                                       | = 6.3             |                | 6.3       | Y =       | •                                            |
|                                       | Analysis (hr: |        |                     |            |           |            |                   |              |           |                                       | ycle Len          | gth C =        | = 133.    | 6         |                                              |
| Lane Gro                              | up Capac      | ity, C |                     |            | ay, a     | ınd LO     | DS D              | <u>ete</u>   | rmin      | atio                                  |                   |                |           |           | ·                                            |
|                                       |               |        | EB                  |            |           |            | WB                | _            |           |                                       | NB                |                |           | SB        |                                              |
| Adj. flow rat                         | te            | 245    | 346                 | 438        | 3         | 860        | 513               | $\perp$      |           | 517                                   | 2524              |                | 199       | 1710      |                                              |
| Lane group                            | сар.          | 212    | 566                 | 650        | 3         | 386        | 526               | $\perp$      |           | 731                                   | 2304              |                | 257       | 1672      |                                              |
| v/c ratio                             |               | 1.16   | 0.61                | 0.67       | 7 0       | .93        | 0.98              |              | (         | ).71                                  | 1.10              |                | 0.77      | 1.02      |                                              |
| Green ratio                           |               | 0.12   | 0.16                | 0.42       | 2 0       | .11        | 0.16              | $oxed{oxed}$ | (         | 0.21                                  | 0.47              |                | 0.07      | 0.33      |                                              |
| Unif. delay                           | d1            | 58.8   | 52.3                | 31.2       | ? 5       | 8.8        | 55.9              | $\mathbf{L}$ | 4         | 18.7                                  | 35.4              |                | 60.7      | 44.6      |                                              |
| Delay factor                          | r k           | 0.50   | 0.20                | 0.25       | 5 0       | .45        | 0.48              | Τ            | (         | 0.27                                  | 0.50              |                | 0.32      | 0.50      |                                              |
| Increm. dela                          | ay d2         | 110.1  | 1.9                 | 2.8        | 2         | 9.4        | 32.8              | T            |           | 3.2                                   | 50.6              |                | 13.7      | 28.0      |                                              |
| PF factor                             |               | 1.000  | 1.000               | 1.00       | 0 1.      | .000       | 1.000             |              | 0         | .820                                  | 0.409             |                | 0.946     | 0.667     |                                              |
| Control dela                          | зу            | 168.9  | 54.2                | 34.0       | ) 8       | 8.2        | 88.7              | T            |           | 43.1                                  | 65.0              |                | 71.1      | 57.7      |                                              |
| Lane group                            | LOS           | F      | D                   | С          |           | F          | F                 | T            |           | D                                     | E                 |                | Ε         | E         |                                              |
| Apprch. del                           | ay            | 7      | 2.9                 |            |           | 88.        | .5                |              |           | 6                                     | 1.3               |                |           | 59.1      |                                              |
| Approach L                            | os            |        | E                   |            |           | F          | •                 |              |           | · · · · · · · · · · · · · · · · · · · | E                 |                |           | Е         |                                              |
| Intersec. de                          | elay          | 6      | 5.9                 |            |           |            | ŀ                 | nte          | rsection  | on LO                                 | S                 |                |           | E         |                                              |
| HCS2000TM                             |               |        |                     | aurriaht @ | 2000      | University | of Florid         |              | 11 Diobte | Dogorus                               | d                 |                | •         | 1.        | ersion 4.                                    |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

TABLE 9-3-A MIT, ADD NB PLTOLAND SHORT REPORT General Information Site Information EL CAMINO REAL@ VISTA Intersection USAI WAY Analyst Agency or Co. All other areas USAI Area Type OCEANSIDE-INT.#1/WITH Date Performed 08/15/12 Jurisdiction Time Period AM PEAK MIT. **BO-ALT-2/NO PROJECT** Analysis Year Volume and Timing Input EB WB NB SB RT RT RT RT LT TH LT TH LT TH LT TH 0 2 2 0 2 1 2 3 Num. of Lanes 1 1 2 3 T T L R L TR 1 R L TR Lane group 1735 35 75 95 405 160 185 1010 360 160 35 Volume (vph) 100 % Heavy veh 2 2 2 2 2 2 2 2 2 2 2 2 PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Actuated (P/A) A A A A A A A A A A A A Startup lost time 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 Ext. eff. green 3.0 2.0 1.2 2.0 2.0 1.2 5.0 2.0 0.8 5.8 3 3 3 3 3 5 5 5 5 5 Arrival type 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Unit Extension 0 Ped/Bike/RTOR Volume 0 10 5 10 0 5 10 5 10 5 0 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 Parking/Grade/Parking N 0 N N N N 0 N N 0 N 0 Parking/hr 0 0 0 0 0 0 0 0 0 0 Bus stops/hr 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Unit Extension WB Only Thru & RT 04 Excl. Left Thru & RT 07 80 Excl. Left Phasing G = 13.5G = 17.8G = G = 15.5G = 48.6G = G = G = 10.3Timing Y = 5.2Y = 5.6Y = 5.6Y = Y = 5.2Y = 6.3Y = Cycle Length C = Duration of Analysis (hrs) = 0.25133.6 Lane Group Capacity, Control Delay, and LOS Determination EB WB NB SB 82 103 440 283 201 1098 391 174 1924 Adj. flow rate 38 446 426 720 352 1922 563 342 1946 Lane group cap. 136 889 0.28 0.18 0.24 0.61 0.32 0.57 0.57 0.69 0.51 0.99 v/c ratio 0.13 0.28 0.21 0.27 0.10 0.38 0.36 0.10 0.38 0.08 Green ratio 57.1 Unif. delay d1 58.1 52.3 37.4 47.9 39.1 57.1 32.9 36.2 40.8 0.49 0.11 0.11 0.11 0.20 0.11 0.17 0.17 0.26 0.12 Delay factor k Increm. delay d2 1.1 0.2 0.3 1.5 0.2 2.2 0.4 3.7 1.3 17.7 1.000 1.000 1.000 1.000 0.924 0.594 0.619 0.926 0.583 PF factor 1.000 52.5 19.9 26.1 54.1 41.5 37.7 49.4 39.3 55.0 Control delay 59.3 Lane group LOS E D D D D E В C D D 46.8 45.4 25.5 42.6 Apprch. delay Approach LOS D D C D 37.1 D Intersec, delay Intersection LOS

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

VOD NBEL LYNE THOLE 9-3A MIT. SHORT REPORT General Information Site Information EL CAMINO REAL@ VISTA Intersection USAI Analyst WAY USAI Agency or Co. Area Type All other areas Date Performed 08/15/12 OCEANSIDE-INT.#1/WITH Jurisdiction Time Period AM PEAK MIT. Analysis Year **BO-ALT-2/WITH PROJECT** Volume and Timing Input EB WB NB SB LT TH RT LT TH RT LT TH RT LT TH RT Num. of Lanes 1 2 1 2 2 0 2 3 1 2 3 0 T 1 L T R L TR 1 R TR Lane group 35 76 96 408 163 103 1012 362 161 1736 35 Volume (vph) 187 2 2 2 2 2 2 2 2 2 2 2 2 % Heavy veh 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 PHF Actuated (P/A) A A A A A A A A A A A A 3.0 Startup lost time 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 3.0 Ext. eff. green 3.0 2.0 1.2 2.0 2.0 1.2 5.0 2.0 0.8 5.8 3 3 Arrival type 3 3 3 5 5 5 5 5 3.0 3.0 Unit Extension 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Ped/Bike/RTOR Volume 0 5 10 0 5 10 5 10 0 5 10 0 ane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 Parking/Grade/Parking N 0 N N N N N N 0 N 0 0 Parking/hr 0 0 0 0 0 0 Bus stops/hr 0 0 0 0 Unit Extension 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Excl. Left Thru & RT Thru & RT Phasing WB Only 04 Excl. Left 07 80 G = G = G = G = 10.3G = 13.5G = 17.8G = 15.5G = 48.6Timing Y = 5.2Y = 5.6Y = 5.6Y = Y = 5.2Y = 6.3Y = Y = Cycle Length C = 133.6 Duration of Analysis (hrs) = 0.25Lane Group Capacity, Control Delay, and LOS Determination EB WB NB SB 104 443 289 1100 393 1925 Adj. flow rate 38 83 203 175 426 720 1922 Lane group cap. 136 446 889 352 563 342 1946 0.19 0.24 0.33 0.70 0.51 0.99 0.28 0.62 0.58 0.57 v/c ratio 0.13 0.28 0.27 0.38 0.10 0.38 0.08 0.21 0.10 0.36 Green ratio Unif. delay d1 58.1 52.3 37.4 47.9 39.1 57.2 32.9 36.2 57.1 40.8 0.11 0.20 0.26 0.12 0.49 Delay factor k 0.11 0.11 0.11 0.17 0.17 1.1 0.2 0.3 1.6 0.2 2.3 0.4 3.8 1.3 17.8 Increm. delay d2 0.594 0.619 0.926 0.583 PF factor 1.000 1.000 1.000 1.000 1.000 0.924 55.2 52.5 37.7 39.4 20.0 26.2 41.6 Control delay 59.3 49.5 54.2 Lane group LOS E D D D D E В C D D 42.7 Apprch. delay 46.8 45.5 25.6 D D C D Approach LOS Intersec. delay 37.2 Intersection LOS D

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

TABLE 9-3-A MIT: ADD NB RTO LANE

|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |            | SHO     | ORT F       | REPO                                  | )R1         |        |       |     | 1-2-F            |                                         |                                    |           |          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------|---------|-------------|---------------------------------------|-------------|--------|-------|-----|------------------|-----------------------------------------|------------------------------------|-----------|----------|
| General Inf            | formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |          |            |         | S           | Site In                               | forr        | natio  |       |     |                  |                                         |                                    |           |          |
|                        | ency or Co. Ite Performed Ine Period  Ine Period  In Period  In Items In Items In Items In Items In Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items Items It |         |          |            |         | J           | nterse<br>Area T<br>Jurisdi<br>Analys | ype<br>ctio | n      | (     | OCI | All oi<br>EANSIL | WAY<br>ther are<br>DE-INT<br>MIT.       | L@ VIS<br>eas<br>[.#1/WI]<br>ROJEC | ТН        |          |
| Volume ar              | nd Timing I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nput    |          |            |         |             | indiyo                                | 10 1        | Cui    |       |     | 7127 2           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | TOOLO                              |           |          |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          | EB         |         |             | WE                                    | 3           |        |       |     | NB               |                                         |                                    | SB        |          |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | LT       | TH         | RT      | LT          | TH                                    |             | RT     | L     | Т   | TH               | RT                                      | LT                                 | TH        | RT       |
| Num. of Lar            | nes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 1        | 2          | 1       | 2           | 2                                     |             | 0      | 2     |     | 3                | 1                                       | 2                                  | 3         | 0        |
| Lane group             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | L        | T          | R       | L           | TR                                    |             |        | L     | 9   | T                | R                                       | L                                  | TR        |          |
| Volume (vp             | h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 225      | 315        | 400     | 330         | 290                                   | 1           | 80     | 47    | 5   | 1855             | 465                                     | 180                                | 1475      | 95       |
|                        | eh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 2        | 2          | 2       | 2           | 2                                     |             | 2      | 2     |     | 2                | 2                                       | 2                                  | 2         | 2        |
| PHF                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 0.92     | 0.92       | 0.92    | 0.92        | 0.92                                  | _           | .92    | 0.9   |     | 0.92             | 0.92                                    | 0.92                               | 0.92      | 0.92     |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Α        | Α          | Α       | Α           | A                                     |             | Α      | A     |     | Α                | Α                                       | Α                                  | Α         | A        |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 3.0      | 3.0        | 3.0     | 3.0         | 3.0                                   |             |        | 3.    |     | 3.0              | 2.0                                     | 3.0                                | 3.0       |          |
|                        | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 3.0      | 2.0        | 1.2     | 2.0         | 2.0                                   |             |        | 1     |     | 5.0              | 2.0                                     | 0.8                                | 5.8       |          |
| Arrival type           | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | 3        | 3          | 3       | 3           | 3                                     | +           |        | 5     | _   | 5                | 5                                       | 5                                  | 5         | -        |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | 3.0<br>5 | 3.0<br>10  | 3.0     | 3.0<br>5    | 3.0                                   | +           | 0      | 3.    |     | 3.0              | 3.0                                     | 3.0<br>5                           | 3.0<br>10 | 0        |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | е       | 12.0     | 12.0       | 12.0    | 12.0        | 12.0                                  |             | U      | 12.   | _   | 12.0             | 12.0                                    | 12.0                               | 12.0      | 0        |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       | N        | 0          | N       | N N         | 0                                     | +           | N      | N     | _   | 0                | N N                                     | N N                                | 0         | N        |
|                        | adon anting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | -        |            |         |             | 1                                     | +           | -      | +''   |     | U                |                                         |                                    |           | 1,4      |
|                        | ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 0        | 0          | 0       | 0           | 0                                     | +           | _      | 0     | )   | 0                | 0                                       | 0                                  | 0         |          |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       | 3.0      | 3.0        | 3.0     | 3.0         | 3.0                                   | +           | -      | 3.    |     | 3.0              | 3.0                                     | 3.0                                | 3.0       |          |
| Phasing                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thru    | & RT     | 0:         |         | 04          |                                       | Ex          | cl. Le | _     | _   | IB Only          |                                         | u & RT                             |           | 08       |
| Local Bar II           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 22.3     | G =        |         | G =         |                                       |             | 12.    |       |     | = 12.8           |                                         | 41.7                               | G=        |          |
| Timing                 | Y = 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y =     | 5.6      | Y =        |         | Y =         | 1                                     | Y =         | 5.2    | (=)   | Y   | = 6.3            | Y =                                     | 6.3                                | Y =       |          |
| Duration of            | Analysis (hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s) = 0. | 25       |            |         |             |                                       |             |        |       | Су  | cle Len          | gth C =                                 | = 133.                             | 6         |          |
| Lane Gro               | up Capac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | city, C | contro   | l Dela     | ay, ar  | nd LO       | S De                                  | ter         | min    | ati   | on  | 6                |                                         |                                    |           |          |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | EB       |            |         | V           | /B                                    |             |        |       |     | NB               |                                         |                                    | SB        |          |
| Adj. flow rat          | te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 245     | 342      | 435        | 359     | 5           | 11                                    |             | 57     | 16    | 2   | 016              | 505                                     | 196                                | 1706      |          |
| Lane group             | сар.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 212     | 566      | 650        | 386     | 5 52        | 26                                    |             | 73     | 31    | 2   | 385              | 706                                     | 257                                | 1672      |          |
| v/c ratio              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.16    | 0.60     | 0.67       | 0.93    | 3 0.5       | 97                                    |             | 0.     | 71    | 0   | .85              | 0.72                                    | 0.76                               | 1.02      | 1        |
| Green ratio            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.12    | 0.16     | 0.42       | 0.1     | 1 0.        | 16                                    |             | 0.2    | 21    | 0   | .47              | 0.46                                    | 0.07                               | 0.33      |          |
| Unif. delay            | d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58.8    | 52.2     | 31.1       | 58.8    | 3 55        | 5.8                                   |             | 48     | 3.7   | 3   | 1.1              | 29.4                                    | 60.6                               | 44.6      |          |
| Delay factor           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.50    | 0.19     | 0.24       | _       |             | 48                                    |             | _      | 27    | +   |                  | 0.28                                    | 0.31                               | 0.50      |          |
| Increm. dela           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.1   | 1.8      | 2.7        | 28.8    | 3 31        | .9                                    |             | 3.     | .1    | 1   | 3.0              | 3.5                                     | 12.7                               | 27.3      |          |
| PF factor              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000   | 1.000    | 1.000      |         | _           | 000                                   |             | _      | 320   | +   |                  | 0.443                                   | 0.946                              | 0.667     | ,        |
| Control dela           | ау                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 168.9   | 54.1     | 33.8       |         |             | 7.8                                   |             | _      | 3.1   | 1   | 5.7              | 16.5                                    | 70.0                               | 57.0      |          |
| Lane group             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F       | D        | С          | F       |             |                                       |             | _      | )     | +   | В                | В                                       | E                                  | Е         |          |
| Apprch. del            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 3.0      |            |         | 87.7        |                                       |             | +      | _     | 20. |                  |                                         |                                    | 58.3      |          |
| Approach L             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | E        |            |         | F           |                                       |             | +      |       | С   |                  |                                         |                                    | E         |          |
| Intersec. de           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       | 7.4      |            | +       |             | In                                    | ters        | ectio  | n I ( | -   |                  |                                         |                                    | D         |          |
| HC\$2000 <sup>TM</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          | an wight @ | 2000 11 | niversity o | _                                     |             |        |       |     |                  |                                         | 1                                  |           | ersion 4 |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

TABLE 9-3-A

MIT AND NE PEO LINE

|                                       |               |         |              |            | SH     | ORT F     |                  |                   |        |          |             |         |                           |           |       |          |
|---------------------------------------|---------------|---------|--------------|------------|--------|-----------|------------------|-------------------|--------|----------|-------------|---------|---------------------------|-----------|-------|----------|
| General Inf                           | ormation      |         |              |            |        | S         | ite In           | forn              | natio  |          |             |         |                           |           | -     |          |
| Analyst<br>Agency or C                | Co.           |         | ISAI<br>ISAI |            |        |           | nterse<br>Area T |                   |        | E        | _ C         |         | O REAI<br>WAY<br>ther are | L@ VIS    | STA   |          |
| Date Perfor                           |               |         | 15/12        |            |        |           | urisdi           | .,,               |        | C        | CE          |         |                           | .#1/WI    | TH    |          |
| Time Period                           |               | PM      | PEAK         |            |        |           |                  |                   |        |          |             |         | MIT.                      |           | O.T.  |          |
| Values as                             | d Thatle a le |         |              |            |        | /A        | Analys           | is Y              | ear    | В        | O- <i>F</i> | AL 1-2/ | WIIHF                     | PROJE     | C1    |          |
| Volume an                             | a riming ii   | nput    |              | EB         |        | T         | WE               | 3                 |        |          | -           | NB      |                           |           | SB    |          |
|                                       |               |         | LT           | TH         | RT     | LT        | TH               |                   | RT     | L        |             | TH      | RT                        | LT        | TH    | RT       |
| Num. of Lar                           | nes           |         | 1            | 2          | 1      | 2         | 2                | 43                | 0      | 2        |             | 3       | 1                         | 2         | 3     | 0        |
| Lane group                            |               |         | L            | T          | R      | L         | TR               | 2                 |        | L        |             | T       | R                         | L         | TR    |          |
| Volume (vpl                           | n)            |         | 225          | 318        | 403    | 331       | 291              | 1                 | 81     | 476      | 3           | 1856    | 466                       | 183       | 1478  | 95       |
| % Heavy ve                            |               |         | 2            | 2          | 2      | 2         | 2                |                   | 2      | 2        |             | 2       | 2                         | 2         | 2     | 2        |
| PHF                                   |               |         | 0.92         | 0.92       | 0.92   | 0.92      | 0.92             | 0.                | .92    | 0.9      | 2           | 0.92    | 0.92                      | 0.92      | 0.92  | 0.92     |
| Actuated (P                           | /A)           |         | Α            | Α          | Α      | Α         | Α                |                   | Α      | Α        |             | Α       | Α                         | Α         | Α     | Α        |
| Startup lost                          |               |         | 3.0          | 3.0        | 3.0    | 3.0       | 3.0              | FI F              |        | 3.0      |             | 3.0     | 2.0                       | 3.0       | 3.0   |          |
| Ext. eff. gree                        | en            |         | 3.0          | 2.0        | 1.2    | 2.0       | 2.0              | ; <sup>1</sup> (: |        | 1.2      | 2           | 5.0     | 2.0                       | 0.8       | 5.8   |          |
| Arrival type                          |               |         | 3            | 3          | 3      | 3         | 3                |                   |        | 5        |             | 5       | 5                         | 5         | 5     |          |
| Unit Extensi                          |               |         | 3.0          | 3.0        | 3.0    | 3.0       | 3.0              |                   | 0      | 3.0      | )           | 3.0     | 3.0                       | 3.0       | 3.0   | 0        |
| Ped/Bike/R <sup>-</sup><br>Lane Width | IOR Volum     | е       | 5<br>12.0    | 10<br>12.0 | 12.0   | 5<br>12.0 | 12.0             | _                 | 0      | 5<br>12. | 0           | 12.0    | 12.0                      | 5<br>12.0 | 12.0  | 0        |
| Parking/Gra                           | de/Parking    | _       | N            | 0          | N      | N         | 0                | _                 | N      | N N      | _           | 0       | N                         | N         | 0     | N        |
| Parking/hr                            | don arking    |         |              | U          |        | 1         | 1                | Ŧ                 |        | -        |             | U       | 1                         | 1.        |       | <u> </u> |
| Bus stops/h                           | r             |         | 0            | 0          | 0      | 0         | 0                |                   | -      | 0        |             | 0       | 0                         | 0         | 0     |          |
| Unit Extensi                          |               |         | 3.0          | 3.0        | 3.0    | 3.0       | 3.0              |                   |        | 3.0      | )           | 3.0     | 3.0                       | 3.0       | 3.0   |          |
| Phasing                               | Excl. Left    | Thru    | & RT         | 0          | 20710  | 04        |                  |                   | cl. Le |          |             | B Only  | 0 0 - 17 - 0 - 1          | ru & RT   |       | 08       |
|                                       | G = 16.0      | _       | 22.3         | G =        |        | G =       |                  |                   | 12.    | _        |             | = 12.8  |                           | 41.7      | G =   |          |
| Timing                                | Y = 5.2       | Y =     | 5.6          | Y =        |        | Y =       |                  | Y =               | 5.2    |          | _           | = 6.3   | _                         | 6.3       | Y =   |          |
| Duration of                           |               |         |              |            |        |           |                  |                   |        |          | _           | de Ler  | igth C                    | = 133.    | 6     |          |
| Lane Gro                              | up Capac      | city, C | Contro       | l Del      | ay, aı | nd LO     | S De             | ter               | min    | atio     | _           |         |                           |           |       |          |
|                                       |               |         | EB           |            |        | W         | /B               |                   |        |          |             | NB      |                           |           | SB    |          |
| Adj. flow rat                         | е             | 245     | 346          | 438        | 360    | 51        | 13               |                   | 51     | 7        | 20          | 017     | 507                       | 199       | 1710  |          |
| Lane group                            | сар.          | 212     | 566          | 650        | 386    | 5 52      | 26               |                   | 73     | 31       | 23          | 385     | 706                       | 257       | 1672  | 21       |
| v/c ratio                             |               | 1.16    | 0.61         | 0.67       | 0.9    | 3 0.9     | 98               |                   | 0.7    | 71       | 0.          | .85     | 0.72                      | 0.77      | 1.02  | 1        |
| Green ratio                           |               | 0.12    | 0.16         | 0.42       | 0.1    | 1 0.      | 16               |                   | 0.2    | 21       | 0.          | .47     | 0.46                      | 0.07      | 0.33  |          |
| Unif. delay o                         | d1            | 58.8    | 52.3         | 31.2       | 58.    | 8 55      | 5.9              |                   | 48     | .7       | 3           | 1.1     | 29.5                      | 60.7      | 44.6  |          |
| Delay factor                          | k             | 0.50    | 0.20         | 0.25       | 0.4    | 5 0.4     | 48               |                   | 0.2    | 27       | 0.          | .38     | 0.28                      | 0.32      | 0.50  |          |
| Increm. dela                          | ay d2         | 110.1   | 1.9          | 2.8        | 29.    | 4 32      | 2.8              |                   | 3.     | 2        | 3           | 3.0     | 3.5                       | 13.7      | 28.0  |          |
| PF factor                             |               | 1.000   | 1.000        | 1.000      | 1.00   | 00 1.0    | 000              |                   | 0.8    | 320      | 0.          | 409     | 0.443                     | 0.946     | 0.667 | 7        |
| Control dela                          | ıy            | 168.9   | 54.2         | 34.0       | 88.    | 2 88      | 3.7              |                   | 43     | _        | -           | 5.7     | 16.6                      | 71.1      | 57.7  |          |
| Lane group                            |               | F       | D            | С          | F      | _         | =                | 1                 | L      |          | +           | В       | В                         | E         | E     |          |
| Apprch. dela                          |               |         | 2.9          |            | 1      | 88.5      |                  |                   |        | _        | 0.5         |         |                           |           | 59.1  |          |
| Approach L                            |               |         | E            | _          |        | F         |                  |                   |        |          | С           |         |                           |           | E     |          |
| Intersec. de                          |               |         | <br>7.8      |            |        |           | In               | ters              | ectio  | nlC      | -           |         |                           |           | D     |          |
| THOISCO. GO                           | .~J           |         |              |            |        |           | £ Elorida        | -                 |        |          |             |         |                           | 1         |       | Iorgian  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                      |               |                          |                                                                                                                                                                                           |              | SH                                               | ORT R       | REP                             | OR            | r                 |             |               |                            |                                                  |                                                                                                                                                                      |             |  |  |
|------------------------------------------------------|---------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------|-------------|---------------------------------|---------------|-------------------|-------------|---------------|----------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| General Inf                                          | ormation      |                          |                                                                                                                                                                                           |              |                                                  | S           | ite lı                          | nforr         | matio             | n           |               |                            |                                                  |                                                                                                                                                                      |             |  |  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med           | US<br>US<br>08/1<br>AM F | SAI<br>5/12                                                                                                                                                                               |              |                                                  | A<br>J      | nterso<br>rea<br>urisd<br>naly: | Гуре<br>ictio | e<br>n            |             |               | B RAM<br>her are<br>SIDE-I | PS<br>eas<br>NT.#2                               |                                                                                                                                                                      |             |  |  |
| Volume an                                            | d Timing In   | out                      |                                                                                                                                                                                           |              |                                                  |             |                                 |               |                   |             |               |                            |                                                  |                                                                                                                                                                      |             |  |  |
|                                                      |               |                          |                                                                                                                                                                                           | EB           | Lot                                              | 1 7-        | W                               |               |                   | <u> </u>    | NB            | LDE                        | ļ.,                                              |                                                                                                                                                                      | T 0-        |  |  |
| Num. of Lar                                          | 100           |                          | LT<br>O                                                                                                                                                                                   | TH<br>O      | RT<br>0                                          | LT<br>1     | TH                              | 1             | RT<br>1           | LT<br>2     | TH<br>3       | RT<br>0                    | LT<br>O                                          |                                                                                                                                                                      | RT<br>1     |  |  |
|                                                      |               |                          | -                                                                                                                                                                                         | +            | <del>                                     </del> | 1           | LTF                             | +             | <del>.</del><br>R | L           | $\frac{1}{T}$ | <u> </u>                   | ╫                                                |                                                                                                                                                                      | R           |  |  |
| Lane group<br>Volume (vpl                            | 2)            |                          |                                                                                                                                                                                           |              | <u> </u>                                         | 715         | 5                               | _             | 580               | 140         |               | <u> </u>                   | 1                                                |                                                                                                                                                                      | 450         |  |  |
| % Heavy v                                            |               |                          |                                                                                                                                                                                           | <del> </del> | <del> </del>                                     | 2           | 2                               |               | 2                 | 2           | 2             |                            | <del>                                     </del> |                                                                                                                                                                      | 2           |  |  |
| PHF                                                  | O11           |                          |                                                                                                                                                                                           |              |                                                  | 0.92        | 0.9                             | 2 0           | 0.92              | 0.92        |               |                            |                                                  | 0.92                                                                                                                                                                 | 0.92        |  |  |
| Actuated (P                                          | /A)           |                          |                                                                                                                                                                                           |              |                                                  | Α           | Α                               |               | Α                 | Α           | Α             |                            |                                                  | Α                                                                                                                                                                    | Α           |  |  |
| Startup lost                                         |               |                          |                                                                                                                                                                                           |              |                                                  | 3.0         | 3.0                             |               | 3.0               | 3.0         |               |                            |                                                  | 3.0                                                                                                                                                                  | 3.0         |  |  |
| Ext. eff. gre                                        | en            |                          |                                                                                                                                                                                           |              | <u> </u>                                         | 2.0         | 2.0                             | ) .           | 2.0               | 2.0         | 2.0           |                            |                                                  |                                                                                                                                                                      | 2.0         |  |  |
| Arrival type                                         | ·             |                          |                                                                                                                                                                                           | <b> </b>     | ├─                                               | 3           | 3                               | +             | 3                 | 5           | 5             |                            | <u> </u>                                         |                                                                                                                                                                      | 5           |  |  |
| Unit Extensi                                         |               |                          | 10     10     10     75     10     10     5     250       N     N     N     N     N     N     N     N     N     N     N     N     N     0     N     N     N     0     N     N     0     N |              |                                                  |             |                                 |               |                   |             |               | 3.0                        |                                                  |                                                                                                                                                                      |             |  |  |
| Lane Width                                           | FOR Volume    |                          | 70                                                                                                                                                                                        | <u> </u>     | ╁                                                |             | 12                              | -             |                   | 12 (        | 120           |                            | 10                                               |                                                                                                                                                                      | +           |  |  |
| Parking/Gra                                          | de/Parking    |                          | N                                                                                                                                                                                         | <u> </u>     | N                                                |             | -                               | -             |                   | _           |               | N                          | N                                                |                                                                                                                                                                      | <u> </u>    |  |  |
| Parking/hr                                           | don anang     |                          | <del>                                     </del>                                                                                                                                          |              | <del>                                     </del> | + ``        | Ť                               | _             |                   |             |               |                            |                                                  |                                                                                                                                                                      |             |  |  |
| Bus stops/h                                          | r             |                          | <del>                                     </del>                                                                                                                                          | 0            | 10                                               |             | 0                               | 0             | 0                 |             |               | 0                          | 0                                                |                                                                                                                                                                      |             |  |  |
| Unit Extens                                          | s/hr 0 0      |                          |                                                                                                                                                                                           |              |                                                  |             | 7                               | 3.0           | 3.0               | 3.0         |               | 1                          | 3.0                                              | 3.0                                                                                                                                                                  |             |  |  |
| Phasing                                              | WB Only       | 0;                       | 2                                                                                                                                                                                         | 0:           | 3                                                | 04          |                                 |               | B Onl             | <u> </u>    | Thru & R      | rТ                         | 07                                               | 1                                                                                                                                                                    | 08          |  |  |
|                                                      | G = 31.0      | G =                      |                                                                                                                                                                                           | G =          | -                                                | G =         |                                 |               | = 13.             | _           | 3 = 39.0      | G =                        |                                                  | G =                                                                                                                                                                  |             |  |  |
| Timing                                               | Y = 5.1       | Y =                      |                                                                                                                                                                                           | Υ=           |                                                  | Υ=          |                                 | Y =           | = 4.2             |             | Y = 7         | Y =                        |                                                  | Y =                                                                                                                                                                  |             |  |  |
|                                                      | Analysis (hrs |                          |                                                                                                                                                                                           |              |                                                  |             |                                 |               |                   |             | ycle Len      | gth C =                    | = 100                                            | 0.0                                                                                                                                                                  |             |  |  |
| Lane Gro                                             | up Capaci     | ity, Co                  |                                                                                                                                                                                           | l Dela       | ay, aı                                           |             |                                 | eter          | <u>rmin</u>       | <u>atio</u> |               |                            |                                                  |                                                                                                                                                                      |             |  |  |
|                                                      |               |                          | EB                                                                                                                                                                                        |              |                                                  | WE          | 3                               |               |                   |             | NB            |                            |                                                  | SB                                                                                                                                                                   |             |  |  |
| Adj. flow rat                                        | е             |                          |                                                                                                                                                                                           |              | 482                                              | 465         | 3                               | 384           | 15                | 52          | 1060          |                            |                                                  | 1946                                                                                                                                                                 | 217         |  |  |
| Lane group                                           | cap.          |                          |                                                                                                                                                                                           |              | 531                                              | 513         | 4                               | <i>475</i>    | 43                | 36          | 2836          |                            |                                                  | 1928                                                                                                                                                                 | 588         |  |  |
| v/c ratio                                            |               |                          |                                                                                                                                                                                           |              | 0.91                                             | 0.91        | C                               | .81           | 0.3               | 35          | 0.37          |                            |                                                  | 1.01                                                                                                                                                                 | 0.37        |  |  |
| Green ratio                                          |               |                          |                                                                                                                                                                                           |              | 0.30                                             | 0.30        | C                               | 30            | 0.1               | 13          | 0.56          |                            |                                                  | 0.38                                                                                                                                                                 | 0.38        |  |  |
| Unif. delay                                          | d1            |                          |                                                                                                                                                                                           |              | 33.7                                             | 33.7        | 3                               | 32.3          | 39                | .9          | 12.3          |                            |                                                  | 31.0                                                                                                                                                                 | 22.4        |  |  |
| Delay factor                                         | ·k            |                          |                                                                                                                                                                                           |              | 0.43                                             | 0.43        | C                               | ).35          | 0.1               | 11          | 0.11          |                            |                                                  | 0.50                                                                                                                                                                 | 0.11        |  |  |
| Increm. dela                                         | ay d2         |                          |                                                                                                                                                                                           |              | 19.4                                             | 19.8        | 1                               | 0.0           | 0.                | 5           | 0.1           |                            |                                                  | 22.8                                                                                                                                                                 | 0.4         |  |  |
| PF factor                                            |               |                          |                                                                                                                                                                                           |              | 1.000                                            | 1.00        | 0 1                             | .000          | 0.9               | 03          | 0.155         |                            |                                                  | 0.591                                                                                                                                                                | 0.591       |  |  |
| Control dela                                         | ay            |                          |                                                                                                                                                                                           |              | 53.1                                             | 53.4        | 4                               | 2.4           | 36                | .5          | 2.0           |                            |                                                  | 41.1                                                                                                                                                                 | 13.6        |  |  |
| Lane group                                           | LOS           |                          |                                                                                                                                                                                           |              | D                                                | D           |                                 | D             | L                 | )           | Α             |                            |                                                  | 5 3.0 10 5 12.0 7 0 3.0 7 0 3.0 7 0 6 7 1928 5 100.0 100 0.38 0 31.0 2 0.50 0 22.8 0.591 0 41.1 1 D 38.4 D C                                                         |             |  |  |
| Apprch. dela                                         | ay            |                          |                                                                                                                                                                                           |              |                                                  | 50.1        |                                 |               |                   | (           | 5.3           |                            |                                                  | 38.4                                                                                                                                                                 |             |  |  |
| Approach L                                           | os            |                          |                                                                                                                                                                                           |              |                                                  | D           |                                 |               |                   |             | Α             |                            |                                                  | SB T TH D 3 T 1790 4 2 0.92 0 A 3.0 3 2.0 2 5 3.0 0 0 5 2 12.0 1 V 0 0 0 3.0 6 0 G = Y = 100.0  SB 1946 2 1928 5 1.01 0. 0.38 0. 31.0 22 0.591 0. 41.1 13 D 38.4 D C |             |  |  |
| Intersec. de                                         | lay           | 3                        | 33.4                                                                                                                                                                                      |              |                                                  |             | Int                             | erse          | ction             | LOS         |               |                            |                                                  | С                                                                                                                                                                    |             |  |  |
| HCS2000TM                                            |               | •                        | C                                                                                                                                                                                         | sprenia br   | ₹ 2000 TI                                        | niversity o | f Eloric                        | io A11        | Rightel           | Decem       | ad a          |                            |                                                  |                                                                                                                                                                      | Version 4.1 |  |  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                                   |               |          |              |                                                  | SHO          | ORT F       | REP                                                        | OR'        | T                |          |                                                                                                  |               |        |       |           |             |  |
|-------------------------------------------------------------------|---------------|----------|--------------|--------------------------------------------------|--------------|-------------|------------------------------------------------------------|------------|------------------|----------|--------------------------------------------------------------------------------------------------|---------------|--------|-------|-----------|-------------|--|
| General Inf                                                       | ormation      |          |              |                                                  | ·            | S           | ite lı                                                     | nfor       | matic            | n        |                                                                                                  |               |        |       |           |             |  |
| Analyst US Agency or Co. US Date Performed 08/13 Time Period AM P |               |          |              |                                                  |              | J           | Intersection<br>Area Type<br>Jurisdiction<br>Analysis Year |            |                  |          | EL CAMINO REAL@ SR-<br>78WB RAMPS<br>All other areas<br>OCEANSIDE-INT.#2<br>BO.ALT2/WITH PROJECT |               |        |       |           |             |  |
| Volume an                                                         | d Timing In   | out      |              |                                                  |              |             |                                                            |            |                  |          |                                                                                                  |               |        |       |           |             |  |
|                                                                   |               |          |              |                                                  | EB           |             |                                                            | В          |                  |          |                                                                                                  | NB            |        |       | SB        |             |  |
|                                                                   |               |          | LT           | TH                                               | RT           |             |                                                            | TH R1      |                  | L1       |                                                                                                  | $\rightarrow$ | RT     | LT    | TH        | RT          |  |
| Num. of Lar                                                       | nes           |          | 0            | 0                                                | 0            | 1           | 1                                                          | _          | 1                | 2        | 3                                                                                                |               | 0      | 0     | 3         | 1           |  |
| Lane group                                                        |               |          |              |                                                  |              | L           | LTF                                                        |            | R                | L        | 7                                                                                                |               |        |       | T         | R           |  |
| Volume (vpl                                                       |               |          |              |                                                  |              | 718         | 5                                                          | _          | 584              | 140      |                                                                                                  | _             |        |       | 1795      | 450         |  |
| % Heavy v                                                         | eh            |          |              |                                                  |              | 2           | 2                                                          |            | <u>2</u><br>0.92 | 2        | 2                                                                                                | _             |        |       | 2         | 2<br>0.92   |  |
| PHF                                                               | //\           |          | -            | <u> </u>                                         |              | 0.92<br>A   | -                                                          |            |                  | 0.9<br>A | 2 0.9<br>A                                                                                       |               |        |       | 0.92<br>A | 0.92<br>A   |  |
| Actuated (P<br>Startup lost                                       |               |          | <del> </del> | <del>                                     </del> | 1            | 3.0         |                                                            | A 3.0 3    |                  | 3.0      |                                                                                                  |               |        | 1     | 3.0       | 3.0         |  |
| Ext. eff. gre                                                     |               |          | <u> </u>     | †                                                | <del> </del> | 2.0         |                                                            | 2.0 2      |                  | 2.0      |                                                                                                  |               |        | 1     | 2.0       | 2.0         |  |
| Arrival type                                                      |               |          |              |                                                  |              | 3           | 3                                                          | 士          | 3                | 5        | 5                                                                                                |               |        |       | 5         | 5           |  |
| Unit Extens                                                       | ion           |          |              |                                                  |              | 3.0         | 3.0                                                        | <u>Σ</u> Τ | 3.0              | 3.0      | 3.                                                                                               | 0             |        |       | 3.0       | 3.0         |  |
| Ped/Bike/R                                                        | TOR Volume    |          | 10           |                                                  |              | 10          |                                                            |            | 75               |          |                                                                                                  |               |        | 10    | 5         | 250         |  |
| Lane Width                                                        |               |          |              |                                                  |              | 12.0        | 12.                                                        | 0          | 12.0             | 12,      | ) 12                                                                                             | .0            |        |       | 12.0      | 12.0        |  |
| Parking/Gra                                                       | de/Parking    | 100      | N            |                                                  | N            | N           | 0                                                          |            | Ν                | Ν        | 0                                                                                                |               | Ν      | Ν     | 0         | Ν           |  |
| Parking/hr                                                        |               |          |              |                                                  |              |             |                                                            |            |                  |          |                                                                                                  |               |        |       |           |             |  |
| Bus stops/hr                                                      |               |          |              |                                                  |              | 0           | 0                                                          |            | 0                | 0        | (                                                                                                |               |        |       | 0         | 0           |  |
| Unit Extension                                                    |               |          |              |                                                  |              | 3.0         | 3.0                                                        | 2          | 3.0              | 3,0      | 3.                                                                                               | 0             |        |       | 3.0       | 3.0         |  |
| Phasing                                                           | WB Only       | 02       | 2            | 0.                                               | 3            | 04          |                                                            | N          | NB Onl           |          |                                                                                                  |               |        | 07    |           | 80          |  |
| Timing                                                            | G = 31.0 G    |          |              | G =                                              |              | G =         |                                                            | G = 13.    |                  |          |                                                                                                  | 9.0           | G =    |       | G =       |             |  |
|                                                                   | Y = 5.1       | Y =      |              | Y =                                              |              | Υ =         |                                                            | <u> </u>   | = 4.2            |          | Y = 7                                                                                            |               | Y =    |       | Y =       |             |  |
|                                                                   | Analysis (hrs |          |              | <u> </u>                                         |              | - 4 1 0     | <u> </u>                                                   | -4-        |                  |          | Cycle I                                                                                          | .eng          | ın C - | - 100 | 7.0       |             |  |
| Lane Gro                                                          | up Capaci     | ty, Co   |              | of Dela                                          | ay, aı       |             |                                                            | ete        | rmın             | atic     | n<br>NB                                                                                          |               |        |       |           |             |  |
|                                                                   |               | ļ        | EB           |                                                  | V            |             |                                                            | ····· L    |                  |          |                                                                                                  |               |        | SB    |           | T           |  |
| Adj. flow rat                                                     | e             | <u> </u> |              |                                                  | 484          | 467         |                                                            | 387        |                  | 52       | 1062                                                                                             | -             |        |       | 1951      | 217         |  |
| Lane group                                                        | сар.          |          |              |                                                  | 531          | 513         |                                                            | 475        |                  | 36       | 2836                                                                                             |               |        |       | 1928      | 588         |  |
| v/c ratio                                                         |               |          |              |                                                  | 0.91         | 0.91        | 0.81                                                       |            | 0.               | 0.35     |                                                                                                  | - 1           |        |       | 1.01      | 0.37        |  |
| Green ratio                                                       |               |          |              |                                                  | 0.30         | 0.30        | (                                                          | 0.30       | 0.13             |          | 0.56                                                                                             | 丁             |        |       | 0.38      | 0.38        |  |
| Unif. delay                                                       | d1            |          |              | <b> </b>                                         | 33.7         | 33.7        | . 3                                                        | 32.4       | 39               | 39.9     |                                                                                                  | 一             |        |       | 31.0      | 22.4        |  |
| Delay factor                                                      | r k           |          |              |                                                  | 0.43         | 0.43        | 7                                                          | 0.36       | 0.               | 11       | 0.11                                                                                             | 寸             |        |       | 0.50      | 0.11        |  |
| Increm. delay d2                                                  |               |          |              |                                                  | 20.0         | 20.4        | 1                                                          | 10.5       |                  | .5       | 0.1                                                                                              | 十             | ,      |       | 23.5      | 0.4         |  |
| PF factor                                                         |               |          |              |                                                  | 1.000        |             | -                                                          | .000       |                  | 903      | 0.15                                                                                             | 5             |        |       | 0.591     | 0.591       |  |
| Control delay                                                     |               |          |              |                                                  | 53.7         | 54.1        | 4                                                          | 42.9       |                  | 5.5      | 2.0                                                                                              |               |        |       | 41.8      | 13.6        |  |
| Lane group LOS                                                    |               |          |              | D                                                | D            | _           | D                                                          |            | )                | A        |                                                                                                  |               |        | D     | В         |             |  |
| Apprch. delay                                                     |               |          | <b>1</b>     |                                                  | 50.7         |             |                                                            |            |                  | 6.3      |                                                                                                  |               |        | 39.0  |           |             |  |
| Approach LOS                                                      |               |          |              |                                                  |              | D           | Α                                                          |            |                  |          |                                                                                                  |               | D      |       |           |             |  |
| Intersec. de                                                      | lay           | 3        | 33.9         |                                                  |              |             | Int                                                        | terse      | ection           | LOS      | )                                                                                                |               |        |       | С         |             |  |
| HCS2000 <sup>TM</sup>                                             |               |          | C            | opyright @                                       | © 2000 U     | niversity o | f Flori                                                    | da, Al     | l Rights         | Reserv   | red                                                                                              |               |        |       |           | Version 4.1 |  |

Page 1 of 1

|                                                                             |                                 |         |          |                                                            | SHO                                                        | ORT R       | EPO       | OR'        | T         |             |                                                                                                  |           |            |          |            |             |  |
|-----------------------------------------------------------------------------|---------------------------------|---------|----------|------------------------------------------------------------|------------------------------------------------------------|-------------|-----------|------------|-----------|-------------|--------------------------------------------------------------------------------------------------|-----------|------------|----------|------------|-------------|--|
| General Inf                                                                 | ormation                        | ·       |          |                                                            |                                                            |             |           |            | matio     | n           |                                                                                                  |           |            |          |            |             |  |
| Analyst USAI Agency or Co. USAI Date Performed 08/15/12 Time Period PM PEAK |                                 |         |          |                                                            | Intersection<br>Area Type<br>Jurisdiction<br>Analysis Year |             |           |            |           |             | EL CAMINO REAL@ SR-<br>78WB RAMPS<br>All other areas<br>OCEANSIDE-INT.#2<br>r BO.ALT2/NO PROJECT |           |            |          |            |             |  |
| Volume an                                                                   | d Timing Inp                    | out     |          |                                                            |                                                            |             |           |            |           |             |                                                                                                  |           |            |          |            |             |  |
|                                                                             |                                 |         |          | EB                                                         |                                                            |             | W         |            |           | <del></del> |                                                                                                  | NB        |            | L        | SB         |             |  |
|                                                                             |                                 |         | LT       | TH                                                         | RT                                                         |             |           | TH R       |           | LT          |                                                                                                  | TH        | RT         | LT       | TH         | RT          |  |
| Num. of Lanes                                                               |                                 |         | 0        | 0                                                          | 0                                                          | 1           | 1         | _          | 1         | 2           |                                                                                                  | 3         | 0          | 0        | 3          | 1           |  |
| Lane group                                                                  |                                 |         |          | <u> </u>                                                   |                                                            | L           | LTF       |            |           |             |                                                                                                  | T         |            | <u> </u> | T          | R           |  |
| Volume (vpl                                                                 |                                 |         | <u> </u> |                                                            |                                                            | 800         | 10        |            | 770       | 335         | 5                                                                                                | 2025      |            | <u> </u> | 1675       | 560         |  |
| % Heavy ve                                                                  | en <u> </u>                     |         |          | -                                                          | <del>                                     </del>           | 2<br>0.92   | 2         |            | 2<br>0.92 |             |                                                                                                  | 2<br>0.92 |            | <u> </u> | 2<br>0.92  | 0.92        |  |
| Actuated (P.                                                                | /Δ)                             |         |          | <del> </del>                                               | <del> </del>                                               | 0.92<br>A   | 0.92<br>A |            |           |             |                                                                                                  | 0.92<br>A |            | ┢        | 0.92<br>A  | A A         |  |
| Startup lost                                                                |                                 |         |          | 1                                                          | <del>                                     </del>           | 3.0         |           | A A 3.0 3. |           | 3.0         |                                                                                                  | 3.0       |            |          | 3.0        | 3.0         |  |
| Ext. eff. gree                                                              |                                 |         |          |                                                            |                                                            | 2.0         | _         | 2.0 2.0    |           | 2.0         |                                                                                                  | 2.0       |            |          | 2.0        | 2.0         |  |
| Arrival type                                                                |                                 |         |          |                                                            |                                                            | 3           | 3         | 3 3        |           | 5           |                                                                                                  | 5         |            |          | 5          | 5           |  |
| Unit Extension                                                              |                                 |         |          |                                                            |                                                            | 3.0         | 3.0       | 3.0 3      |           | .0 3.0      |                                                                                                  | 3.0       |            |          | 3.0        | 3.0         |  |
|                                                                             | FOR Volume                      |         | 10       | <u> </u>                                                   |                                                            | 10          | <u> </u>  |            | 0         |             | _                                                                                                |           |            | 10       | 5          | 0           |  |
| Lane Width                                                                  |                                 |         |          |                                                            |                                                            | 12.0        | 12.0      | ) (        | 12.0      |             |                                                                                                  | 12.0      |            | <u> </u> | 12.0       | 12.0        |  |
| Parking/Grade/Parking                                                       |                                 |         | N        |                                                            | N                                                          | N           | 0         |            | N         | Ν           |                                                                                                  | 0         | N          | N        | 0          | N           |  |
| Parking/hr                                                                  |                                 |         |          |                                                            |                                                            |             |           | _          |           |             | _                                                                                                |           |            |          | <u> </u>   | <u> </u>    |  |
| Bus stops/hr                                                                |                                 |         |          | <u> </u>                                                   |                                                            | 0           | 0         |            | 0         | 0           |                                                                                                  | 0         |            |          | 0          | 0           |  |
| Unit Extensi                                                                | ion                             |         |          |                                                            | <u> </u>                                                   | 3.0         | 3.0       | )          | 3.0       | 3.0         |                                                                                                  | 3.0       |            |          | 3.0        | 3.0         |  |
| Phasing                                                                     |                                 |         | 2        | 0                                                          | 3                                                          | 04          |           | NB Or      |           |             |                                                                                                  |           | 07 08      |          |            |             |  |
| Timing                                                                      | G = 31.0 G =                    |         | ·        | G =<br>Y =                                                 |                                                            | G =<br>Y =  |           |            | = 13.     |             |                                                                                                  | 39.0      | G =<br>Y = |          | G =<br>Y = |             |  |
| Duration of                                                                 | Y = <i>5.1</i><br>Analysis (hrs | Y = 0.2 | 5        | Y = Y = Y = 4.2 $Y = 7$ $Y = Y =$ Cycle Length $C = 100.0$ |                                                            |             |           |            |           |             |                                                                                                  |           |            |          |            |             |  |
|                                                                             | up Capaci                       |         |          | l Dal                                                      | 21/ 21                                                     | 24 I O      | S D       | ata        | rmin      |             | <u> </u>                                                                                         | io Eoile  | j.11 O     | ,,,,     |            | <del></del> |  |
| Laile Gio                                                                   | up Capaci                       | ty, Ct  | EB       | n Der                                                      | ay, aı<br>İ                                                | WE          |           | -10        | <u> </u>  | auc         |                                                                                                  | NB        |            |          | SB         |             |  |
| Adi flavorat                                                                |                                 |         | LD       | T                                                          | 609                                                        | -           |           | 536        |           | 364 2       |                                                                                                  | 2201      |            | 1821     |            | 609         |  |
| Adj. flow rat                                                               |                                 |         |          |                                                            | <del> </del>                                               | 573         | -+        | +          |           |             |                                                                                                  |           |            |          |            |             |  |
| Lane group                                                                  | cap.                            |         |          |                                                            | 531                                                        | 503         |           | 475        |           | 436         |                                                                                                  | 336       |            |          | 1928       | 588         |  |
| v/c ratio                                                                   |                                 |         |          |                                                            | 1.15                                                       | 1.14        | 1         | .13        | 0.83      |             | 0.                                                                                               | .78       |            |          | 0.94       | 1.04        |  |
| Green ratio                                                                 |                                 |         |          |                                                            | 0.30                                                       | 0.30        | 0         | .30        | 0.        | 13 (        |                                                                                                  | .56       |            |          | 0.38       | 0.38        |  |
| Unif. delay o                                                               | <del>1</del> 1                  |         |          |                                                            | 35.0                                                       | 35.0        | 3         | 5.0        | 42        | 2.6 1       |                                                                                                  | 7.2       |            |          | 30.0       | 31.0        |  |
| Delay factor k                                                              |                                 |         |          |                                                            | 0.50                                                       | 0.50        | 0.5       |            | 0.37      |             | 0.                                                                                               | .33       | ·          |          | 0.46       | 0.50        |  |
| Increm. delay d2                                                            |                                 |         |          |                                                            | 86.4                                                       | 84.4        | 8         | 1.4        | _         |             | 1                                                                                                | .4        |            |          | 10.3       | 46.7        |  |
| PF factor                                                                   |                                 |         |          |                                                            | 1.000                                                      | 1.000       |           |            |           |             | 0.                                                                                               | 155       |            |          | 0.591      | 0.591       |  |
| Control delay                                                               |                                 |         |          |                                                            | 121.4                                                      |             | _         |            | 4 51.7    |             | 4                                                                                                | 1.1       |            |          | 28.0       | 65.0        |  |
| Lane group LOS                                                              |                                 |         | <b> </b> | F                                                          | F                                                          | 十           | F         |            | D .       |             | Α                                                                                                |           |            | С        | Ε          |             |  |
| Apprch. delay                                                               |                                 |         | 119.2    |                                                            |                                                            | -           |           | $\top$     | 10.8      |             |                                                                                                  |           | 37.3       |          |            |             |  |
| Approach LOS                                                                |                                 |         |          |                                                            |                                                            | F           | В         |            |           |             |                                                                                                  |           | D          |          |            |             |  |
| Intersec. delay                                                             |                                 |         | 18.1     |                                                            |                                                            |             | Int       | erse       | ection    | LOS         | ;                                                                                                |           |            |          | D          |             |  |
| HCS2000 <sup>TM</sup>                                                       |                                 | 1       | C        | opyright (                                                 | •<br>2000 U                                                | niversity o | f Florid  | la, All    | l Rights  | Reserv      | ed                                                                                               |           |            |          |            | Version 4.1 |  |

 $HCS2000^{\mathrm{TM}}$ 

|                                                      |               |                                                  |          |                                                  | SH                                               | ORT R           | EP       | OR      | Τ                                                                                               |              |                            |          |                                                  |            |                                       |
|------------------------------------------------------|---------------|--------------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|-----------------|----------|---------|-------------------------------------------------------------------------------------------------|--------------|----------------------------|----------|--------------------------------------------------|------------|---------------------------------------|
| General Inf                                          |               |                                                  |          | matio                                            | n                                                |                 |          |         |                                                                                                 |              |                            |          |                                                  |            |                                       |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med           | SAI<br>SAI<br>5/12<br>PEAK                       | ·        |                                                  | ntersection<br>Area Type<br>Jurisdiction         |                 |          |         | EL CAMINO REAL@ SR-<br>78WB RAMPS<br>All other areas<br>OCEANSIDE-INT.#2<br>O.ALT2/WITH PROJECT |              |                            |          |                                                  |            |                                       |
| Volume an                                            | d Timing In   | out                                              | 1 "      |                                                  |                                                  |                 |          |         |                                                                                                 |              |                            |          |                                                  |            |                                       |
|                                                      |               |                                                  | 17       | EB                                               | Гот                                              | H <sub>LT</sub> | W        |         | DT                                                                                              | LT           | NB<br>TH                   | RT       | SB<br>LT TH                                      |            | RT                                    |
| Num. of Lanes                                        |               | LT<br>0                                          | TH<br>0  | RT<br>0                                          | 1                                                |                 | 1        | RT<br>1 | 2                                                                                               | 3            | 0                          | 0        | 3                                                | 1          |                                       |
| Lane group                                           |               |                                                  |          |                                                  |                                                  |                 | LTF      | ₹       | R                                                                                               | L            | T                          |          |                                                  | Т          | R                                     |
| Volume (vpl                                          | າ)            |                                                  |          | <u> </u>                                         | <del>                                     </del> | 802             |          | 10 77   |                                                                                                 | 335          |                            |          | <del>                                     </del> | 1682       | 560                                   |
| % Heavy ve                                           |               |                                                  |          |                                                  |                                                  | 2               | 2        |         |                                                                                                 | 2            | 2                          |          |                                                  | 2          | 2                                     |
| PHF                                                  |               |                                                  |          |                                                  |                                                  | 0.92            | 0.92     |         |                                                                                                 | 0.92         |                            |          |                                                  | 0.92       | 0.92                                  |
| Actuated (P                                          |               |                                                  |          |                                                  |                                                  | Α               | Α        |         |                                                                                                 | Α            | Α                          |          | <u> </u>                                         | Α          | A                                     |
| Startup lost                                         |               |                                                  |          | <del>                                     </del> | ļ                                                | 3.0             | 3.0      |         |                                                                                                 | 3.0          |                            |          | <u> </u>                                         | 3.0        | 3.0                                   |
| Ext. eff. gree<br>Arrival type                       | en            |                                                  |          |                                                  |                                                  | 2.0<br>3        | 2.0<br>3 |         |                                                                                                 | 2.0<br>5     | 2.0<br>5                   |          | <u> </u>                                         | 2.0<br>5   | 2.0<br>5                              |
| Unit Extensi                                         | ion           |                                                  |          | <del> </del>                                     | <del>                                     </del> | 3.0             | 3.0      | , +     | 3.0                                                                                             | 3.0          |                            |          |                                                  | 3.0        | 3.0                                   |
| Ped/Bike/RTOR Volume                                 |               |                                                  | 10       | <del> </del>                                     | <del>                                     </del> | 10              | 0.0      | +       | 0                                                                                               | 0.0          | - <del>0</del> .0          |          | 10                                               | 5          | 0.0                                   |
| Lane Width                                           | TOTE VOIGINO  |                                                  | 1,0      |                                                  |                                                  | 12.0            | 12.0     | ) 1     | 12.0                                                                                            | 12.0         | 12.0                       |          |                                                  | 12.0       | 12.0                                  |
| Parking/Gra                                          | de/Parking    |                                                  | N        |                                                  | N                                                | N               | 0        | -       | N                                                                                               | N            | 0                          | N        | N                                                | 0          | N                                     |
| Parking/hr                                           |               |                                                  |          |                                                  |                                                  |                 |          |         |                                                                                                 |              |                            |          |                                                  |            |                                       |
| Bus stops/h                                          | Bus stops/hr  |                                                  |          |                                                  |                                                  | 0               | 0        |         | 0                                                                                               | 0            | 0                          |          |                                                  | 0          | 0                                     |
| Unit Extensi                                         | ion           | ,                                                |          |                                                  |                                                  | 3.0             | 3.0      | )       | 3.0                                                                                             | 3.0          | 3.0                        |          |                                                  | 3.0        | 3.0                                   |
| Phasing                                              | WB Only       | 02                                               | 2        | 0:                                               | 3                                                | 04              |          |         | B Onl                                                                                           | <del>-</del> | Thru & R                   |          | 07                                               |            | 08                                    |
| Timing                                               | G = 31.0      | G =                                              |          | G =                                              |                                                  | G =             |          | G = 13  |                                                                                                 |              |                            | G =      |                                                  | G =<br>Y = |                                       |
|                                                      | Y = 5.1       | Y =                                              |          | Y =                                              |                                                  | Y =             |          | Υ =     | 4.2                                                                                             |              | <u>Y = 7</u><br>Cycle Leng | Y =      |                                                  |            | · · · · · · · · · · · · · · · · · · · |
|                                                      | Analysis (hrs |                                                  |          | I Dal                                            |                                                  | ~ J I O         | e D      | -1      | una lua                                                                                         |              |                            | jiii C - | - 100                                            | .0         |                                       |
| Lane Gro                                             | up Capaci     | ity, Co                                          | EB       | i Deli                                           | ay, aı                                           | MB WB           |          | eter    | rmin                                                                                            | atio         | <u>n</u><br>NB             |          |                                                  | SB         |                                       |
| Adj. flow rat                                        | 0             |                                                  |          | <u> </u>                                         | 610                                              | 575             |          | 37      | 36                                                                                              | 34           | 2202                       |          | 1828                                             |            | 609                                   |
| Lane group                                           |               | <del>                                     </del> |          |                                                  | 531                                              | 503             |          | 175     | 43                                                                                              |              | 2836                       |          |                                                  | 1928       | 588                                   |
| v/c ratio                                            |               |                                                  |          |                                                  | 1.15                                             | 1.14            | 1.13     |         | 0.8                                                                                             |              | 0.78                       |          | $\vdash$                                         | 0.95       | 1.04                                  |
| Green ratio                                          |               |                                                  |          |                                                  | 0.30                                             | 0.30            | -        | .30     | 0.                                                                                              |              | 0.56                       |          | $\vdash$                                         | 0.38       | 0.38                                  |
| Unif. delay                                          | <u> </u>      | <u> </u>                                         |          |                                                  | 35.0                                             | 35.0            |          | 5.0     | 42                                                                                              |              | 17.2                       |          |                                                  | 30.0       | 31.0                                  |
| Delay factor                                         |               |                                                  |          |                                                  | 0.50                                             | 0.50            |          |         |                                                                                                 | 37           | 0.33                       |          |                                                  | 0.46       | 0.50                                  |
| Increm. delay d2                                     |               |                                                  |          | 87.1                                             | 85.9                                             | -+              | 82.2     |         | .2                                                                                              | 1.4          |                            |          | 10.7                                             | 46.7       |                                       |
| PF factor                                            |               |                                                  |          | 1.000                                            | 1.000                                            | 0 1             | .000     | 0.9     | 903                                                                                             | 0.155        |                            |          | 0.591                                            | 0.591      |                                       |
| Control delay                                        |               |                                                  | <u> </u> | 122.1                                            | 120.9                                            | 9 1             | 17.2     | 2 51    | .7                                                                                              | 4.1          |                            |          | 28.5                                             | 65.0       |                                       |
| Lane group LOS                                       |               |                                                  |          | F                                                | F                                                |                 | F        | L       | ) A                                                                                             |              |                            |          | С                                                | Е          |                                       |
| Apprch. delay                                        |               |                                                  |          |                                                  | 120.1                                            |                 |          |         | 1                                                                                               | 0.8          |                            | 37.6     |                                                  |            |                                       |
| Approach LOS                                         |               |                                                  |          |                                                  |                                                  | F               |          |         |                                                                                                 |              | В                          |          | D                                                |            |                                       |
| Intersec. de                                         | lay           | 4                                                | 18.5     |                                                  |                                                  |                 | Int      | erse    | ection                                                                                          | LOS          |                            |          |                                                  | D          |                                       |
| HCS2000 <sup>TM</sup>                                |               | •                                                | C        | nnvright (                                       | 2000 IJ                                          | niversity o     | f Florid | la. All | Rights                                                                                          | Reserv       | ed                         |          |                                                  |            | Version 4.1                           |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                       |                           |            |             | SH          | OR       | TRE               | ΕPC                   | )R          | T            |      |      |                      |                   |                       |        |       |              |
|------------------------------------------------------|---------------------------------------|---------------------------|------------|-------------|-------------|----------|-------------------|-----------------------|-------------|--------------|------|------|----------------------|-------------------|-----------------------|--------|-------|--------------|
| General Inf                                          | ormation                              |                           |            |             |             |          |                   |                       |             | matic        | on   |      |                      |                   |                       |        |       |              |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | Co.<br>med                            | US<br>US<br>08/2:<br>AM P | AI<br>2/12 |             |             |          | Int<br>Are<br>Jui | erse<br>ea T<br>risdi | ctic<br>ype | on<br>e<br>n |      | 0    | 78E<br>All o<br>CEAN | B F<br>the<br>ISI | RAM<br>er are<br>DE-= |        |       |              |
| Volume an                                            | d Timing Inp                          | out                       |            |             |             |          |                   |                       |             |              |      |      |                      |                   |                       |        |       |              |
|                                                      | <del></del>                           |                           |            | EB          |             |          |                   | W                     |             |              |      |      | NB                   |                   |                       |        | SB    |              |
|                                                      |                                       |                           | LT         | TH          | RT          | _        | LT                | Tŀ                    | 1           | RT           | L    | _T   | TH                   | ļ.,               | RT                    | LT     | TH    | RT           |
| Num. of Lar                                          | nes                                   |                           | 2          | 0           | 1           |          | 0                 | 0                     |             | 0            |      | 0    | 3                    | L                 | 1                     | 2      | 3     | 0            |
| Lane group                                           |                                       |                           | L          |             | R           |          |                   |                       |             |              |      |      | T                    |                   | R                     | L      | Т     |              |
| Volume (vpl                                          |                                       |                           | 340        |             | 170         |          |                   |                       |             |              |      |      | 775                  | 5                 | 50                    | 620    | 1885  |              |
| % Heavy v                                            | eh                                    |                           | 2          |             | 2           |          |                   |                       | 4           |              | ╀    |      | 2                    | Ļ                 | 2                     | 2      | 2     |              |
| PHF                                                  | /a >                                  |                           | 0.92       |             | 0.92        | 2        |                   |                       | _           |              | ╀    |      | 0.92                 |                   | .92                   | 0.92   | 0.92  |              |
| Actuated (P<br>Startup lost                          |                                       |                           | A<br>3.0   |             | 3.0         | +        |                   |                       | $\dashv$    |              | ╁    |      | A<br>3.0             | _                 | <u>A</u><br>3.0       | 3.0    | 3.0   | <del> </del> |
| Ext. eff. gree                                       |                                       | <u>.</u>                  | 2.0        | <u> </u>    | 2.0         | _        |                   |                       | ┪           |              | +    |      | 2.0                  |                   | 2.0                   | 2.0    | 2.0   |              |
| Arrival type                                         | <del>-</del> 1                        |                           | 3          |             | 3           | $\dashv$ |                   |                       | $\dashv$    |              | T    |      | 5                    | Ť                 | 5                     | 5      | 5     |              |
| Unit Extensi                                         | ion                                   |                           | 3.0        |             | 3.0         |          |                   |                       |             |              | T    |      | 3.0                  | 1                 | 3.0                   | 3.0    | 3.0   |              |
| Ped/Bike/R                                           | ΓOR Volume                            |                           | 5          |             | 0           |          | 5                 |                       |             |              | 1    | 5    | 10                   |                   | 0                     |        |       |              |
| Lane Width                                           |                                       |                           | 12.0       |             | 12.0        | 7        |                   |                       |             | •            |      |      | 12.0                 | 1                 | 2.0                   | 12.0   | 12.0  |              |
| Parking/Gra                                          | de/Parking                            |                           | Ν          | 0           | Ν           |          | Ν                 |                       |             | Ν            | ,    | V    | 0                    | Τ                 | Ν                     | N      | 0     | N            |
| Parking/hr                                           |                                       |                           |            |             |             |          |                   |                       |             |              | Τ    |      |                      |                   |                       |        |       |              |
| Bus stops/h                                          | r                                     |                           | 0          |             | 0           |          |                   |                       | ٦           | •            |      |      | 0                    |                   | 0                     | 0      | 0     | :            |
| Unit Extens                                          | rking/hr                              |                           |            |             | 3.0         | T        |                   |                       |             |              |      |      | 3.0                  | T,                | 3.0                   | 3.0    | 3.0   |              |
| Phasing                                              | EB Only                               | 02                        | 2          | 03          |             |          | 04                |                       | S           | B On         | ly   | Th   | ru & F               | ₹T                | Π                     | 07     | 0     | 8            |
| Timing                                               | G = 20.0                              | G =                       |            | G =         |             | G:       |                   |                       |             | = 38.        |      |      | = 50.2               | 2                 | G =                   |        | G =   |              |
|                                                      | Y = 5.1                               | Y =                       |            | Y =         |             | Υ =      | <u>.</u>          |                       | Y =         | = 4.7        |      | _    | = 7                  |                   | Υ=                    |        | Y =   |              |
|                                                      | Analysis (hrs                         |                           |            | <u> </u>    |             |          |                   |                       |             |              | d :  |      | cie Ler              | ngt               | n C :                 | = 125. | U     |              |
| Lane Gro                                             | up Capaci                             | ity, Co                   |            |             | <u>y, a</u> | na       |                   |                       | tei         | rmir         | ıat  |      |                      |                   |                       |        |       |              |
|                                                      |                                       |                           | EB         |             | 4           |          | WI                | 3                     |             |              |      |      | NB                   |                   |                       |        | SB    | 1            |
| Adj. flow rat                                        | e                                     | 370                       |            | 185         |             |          |                   |                       |             |              |      | 84   | 2 !                  | 598               | 3                     | 674    | 2049  |              |
| Lane group                                           | сар.                                  | 522                       |            | 241         |             |          |                   |                       |             |              |      | 199  | 7 6                  | 610               | )                     | 1017   | 3730  |              |
| v/c ratio                                            |                                       | 0.71                      |            | 0.77        |             |          |                   |                       |             |              |      | 0.4  | 2 (                  | 0.9               | 8                     | 0.66   | 0.55  |              |
| Green ratio                                          |                                       | 0.15                      |            | 0.15        |             |          |                   |                       |             |              |      | 0.3  | 9 (                  | 0.3               | 9                     | 0.30   | 0.74  |              |
| Unif. delay                                          | d1                                    | 50.4                      | 1          | 50.9        | 十           |          |                   |                       |             |              |      | 27.  | 6 3                  | 37.               | 4                     | 38.5   | 7.4   |              |
| Delay factor                                         | · k                                   | 0.27                      |            | 0.32        | 十           |          |                   |                       |             |              |      | 0.1  | 1 (                  | 0.4               | 8                     | 0.24   | 0.15  |              |
|                                                      | · · · · · · · · · · · · · · · · · · · | 4.4                       |            | 13.9        | $\top$      |          |                   |                       |             | 1            |      | 0.   | 1 3                  | 31.4              | 4                     | 1.6    | 0.2   |              |
| PF factor                                            |                                       |                           | ,          | 1.000       | 7           |          |                   |                       |             |              |      | 0.5  | 67 0                 | ).56              | 37                    | 0.720  | 0.189 |              |
| Control dela                                         | ontrol delay 54                       |                           | 1          | 64.8        | ╅           |          |                   |                       |             | T            |      | 15.  | 8 5                  | 52.               | 6                     | 29.4   | 1.6   |              |
|                                                      | ontrol delay 54<br>ine group LOS E    |                           | 1          | E           | $\neg$      |          | 1                 | $\top$                |             | 十            |      | В    |                      | D                 |                       | С      | Α     |              |
| Apprch. dela                                         |                                       | <b>†</b>                  | 58.1       |             | $\top$      |          | •                 |                       |             |              |      | 31.1 | 1                    |                   |                       |        | 8.4   |              |
| Approach L                                           | os                                    |                           | Е          |             | 十           |          |                   |                       |             | $\top$       |      | C    |                      |                   |                       |        | Α     |              |
| Intersec. de                                         |                                       | 1 :                       | 21.2       |             |             |          |                   | Ir                    | ter         | section      | on L | .os  |                      |                   |                       |        | С     | ••           |
| tracanoaTM                                           |                                       | •                         |            | nvright © ' | L           | T3       |                   | ال معالم              | . 4 11      | I D ! - 1    | Des  |      |                      |                   |                       | _      | 37    | ersion 4.1   |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                  | ·                           |            |             | SH        | OF    | RT RI       | EP(                           | OR'          | T      |         |                 |                      |                    |                       |             |             |             |
|------------------------------------------------------|------------------|-----------------------------|------------|-------------|-----------|-------|-------------|-------------------------------|--------------|--------|---------|-----------------|----------------------|--------------------|-----------------------|-------------|-------------|-------------|
| General Inf                                          | formation        |                             |            |             |           |       |             |                               |              | mat    | ion     |                 |                      |                    |                       |             |             |             |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med              | US,<br>US,<br>08/22<br>AM P | AI<br>2/12 |             |           |       | Ar<br>Ju    | erse<br>ea T<br>risdi<br>alys | ype<br>ictio | 9      | •       | 0               | 78E<br>All c<br>CEAN | B I<br>othe<br>VSI | RAM<br>er are<br>DE-= |             |             |             |
| Volume ar                                            | nd Timing In     | out                         |            | <b>E</b> 5  |           |       |             | 1.0                           | _            |        |         |                 | NID                  |                    |                       | <del></del> |             |             |
|                                                      |                  |                             | LT         | EB<br>TH    | R         | -     | LT          | W                             |              | RT     | +       | LT              | NB<br>TH             | _                  | RT                    |             | SB<br>TH    | RT          |
| Num. of Lar                                          | nes              |                             | 2          | 0           | 1         |       | 0           | 0                             | -            | 0      | +       | 0               | 3                    | $\dagger$          | 1                     | 2           | 3           | 0           |
| Lane group                                           |                  |                             | L          | †           | R         |       | <u>-</u>    |                               | 1            |        | +       |                 | T                    | t                  | R                     | † <u> </u>  | T           |             |
| Volume (vp                                           |                  |                             | 340        | -           | 170       | )     |             | $\vdash$                      | ᆉ            |        | +       |                 | 777                  |                    | 53                    | 622         | 1891        |             |
| % Heavy v                                            | <i>-</i>         |                             | 2          |             | 2         | _     |             |                               |              |        | +       |                 | 2                    | Ť                  | 2                     | 2           | 2           |             |
| PHF                                                  |                  |                             | 0.92       |             | 0.9       | 2     |             |                               | 寸            |        | _       |                 | 0.92                 | 0                  | .92                   | 0.92        | 0.92        |             |
| Actuated (P                                          | <sup>2</sup> /A) |                             | Α          |             | Α         |       |             |                               |              |        |         |                 | Α                    |                    | Α                     | Α           | Α           |             |
| Startup lost                                         |                  |                             | 3.0        |             | 3.0       |       |             |                               |              |        |         |                 | 3.0                  |                    | 3.0                   | 3.0         | 3.0         |             |
| Ext. eff. gre                                        | en               |                             | 2.0        | ļ           | 2.0       |       |             |                               |              |        | $\perp$ |                 | 2.0                  | 1                  | 2.0                   | 2.0         | 2.0         | <u> </u>    |
| Arrival type                                         |                  |                             | 3          |             | 3         |       |             |                               |              |        | +       |                 | 5                    | -                  | 5                     | 5           | 5           |             |
| Unit Extens                                          |                  |                             | 3.0        |             | 3.0       |       |             |                               | _            |        | 4       |                 | 3.0                  | 4                  | 3.0                   | 3.0         | 3.0         |             |
|                                                      | TOR Volume       |                             | 5          |             | 0         | -     | 5           |                               | -            |        | +       | 5               | 10                   | +                  | 0                     | 40.0        | 40.0        |             |
| Lane Width<br>Parking/Gra                            |                  |                             | 12.0<br>N  | 0           | 12.0<br>N | -     | N           |                               | +            | N      | +       | N               | 12.0<br>0            | _                  | 2.0<br>N              | 12.0<br>N   | 12.0<br>0   | N           |
| Parking/Gra                                          | ade/Parking      |                             | 74         | + -         | 7.V       |       | 70          |                               | _            | 7.4    | +       | ) V             | -0                   | ╁                  | / 1                   | /V          | U           | 14          |
| Bus stops/h                                          | \r               |                             | 0          |             | 0         |       | ·· •• ··· · |                               | -            |        | +       |                 | 0                    | +                  | 0                     | 0           | 0           | <b></b>     |
| Unit Extens                                          |                  |                             | 3.0        | +           | 3.0       |       |             |                               | $\dashv$     |        | +       |                 | 3.0                  | +                  | 3.0                   | 3.0         | 3.0         | <del></del> |
| Phasing                                              | EB Only          | 02                          |            | 03          | 3.0       | Н     | 04          | <u> </u>                      |              | ВО     | nlv     | Ιτ <sub>h</sub> | ıru & F              |                    | 3.0<br>T              | 07          | <del></del> | l<br>18     |
| , i                                                  | G = 20.0         | G =                         |            | G =         |           | G     |             |                               |              | = 3    |         |                 | = 50.                |                    | G =                   |             | G =         | <del></del> |
| Timing                                               | Y = 5.1          | Y =                         |            | <u> </u>    |           | Ϋ́    |             |                               |              | = 4.   |         |                 | = 7                  |                    | <u>Y</u> =            |             | Y =         |             |
| Duration of                                          | Analysis (hrs    | ) = 0.25                    |            |             |           |       |             |                               |              |        |         | Су              | de Lei               | ngt                | h C :                 | = 125.      | 0           |             |
| Lane Gro                                             | up Capaci        | ty, Co                      | ntro       | l Dela      | y, a      | nd    | LOS         | De                            | eter         | rmi    | nat     | ion             |                      |                    |                       |             |             |             |
|                                                      |                  |                             | EB         | }           |           |       | WE          | 3                             |              |        |         |                 | NB                   |                    |                       |             | SB          |             |
| Adj. flow rat                                        | te               | 370                         |            | 185         |           |       |             |                               |              |        |         | 84              | 5                    | 601                | 1                     | 676         | 2055        |             |
| Lane group                                           | сар.             | 522                         |            | 241         |           |       |             |                               |              |        |         | 199             | 7                    | 610                | )                     | 1017        | 3730        |             |
| v/c ratio                                            |                  | 0.71                        |            | 0.77        |           |       |             |                               |              | $\top$ |         | 0.4             | 2 (                  | 0.9                | 9                     | 0.66        | 0.55        |             |
| Green ratio                                          |                  | 0.15                        |            | 0.15        |           |       |             |                               |              |        |         | 0.3             | 9 (                  | 0.3                | 9                     | 0.30        | 0.74        |             |
| Unif. delay                                          | d1               | 50.4                        |            | 50.9        | Ì         |       |             |                               |              | $\top$ |         | 27.             | 6 3                  | 37.                | 5                     | 38.6        | 7.4         |             |
| Delay factor                                         | r k              | 0.27                        |            | 0.32        |           |       |             |                               |              | $\top$ |         | 0.1             | 1 (                  | 0.4                | 9                     | 0.24        | 0.15        |             |
| Increm. dela                                         | ay d2            | 4.4                         |            | 13.9        |           |       |             |                               |              |        |         | 0.              | 1 :                  | 32.                | 6                     | 1.7         | 0.2         |             |
| PF factor                                            |                  | 1.000                       |            | 1.000       | ,         |       |             |                               |              |        |         | 0.5             | 67 C                 | ).56               | 37                    | 0.720       | 0.189       | -           |
| Control dela                                         |                  |                             |            | 64.8        |           |       |             |                               |              | 十      |         | 15.             | 8 8                  | 53.                | 9                     | 29.4        | 1.6         |             |
| Lane group                                           | ane group LOS D  |                             |            | E           | 十         |       |             | 十                             |              | 十      |         | В               | $\neg$               | D                  |                       | С           | Α           |             |
| Apprch. dela                                         | ay               | 5                           | 8.1        |             |           |       |             |                               |              | T      |         | 31.6            | 3                    |                    |                       |             | 8.5         |             |
| Approach L                                           | os               |                             | Е          |             |           |       |             |                               |              | 十      |         | С               |                      | -                  |                       |             | Α           |             |
| Intersec. de                                         | lay              | 2                           | 1.4        |             | 十         |       |             | Ir                            | iters        | sect   | ion I   | _os             |                      |                    |                       |             | С           |             |
| HCS2000 <sup>TM</sup>                                | -                | •                           | Co         | pyright © 2 | 2000 U    | Jnive | ersity of F | lorid                         | a. All       | Righ   | ts Res  | erved           |                      |                    |                       | L           | Vı          | ersion 4.1  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                        |                          |            |             | SH     | OF             | RT R      | EPC                                          | )R          | T            |              |             |                      |                    |                       |                                                  | <del></del>   |                                                   |
|------------------------------------------------------|----------------------------------------|--------------------------|------------|-------------|--------|----------------|-----------|----------------------------------------------|-------------|--------------|--------------|-------------|----------------------|--------------------|-----------------------|--------------------------------------------------|---------------|---------------------------------------------------|
| General Inf                                          | formation                              |                          |            |             |        |                | Si        | te In                                        | for         | matic        | n            |             |                      |                    |                       |                                                  |               |                                                   |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                                    | US<br>US<br>08/1<br>PM P | AI<br>7/12 |             |        |                | Ar<br>Ju  | terse<br>ea T<br>risdi<br>nalys              | ype<br>ctio | <del>)</del> |              | c           | 78E<br>All c<br>CEAN | B F<br>othe<br>VSI | RAM<br>er are<br>DE-= |                                                  |               |                                                   |
| Volume an                                            | nd Timing In                           | put                      |            |             |        |                |           |                                              |             |              |              |             |                      |                    |                       |                                                  |               |                                                   |
|                                                      |                                        |                          | <u> </u>   | EB          |        | _              | 1 -       | W                                            |             | DT           | Ļ.           | <del></del> | NB                   | _                  | <del></del>           | <del>                                     </del> | SB            | T 5=                                              |
| Num. of Lar                                          | 200                                    | • •                      | LT<br>2    | TH<br>0     | R' 1   |                | LT<br>O   | TH<br>0                                      | +           | RT<br>0      | <del>-</del> | <u>.T</u>   | TH<br>3              | +                  | RT<br>1               | LT<br>2                                          | TH<br>3       | RT<br>0                                           |
| Lane group                                           |                                        |                          |            | +           | R      | ┪              |           | HŤ                                           | $\dashv$    |              | H            |             | $\frac{\sigma}{T}$   | ╁                  | R                     |                                                  | $\frac{0}{T}$ | <del>                                      </del> |
| Volume (vp                                           |                                        |                          | 650        |             | 210    | ,              |           |                                              | $\dashv$    |              | ├            |             | 1710                 |                    | 80                    | 665                                              | 1810          | ╄                                                 |
| % Heavy v                                            |                                        | *                        | 2          |             | 2      | <del>-  </del> |           |                                              | $\dashv$    |              | H            |             | 2                    | +                  | 2                     | 2                                                | 2             | ╁┈─                                               |
| PHF                                                  | <u> </u>                               |                          | 0.92       |             | 0.9    | 2              |           |                                              |             |              | _            |             | 0.92                 | 0                  | .92                   | 0.92                                             | 0.92          | <del>                                     </del>  |
| Actuated (P                                          | P/A)                                   |                          | Α          |             | Α      |                |           |                                              |             |              |              |             | Α                    | T                  | A                     | Α                                                | Α             |                                                   |
| Startup lost                                         |                                        |                          | 3.0        |             | 3.0    | _              |           |                                              |             |              |              |             | 3.0                  | _                  | 3.0                   | 3.0                                              | 3.0           |                                                   |
| Ext. eff. gre                                        | en                                     |                          | 2.0        |             | 2.0    | <u> </u>       |           |                                              |             |              |              |             | 2.0                  | 2                  | 2.0                   | 2.0                                              | 2.0           |                                                   |
| Arrival type                                         |                                        |                          | 3          |             | 3      |                |           |                                              | 4           |              | L            |             | 5                    | +                  | 5                     | 5                                                | 5             | —                                                 |
| Unit Extens                                          |                                        |                          | 3.0        |             | 3.0    |                |           | ļ                                            |             |              | L            |             | 3.0                  | _                  | 3.0                   | 3.0                                              | 3.0           | Ь—                                                |
|                                                      | TOR Volume                             |                          | 5          |             | 0      | $\dashv$       | 5         | ļ                                            | 4           |              | Ľ            | 5           | 10                   | _                  | 80                    | /2.2                                             | 10.0          | <b></b>                                           |
| Lane Width                                           | odo/Dorkina                            |                          | 12.0       | 0           | 12.    | 4              | N         |                                              | +           | N/           | Ļ            |             | 12.0                 | +                  | 2.0                   | 12.0                                             | 12.0          | <del> </del>                                      |
| Parking/Gra                                          | ide/Parking                            |                          | N          | + 0         | N      | $\dashv$       | - 14      | <del> </del>                                 | _           | N            |              | ٧           | 0                    | +-                 | N                     | N                                                | 0             | N .                                               |
|                                                      | r                                      |                          | 0          |             | 0      | $\dashv$       |           | ļ                                            | +           |              | -            |             | 0                    | ╁                  | 0                     | 0                                                | 0             | ┼──                                               |
|                                                      | rking/hr<br>s stops/hr<br>it Extension |                          |            | <u> </u>    | 3.0    | $\dashv$       |           |                                              | $\dashv$    |              | _            |             | 3.0                  | +                  | 3.0                   | 3.0                                              | 3.0           | <del> </del>                                      |
| Phasing                                              | EB Only                                | 02                       | 3.0        | 03          |        | $\vdash$       | 04        | <u>1                                    </u> | <u></u>     | B Onl        | \\           | Τти         | ru & F               |                    | J. U                  | 07                                               | <del></del>   | <u>I</u><br>)8                                    |
| *                                                    | G = 23.0                               | G =                      |            | G =         |        | G              |           | $\dashv$                                     |             | = 31.        | _            |             | = <i>54.</i> :       |                    | G =                   |                                                  | G =           | <i>'</i> 0                                        |
| Timing                                               | Y = 5.1                                | Y =                      |            | Y =         |        | Y              |           |                                              |             | 4.7          |              |             | = 7                  |                    | Y =                   |                                                  | Y =           |                                                   |
|                                                      | Analysis (hrs                          |                          |            |             |        |                |           |                                              |             |              |              |             | cle Lei              | ngtl               | h C :                 | = 125.                                           | 0             |                                                   |
| Lane Gro                                             | up Capaci                              | ty, Co                   | ntro       | l Dela      | y, a   | nd             | LOS       | De                                           | ter         | rmin         | ati          | on          |                      |                    |                       |                                                  |               |                                                   |
|                                                      |                                        |                          | EE         | }           |        |                | WI        | В                                            |             |              |              |             | NB                   |                    |                       |                                                  | SB            |                                                   |
| Adj. flow rat                                        | e                                      | 707                      |            | 228         |        |                |           |                                              |             |              |              | 185         | 59                   | 870                | )                     | 723                                              | 1967          |                                                   |
| Lane group                                           | cap.                                   | 605                      |            | 279         |        |                |           |                                              |             |              |              | 215         | 59                   | 660                | )                     | 825                                              | 3609          |                                                   |
| v/c ratio                                            |                                        | 1.17                     |            | 0.82        |        |                | 1         |                                              |             |              |              | 0.8         | 6                    | 1.32               | 2                     | 0.88                                             | 0.55          |                                                   |
| Green ratio                                          |                                        | 0.18                     |            | 0.18        |        |                | 1         |                                              |             |              |              | 0.4         | 3 (                  | 0.40               | 3                     | 0.24                                             | 0.71          |                                                   |
| Unif. delay                                          | d1                                     | 51.5                     | 1          | 49.6        | +      |                |           | _                                            |             |              |              | 32.         | 5 3                  | 35.9               | 9                     | 45.7                                             | 8.5           | 1                                                 |
| Delay factor                                         |                                        | 0.50                     |            | 0.36        |        |                |           |                                              |             | $\top$       |              | 0.3         | 9 (                  | 0.50               | )                     | 0.40                                             | 0.15          |                                                   |
| Increm. dela                                         | ay d2                                  | 92.7                     | 1          | 17.1        | 十      |                | $\dagger$ |                                              |             |              |              | 3.8         | 3 1                  | 53.                | .7                    | 10.5                                             | 0.2           | <del></del>                                       |
| PF factor                                            |                                        | 1.000                    | 1          | 1.000       | ,      |                |           |                                              |             |              |              | 0.5         | 06 0                 | 0.50               | 6                     | 0.789                                            | 0.173         | 1                                                 |
| Control dela                                         | ay                                     | 144.2                    | 1          | 66.6        |        |                |           | _                                            |             | $\top$       |              | 20.         | -+                   | 71.                | -                     | 46.6                                             | 1.6           | 1                                                 |
| Lane group                                           | LOS                                    | F                        | 1          | E           | _      |                |           | _                                            |             | $\top$       |              | С           |                      | F                  |                       | D                                                | Α             | <b>1</b>                                          |
| Apprch. dela                                         | ay                                     | 1                        | 25.3       | <b>!</b>    | $\top$ |                |           |                                              |             | $\top$       |              | 68.6        | <b>_</b>             |                    |                       |                                                  | 13.7          |                                                   |
| Approach L                                           | os                                     |                          | F          |             | 十      |                |           | -                                            |             | $\top$       |              | E           |                      |                    |                       |                                                  | В             |                                                   |
| Intersec. de                                         | lay                                    | 5                        | 53.7       |             | $\top$ |                |           | In                                           | ters        | sectio       | n L          | os          |                      |                    |                       |                                                  | D             |                                                   |
| HCS2000 <sup>TM</sup>                                |                                        |                          | Co         | pyright © 2 | 2000 I | Iniver         | eity of I | Ilorida                                      | Δ11         | Righte 1     | Pece         | rued        |                      |                    |                       |                                                  | V             | ersion 4.1                                        |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                |                           |            |               | S         | НО              | RT RI       | ΕPC                           | R           | T           |         |                                              |                      |                    |                       |          |          |            |
|------------------------------------------------------|------------------------------------------------|---------------------------|------------|---------------|-----------|-----------------|-------------|-------------------------------|-------------|-------------|---------|----------------------------------------------|----------------------|--------------------|-----------------------|----------|----------|------------|
| General Inf                                          | formation                                      |                           |            |               |           |                 | Sit         | te In                         | for         | matic       | on      |                                              |                      |                    |                       |          | ·        |            |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                                            | US<br>US<br>08/11<br>PM P | AI<br>7/12 |               |           |                 | Ard<br>Ju   | erse<br>ea T<br>risdi<br>alys | ype<br>ctic | Э           | I       | C                                            | 78E<br>All c<br>CEAN | B i<br>othe<br>ISI | RAM<br>er are<br>DE-= |          |          |            |
| Volume ar                                            | nd Timing In                                   | out                       | ,          |               |           |                 |             |                               |             |             | 1       |                                              |                      |                    |                       |          |          |            |
|                                                      |                                                |                           | LT         | EB<br>TH      | 1 6       | ₹T              | LT          | W<br>Ti                       | _           | RT          | ╀,      | T                                            | NB<br>TH             | _                  | RT                    | LT       | SB<br>TH | RT         |
| Num. of Lar                                          | nes                                            |                           | 2          | 0             | +         | 1               | 0           | 0                             | ┧           | 0           | -       | <u>-                                    </u> | 3                    | ╁                  | 1                     | 2        | 3        | 0          |
| Lane group                                           |                                                | "                         | <u> </u>   | †             | +         | R               |             |                               | $\dashv$    |             | ╁       |                                              | T                    | +                  | R                     |          | T        |            |
| Volume (vp                                           |                                                |                           | 650        |               |           | 10              |             |                               | -           |             | ╁       |                                              | 1711                 | +,                 | 386                   | 670      | 1813     |            |
| % Heavy v                                            |                                                |                           | 2          |               | _         | 2               |             |                               | 1           |             | t       |                                              | 2                    | Ť                  | 2                     | 2        | 2        |            |
| PHF                                                  |                                                |                           | 0.92       |               |           | 92              |             |                               | 目           |             | T       |                                              | 0.92                 | 10                 | .92                   | 0.92     | 0.92     |            |
| Actuated (P                                          |                                                |                           | Α          |               | _         | 4               |             |                               |             |             |         |                                              | Α                    | _                  | Α                     | Α        | Α        |            |
| Startup lost                                         |                                                |                           | 3.0        |               |           | .0              |             | <u> </u>                      | _[          |             | $\perp$ |                                              | 3.0                  |                    | 3.0                   | 3.0      | 3.0      | <u> </u>   |
| Ext. eff. gre                                        | en                                             |                           | 2.0<br>3   |               | _         | . <i>0</i><br>3 |             |                               | $\dashv$    |             | ┼-      |                                              | 2.0<br>5             | +                  | 2.0<br>5              | 2.0<br>5 | 2.0<br>5 |            |
| Arrival type<br>Unit Extens                          | ion                                            |                           | 3.0        |               |           | .0              |             |                               | $\dashv$    |             | ╁       |                                              | 3.0                  | ┿                  | 3.0                   | 3.0      | 3.0      |            |
|                                                      | TOR Volume                                     | ···                       | 5          | <u> </u>      | (         |                 | 5           |                               | $\dashv$    |             | +       | 5                                            | 10                   |                    | 80                    | 0.0      | 0.0      |            |
| Lane Width                                           |                                                |                           | 12.0       |               | +-        | 2.0             | Ť           |                               | $\dashv$    |             | ╁       |                                              | 12.0                 | _                  | 2.0                   | 12.0     | 12.0     |            |
| Parking/Gra                                          | ade/Parking                                    |                           | Ν          | 0             | 7         | ٧               | Ν           |                               |             | Ν           | 1       | V                                            | 0                    | T                  | Ν                     | Ν        | 0        | Ν          |
| Parking/hr                                           | •                                              |                           |            |               |           |                 |             |                               | Ī           |             |         |                                              |                      | T                  |                       |          |          |            |
| Bus stops/h                                          | nr                                             |                           | 0          |               | (         | 0               |             |                               |             |             |         |                                              | 0                    | T                  | 0                     | 0        | 0        |            |
| Unit Extens                                          | ion                                            |                           | 3.0        |               | 3.        | .0              |             |                               |             |             |         |                                              | 3.0                  |                    | 3.0                   | 3.0      | 3.0      |            |
| Phasing                                              | EB Only                                        | 02                        | 2          | 03            | }         |                 | 04          |                               | _           | B On        | _       |                                              | ıru & F              |                    |                       | 07       |          | 8          |
| l<br>Timing                                          | G = 23.0                                       | G =                       |            | G =           |           |                 | ; =         |                               |             | = 31.       |         |                                              | = 54.                | 2                  | G =                   |          | G =      |            |
|                                                      | Y = 5.1<br>Analysis (hrs                       | Y =                       | 5          | Y =           |           | ΙY              | <b>=</b>    |                               | Υ:          | = 4.7       |         |                                              | = 7                  | naf                | Y =                   | = 125.   | Y =      |            |
|                                                      | up Capaci                                      |                           |            | l Dals        | W         | anc             | II OS       | n n                           | ıto         | rmir        | afi     |                                              |                      | ııgı               | .11 0                 | 120.     |          |            |
| Lane Oro                                             | up Capaci                                      | ly, oc                    | EE         | **            | 'y,       | anc             | W           | ****                          | ,           | <del></del> | ati     |                                              | NB                   |                    |                       |          | SB       |            |
| Adj. flow rat                                        | te                                             | 707                       | ┰          | 228           | $\dashv$  |                 | 1           |                               |             | +-          |         | 186                                          |                      | 87                 | 6                     | 728      | 1971     | 1          |
| Lane group                                           | ~~~~                                           | 605                       | +          | 279           | $\dashv$  |                 |             | $\dashv$                      |             |             |         | 215                                          | <del></del>          | 666                |                       | 825      | 3609     |            |
| v/c ratio                                            | <u></u>                                        | 1.17                      | +          | 0.82          |           |                 |             | +                             |             | _           |         | 0.8                                          |                      | 1.3                |                       | 0.88     | 0.55     | +          |
| Green ratio                                          |                                                | 0.18                      | +          | 0.18          | -         |                 |             | $\dashv$                      |             | $\top$      |         | 0.4                                          |                      | 0.4                |                       | 0.24     | 0.71     |            |
| Unif. delay                                          |                                                | 51.5                      | +          | 49.6          | $\dashv$  |                 |             | _                             |             | +           |         | 32.                                          |                      | 35.                |                       | 45.8     | 8.5      | <u> </u>   |
| Delay factor                                         | ·                                              | 0.50                      | +          | 0.36          | $\dashv$  |                 | +           | $\top$                        | _           |             |         | 0.3                                          |                      | 0.5                |                       | 0.41     | 0.15     |            |
| increm. dela                                         |                                                | 92.7                      | +          | 17.1          |           |                 |             | $\dashv$                      |             |             |         | 3.                                           |                      | 157                |                       | 11.1     | 0.2      |            |
| PF factor                                            | <u>,                                      </u> | 1.000                     | +          | 1.00          |           |                 |             | $\top$                        |             |             |         | 0.5                                          | 06                   | ),5                | 06                    | 0.789    | 0.173    |            |
| Control dela                                         | ay                                             | 144.2                     |            | 66.6          | ;         |                 |             | $\dashv$                      |             |             |         | 20.                                          |                      | 175                | _                     | 47.2     | 1.7      | <b>†</b>   |
|                                                      | ane group LOS F                                |                           |            | E             | $\exists$ |                 | $\top$      | 十                             |             |             |         | C                                            | ;                    | F                  |                       | D        | Α        |            |
| Apprch. del                                          |                                                | 1                         | 25.3       |               |           |                 |             |                               |             | $\top$      |         | 70.                                          | 1                    |                    |                       |          | 13.9     | 1          |
| Approach L                                           | -                                              |                           |            |               |           |                 |             |                               |             | Ε           |         |                                              |                      |                    | В                     |          |          |            |
| Intersec. de                                         | elay                                           |                           | •          |               |           |                 | lr          | iter                          | section     | on L        | os      |                                              |                      |                    |                       | D        |          |            |
| HCS2000TM                                            | -                                              |                           | Co         | م دها داستوسی | 200/      | n Hain          | ersity of I | Clorid.                       | - A1        | l Diahta    | Dag     | arrad.                                       |                      |                    | <u> </u>              | •        | V        | ersion 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                    |                                         |                             |              | SH             | ORI        | ۲R      | EP             | DRT                               |           |         |               |                        |           |            |                                                  |
|------------------------------------------------------|--------------------|-----------------------------------------|-----------------------------|--------------|----------------|------------|---------|----------------|-----------------------------------|-----------|---------|---------------|------------------------|-----------|------------|--------------------------------------------------|
| General Inf                                          | ormation           |                                         |                             |              |                |            | s       | ite Ir         | nform                             | atic      |         |               |                        |           |            |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                | U<br>05/0                               | SAI<br>SAI<br>01/12<br>PEAK |              |                |            | A<br>Ji | rea 1<br>urisd | ection<br>ype<br>iction<br>sis Ye | ar        |         |               | DR.<br>her an<br>RLSB/ | eas<br>ND |            |                                                  |
| Volume an                                            | d Timina I         | nput                                    |                             | <del>.</del> |                |            |         |                | <del></del>                       |           |         |               |                        |           |            |                                                  |
|                                                      |                    | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                             | EB           | -              |            |         | WE             | 3                                 |           |         | NB            |                        |           | SB         |                                                  |
|                                                      |                    |                                         | LT                          | TH           | RT             | L          | T       | ⊢              | R                                 | Ţ         | LT      | TH            | RT                     | LT        | TH         | RT                                               |
| Num. of Lar                                          | nes                |                                         | 1                           | 1            | . 1            | 1          |         | 1              | 1                                 |           | 2       | 3             | 0                      | 2         | 3          | 0                                                |
| Lane group                                           |                    |                                         | L                           | LT           | R              | L          |         | LT             | R                                 | )         | L       | TR            |                        | L         | TR         |                                                  |
| Volume (vpl                                          | า)                 |                                         | 20                          | 5            | 5              | 48         | 5       | 10             | 90                                |           | 30      | 1215          | 45                     | 240       | 1510       | 95                                               |
| % Heavy ve                                           | eh                 |                                         | 1                           | 1            | 1              | 1          |         | 1              | 1                                 |           | 1       | 2             | 1                      | 1         | 2          | 1                                                |
| PHF                                                  | /A \               |                                         | 0.95                        | 0.95         | 0.95           | 0.9        |         | 0.98           | _                                 | _         | 0.95    | 0.95          | 0.95                   | 0.95<br>A | 0.95       | 0.95                                             |
| Actuated (P<br>Startup lost                          |                    |                                         | A<br>2.0                    | A<br>2.0     | A<br>2.0       | 2.0        |         | A<br>2.0       | 2.0                               |           | 2.0     | 2.0           | Α                      | 2.0       | 2.0        | Α                                                |
| Ext. eff. gree                                       |                    | · · · · · · · · ·                       | 2.0                         | 2.0          | 2.0            | 2.0        |         | 2.0            | 2.                                |           | 2.0     | 2.0           |                        | 2.0       | 2.0        |                                                  |
| Arrival type                                         |                    |                                         | 4                           | 4            | 4              | 4          |         | 4              | 4                                 |           | 5       | 5             |                        | 5         | 5          |                                                  |
| Unit Extensi                                         | on                 |                                         | 3.0                         | 3.0          | 3.0            | 3.0        | 0       | 3.0            | 3.                                | 0         | 3.0     | 3.0           |                        | 3.0       | 3.0        |                                                  |
| Ped/Bike/R                                           | 「OR Volum          | е                                       | 5                           | 5            | 0              | 5          |         | 5              | 0                                 |           | 5       | 5             | 0                      | 5         | 5          | 0                                                |
| Lane Width                                           |                    |                                         | 12.0                        | 12.0         | 12.0           | 12.        |         | 12.0           | _                                 |           | 12.0    | 12.0          |                        | 12.0      | 12.0       |                                                  |
| Parking/Gra                                          | de/Parking         |                                         | Ν                           | 0            | Ν              | Λ          | l       | 0              | ^                                 | <i> </i>  | N       | 0             | Ν                      | N         | 0          | Ν                                                |
| Parking/hr                                           |                    |                                         |                             |              |                | _          |         |                |                                   |           |         |               |                        |           |            |                                                  |
| Bus stops/h                                          |                    |                                         | 0                           | 0            | 0              | 0          |         | 0              |                                   |           | 0       | 0             |                        | 0         | 0          | _                                                |
| Unit Extensi                                         |                    |                                         | 3.0                         | 3.0          | 3.0            | 3.6        |         | 3.0            | <del>_ '</del>                    |           | 3.0     | 3.0           |                        | 3.0       | 3.0        |                                                  |
| Phasing                                              | EB Only            | _                                       | Only                        | 03           | 3              |            | 04      |                | Excl                              |           | _       | hru & R       | _                      | 07        |            | 08                                               |
| Timing                                               | G = 10.0<br>Y = 5  | G =<br>Y =                              |                             | G =<br>Y =   |                | G =<br>Y = |         |                | G =<br>Y =                        |           |         | = 65.0<br>= 6 | G :                    |           | G =<br>Y = |                                                  |
| Duration of                                          |                    |                                         |                             |              |                |            |         |                |                                   |           |         | /cle Len      |                        |           |            |                                                  |
| Lane Gro                                             |                    |                                         |                             | l Dela       | av. a          | nd I       | O       | S D            | etern                             | nin       |         |               | <del>3</del>           |           |            |                                                  |
|                                                      | orb orbor          | <br>                                    | EB                          |              | <del>.,,</del> |            |         | /B             |                                   | Τ         |         | NB            |                        |           | SB         |                                                  |
| Adj. flow rat                                        | e                  | 21                                      | 5                           | 5            | 40             | )          | 18      |                | 95                                | 十         | 32      | 1326          |                        | 253       | 1689       |                                                  |
| Lane group                                           | <del></del>        | 149                                     | 157                         | 309          | 14             |            | 15      |                | 373                               | $\dagger$ | 405     | 2733          |                        | 405       | 2723       |                                                  |
| v/c ratio                                            |                    | 0.14                                    | 0.03                        | 0.02         | 0.2            |            | 0.1     |                | 0.25                              | -         | 0.08    | 0.49          |                        | 0.62      | 0.62       |                                                  |
| Green ratio                                          |                    | 0.08                                    | 0.08                        | 0.20         | 0.0            |            | 0.0     |                | 0.24                              | 7         | 0.12    | 0.54          | 1                      | 0.12      | 0.54       | <del>                                     </del> |
| Unif. delay                                          | <br>ქ1             | 51.0                                    | 50.6                        | 38.5         | 51.            |            | 50.     | 9              | 36.8                              | -         | 47.3    | 17.1          |                        | 50.5      | 19.0       |                                                  |
| Delay factor                                         |                    | 0.11                                    | 0.11                        | 0.11         | 0.1            | 1          | 0.1     | 1              | 0.11                              | 1         | 0.11    | 0.11          |                        | 0.21      | 0.20       | 1                                                |
| Increm. dela                                         | ay d2              | 0.4                                     | 0.1                         | 0.0          | 1.0            | 0          | 0.      | 3              | 0.4                               | 寸         | 0.1     | 0.1           | <b>—</b>               | 3.0       | 0.4        | 1                                                |
| PF factor                                            |                    |                                         | 1.000                       | 1.000        | 1.0            | 00         | 1.0     | 00             | 1.000                             | (         | 0.912   | 0.212         |                        | 0.912     | 0.212      | 2                                                |
| Control dela                                         | Control delay 51.5 |                                         | 50.6                        | 38.5         | 52.            | .5         | 51.     | 3              | 37.1                              | 1         | 43.2    | 3.8           |                        | 49.1      | 4.5        |                                                  |
| Lane group                                           | D                  | D                                       | D                           | D            | )              | D          |         | D              |                                   | D         | Α       |               | D                      | Α         |            |                                                  |
| Apprch. dela                                         | ay                 | 49                                      | 9.2                         |              |                | 42         | 2.8     |                |                                   |           |         | 4.7           |                        |           | 10.3       |                                                  |
| Approach L                                           | os                 | l i                                     | ס                           |              |                | L          | )       |                |                                   |           |         | Α             |                        |           | В          |                                                  |
| Intersec. de                                         | lay                | 9                                       | .9                          |              |                |            |         | İr             | nterse                            | ctio      | n LOS   | 5             |                        |           | Α          |                                                  |
| HCS2000 <sup>TM</sup>                                |                    |                                         | Co                          | pyright ©    | 2000 L         | Jnivers    | ity of  | Florid         | a. All Ri                         | ehts      | Reserve | 1             |                        |           | 7          | Version 4.1                                      |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                       |                |         |                     |           | SH       | ORT I       | REP                  | ORT                                              |           |                    |                 |           |             |              |
|---------------------------------------|----------------|---------|---------------------|-----------|----------|-------------|----------------------|--------------------------------------------------|-----------|--------------------|-----------------|-----------|-------------|--------------|
| General Inf                           | ormation       |         |                     |           |          | (           | Site lı              | nformat                                          | ion       |                    |                 |           |             |              |
| Analyst<br>Agency or C<br>Date Perfor |                | U       | SAI<br>SAI<br>01/12 |           |          |             | Area <sup>-</sup>    |                                                  | EL        |                    | DR.<br>ther are | eas       | 4ZA         |              |
| Time Perioc                           |                |         | PEAK                |           |          |             |                      | liction<br>sis Year                              | ВС        | CA1<br>).ALT2/     | RLSBA<br>WITH I |           | СТ          |              |
| Volume an                             | d Timing I     | nput    |                     |           |          |             |                      |                                                  |           |                    |                 |           |             |              |
|                                       |                |         |                     | EB        |          |             | W                    |                                                  |           | NB                 |                 |           | SB          |              |
|                                       |                |         | LT                  | TH        | RT       | LT          | TH                   | H RT                                             | LT        | TH                 | RT              | LT        | TH          | RT           |
| Num. of Lar                           | nes            |         | 1                   | 1         | 1        | 1           | 1                    | 1                                                | 2         | 3                  | 0               | 2         | 3           | 0            |
| Lane group                            |                |         | L                   | LT        | R        | L           | LT                   | R                                                | L         | TR                 |                 | L         | TR          |              |
| Volume (vpl                           |                |         | 21                  | 5         | 5        | 45          | 10                   |                                                  | 30        | 1217               | 45              | 242       | 1512        | 97           |
| % Heavy v                             | eh             |         | 1                   | 1         | 1        | 1           | 1                    | 1                                                | 1         | 2                  | 1               | 1         | 2           | 1            |
| PHF                                   | /A \           |         | 0.95                | 0.95      | 0.95     | 0.95        | 0.98                 | 5 0.95<br>A                                      | 0.95<br>A | 0.95<br>A          | 0.95<br>A       | 0.95<br>A | 0.95<br>A   | 0.95<br>A    |
| Actuated (P<br>Startup lost           |                |         | A<br>2.0            | A<br>2.0  | A<br>2.0 | 2.0         | 2.0                  |                                                  | 2.0       | 2.0                | A               | 2.0       | 2.0         | <del></del>  |
| Ext. eff. gre                         |                |         | 2.0                 | 2.0       | 2.0      | 2.0         | 2.0                  |                                                  | 2.0       | 2.0                |                 | 2.0       | 2.0         | <b>—</b>     |
| Arrival type                          |                |         | 4                   | 4         | 4        | 4           | 4                    | 4                                                | 5         | 5                  |                 | 5         | 5           |              |
| Unit Extens                           | ion            |         | 3.0                 | 3.0       | 3.0      | 3.0         | 3.0                  | 3.0                                              | 3.0       | 3.0                |                 | 3.0       | 3.0         |              |
| Ped/Bike/R                            | TOR Volum      | e       | 5                   | 5         | 0        | 5           | 5                    | 0                                                | 5         | 5                  | 0               | 5         | 5           | 0            |
| Lane Width                            |                |         | 12.0                | 12.0      | 12.0     | 12.0        | 12.0                 | ) 12.0                                           | 12.0      | 12.0               |                 | 12.0      | 12.0        |              |
| Parking/Gra                           | de/Parking     |         | Ν                   | 0         | N        | N           | 0                    | N                                                | Ν         | 0                  | Ν               | Ν         | 0           | N            |
| Parking/hr                            |                | ·       |                     |           |          |             |                      |                                                  |           |                    |                 |           |             |              |
| Bus stops/h                           | r              |         | 0                   | 0         | 0        | 0           | 0                    | 0                                                | 0         | 0                  |                 | 0         | 0           |              |
| Unit Extens                           | ion            |         | 3.0                 | 3.0       | 3.0      | 3.0         | 3.0                  | 3.0                                              | 3.0       | 3.0                |                 | 3.0       | 3.0         |              |
| Phasing                               | EB Only        | WB      | Only                | 00        | 3        | 04          | 4                    | Excl. l                                          |           | Thru & R           |                 | 07        | 1           | )8           |
| Timing                                | G = 10.0       | G =     |                     | G =       |          | G =         |                      | G = 14                                           |           | G = 65.0           |                 |           | G =         |              |
| ,                                     | Y = 5          | Y =     |                     | Υ =       |          | Y =         |                      | Y = 5                                            |           | Y = 6<br>Cycle Len | Y =             |           | Y =         |              |
| Duration of                           |                |         |                     | I Dala    |          | 1           | )C D                 | -1                                               |           |                    | igin C          | - 120.    | 0           | <del></del>  |
| Lane Gro                              | up Capa        | City, C | Ontro<br>EB         | Dela      | ay, a    | •           | י <u>ט פֿע</u><br>WB | etermi                                           | nauo<br>  | n<br>NB            |                 | 1         | SB          |              |
| Adj. flow rat                         |                | 22      | 5                   | 5         | 40       |             | 18                   | 96                                               | 32        | 1328               | 1               | 255       | 1694        | $\top$       |
| Lane group                            |                | 149     | 157                 | 309       | 14.      | -           | 54                   | 373                                              | 405       | 2733               | +               | 405       | 2722        |              |
| v/c ratio                             | сар.           | 0.15    | 0.03                | 0.02      | 0.2      |             | 12                   | 0.26                                             | 0.08      | 0.49               |                 | 0.63      | 0.62        | +            |
| Green ratio                           |                | 0.08    | 0.03                | 0.02      | 0.0      | -           | 08                   | 0.24                                             | 0.00      | 0.54               | -               | 0.12      | 0.54        | +            |
| Unif. delay                           |                | 51.0    | 50.6                | 38.5      | 51.      | -+          | ). <i>9</i>          | 36.8                                             | 47.3      | 17.1               |                 | 50.5      | 19.0        | +            |
| Delay factor                          |                | 0.11    | 0.11                | 0.11      | 0.1      |             | 11                   | 0.11                                             | 0.11      | 0.11               | +               | 0.21      | 0.21        | +            |
| Increm, dela                          |                | 0.77    | 0.11                | 0.0       | 1.0      | <del></del> | 0.3                  | 0.4                                              | 0.11      | 0.1                |                 | 3.1       | 0.4         | +            |
| PF factor                             | -, <del></del> | 1.000   | 1.000               | 1.000     |          |             | 000                  | 1.000                                            | 0.912     |                    |                 | 0.912     | <del></del> | <del>.</del> |
| Control dela                          | av             | 51.5    | 50.6                | 38.5      | +        |             | 1.3                  | 37.2                                             | 43.2      | 3.8                | <del>-  </del>  | 49.2      | 4.5         | +            |
| Lane group LOS D                      |                |         | D                   | D         | D        | -+          | D.                   | D                                                | D         | A                  | 1               | D         | A           |              |
| Apprch. dela                          |                | 9.3     | <u> </u>            | +         | 42.8     |             |                      | <del>                                     </del> | 4.7       |                    | 1               | 10.3      |             |              |
| Approach L                            | -              |         | D                   |           | <u> </u> | D           |                      |                                                  |           | Α                  |                 |           | В           |              |
| Intersec. de                          |                | 1       | .9                  |           | +-       |             | lı .                 | ntersecti                                        | on LO     |                    |                 |           | Α           |              |
| HCS2000 <sup>TM</sup>                 | •              |         |                     | pyright @ | 1 2000 T | niversity ( |                      | la, All Righ                                     |           |                    |                 | _J        |             | ersion 4.1   |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                                       |           |                             |            | SH       | ORT        | RE         | PO             | RT                               |           |                 |                         |           |           |            |
|-------------------------------------------------------|---------------------------------------|-----------|-----------------------------|------------|----------|------------|------------|----------------|----------------------------------|-----------|-----------------|-------------------------|-----------|-----------|------------|
| General Info                                          | ormation                              |           |                             |            |          |            | Site       | e Inf          | formati                          |           |                 |                         |           |           |            |
| Analyst<br>Agency or C<br>Date Perforr<br>Time Period | ned                                   | U<br>05/0 | SAI<br>SAI<br>01/12<br>PEAK |            |          |            | Are<br>Jur | ea Ty<br>isdic | ction<br>ype<br>ction<br>is Year |           |                 | DR.<br>her are<br>RLSBA | eas<br>D  |           |            |
| Volume an                                             | d Timing li                           | nput      |                             |            |          |            |            | 72.0           |                                  |           |                 |                         |           |           |            |
|                                                       | · · · · · · · · · · · · · · · · · · · | -         |                             | EB         |          |            |            | WB             |                                  |           | NB              |                         |           | SB        |            |
|                                                       |                                       |           | LT                          | TH         | RT       | LT         | 4          | TH             | RT                               | LT        | TH              | RT                      | LT        | TH        | RT         |
| Num. of Lan                                           | es                                    |           | 1                           | 1          | 1        | 1          |            | 1              | 1                                | 2         | 3               | 0                       | 2         | 3         | 0          |
| Lane group                                            |                                       |           | L                           | LT         | R        | L          |            | LT             | R                                | L         | TR              |                         | L         | TR        |            |
| Volume (vpl                                           |                                       |           | 335                         | 85         | 125      | 145        |            | 70             | 210                              | 165       | 2025            | 75                      | 395       | 1335      | 185        |
| % Heavy ve                                            | <u>eh</u>                             |           | 1                           | 1          | 1        | 1          |            | 1              | 1 0.05                           | 1         | 2               | 1                       | 1         | 2         | 1          |
| PHF                                                   | /A \                                  |           | 0.95                        | 0.95       | 0.95     | 0.95       | _          | ).95<br>A      | 0.95<br>A                        | 0.95<br>A | 0.95<br>A       | 0.95<br>A               | 0.95<br>A | 0.95<br>A | 0.95<br>A  |
| Actuated (Pa<br>Startup lost                          |                                       |           | A<br>2.0                    | A<br>2.0   | 2.0      | 2.0        | _          | 2.0            | 2.0                              | 2.0       | 2.0             |                         | 2.0       | 2.0       | ╁╌         |
| Ext. eff. gree                                        |                                       |           | 2.0                         | 2.0        | 2.0      | 2.0        |            | 2.0            | 2.0                              | 2.0       | 2.0             |                         | 2.0       | 2.0       |            |
| Arrival type                                          |                                       |           | 4                           | 4          | 4        | 4          |            | 4              | 4                                | 5         | 5               |                         | 5         | 5         |            |
| Unit Extensi                                          | on                                    |           | 3.0                         | 3.0        | 3.0      | 3.0        |            | 3.0            | 3.0                              | 3.0       | 3.0             |                         | 3.0       | 3.0       |            |
| Ped/Bike/R1                                           | TOR Volum                             | е         | 5                           | 5          | 0        | 5          |            | 5              | 0                                | 5         | 5               | 0                       | 5         | 5         | 0          |
| Lane Width                                            |                                       |           | 12.0                        | 12.0       | 12.0     | 12.0       | ) [1       | 12.0           | 12.0                             | 12.0      | 12.0            |                         | 12.0      | 12.0      |            |
| Parking/Gra                                           | de/Parking                            |           | Ν                           | 0          | Ν        | N          |            | 0              | N                                | N         | 0               | N                       | N         | 0         | Ν          |
| Parking/hr                                            |                                       |           |                             |            |          |            |            |                |                                  |           |                 |                         |           |           |            |
| Bus stops/h                                           | r                                     |           | 0                           | 0          | 0        | 0          |            | 0              | 0                                | 0         | 0               |                         | 0         | 0         |            |
| Unit Extensi                                          | on                                    |           | 3.0                         | 3.0        | 3.0      | 3.0        | $\Box$     | 3.0            | 3.0                              | 3.0       | 3.0             |                         | 3.0       | 3.0       |            |
| Phasing                                               | EB Only                               | WB        | Only                        | 0:         | 3        |            | )4         |                | Excl. L                          | eft T     | hru & R         | Т                       | 07        |           | 08         |
| Timing                                                | G = 22.0                              | G =       |                             | G =        |          | G =        |            | _              | G = 16                           |           | 5 = <i>52.0</i> |                         |           | G =       |            |
| Ŭ.                                                    | Y = 5                                 | Y =       |                             | Υ =        |          | Y =        |            |                | Y = 5                            |           | = 6             | Y =                     |           | Y =       | Ven        |
| Duration of                                           |                                       |           |                             | <u> </u>   |          |            |            | _              |                                  |           | ycle Len        | gtn C :                 | = 130.    | 0         |            |
| Lane Gro                                              | up Capa                               | city, C   |                             | l Dela     | ay, a    | nd L       |            |                | termir                           | natio     |                 |                         | 1         |           |            |
|                                                       | •••                                   |           | EB                          |            |          |            | WE         | 3              |                                  |           | NB              |                         | ļ         | SB        |            |
| Adj. flow rat                                         | е                                     | 219       | 223                         | 132        | 10       | 7          | 120        |                | 221                              | 174       | 2211            |                         | 416       | 1600      |            |
| Lane group                                            | cap.                                  | 302       | 309                         | 456        | 26       | 1          | 270        | İ              | 479                              | 427       | 2018            |                         | 427       | 1990      |            |
| v/c ratio                                             |                                       | 0.73      | 0.72                        | 0.29       | 0.4      | 11 (       | ).44       | 1              | 0.46                             | 0.41      | 1.10            |                         | 0.97      | 0.80      |            |
| Green ratio                                           |                                       | 0.17      | 0.17                        | 0.29       | 0.1      | 5 (        | 0.15       | ; (            | 0.31                             | 0.12      | 0.40            |                         | 0.12      | 0.40      |            |
| Unif. delay o                                         | <u></u><br>11                         | 51.1      | 51.1                        | 35.6       | 50.      | .4         | 50.7       | 1              | 36.3                             | 52.6      | 39.0            |                         | 56.8      | 34.5      |            |
| Delay factor                                          | ·k                                    | 0.29      | 0.28                        | 0.11       | 0.1      | 11 (       | 0.11       | 7              | 0.11                             | 0.11      | 0.50            |                         | 0.48      | 0.35      |            |
| Increm. dela                                          | ay d2                                 | 8.4       | 8.0                         | 0.4        | 1.       | 1          | 1.2        | 一              | 0.7                              | 0.6       | 51.6            |                         | 36.7      | 2.5       |            |
| PF factor                                             |                                       | 1.000     | 1.000                       | 0.992      | 2 1.0    | 00 1       | .000       | 0 0            | 0.980                            | 0.906     | 0.556           |                         | 0.906     | 0.556     | ;          |
| Control dela                                          | ıy                                    | 59.5      | 59.1                        | 35.6       | 51       | .5         | 51.8       | ,              | 36.3                             | 48.3      | 73.2            |                         | 88.2      | 21.7      |            |
| Lane group LOS E                                      |                                       |           | Ε                           | D          | E        | )          | D          |                | D                                | D         | Ε               |                         | F         | С         |            |
| Apprch. dela                                          | 5.                                    | 3.9       |                             |            | 44.      | 1          |            |                |                                  | 71.4      |                 |                         | 35.4      |           |            |
| Approach L                                            | os                                    | D         |                             |            | D        |            |            |                |                                  | Е         |                 |                         | D         |           |            |
| Intersec. de                                          | lay                                   | 5.        | 3.9                         |            |          |            |            | Int            | tersectio                        | on LO     | 3               |                         |           | D         | -          |
| HCS2000 <sup>TM</sup>                                 |                                       |           | С                           | opyright ( | © 2000 t | Jniversity | y of F     | lorida         | , All Rights                     | s Reserve | d               |                         |           | Y         | ersion 4.1 |

|                                                      |                   |            |                             | <u>_</u>   | SH          | ORT        | REP                              | O          | RT              |           |                  |                        | 0.00      |            |            |
|------------------------------------------------------|-------------------|------------|-----------------------------|------------|-------------|------------|----------------------------------|------------|-----------------|-----------|------------------|------------------------|-----------|------------|------------|
| General Inf                                          | ormation          |            |                             |            |             |            | Site                             | Infe       | ormati          |           |                  |                        |           |            |            |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med               | U<br>05/0  | SAI<br>SAI<br>01/12<br>PEAK |            |             |            | Inters<br>Area<br>Juris<br>Analy | Ty<br>dict | ре              |           |                  | DR.<br>her ar<br>RLSB/ | eas<br>AD |            |            |
| Volume an                                            | d Timing I        | nput       |                             |            |             |            |                                  |            |                 |           |                  |                        |           |            | 10.1       |
|                                                      |                   |            |                             | EΒ         |             |            | V                                | /B         |                 |           | NB               |                        |           | SB         |            |
|                                                      |                   |            | LT                          | TH         | RT          | LT         |                                  | Н          | RT              | LT        | TH               | RT                     | LT        | TH         | RT         |
| Num. of Lar                                          | nes               |            | 1                           | 1          | 1           | 1          | 1                                |            | 1               | 2         | 3                | 0                      | 2         | 3          | 0          |
| Lane group                                           |                   |            | L                           | LT         | R           | L          | L.                               | T          | R               | L         | TR               |                        | L_        | TR         |            |
| Volume (vpl                                          |                   |            | 337                         | 85         | 125         | 145        |                                  |            | 212             | 165       | 2027             | 75                     | 396       | 1336       | 186        |
| % Heavy v                                            | eh                |            | 1                           | 1          | 1           | 1          | 1                                |            | 1               | 1         | 2                | 1                      | 1         | 2          | 1          |
| PHF                                                  | /^ \              |            | 0.95                        | 0.95<br>A  | 0.95<br>A   | 0.95<br>A  | 5 0.8<br>A                       |            | 0.95<br>A       | 0.95<br>A | 0.95<br>A        | 0.95<br>A              | 0.95<br>A | 0.95<br>A  | 0.95<br>A  |
| Actuated (P<br>Startup lost                          |                   |            | <i>A</i> 2.0                | 2.0        | 2.0         | 2.0        |                                  |            | 2.0             | 2.0       | 2.0              | 1                      | 2.0       | 2.0        |            |
| Ext. eff. gre                                        |                   |            | 2.0                         | 2.0        | 2.0         | 2.0        |                                  |            | 2.0             | 2.0       | 2.0              |                        | 2.0       | 2.0        |            |
| Arrival type                                         |                   |            | 4                           | 4          | 4           | 4          | 4                                |            | 4               | 5         | 5                |                        | 5         | 5          |            |
| Unit Extens                                          | ion               |            | 3.0                         | 3.0        | 3.0         | 3.0        | 3.                               |            | 3.0             | 3.0       | 3.0              |                        | 3.0       | 3.0        |            |
| Ped/Bike/R                                           | TOR Volum         | е          | 5                           | 5          | 0           | 5          | 5                                |            | 0               | 5         | 5                | 0                      | 5         | 5          | 0          |
| Lane Width                                           |                   |            | 12.0                        | 12.0       | 12.0        | 12.0       | _                                |            | 12.0            | 12.0      | 12.0             |                        | 12.0      | 12.0       | L          |
| Parking/Gra                                          | de/Parking        |            | N                           | 0          | N           | N          | <u> </u>                         | 0          | N               | N         | 0                | N                      | N         | 0          | N          |
| Parking/hr                                           |                   |            |                             |            |             |            | _                                |            | <u>.</u>        |           |                  |                        |           |            |            |
| Bus stops/h                                          |                   |            | 0                           | 0          | 0           | 0          |                                  |            | 0               | 0         | 0                |                        | 0         | 0_         |            |
| Unit Extens                                          | ion               |            | 3.0                         | 3.0        | 3.0         | 3.0        |                                  |            | 3.0             | 3.0       | 3.0              | <u> </u>               | 3.0       | 3.0        | <u> </u>   |
| Phasing                                              | EB Only           |            | Only                        | 00         | 3           |            | )4                               | _          | Excl. L         |           | hru & R          |                        | 07        |            | 38         |
| Timing                                               | G = 22.0<br>Y = 5 | G =<br>Y = |                             | G =<br>Y = |             | G =<br>Y = |                                  |            | G = 16 $Y = 5$  |           | 6 = 52.0 $6 = 6$ | G<br>Y                 |           | G =<br>Y = |            |
| Duration of                                          |                   | _          |                             | <u> </u>   |             | 1 -        |                                  |            | 1 - 0           |           | ycle Len         |                        |           |            |            |
| Lane Gro                                             |                   |            |                             | l Dela     | av. a       | nd L       | OS E                             | et)        | termin          |           |                  | <u></u>                | ×         |            |            |
|                                                      | ap capa           | <br>       | EB                          |            | 1           |            | WB                               |            |                 |           | NB               |                        |           | SB         |            |
| Adj. flow rat                                        | re                | 220        | 224                         | 132        | 10          | 7          | 120                              | T          | 223             | 174       | 2213             |                        | 417       | 1602       |            |
| Lane group                                           |                   | 302        | 309                         | 456        | 26          | 1          | 270                              | 1          | <del>1</del> 79 | 427       | 2018             |                        | 427       | 1990       |            |
| v/c ratio                                            |                   | 0.73       | 0.72                        | 0.29       | 0.4         | 11 (       | 0.44                             | 10         | ).47            | 0.41      | 1.10             |                        | 0.98      | 0.81       |            |
| Green ratio                                          |                   | 0.17       | 0.17                        | 0.29       | 0.1         | 5 (        | 0.15                             | 7          | ).31            | 0.12      | 0.40             |                        | 0.12      | 0.40       |            |
| Unif, delay                                          | d1                | 51.2       | 51.1                        | 35.6       | 50.         | .4 5       | 50.7                             | 3          | 36.4            | 52.6      | 39.0             |                        | 56.8      | 34.5       |            |
| Delay facto                                          | r k               | 0.29       | 0.29                        | 0.11       | 0.1         | 1 (        | 0.11                             | 70         | ).11            | 0.11      | 0.50             |                        | 0.48      | 0.35       |            |
| increm. dela                                         | ay d2             | 8.6        | 8.2                         | 0.4        | 1.          | 1          | 1.2                              |            | 0.7             | 0.6       | 52.0             |                        | 37.3      | 2.5        |            |
| PF factor                                            |                   | 1.000      | 1.000                       | 0.992      | 2 1.0       | 00 1       | .000                             | 0          | .980            | 0.906     | 0.556            |                        | 0.906     | 0.556      | 3          |
| Control dela                                         | ау                | 59.8       | 59.4                        | 35.6       | 51.         | .5 5       | 51.8                             | 3          | 36.3            | 48.3      | 73.6             |                        | 88.8      | 21.7       |            |
| Lane group                                           | LOS               | E          | E                           | D          | D           |            | D                                | $\int$     | D               | D         | E                |                        | F         | С          |            |
| Apprch. del                                          | 5-                | 4.1        |                             |            | 44.         | 1          |                                  |            |                 | 71.8      |                  |                        | 35.6      |            |            |
| Approach L                                           | os                |            | D                           |            |             | D          |                                  |            |                 |           | Ε                |                        |           | D          |            |
| Intersec. de                                         | lay               | 54         | 4.1                         |            |             |            |                                  | Inte       | ersectio        | on LO     | S                |                        |           | D          |            |
| HCS2000 <sup>TM</sup>                                |                   |            | C                           | opyright © | <br>⊋2000 t | Jniversit  | y of Flor                        | ida,       | All Rights      | s Reserve | ed               |                        |           | 7          | Jersion 4. |

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |               |            |                             |             | SH        | ORT       | REF                            | ò         | RT       |           |           |                                       |                           |                     |           |           |
|------------------------------------------------------|---------------|------------|-----------------------------|-------------|-----------|-----------|--------------------------------|-----------|----------|-----------|-----------|---------------------------------------|---------------------------|---------------------|-----------|-----------|
| General Inf                                          | ormation      |            |                             |             |           |           | Site                           | Inf       | orma     | tior      |           |                                       |                           |                     |           |           |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med           | U<br>05/0  | SAI<br>SAI<br>01/12<br>PEAK |             |           |           | Inter<br>Area<br>Juris<br>Anal | Ty<br>dic | /ре      | ar        |           |                                       | RON I<br>her ard<br>BAD-I | RD.<br>eas<br>NT.#5 | Τ         |           |
| Volume an                                            | d Timing In   | put        |                             | • • •       |           |           |                                |           |          |           |           |                                       |                           |                     |           |           |
|                                                      |               |            |                             | EB          |           |           |                                | VΒ        |          |           |           | NB                                    |                           |                     | SB        |           |
|                                                      |               |            | <u>L</u> T                  | TH          | RT        | LT        | _                              | H         | R        | Γ         | LT        | TH                                    | RT                        | LT                  | TH        | RT        |
| Num. of Lar                                          | nes           |            | 1                           | 2           | 0         | 1         |                                | 2         | 0        |           | 2         | 3                                     | 0                         | 2                   | 3         | 0         |
| Lane group                                           |               |            | L                           | TR          |           | L         |                                | R         |          |           | <u>L</u>  | TR                                    |                           | L                   | TR        |           |
| Volume (vpl                                          |               |            | 65                          | 35          | 50        | 95        | 4                              |           | 110      | )         | 50        | 1115                                  | 35                        | 90                  | 1350      | 120       |
| % Heavy v                                            | eh            |            | 1                           | 1           | 1         | 1         | 1                              |           | 1        |           | 1         | 2                                     | 1                         | 1                   | 2         | 1         |
| PHF                                                  | /^)           |            | 0.95                        | 0.95<br>A   | 0.95<br>A | 0.95<br>A | 0.8                            |           | 0.9s     | 5 (       | 0.95<br>A | 0.95<br>A                             | 0.95<br>A                 | 0.95<br>A           | 0.95<br>A | 0.95<br>A |
| Actuated (P<br>Startup lost                          |               |            | A<br>2.0                    | 2.0         | A         | 2.0       | 2.                             |           | +~       | $\dashv$  | 2.0       | 2.0                                   |                           | 2.0                 | 2.0       |           |
| Ext. eff. gre                                        |               | -          | 2.0                         | 2.0         |           | 2.0       | 2.                             |           | †        | _         | 2.0       | 2.0                                   |                           | 2.0                 | 2.0       | <u> </u>  |
| Arrival type                                         | *****         |            | 4                           | 4           |           | 4         | 4                              | 1         |          |           | 5         | 5                                     |                           | 5                   | 5         |           |
| Unit Extens                                          | ion           |            | 3.0                         | 3.0         |           | 3.0       | 3.                             | .0        |          |           | 3.0       | 3.0                                   |                           | 3.0                 | 3.0       |           |
| Ped/Bike/R <sup>-</sup>                              | TOR Volume    |            | 5                           |             | 0         | 5         |                                |           | 0        |           | 5         | 5                                     | 0                         | 5                   | 5         | 0         |
| Lane Width                                           |               |            | 12.0                        | 12.0        |           | 12.0      | 12                             | 2.0       |          |           | 12.0      | 12.0                                  |                           | 12.0                | 12.0      |           |
| Parking/Gra                                          | de/Parking    |            | N                           | 0           | Ν         | N         |                                | 0         | N        |           | Ν         | 0                                     | Ν                         | N                   | 0         | Ν         |
| Parking/hr                                           |               |            |                             |             | İ         |           |                                |           |          |           |           |                                       |                           |                     |           |           |
| Bus stops/h                                          | r             |            | 0                           | 0           |           | 0         | (                              | 9         |          |           | 0         | 0                                     |                           | 0                   | 0         |           |
| Unit Extens                                          | ion           |            | 3.0                         | 3.0         |           | 3.0       | 3                              | .0        | <u> </u> |           | 3.0       | 3.0                                   |                           | 3.0                 | 3.0       |           |
| Phasing                                              | Excl. Left    | Thru       | & RT                        | 0           | 3         |           | 4                              | _         | Excl.    |           |           | nru & R                               |                           | 07                  |           | 08        |
| Timing                                               | G = 12.0      | G =        |                             | G =         |           | G =       |                                | _         | G = '    | _         |           | = 61.0                                |                           |                     | G =       |           |
|                                                      | Y = 5         | Y =        |                             | Y =         |           | Y =       |                                |           | Y = 5    |           |           | = 6<br>cle Len                        | Y =                       |                     | Y =       |           |
|                                                      | Analysis (hrs |            |                             | I Dal       |           |           | 200                            | \         | 4        |           |           |                                       | guro                      | - 120.              | <u> </u>  |           |
| Lane Gro                                             | up Capac      | ity, C     |                             |             | ay, a     |           |                                | Je        | term     | iina<br>T | llion     |                                       |                           | Τ                   | SB        |           |
| <u> </u>                                             | ·             |            | EB                          | <del></del> |           | т-        | WB                             | _         |          |           | _         | NB                                    | <b>T</b>                  |                     | T         |           |
| Adj. flow rat                                        | e             | 68         | 90                          |             | 10        |           | 163                            | 4         |          | 53        |           | 1211                                  |                           | 95                  | 1547      | ┿         |
| Lane group                                           | сар.          | 179        | 327                         | <u> </u>    | 17        | 9         | 320                            |           |          | 40        | 5         | 2567                                  |                           | 405                 | 2546      |           |
| v/c ratio                                            |               | 0.38       | 0.28                        | 3           | 0.5       | 6 6       | 0.51                           |           |          | 0.1       | 3         | 0.47                                  |                           | 0.23                | 0.61      |           |
| Green ratio                                          | •             | 0.10       | 0.10                        | )           | 0.1       | 0         | 0.10                           |           |          | 0.1       | 2         | 0.51                                  |                           | 0.12                | 0.51      |           |
| Unif. delay                                          | d1            | 50.5       | 50.0                        | )           | 51.       | .5        | 51.2                           |           |          | 47.       | .5        | 19.1                                  |                           | 48.1                | 21.0      |           |
| Delay factor                                         | r k           | 0.11       | 0.11                        | 1           | 0.1       | 6         | 0.12                           |           |          | 0.1       | 11        | 0.11                                  |                           | 0.11                | 0.19      |           |
| Increm. dela                                         | ay d2         | 1.3        | 0.5                         |             | 3.        | 9         | 1.4                            | 1         |          | 0.        | 1         | 0.1                                   |                           | 0.3                 | 0.4       |           |
| PF factor                                            |               | 1.000      | 1.00                        | 0           | 1.0       | 00 1      | .000                           | ヿ         |          | 0.9       | 12        | 0.311                                 |                           | 0.912               | 0.311     |           |
| Control dela                                         | ay            | 51.9       | 50.4                        | 1           | 55.       | .4        | 52.6                           | 丁         |          | 43.       | .5        | 6.1                                   |                           | 44.2                | 6.9       |           |
| ane group LOS D                                      |               | D          | D                           |             | E         |           | D                              |           |          | D         | )         | Α                                     |                           | D                   | Α         |           |
| Apprch. del                                          | ay            |            | 51.1                        |             |           | 53.       | 6                              |           |          |           | 7         | .6                                    |                           |                     | 9.1       |           |
| Approach L                                           | os            | D          |                             |             | D         |           |                                |           |          | ,         | 4         |                                       |                           | Α                   |           |           |
| Intersec. de                                         | elay          |            |                             |             |           | Int       | ersec                          | tion      | LOS      |           |           |                                       | В                         |                     |           |           |
| HCS2000 <sup>TM</sup>                                |               | opyright ( | ⊃ 2000 U                    | Jniversity  | of Flo    | rida,     | All Rig                        | thts R    | leserved |           |           | · · · · · · · · · · · · · · · · · · · |                           | ersion 4.1          |           |           |

 $HCS2000^{\mathrm{TM}}$ 

|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |           | SH        | ORT        | RE            | PO           | RT                             |          |           |               |                           |                     |            |           |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|-----------|-----------|------------|---------------|--------------|--------------------------------|----------|-----------|---------------|---------------------------|---------------------|------------|-----------|
| General Inf                                          | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                             |           |           |            | Site          | Inf          | orma                           | tio      |           |               |                           |                     |            |           |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U:<br>05/0 | SAI<br>SAI<br>01/12<br>PEAK |           |           |            | Area<br>Juri: | a Ty<br>sdic | ction<br>/pe<br>ction<br>s Yea | ar       |           |               | RON I<br>her ard<br>BAD-I | RD.<br>eas<br>NT.#5 | CT         |           |
| Volume an                                            | d Timing In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | put        |                             |           |           |            |               |              |                                |          |           |               |                           |                     |            |           |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             | EB        |           |            |               | WB           |                                |          |           | NB            | •                         |                     | SB         |           |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | LT                          | TH        | RT        | LT         | _             | TH           | R                              | Γ        | LT        | TH            | RT                        | LT                  | TH         | RT        |
| Num. of Lar                                          | nes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 1                           | 2         | 0         | 1          |               | 2            | 0                              | _        | 2         | 3             | 0                         | 2                   | 3          | 0         |
| Lane group                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | L                           | TR        |           | L          |               | TR           |                                |          | L         | TR            |                           | L                   | TR         |           |
| Volume (vpl                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 67                          | 35        | 51        | 95         |               | 45           | 110                            | 2        | 52        | 1115          | 35                        | 90                  | 1350       | 122       |
| % Heavy ve                                           | eh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 1                           | 1         | 1         | 1          |               | 1            | 1                              | _        | 1         | 2<br>0.95     | 1<br>0.95                 | 0.95                | 2<br>0.95  | 1<br>0.95 |
| PHF<br>Actuated (P                                   | //\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0.95<br>A                   | 0.95<br>A | 0.95<br>A | 0.95<br>A  |               | .95<br>A     | 0.9:<br>A                      | 2        | 0.95<br>A | 0.95<br>A     | 0.95<br>A                 | 0.95<br>A           | 0.95<br>A  | 0.95<br>A |
| Startup lost                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2.0                         | 2.0       | ├─        | 2.0        | _             | 2.0          | $+^{\sim}$                     | ᅥ        | 2.0       | 2.0           | /¹_                       | 2.0                 | 2.0        |           |
| Ext. eff. gre                                        | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |            | 2.0                         | 2.0       | <u> </u>  | 2.0        |               | 2.0          | †                              | 1        | 2.0       | 2.0           |                           | 2.0                 | 2.0        |           |
| Arrival type                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 4                           | 4         |           | 4          |               | 4            |                                |          | 5         | 5             |                           | 5                   | 5          |           |
| Unit Extens                                          | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 3.0                         | 3.0       |           | 3.0        | 3             | 3.0          |                                |          | 3.0       | 3.0           |                           | 3.0                 | 3.0        |           |
| Ped/Bike/R                                           | ΓOR Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 5                           |           | 0         | 5          |               |              | 0                              |          | 5         | 5             | 0                         | 5                   | 5          | 0         |
| Lane Width                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 12.0                        | 12.0      |           | 12.0       | ) 1:          | 2.0          |                                |          | 12.0      | 12.0          |                           | 12.0                | 12.0       |           |
| Parking/Gra                                          | de/Parking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | N                           | 0         | N         | N          | $\perp$       | 0            | N                              |          | N         | 0             | N                         | N                   | 0          | N         |
| Parking/hr                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                             |           |           |            |               |              | <u> </u>                       |          |           |               |                           |                     |            |           |
| Bus stops/h                                          | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 0                           | 0         |           | 0          |               | 0            |                                |          | 0         | 0             |                           | 0                   | 0          |           |
| Unit Extens                                          | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 3.0                         | 3.0       |           | 3.0        |               | 3.0          |                                |          | 3.0       | 3.0           |                           | 3.0                 | 3.0        |           |
| Phasing                                              | Excl. Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | & RT                        | 0         | 3         |            | )4            | _            | Excl.                          |          |           | hru & R       | _                         | 07                  | _          | 08        |
| Timing                                               | G = 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G =<br>Y = |                             | G =       |           | G =        |               |              | G = '                          |          |           | = 61.0        | G :                       |                     | G =<br>Y = |           |
| Duration of                                          | Y = 5 Analysis (hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>   | -                           | Υ =       | _:        | Y =        |               |              | 7 – 3                          |          |           | o<br>∕cle Len |                           |                     |            |           |
|                                                      | up Capaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                             | J Dal     | 21/ 2     | nd L       | <u> </u>      | Dai          | torm                           | in:      |           |               | guro                      | 120.                |            |           |
| Larie Gro                                            | up Capaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lty, C     | EB                          |           | ay, a     | IIU L      | WB            | De           | re:                            | <u> </u> | atioi     | NB            |                           | 1                   | SB         |           |
| A all all and a set                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74         |                             |           | +         | <u>α</u> Τ |               | $\neg$       |                                | _        | _         | 1211          | Τ                         | 05                  |            |           |
| Adj. flow rat                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71         | 91                          |           | 10        | -          | 163           | +            |                                | 5        |           |               | ļ                         | 95                  | 1549       |           |
| Lane group                                           | сар.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 179        | 326                         |           | 17        | -          | 320           | _            |                                |          | )5        | 2567          | 1                         | 405                 | 2546       | 4         |
| v/c ratio                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.40       | 0.28                        | 3         | 0.5       | 6          | 0.51          |              |                                | 0.       | 14        | 0.47          | <u> </u>                  | 0.23                | 0.61       |           |
| Green ratio                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10       | 0.10                        |           | 0.1       | 0          | 0.10          |              |                                | 0.       | 12        | 0.51          |                           | 0.12                | 0.51       |           |
| Unif. delay                                          | d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.6       | 50.0                        |           | 51.       | .5         | 51.2          |              |                                | 47       | 7.6       | 19.1          |                           | 48.1                | 21.0       |           |
| Delay factor                                         | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.11       | 0.11                        |           | 0.1       | 6          | 0.12          |              |                                | 0.       | 11        | 0.11          |                           | 0.11                | 0.19       |           |
| Increm. dela                                         | ay d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4        | 0.5                         |           | 3.        | 9          | 1.4           |              |                                | 0.       | .2        | 0.1           |                           | 0.3                 | 0.4        |           |
| PF factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000      | 1.00                        | 0         | 1.0       | 00         | 1.000         | )            |                                | 0.9      | 912       | 0.311         |                           | 0.912               | 0.311      |           |
| Control dela                                         | ay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.1       | 50.5                        | 5         | 55        | .4         | 52.6          |              |                                | 43       | 3.5       | 6.1           |                           | 44.2                | 7.0        |           |
| Lane group LOS D                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | D                           |           | E         |            | D             |              |                                | L        | )         | Α             |                           | D                   | Α          |           |
| Apprch. del                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.2       |                             |           | 53.       | 6          |               |              |                                | 7        | .7        |               |                           | 9.1                 |            |           |
| Approach L                                           | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D          |                             |           | D         |            |               |              |                                |          | 4         |               |                           | Α                   |            |           |
| Intersec. de                                         | lay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                             |           |           | Inte       | ersec         | tior         | ı LOS                          |          |           |               | В                         |                     |            |           |
| HCS2000 <sup>TM</sup>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C          | opyright @                  | ⊃ 2000 U  | Jniversit | v of Flo   | orida.        | All Ris      | zhts I                         | Reserve  | i         |               |                           | 7                   | ersion 4.1 |           |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                   |             |                             |                  | SH        | ORT I       | REPO                                   | RT                |          |           |                   |                                              |                  |                  |           |
|-------------------------------------------------------|-------------------|-------------|-----------------------------|------------------|-----------|-------------|----------------------------------------|-------------------|----------|-----------|-------------------|----------------------------------------------|------------------|------------------|-----------|
| General Inf                                           | ormation          |             |                             |                  |           |             | Site In                                | forn              | natio    | on        |                   |                                              |                  |                  |           |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | ned               | U<br>05/0   | SAI<br>SAI<br>01/12<br>PEAK |                  |           |             | Interse<br>Area T<br>Jurisdi<br>Analys | ype<br>ction      | 1        |           | All of            | RON I<br>ther are<br>RLSBA                   | RD.<br>eas<br>ID | :T               |           |
| Volume an                                             | d Timing Inj      | put         |                             |                  |           |             | · · · · · · · · ·                      |                   |          |           |                   |                                              |                  |                  |           |
|                                                       |                   |             |                             | EB               |           |             | WE                                     |                   |          |           | NB                | 1                                            |                  | SB               |           |
|                                                       |                   |             | LT                          | TH               | RT        | LT          | TH                                     | _                 | <u> </u> | LT        | TH                | RT                                           | LT               | TH               | RT        |
| Num. of Lan                                           | es                |             | 1                           | 2                | 0         | 1           | 2                                      | +                 | 0        | 2         | 3                 | 0                                            | 2                | 3                | 0         |
| Lane group                                            |                   |             | L                           | TR               | <u> </u>  | L           | TR                                     | _                 |          | L         | TR                |                                              | L                | TR               |           |
| Volume (vpl                                           |                   |             | 335                         | 140              | 110       | 140         | 110                                    |                   | 80       | 180       | 1750              | 95                                           | 245              | 1130<br>2        | 230<br>1  |
| % Heavy ve                                            | en                |             | 1<br>0.95                   | 1<br>0.95        | 1<br>0.95 | 0.95        | 0.95                                   |                   | 1<br>95  | 1<br>0.95 | 2<br>0.95         | 1<br>0.95                                    | 1<br>0.95        | <i>∠</i><br>0.95 | 0.95      |
| Actuated (P.                                          | /A)               |             | 0.90<br>A                   | 0.90<br>A        | 0.95<br>A | A           | 10.90<br>A                             | _                 | 4        | 0.90<br>A | A A               | 0.90<br>A                                    | A                | A                | 0.90<br>A |
| Startup lost                                          |                   |             | 2.0                         | 2.0              |           | 2.0         | 2.0                                    | Ĭ                 |          | 2.0       | 2.0               |                                              | 2.0              | 2.0              |           |
| Ext. eff. gree                                        |                   |             | 2.0                         | 2.0              |           | 2.0         | 2.0                                    | T.                |          | 2.0       | 2.0               |                                              | 2.0              | 2.0              |           |
| Arrival type                                          |                   |             | 4                           | 4                |           | 4           | 4                                      | _                 |          | 5         | 5                 |                                              | 5                | 5                | <u> </u>  |
| Unit Extensi                                          |                   |             | 3.0                         | 3.0              |           | 3.0         | 3.0                                    |                   |          | 3.0       | 3.0               |                                              | 3.0              | 3.0              | <u> </u>  |
|                                                       | OR Volume         |             | 5                           |                  | 0         | 5           | 100                                    |                   | 0        | 5         | 5                 | 0.                                           | 5                | 5                | 0         |
| Lane Width                                            |                   |             | 12.0                        | 12.0             |           | 12.0        | 12.0                                   | <del>-</del>      | A /      | 12.0      | 12.0              |                                              | 12.0             | 12.0             | A/        |
| Parking/Gra                                           | de/Parking        |             | N                           | 0                | N         | N           | 0                                      |                   | N        | N         | 0                 | N                                            | N                | 0                | N         |
| Parking/hr                                            |                   |             |                             |                  |           | +           | +-                                     |                   |          | <u> </u>  | +                 |                                              | <del> </del>     |                  | ├─        |
| Bus stops/h                                           |                   |             | 0                           | 0                |           | 0           | 0                                      | +                 |          | 0         | 0                 |                                              | 0                | 0                |           |
| Unit Extensi                                          |                   | Т           | 3.0                         | 3.0              | <u> </u>  | 3.0         | 3.0                                    | <u></u> _         | ·        | 3.0       | 3.0               | <u>                                     </u> | 3.0              | 3.0              | <u></u>   |
| Phasing                                               | Excl. Left        | Thru<br>G = | & RT                        | G =              | 3         | G =         | 4                                      | Ex:               | 1. Le    |           | hru & R<br>= 51.0 |                                              | 07               | G =              | 08        |
| Timing                                                | G = 28.0<br>Y = 5 | Y =         |                             | Y=               |           | Y =         |                                        | <u>G -</u><br>Y = |          |           | ' = 6             | Y =                                          |                  | Y =              | ***       |
| Duration of                                           | Analysis (hrs     |             |                             | •                |           | ·           |                                        |                   |          |           | ycle Len          |                                              |                  |                  |           |
|                                                       | up Capaci         |             |                             | l Dela           | ay, a     | nd LC       | )S De                                  | ter               | mir      | atio      | <b>1</b>          |                                              |                  |                  |           |
|                                                       |                   | Ī           | EB                          |                  | Ť         |             | ΛB                                     |                   |          |           | NB                |                                              |                  | SB               |           |
| Adj. flow rat                                         | <del></del> е     | 353         | 263                         |                  | 14        | 7 3         | 805                                    |                   | 1        | 89        | 1942              | T                                            | 258              | 1431             | <b>T</b>  |
| Lane group                                            |                   | 371         | 496                         | -                | 37        | 1 4         | 181                                    |                   | 3        | 86        | 1901              |                                              | 386              | 1865             |           |
| v/c ratio                                             |                   | 0.95        | 0.53                        | _                | 0.4       | <del></del> | .63                                    |                   | 0        | .49       | 1.02              |                                              | 0.67             | 0.77             | $\top$    |
| Green ratio                                           |                   | 0.21        | 0.15                        | <del>-   -</del> | 0.2       | 1 0         | .15                                    |                   | 0        | .11       | 0.38              |                                              | 0.11             | 0.38             | $\top$    |
| Unif. delay o                                         | <br>11            | 52.8        | 53.2                        | .                | 46.       | 2 5         | 4.1                                    |                   | 5        | 6.4       | 42.0              |                                              | 57.6             | 36.8             |           |
| Delay factor                                          | · k               | 0.46        | 0.13                        | <del>,  </del>   | 0.1       | 1 0         | .21                                    |                   | 0        | .11       | 0.50              |                                              | 0.24             | 0.32             |           |
| Increm. dela                                          |                   | 34.2        | 1.1                         | $\top$           | 0.1       | 7 2         | 2.7                                    |                   | 1        | 0.9       | 25.2              |                                              | 4.4              | 2.0              |           |
| PF factor                                             |                   | 1.000       | 1.00                        | 0                | 1.0       | 00 1.       | 000                                    |                   | 0.       | 917       | 0.595             | Ī                                            | 0.917            | 0.595            |           |
| Control dela                                          | ıy                | 87.1        | 54.2                        | 2                | 46.       | 9 5         | 6.8                                    |                   | 5        | 2.6       | 50.2              |                                              | 57.2             | 23.9             |           |
| Lane group LOS F                                      |                   |             | D                           |                  | D         |             | Ε                                      |                   |          | D         | D                 |                                              | Ε                | С                |           |
| Apprch. delay 73.1                                    |                   |             |                             |                  |           | 53.6        | 3                                      |                   |          | 5         | 0.4               |                                              |                  | 29.0             |           |
| Approach L                                            | os                |             | E                           |                  |           | D           |                                        |                   |          |           | D                 |                                              |                  | С                |           |
| Intersec. de                                          | lay               |             |                             |                  | In        | terse       | ectio                                  | n LOS             | 3        |           |                   | D                                            |                  |                  |           |
| HCS2000 <sup>TM</sup>                                 |                   | 5 2000 I    | Iniversity                  | of Florid        | a. All l  | Rights      | Reserve                                | :d                |          |           | V                 | ersion 4.1                                   |                  |                  |           |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |           |                             |                                              | SH      | ORT         | REP                               | OF           | ₹T          | <del>.</del> |                                               |                      |                          |                                                  |          |             |
|------------------------------------------------------|------------------------|-----------|-----------------------------|----------------------------------------------|---------|-------------|-----------------------------------|--------------|-------------|--------------|-----------------------------------------------|----------------------|--------------------------|--------------------------------------------------|----------|-------------|
| General Inf                                          | ormation               |           |                             |                                              |         |             | Site I                            | nfo          | rmati       | ion          |                                               |                      |                          |                                                  |          |             |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                    | U<br>05/0 | SAI<br>SAI<br>01/12<br>PEAK |                                              |         |             | Inters<br>Area<br>Jurisd<br>Analy | Typ<br>licti | oe<br>ion   | В            |                                               | MAR<br>All of<br>CAI | RON I<br>her an<br>RLSBA | eas                                              |          | :<br>:      |
| Volume an                                            | nd Timing In           | put       |                             |                                              |         |             |                                   |              |             |              |                                               |                      |                          |                                                  | •        |             |
| İ                                                    |                        |           |                             | EB                                           |         | +           | W                                 | _            |             | +            | _                                             | NB                   |                          | <del>                                     </del> | SB       | Lpt         |
| Num. of Lar                                          | nes                    |           | LT<br>1                     | TH<br>2                                      | RT<br>0 | LT<br>1     | Th                                | 닉            | RT<br>0     | L 2          |                                               | TH<br>3              | RT<br>0                  | LT<br>2                                          | TH<br>3  | RT<br>0     |
| Lane group                                           |                        |           | L                           | TR                                           |         | L           | TR                                | , –          |             | L            |                                               | TR                   |                          | L                                                | TR       |             |
| Volume (vp                                           | h)                     |           | 337                         | 140                                          | 112     | 140         | 110                               |              | 180         | 180          | 7                                             | 1750                 | 95                       | 245                                              | 1130     | 231         |
| % Heavy v                                            |                        |           | 1                           | 1                                            | 1       | 1           | 1                                 | ヿ            | 1           | 1            |                                               | 2                    | 1                        | 1                                                | 2        | 1           |
| PHF                                                  |                        |           | 0.95                        | 0.95                                         | 0.95    | 0.95        | 0.9                               | 5            | 0.95        | 0.9          | 5                                             | 0.95                 | 0.95                     | 0.95                                             | 0.95     | 0.95        |
| Actuated (P                                          |                        |           | Α                           | Α                                            | Α       | Α           | Α                                 |              | Α           | Α            |                                               | Α                    | Α                        | Α                                                | Α        | Α           |
| Startup lost                                         |                        |           | 2.0                         | 2.0                                          | <b></b> | 2.0         | 2.0                               |              |             | 2.0          |                                               | 2.0                  | <u> </u>                 | 2.0                                              | 2.0      | <b> </b>    |
| Ext. eff. gre<br>Arrival type                        | en                     |           | 2.0<br>4                    | 2.0<br>4                                     |         | 2.0<br>4    | 2.0<br>4                          | _            |             | 2.0<br>5     | <u>,                                     </u> | 2.0<br>5             |                          | 2.0<br>5                                         | 2.0<br>5 | ╀           |
| Unit Extens                                          | ion                    |           | 3.0                         | 3.0                                          |         | 3.0         | 3.0                               | ,            |             | 3.0          | 7                                             | 3.0                  |                          | 3.0                                              | 3.0      |             |
|                                                      | TOR Volume             |           | 5                           | 0.0                                          | 0       | 5           | 10.0                              | $\dashv$     | 0           | 5            | _                                             | 5                    | 0                        | 5                                                | 5        | 0           |
| Lane Width                                           |                        | :         | 12.0                        | 12.0                                         | ۲       | 12.0        | 12.0                              | 5            |             | 12.          | 0                                             | 12.0                 | Ť                        | 12.0                                             | 12.0     | <del></del> |
| Parking/Gra                                          | de/Parking             |           | Ν                           | 0                                            | Ν       | N           | 0                                 | コ            | Ν           | Ν            |                                               | 0                    | Ν                        | N                                                | 0        | Ν           |
| Parking/hr                                           |                        |           |                             |                                              |         |             |                                   |              |             |              |                                               |                      |                          |                                                  |          |             |
| Bus stops/h                                          | r                      |           | 0                           | 0                                            |         | 0           | 0                                 |              |             | 0            |                                               | 0                    |                          | 0                                                | 0        |             |
| Unit Extens                                          | ion                    |           | 3.0                         | 3.0                                          |         | 3.0         | 3.0                               | )            |             | 3.0          | )                                             | 3.0                  |                          | 3.0                                              | 3.0      |             |
| Phasing                                              | Excl. Left             |           | & RT                        | 0:                                           | 3       | 04          | 4                                 | Ē            | xcl. L      |              |                                               | ıru & R              |                          | 07                                               |          | 38          |
| Timing                                               | G = 28.0<br>Y = 5      | G =       |                             | G =                                          |         | G =         |                                   |              | = 15        |              |                                               | = 51.0               | G :                      |                                                  | G =      |             |
| Duration of                                          | Y = 5<br>Analysis (hrs | Y = 0.3   |                             | Υ =                                          |         | Y =         |                                   | <u> </u>     | = 5         |              |                                               | = 6                  | Y =                      | = 135.                                           | Y =      |             |
|                                                      | up Capaci              |           |                             | i Dal                                        | av a    | nd I C      | )S D                              | otc          | rmi         |              |                                               | JIE LEIT             | guio                     | - 100.                                           | 0        |             |
| Lane Olo                                             | up Capaci              | ly, C     | EB                          | -                                            | ay, a   |             | NB                                | 3 10         | 7,11111     | iatic        | <u> </u>                                      | NB                   |                          | I                                                | SB       | <u> </u>    |
| Adj. flow rat                                        | Α                      | 355       | 265                         |                                              | 14      |             | 05                                | Τ            |             | 189          | Ţ.                                            | 1942                 | I                        | 258                                              | 1432     | <u> </u>    |
| Lane group                                           |                        | 371       | 495                         |                                              | 37      |             | 81                                | 十            | _           | 386          | +                                             | 1901                 |                          | 386                                              | 1865     | +           |
| v/c ratio                                            | - Cup.                 | 0.96      | 0.54                        |                                              | 0.4     |             | .63                               | $\dagger$    | -           | 0.49         | +                                             | 1.02                 |                          | 0.67                                             | 0.77     | +           |
| Green ratio                                          |                        | 0.21      | 0.15                        | <del></del>                                  | 0.2     |             | .15                               | T            |             | 0.11         | -                                             | 0.38                 | -                        | 0.11                                             | 0.38     | +           |
| Unif. delay o                                        | <u></u><br>            | 52.9      | 53.2                        | ?                                            | 46.     |             | 4.1                               | T            |             | 6.4          | 1                                             | 42.0                 |                          | 57.6                                             | 36.8     | +           |
| Delay factor                                         | ·k                     | 0.47      | 0.14                        | <u>.                                    </u> | 0.1     | 1 0         | .21                               | T            | 0           | ).11         | 1                                             | 0.50                 |                          | 0.24                                             | 0.32     | $\top$      |
| Increm. dela                                         | ay d2                  | 35.5      | 1.1                         |                                              | 0.      | 7 2         | 2.7                               | T            |             | 0.9          | 7                                             | 25.2                 | :                        | 4.4                                              | 2.0      | 1           |
| PF factor                                            |                        |           | 1.00                        | 0                                            | 1.0     | 00 1.       | 000                               | Γ            | 0           | .917         | (                                             | 0.595                |                          | 0.917                                            | 0.595    |             |
| Control dela                                         | ontrol delay 88.       |           |                             | 3                                            | 46.     | 9 5         | 6.8                               |              | 5           | 52.6         | ,                                             | 50.2                 |                          | 57.2                                             | 23.9     |             |
| Lane group                                           | ine group LOS F        |           |                             |                                              | D       |             | E                                 |              |             | D            |                                               | D                    |                          | Ε                                                | С        |             |
| Apprch. dela                                         | ay                     | - 7       | 73.8                        |                                              |         | 53.6        |                                   |              |             |              | 50.                                           | 4                    |                          |                                                  | 29.0     |             |
| Approach L                                           | os                     |           | E                           |                                              |         | D           |                                   |              |             |              | D                                             |                      |                          |                                                  | С        |             |
| Intersec. de                                         | lay                    |           | 46.3                        |                                              |         |             | Ir                                | iter         | section     | on LC        | S                                             |                      |                          | <u></u>                                          | D        |             |
| теспросоТМ                                           |                        |           | ~                           |                                              | r       | nisterci ta | 0.001                             |              | 11 75 1 1 4 | -            |                                               |                      |                          |                                                  |          | arcion 4.1  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                        |            |                             |              | SH                                               | ORT R        | REPC                                             | RT           |                                                   |          |          |          |                                                  |              |          |                        |
|-------------------------------------------------------|------------------------|------------|-----------------------------|--------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|---------------------------------------------------|----------|----------|----------|--------------------------------------------------|--------------|----------|------------------------|
| General Inf                                           | ormation               |            |                             |              |                                                  |              | ite In                                           |              |                                                   | on       |          |          |                                                  |              |          |                        |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | Co.<br>med             | U.<br>05/1 | SAI<br>SAI<br>10/12<br>PEAK |              |                                                  | Ir<br>A<br>J | nterse<br>rea T<br>urisdi                        | ction<br>ype | n<br>n                                            |          | (        | CARLS    | SBAD \<br>her are<br>BAD-II                      | /ILL.<br>eas | Τ        |                        |
| Volume an                                             | d Timing In            | out        |                             |              |                                                  | r            |                                                  |              |                                                   |          |          |          |                                                  |              |          |                        |
| voidino di                                            | a mining m             | -          |                             | EB           |                                                  | Ι            | WB                                               | ,            |                                                   |          |          | NB       |                                                  |              | SB       |                        |
|                                                       |                        |            | LT                          | TH           | RT                                               | LT           | TH                                               |              | RT                                                | LT       | •        | TH       | RT                                               | LT           | TH       | RT                     |
| Num. of Lan                                           | ies                    |            | 1                           | 2            | 0                                                | 1            | 2                                                | $\mathbf{I}$ | 0                                                 | 1        |          | 3        | 0                                                | 1            | 3        | 0                      |
| Lane group                                            |                        |            | L                           | TR           |                                                  | L            | TR                                               |              |                                                   | L        |          | TR       |                                                  | L            | TR       |                        |
| Volume (vpl                                           | n)                     |            | 130                         | 115          | 60                                               | 75           | 580                                              | 1            | 50                                                | 40       |          | 795      | 25                                               | 110          | 1350     | 65                     |
| % Heavy ve                                            |                        | ,          | 1                           | 1            | 1                                                | 1            | 1                                                |              | 1                                                 | 1        |          | 2        | 1                                                | 1            | 2        | 1                      |
| PHF                                                   |                        |            | 0.95                        | 0.95         | 0.95                                             | 0.95         | 0.95                                             | _            | .95                                               | 0.9      | 5        | 0.95     | 0.95                                             | 0.95         | 0.95     | 0.95                   |
| Actuated (P.                                          |                        |            | Α                           | Α            | Α                                                | Α            | Α                                                |              | Α                                                 | Α        |          | Α        | Α                                                | Α            | Α        | Α                      |
| Startup lost                                          |                        |            | 2.0                         | 2.0          |                                                  | 2.0          | 2.0                                              |              |                                                   | 2.0      |          | 2.0      |                                                  | 2.0          | 2.0      |                        |
| Ext. eff. gree                                        | en                     |            | 2.0                         | 2.0          |                                                  | 2.0          | 2.0                                              | 4            |                                                   | 2.0      | )        | 2.0      |                                                  | 2.0          | 2.0      |                        |
| Arrival type                                          |                        |            | 4                           | 4            |                                                  | 4            | 4                                                | +            |                                                   | 3.0      |          | 5<br>3.0 |                                                  | 5<br>3.0     | 5<br>3.0 | $\vdash \vdash \vdash$ |
| Unit Extensi                                          | on<br>FOR Volume       |            | 3.0<br>5                    | 3.0          | 0                                                | 3.0<br>5     | 3.0                                              | +            | 0                                                 | 5.0      | _        | 5        | 0                                                | 5            | 5        | 0                      |
| Lane Width                                            | IOR Volume             |            | 12.0                        | 12.0         | <del>                                     </del> | 12.0         | 12.0                                             | <del>-</del> |                                                   | 12.0     | 2        | 12.0     | _                                                | 12.0         | 12.0     | <del>ا</del>           |
| Parking/Gra                                           | de/Parking             |            | N                           | 0            | N                                                | N            | 0                                                | -            | Ν                                                 | N        |          | 0        | N                                                | N            | 0        | N                      |
| Parking/hr                                            | <u></u>                |            |                             |              |                                                  |              | <del>                                     </del> | $\top$       |                                                   |          |          |          |                                                  | <del> </del> |          |                        |
| Bus stops/h                                           | r                      |            | 0                           | 0            |                                                  | 0            | 0                                                |              |                                                   | 0        |          | 0        |                                                  | 0            | 0        |                        |
| Unit Extensi                                          | stops/hr 0             |            |                             |              |                                                  | 3.0          | 3.0                                              | Τ            |                                                   | 3.0      | )        | 3.0      |                                                  | 3.0          | 3.0      |                        |
| Phasing                                               | Excl. Left             | Thru       | & RT                        | 0:           | 3                                                | 04           |                                                  | Ex           | cl. L                                             | eft      | Th       | ru & R   |                                                  | 07           |          | 08                     |
| Timing                                                | G = 17.0               | G =        |                             | G =          |                                                  | G=           |                                                  |              | = 14                                              |          |          | = 48.0   |                                                  |              | G =      |                        |
|                                                       | Y = 5<br>Analysis (hrs | Y =        |                             | Y =          |                                                  | Y =          |                                                  | Y =          | : 5                                               |          | _        | = 6      | qth C =                                          | = 130.       | Y =      |                        |
|                                                       | up Capaci              |            |                             | l Dal        | 274 0                                            | 24 I O       | e Da                                             | tor          | mir                                               |          | _        | JE LEII  | gui O ·                                          | - 100.       |          |                        |
| Latte GIO                                             | up Capaci              | lty, C     | EB                          | n Dei        | ay, a                                            |              | VB                                               | tei          | <del>                                      </del> | iauc     | <u> </u> | NB       |                                                  | l            | SB       |                        |
| ۸ ما: ۱۵ م                                            |                        | 407        | 184                         |              | 79                                               |              | 59                                               |              | $\dashv$                                          | 42       | Т        | 863      | 1                                                | 116          | 1489     |                        |
| Adj. flow rat                                         |                        | 137        | _                           |              | 23                                               |              | ) <del>9</del><br>)1                             | _            |                                                   | 192      | +        | 865      | <del>                                     </del> | 192          | 1860     | +                      |
| Lane group                                            | сар.                   | 234        | 784                         |              | _                                                |              |                                                  | _            | -                                                 |          | +        |          | $\vdash$                                         | 0.60         | 0.80     | +                      |
| v/c ratio                                             |                        | 0.59       | 0.23                        |              | 0.3                                              |              | 96                                               |              | -                                                 | ).22     | -        | 0.46     |                                                  | 0.00         | 0.37     |                        |
| Green ratio                                           |                        | 0.13       | 0.23                        |              | 0.1                                              |              | 23                                               |              | <del>-</del>                                      | ).11     | -        | 0.37     |                                                  |              |          |                        |
| Unif. delay                                           |                        | 53.2       | 40.7                        |              | 51.                                              |              | 9.4                                              |              |                                                   | 3.0      | -        | 31.2     | <del> </del>                                     | 55.4         | 36.7     |                        |
| Delay factor                                          |                        | 0.18       | 0.11<br>0.2                 | _            | 0.1                                              |              | 47                                               | <u> </u>     | -                                                 | ).11     | -        | 0.11     | -                                                | 0.19         | 0.34     | +-                     |
|                                                       | ay factor k            |            |                             |              | 0.9                                              |              | 2.5                                              |              |                                                   | 0.5      | -        | 0.2      | <u> </u>                                         | 4.8          | 2.3      | _                      |
| PF factor                                             | factor 1.000           |            |                             | 0            | 1.0                                              |              | 000                                              | <u></u>      | 0                                                 | .920     | (        | 0.610    |                                                  | 0.920        | 0.610    |                        |
| Control dela                                          | ay                     | 56.9       | 40.8                        | 3            | 52.                                              | 2 71         | 1.9                                              |              | 4                                                 | 9.3      | 1        | 19.2     | <u> </u>                                         | 55.7         | 24.7     |                        |
| Lane group                                            | LOS                    | Ε          | D                           |              | D                                                | I            | <u> </u>                                         |              |                                                   | D        |          | В        |                                                  | Ε            | С        |                        |
| Apprch, dela                                          | ay                     |            | 47.7                        |              |                                                  | 70.1         |                                                  |              |                                                   |          | 20.      | 6        |                                                  |              | 27.0     |                        |
| Approach L                                            | os                     |            |                             | Е            |                                                  |              |                                                  |              | С                                                 |          |          |          | С                                                |              |          |                        |
| Intersec. de                                          | lay                    |            | 37.1                        |              |                                                  |              | ln                                               | ters         | ectio                                             | on LC    | S        |          |                                                  |              | D        |                        |
| HC52000TM                                             | -                      |            |                             | a symiothe @ | 3000 I                                           | niversity o  | f Elorida                                        | A 11         | Diahts                                            | n D Anar | rad.     |          |                                                  |              | 1        | ersion 4.1             |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                                          |          |                             |               | SH       | ORT       | REP                               | OI                                           | RT                |            |                 |                          | ,                          |              |           |          |
|------------------------------------------------------|--------------------------------------------------------------------------|----------|-----------------------------|---------------|----------|-----------|-----------------------------------|----------------------------------------------|-------------------|------------|-----------------|--------------------------|----------------------------|--------------|-----------|----------|
| General In                                           | formation                                                                |          |                             |               |          |           | Site I                            | nfc                                          | ormal             | tion       |                 |                          |                            |              |           |          |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med :                                                                    | U<br>05/ | SAI<br>SAI<br>10/12<br>PEAK |               |          |           | Inters<br>Area<br>Juriso<br>Analy | Ty <sub>l</sub>                              | pe<br>ion         | r <i>E</i> | (               | CARLS<br>All of<br>CARLS | SBAD<br>ther are<br>BAD-li | eas          | СТ        |          |
| Volume ar                                            | nd Timing In                                                             | put      |                             |               |          |           |                                   |                                              |                   |            |                 |                          |                            |              |           | - 0      |
|                                                      |                                                                          |          | L                           | EB            | 1        | +         | W                                 |                                              | 1 ==              |            |                 | NB                       |                            | <del> </del> | SB        |          |
| Num, of La                                           | 200                                                                      |          | LT<br>1                     | TH<br>2       | RT<br>0  | LT<br>1   | TI                                |                                              | RT<br>0           |            | _T<br>1         | TH<br>3                  | RT<br>0                    | LT<br>1      | TH<br>3   | RT<br>0  |
|                                                      |                                                                          |          | <del></del>                 |               | -        | +         | -                                 |                                              | 10                | -          |                 |                          | "                          |              |           | ┵        |
| Lane group                                           |                                                                          |          | L 400                       | TR            | - 00     | L         | TF                                |                                              | 454               |            | L               | TR                       | 00                         | L            | TR        | 05       |
| Volume (vp<br>% Heavy v                              |                                                                          |          | 130                         | 115<br>1      | 60<br>1  | 76<br>1   | 58.<br>1                          |                                              | 151<br>1          |            | ! <u>0</u><br>1 | 795<br>2                 | 26<br>1                    | 111          | 1350<br>2 | 65<br>1  |
| PHF                                                  | 611                                                                      |          | 0.95                        | 0.95          | 0.95     | 0.95      |                                   |                                              | 0.95              | _          | 95              | 0.95                     | 0.95                       | 0.95         | 0.95      | 0.95     |
| Actuated (F                                          | P/A)                                                                     |          | A                           | A             | A        | A         | A                                 |                                              | A                 | _          | 4               | A                        | A                          | A            | A         | A        |
| Startup lost                                         |                                                                          | 2.0      |                             | 2.0           | 2.0      |           |                                   |                                              | .0                | 2.0        |                 | 2.0                      | 2.0                        |              |           |          |
| Ext. eff. gre                                        |                                                                          | 2.0      |                             | 2.0           | 2.0      | )         |                                   | _                                            | .0                | 2.0        |                 | 2.0                      | 2.0                        |              |           |          |
| Arrival type                                         |                                                                          | 4        | <u> </u>                    | 4             | 4        |           |                                   |                                              | 5                 | 5          |                 | 5                        | 5                          |              |           |          |
| Unit Extens                                          |                                                                          |          | 3.0                         | 3.0           |          | 3.0       | 3.0                               | <u>)                                    </u> |                   |            | .0              | 3.0                      |                            | 3.0          | 3.0       |          |
|                                                      | TOR Volume                                                               | 5        | 12.0                        | 0             | 5        | - 1       | _                                 | 0                                            | _                 | 5          | 5               | 0                        | 5                          | 5            | 0         |          |
|                                                      |                                                                          |          |                             |               |          | 12.0      | _                                 |                                              |                   | -          | 2.0             | 12.0                     | A /                        | 12.0         | 12.0      | <b>.</b> |
| -                                                    |                                                                          |          |                             |               |          | N         | 10                                | <u>'</u>                                     | N                 | +          | V               | 0                        | N                          | N            | 0         | N        |
|                                                      | king/hr 0                                                                |          |                             |               |          | +_        | +                                 | _                                            |                   | +          |                 |                          | <b></b>                    | <del> </del> |           | <b>-</b> |
|                                                      | king/hr           s stops/hr         0           t Extension         3.0 |          |                             |               |          | 0         |                                   |                                              |                   | —          |                 |                          | <b> </b>                   | <del>-</del> | 0         |          |
|                                                      |                                                                          | T        |                             | 3.0           | <u> </u> | 3.0       |                                   |                                              |                   |            |                 | 3.0                      | <u></u>                    |              |           |          |
| Phasing                                              | Excl. Left<br>G = 17.0                                                   | G =      | & RT                        | 00<br>G =     | 3        | 0.<br>G = | 4                                 |                                              | =XCI. I           |            |                 | ru & R<br>= 48.0         |                            | 07           | G =       | 08       |
| Timing                                               | Y = 5                                                                    | Y =      |                             | Y =           |          | Y =       |                                   | _                                            | ' = 5             | 7.0        |                 | - 40.0<br>- 6            | Y =                        |              | Y =       |          |
| Duration of                                          | Analysis (hrs                                                            |          |                             |               |          |           |                                   |                                              |                   |            |                 |                          | gth C =                    | = 130.       | 0         |          |
| Lane Gro                                             | up Capac                                                                 | ity, C   | ontro                       | l Dela        | ay, a    | nd LC     | )S D                              | et                                           | ermi              | nat        | ion             |                          |                            |              |           |          |
|                                                      |                                                                          |          | EB                          |               | Ī        |           | WB                                |                                              |                   |            |                 | NB                       |                            |              | SB        |          |
| Adj. flow rat                                        | te                                                                       | 137      | 184                         |               | 80       | 7         | 70                                | Τ                                            |                   | 42         |                 | 864                      | T                          | 117          | 1489      | T        |
| Lane group                                           |                                                                          | 234      | 784                         |               | 23       |           | 301                               | T                                            |                   | 192        | $\rightarrow$   | 1864                     |                            | 192          | 1860      | +        |
| v/c ratio                                            | ,                                                                        | 0.59     | 0.23                        |               | 0.3      |           | .96                               | +                                            |                   | 0.22       |                 | 0.46                     |                            | 0.61         | 0.80      | +-       |
| Green ratio                                          |                                                                          | 0.13     | 0.23                        |               | 0.1      |           | .23                               | $\dagger$                                    | $\longrightarrow$ | 0.11       |                 | 0.37                     |                            | 0.11         | 0.37      | +        |
| Unif. delay                                          |                                                                          | 53.2     | 40.7                        | ,             | 51.      | 4 4       | 9.4                               | Ť                                            |                   | 53.0       |                 | 31.2                     |                            | 55.4         | 36.7      | †        |
| Delay factor                                         | r k                                                                      | 0.18     | 0.11                        | 1             | 0.1      | 1 0       | .47                               | Ť                                            |                   | 0.11       |                 | 0.11                     |                            | 0.20         | 0.34      | 1        |
| Increm. dela                                         | <del></del>                                                              | 3.8      | 0.2                         | <u> </u>      | 0.9      | 9 2       | 2.7                               | $\dagger$                                    |                   | 0.5        | $\neg$          | 0.2                      |                            | 5.0          | 2.3       | <b>†</b> |
| PF factor                                            |                                                                          | 1.000    | 1.00                        | 0             | 1.0      | 00 1.     | 000                               | T                                            | (                 | 0.920      | ) (             | 0.610                    |                            | 0.920        | 0.610     | †        |
| Control dela                                         | ay                                                                       | 56.9     | 40.8                        |               | 52.      | 3 7       | 2.2                               | T                                            |                   | 49.3       | 寸               | 19.2                     |                            | 55.9         | 24.7      |          |
| Lane group                                           | LOS                                                                      | Е        | D                           |               | D        |           | E                                 | Ť                                            |                   | D          | 一               | В                        |                            | Ε            | С         |          |
| Apprch. del                                          | ay                                                                       |          | 47.7                        |               | $\top$   | 70.3      | }                                 |                                              |                   |            | 20.             | 6                        | -                          |              | 27.0      |          |
| Approach L                                           | ip LOS <i>E D</i> elay 47.7                                              |          |                             |               | 1        | Е         |                                   |                                              |                   |            | С               |                          |                            |              | С         |          |
| Intersec. de                                         | proach LOS D ersec. delay 37.2                                           |          |                             |               |          |           | lt                                | nte                                          | rsecti            | on L       | os              |                          |                            |              | D         |          |
| HCS2000TM                                            |                                                                          | -        |                             | ماداد المدادة | 1000 TI  | niversity |                                   |                                              |                   |            |                 |                          |                            | -            |           | ersion 4 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |               |            |                             |            | SH           | ORT F | REPO                                  | R          | T            |       |     | ·                        |                                                  |       |       |             |
|-------------------------------------------------------|---------------|------------|-----------------------------|------------|--------------|-------|---------------------------------------|------------|--------------|-------|-----|--------------------------|--------------------------------------------------|-------|-------|-------------|
| General Inf                                           | ormation      |            |                             |            |              |       | Site In                               | _          |              | on    |     |                          |                                                  |       |       |             |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | Co.<br>med    | U.<br>05/0 | SAI<br>SAI<br>01/12<br>PEAK |            |              | 4     | nterse<br>Area T<br>Iurisdi<br>Analys | yp<br>ctic | e<br>on      | В     | (   | CARLS<br>All of<br>CARLS | SBAD<br>her a<br>BAD-                            | reas  | ЭT    |             |
| Volume an                                             | d Timing Inp  | out        |                             |            |              |       |                                       |            |              |       |     |                          |                                                  |       |       |             |
|                                                       |               |            |                             | EΒ         |              |       | WE                                    | 3          |              |       |     | NB                       |                                                  |       | SB    |             |
|                                                       |               |            | L                           | TH         | RT           | LT    | TH                                    | _          | RT           | LT    |     | TH                       | RT                                               | LT    | TH    | RT          |
| Num. of Lar                                           | nes           |            | 1                           | 2          | 0            | 1     | 2                                     |            | 0            | 1     |     | 3                        | 0                                                | 1     | 3     | 0           |
| Lane group                                            |               |            | L                           | TR         |              | L     | TR                                    |            |              | L     |     | TR                       |                                                  | L     | TR    |             |
| Volume (vpl                                           | n)            |            | 155                         | 295        | 65           | 45    | 235                                   |            | 155          | 110   | _   | 1530                     | 70                                               | 205   | 1045  | 130         |
| % Heavy ve                                            | eh            |            | 1                           | 1          | 1            | 1     | 1                                     | _          | 1            | 1     | _   | 2                        | 1                                                | 1     | 2     | 1           |
| PHF                                                   |               |            | 0.95                        | 0.95       | 0.95         | 0.95  | 0.95                                  | 1          | 0.95         | 0.95  | _   | 0.95                     | 0.95                                             | 0.95  | 0.95  | 0.95        |
| Actuated (P                                           |               |            | A                           | A          | <u> </u>     | A     | A                                     | 4          | A            | A     | _   | A                        | Α                                                | A     | A     | Α           |
| Startup lost                                          |               |            | 2.0<br>2.0                  | 2.0<br>2.0 |              | 2.0   | 2.0<br>2.0                            | 4          |              | 2.0   | _   | 2.0<br>2.0               |                                                  | 2.0   | 2.0   |             |
| Ext. eff. gree<br>Arrival type                        | en            |            | 2.0<br>4                    | 4          | <del> </del> | 4     | 4                                     |            |              | 5     |     | 5                        |                                                  | 5     | 5     |             |
| Unit Extensi                                          | ion           |            | 3.0                         | 3.0        |              | 3.0   | 3.0                                   | +          | -            | 3.0   | ,   | 3.0                      | <del>                                     </del> | 3.0   | 3.0   |             |
|                                                       | ΓOR Volume    |            | 5                           | 0.0        | 0            | 5     | + 0.0                                 | $\dashv$   | 0            | 5     | -   | 5                        | 0                                                | 5     | 5     | 0           |
| Lane Width                                            | TOR Volume    |            | 12.0                        | 12.0       |              | 12.0  | 12.0                                  | 7          |              | 12.0  | )   | 12.0                     | Ť                                                | 12.0  | 12.0  | Ť           |
| Parking/Gra                                           | de/Parking    |            | N                           | 0          | N            | N     | 0                                     |            | N            | N     |     | 0                        | N                                                | N     | 0     | N           |
| Parking/hr                                            |               |            |                             |            |              |       | 1                                     | T          |              |       |     |                          |                                                  |       |       |             |
| Bus stops/h                                           | r             |            | 0                           | 0          |              | 0     | 0                                     | 寸          |              | 0     |     | 0                        |                                                  | 0     | 0     |             |
| Unit Extens                                           |               | •          | 3.0                         | 3.0        | <u> </u>     | 3.0   | 3.0                                   | T          |              | 3.0   |     | 3.0                      |                                                  | 3.0   | 3.0   |             |
| Phasing                                               | Excl. Left    | Thru       | & RT                        | 0:         | 3            | 04    |                                       | E          | xcl. L       | .eft  | Th  | ru & R                   | <del>.</del>                                     | 07    |       | 08          |
|                                                       | G = 17.0      | G =        |                             | G =        |              | G =   |                                       | G          | = 14         | .0    | G : | = 48.0                   |                                                  |       | G =   |             |
| Timing                                                | Y = 5         | Y =        |                             | Y =        |              | Y =   |                                       | Υ          | = 5          |       | _   | = 6                      | Υ                                                |       | Y =   |             |
|                                                       | Analysis (hrs |            |                             |            |              |       | ***                                   |            |              |       | _   | de Len                   | gth C                                            | = 130 | .0    |             |
| Lane Gro                                              | up Capaci     | ty, C      | ontro                       | ol Dela    | ay, a        | nd LC | S De                                  | ete        | <u>ermir</u> | natio | n   |                          |                                                  |       |       |             |
|                                                       |               |            | EB                          |            |              | ٧     | VB                                    |            |              |       |     | NB                       |                                                  |       | SB    |             |
| Adj. flow rat                                         | е             | 163        | 379                         |            | 47           | 7 4   | 10                                    |            | 1            | 116   | 7   | 1685                     |                                                  | 216   | 1237  |             |
| Lane group                                            | cap.          | 234        | 804                         | !          | 23           | 4 7   | 77                                    |            |              | 192   | 7   | 1861                     |                                                  | 192   | 1841  |             |
| v/c ratio                                             |               | 0.70       | 0.47                        | 7          | 0.2          | 0 0.  | 53                                    |            | (            | 0.60  | ľ   | 0.91                     |                                                  | 1.13  | 0.67  |             |
| Green ratio                                           |               | 0.13       | 0.23                        | 3          | 0.1          | 3 0.  | 23                                    |            | (            | ).11  | I   | 0.37                     |                                                  | 0.11  | 0.37  |             |
| Unif. delay                                           | d1            | 54.0       | 43.2                        | 2          | 50.          | 4 4.  | 3.8                                   |            | 5            | 55.4  | Ţ   | 38.8                     |                                                  | 58.0  | 34.4  |             |
| Delay factor                                          | ·k            | 0.26       | 0.11                        | 1          | 0.1          | 1 0.  | 13                                    | ľ          | (            | 0.19  | Ţ   | 0.43                     |                                                  | 0.50  | 0.24  |             |
| Increm. dela                                          | ay d2         | 8.7        | 0.4                         |            | 0.4          | 4 C   | .7                                    |            |              | 5.3   | T   | 6.8                      |                                                  | 102.5 | 1.0   |             |
| PF factor                                             |               | 1.000      | 1.00                        | 00         | 1.0          | 00 1. | 000                                   |            | 0            | .920  | (   | 0.610                    |                                                  | 0.920 | 0.610 |             |
| Control dela                                          | ay            | 62.8       | 43.6                        | 3          | 50.          | 9 4   | 4.5                                   |            |              | 6.2   | Ţ   | 30.5                     |                                                  | 155.9 | 21.9  |             |
| Lane group                                            | LOS           | Ε          | D                           |            | D            | ,     | D                                     |            |              | E     | 1   | С                        |                                                  | F     | С     |             |
| Apprch. del                                           | ay            | •          |                             | 45.1       |              |       |                                       |            | 32.          | .2    |     |                          | 41.9                                             |       |       |             |
| Approach L                                            | os            |            | D                           |            |              | D     |                                       | •          |              |       | С   | ;                        |                                                  |       | D     |             |
| Intersec. de                                          | lay           |            | 39.1                        |            | $\top$       |       | Ir                                    | iter       | section      | on LO | S   |                          |                                                  |       | D     |             |
| ridge og eTM                                          | -             |            |                             | angiaht (  |              |       | 0.221                                 |            | 11 75 1 .    |       |     | ********                 |                                                  | -     |       | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Short Report

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |            | SH                          | ORT         | RE                | ΕPO         | RT                    |                                  |              |           |             |                                          |                  |                          |                       |          |            |
|------------------------------------------------------|------------------------|------------|-----------------------------|-------------|-------------------|-------------|-----------------------|----------------------------------|--------------|-----------|-------------|------------------------------------------|------------------|--------------------------|-----------------------|----------|------------|
| General Inf                                          | ormation               | •          |                             |             |                   |             | Site                  | e Int                            | forn         | natio     | on          |                                          |                  |                          |                       |          |            |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med<br>i               | 05/0<br>PM | SAI<br>SAI<br>01/12<br>PEAK |             |                   |             | Are<br>Jur            | erse<br>ea Ty<br>risdic<br>alysi | ype<br>ction |           | BC          | EL CAI<br>CARL<br>All o<br>CARLS<br>ALT2 | SE<br>the<br>SB/ | BAD \<br>er are<br>AD-II | VILL.<br>eas<br>NT.#6 | СТ       |            |
| Volume an                                            | d Timing In            | put        |                             |             |                   |             |                       | Ma                               |              |           |             | N.D.                                     |                  |                          | 1                     |          |            |
|                                                      |                        |            | LT                          | EB<br>TH    | RT                | LT          |                       | WB<br>TH                         |              | RT        | LT          | NB<br>TH                                 | _                | RT                       | LT                    | SB<br>TH | RT         |
| Num. of Lar                                          | nes                    |            | 1                           | 2           | 0                 | 1           | 十                     | 2                                | _            | )         | 1           | 3                                        | $\dagger$        | 0                        | 1                     | 3        | 0          |
| Lane group                                           |                        |            | L                           | TR          |                   | L           | 十                     | TR                               |              |           | L           | TR                                       | †                |                          | L                     | TR       |            |
| Volume (vp                                           |                        |            | 155                         | 295         | 65                | 46          |                       | 235                              | 13           | 56        | 110         | 1530                                     | t                | 71                       | 206                   | 1045     | 130        |
| % Heavy v                                            |                        |            | 1                           | 1           | 1                 | 1           | Ť                     | 1                                | -            | 1         | 1           | 2                                        | t                | 1                        | 1                     | 2        | 1          |
| PHF                                                  |                        |            | 0.95                        | 0.95        | 0.95              | 0.95        | 5 0                   | 0.95                             | 0.           | 95        | 0.95        | 0.95                                     | 0                | .95                      | 0.95                  | 0.95     | 0.95       |
| Actuated (P                                          |                        |            | Α                           | Α           | Α                 | Α           |                       | Α                                |              | 4         | Α           | Α                                        | I                | Α                        | Α                     | Α        | Α          |
| Startup lost                                         |                        |            | 2.0                         | 2.0         | <u> </u>          | 2.0         |                       | 2.0                              | _            |           | 2.0         | 2.0                                      | ╀                |                          | 2.0                   | 2.0      |            |
| Ext. eff. gre                                        | en                     |            | 2.0                         | 2.0<br>4    |                   | 2.0         |                       | 2.0                              | -            |           | 2.0         | 2.0                                      | ╀                |                          | 2.0                   | 2.0<br>5 |            |
| Arrival type Unit Extens                             | ion                    |            | <i>4</i><br>3.0             | 3.0         |                   | 3.0         | +                     | <i>4</i><br><i>3.0</i>           | +            |           | 5<br>3.0    | 5<br>3.0                                 | ╁                |                          | 5<br>3.0              | 3,0      |            |
|                                                      | TOR Volume             |            | 5                           | 3.0         | 0                 | 5.0         | +                     | 3.0                              | +            | )         | 5           | 5                                        | ╁                | 0                        | 5                     | 5        | 0          |
| Lane Width                                           | . Olt Volanio          | :          | 12.0                        | 12.0        | Ť                 | 12.0        | ) 1                   | 12.0                             | Ť            | _         | 12.0        |                                          | t                | <u> </u>                 | 12.0                  | 12.0     |            |
| Parking/Gra                                          | de/Parking             |            | Ν                           | 0           | N                 | N           |                       | 0                                | ,            | ٧         | Ν           | 0                                        | T                | Ν                        | N                     | 0        | N          |
| Parking/hr                                           |                        |            |                             |             |                   |             |                       |                                  |              |           |             |                                          |                  |                          |                       |          |            |
| Bus stops/h                                          | r                      |            | 0                           | 0           |                   | 0           |                       | 0                                |              |           | 0           | 0                                        | L                |                          | 0                     | 0        |            |
| Unit Extens                                          | ion                    |            | 3.0                         | 3.0         |                   | 3.0         |                       | 3.0                              |              |           | 3.0         | 3.0                                      | Τ                |                          | 3.0                   | 3.0      |            |
| Phasing                                              | Excl. Left             | & RT       | 0;                          | 3           |                   | )4          |                       |                                  | l. Le        |           | Thru & F    |                                          |                  | 07                       |                       | )8       |            |
| Timing                                               | G = 17.0               | G =        |                             | G =         |                   | G =         |                       | _                                | G =          |           |             | 3 = 48.0                                 | )                | G =                      |                       | G =      |            |
| Duration of                                          | Y = 5<br>Analysis (hrs | ) = 0 ;    |                             | Y =         |                   | Y =         |                       |                                  | Y =          | 5         |             | / = 6<br>vcle Ler                        | ort              | Y =<br>h C =             |                       | Y =      |            |
|                                                      | up Capaci              | <u> </u>   |                             | l Dal       | 3V 3              | nd L        | 20                    | Dα                               | for          | nin       |             | <u> </u>                                 | gt               | 110                      | - 150.                | Ů.       |            |
| Lane Gio                                             | up Capaci              | lty, C     | EB                          | n Deig      | <u>ау, а</u><br>Т |             | WB                    |                                  | teri         | Т         | auo         | NB                                       |                  |                          |                       | SB       |            |
| Adj. flow rat                                        |                        | 163        | 379                         |             | 48                |             | 411                   |                                  |              | 1         | 16          | 1686                                     | Т                |                          | 217                   | 1237     |            |
| Lane group                                           |                        | 234        | 804                         | _           | 23                | <del></del> | <del>411</del><br>777 | -                                |              | +         | 92          | 1860                                     | +                |                          | 192                   | 1841     |            |
| v/c ratio                                            | сар.                   | 0.70       | 0.47                        |             | 0.2               | <del></del> | 0.53                  | -+                               |              | -         | .60         | 0.91                                     | +                |                          | 1.13                  | 0.67     |            |
| Green ratio                                          | <del>.</del>           | 0.13       | 0.23                        |             | 0.1               | <del></del> | 0.23                  |                                  |              | -         | .11         | 0.37                                     | +                |                          | 0.11                  | 0.37     |            |
| Unif. delay                                          |                        | 54.0       | 43.2                        |             | 50.               | -           | 43.8                  | <del></del>                      |              | +         | 5. <i>4</i> | 38.9                                     | +                |                          | 58.0                  | 34.4     |            |
| Delay factor                                         |                        | 0.26       | 0.11                        | <del></del> | 0.1               | -           | 0.13                  | _                                |              | +         | .19         | 0.43                                     | $\dagger$        |                          | 0.50                  | 0.24     |            |
| <u> </u>                                             |                        | 8.7        | 0.4                         | _           | 0.,               | -+          | 0.7                   | -+                               |              | +         | 5.3         | 6.9                                      | +                |                          | 104.3                 | 1.0      |            |
| PF factor                                            | rem. delay d2          |            |                             | 0           | 1.0               | -+          | 1.000                 |                                  |              | -         | 920         | 0.610                                    | +                |                          | 0.920                 | 0.610    |            |
| Control dela                                         | ny                     | 62.8       | 43.6                        |             | 50.               | -+          | 44.5                  | _                                |              | +         | 6.2         | 30.6                                     | t                |                          | 157.6                 | 21.9     |            |
| Lane group                                           | <del></del>            | E          | D                           |             | D                 | -           | D                     |                                  |              | +         | E           | С                                        | $\dagger$        |                          | F                     | С        |            |
| Apprch. dela                                         |                        |            | 1                           | 45          |                   |             |                       | +                                |              | 2.2       |             |                                          |                  | 42.2                     |                       |          |            |
| Approach L                                           | •                      |            | D                           |             |                   | D           |                       |                                  |              | $\dagger$ |             | С                                        |                  |                          |                       | D        |            |
| Intersec. de                                         |                        |            |                             |             |                   | Inte        | erse                  | ctio                             | n LO:        | <br>3     |             |                                          |                  | D                        |                       |          |            |
| HCS2000TM                                            |                        |            |                             | onvright ©  | 2000 T            | Induania    | . AFTI                | lorida                           | A 11 TO      | iahta     | Doorne      | .a                                       |                  |                          |                       | 7.7      | ersion 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                             |           | SH       | ORT F               | REPO                                 | )R          | T           |                  |      |                                          |                       |                   |           |            |              |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|-----------|----------|---------------------|--------------------------------------|-------------|-------------|------------------|------|------------------------------------------|-----------------------|-------------------|-----------|------------|--------------|
| General Inf                                          | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                             |           |          | S                   | ite In                               | for         | matic       | on               |      |                                          |                       |                   |           |            |              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U<br>05/    | SAI<br>SAI<br>10/12<br>PEAK |           |          | ``<br><u>م</u><br>ل | nterse<br>krea T<br>urisdi<br>knalys | ype<br>ctic | e<br>on     |                  | 0    | WAYO<br>OR<br>All oth<br>CEANS<br>ALT-2/ | O Ri<br>ner a<br>SIDE | D.<br>rea:<br>-IN | s<br>T.#7 |            |              |
| Volume an                                            | d Timing I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nput        |                             |           |          | -                   |                                      |             |             |                  |      |                                          |                       |                   |           |            |              |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | LT                          | EB<br>TH  | RŤ       | LT                  | WI<br>TH                             |             | RT          | <del>  _</del> _ | r    | NB<br>TH                                 | RT                    | +                 | LT        | SB<br>TH   | RT           |
| Num. of Lar                                          | nes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 1                           | 1H<br>2   | 1        | 2                   | 2                                    |             | 0           | 1                | i .  | 2                                        | 0                     | 十                 | 1         | 2          | 1            |
| Lane group                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | L                           | Т         | R        |                     | TR                                   | 7           |             | L                |      | TR                                       |                       | 十                 | L         | Т          | R            |
| Volume (vpl                                          | h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 25                          | 90        | 150      | 190                 | 80                                   | ┪           | 185         | 85               | ;    | 375                                      | 85                    | +                 | _<br>125  | 1220       | 125          |
| % Heavy v                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 2                           | 2         | 2        | 2                   | 2                                    | 7           | 2           | 2                |      | 2                                        | 2                     | 十                 | 2         | 2          | 2            |
| PHF                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 0.92                        | 0.92      | 0.92     | 0.92                | 0.92                                 | ?           | 0.92        | 0.9              | 2    | 0.92                                     | 0.92                  | 2 (               | 0.92      | 0.92       | 0.92         |
| Actuated (P                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Α                           | Α         | Α        | Α                   | Α                                    |             | Α           | Α                |      | Α                                        | Α                     | $\perp$           | Α         | Α          | Α            |
| Startup lost                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 2.0                         | 2.0       | 2.0      | 2.0                 | 2.0                                  | 4           |             | 2.0              | _    | 2.0                                      |                       | _                 | 2.0       | 2.0        | 2.0          |
| Ext. eff. gre                                        | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 2.0<br>5                    | 2.0<br>5  | 2.0<br>5 | 2.0                 | 2.0                                  |             |             | 2.0              | )    | 2.0                                      |                       | +                 | 2.0<br>4  | 2.0        | 2.0          |
| Arrival type Unit Extens                             | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 3.0                         | 3.0       | 3.0      | 3.0                 | 3.0                                  | $\dashv$    |             | 3.0              | า    | 3.0                                      |                       | 十                 | 3.0       | 3.0        | 3.0          |
| Ped/Bike/R                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u>     | 5                           | 10        | 0        | 5                   | 10                                   | $\dashv$    | 0           | 5                | _    | 10                                       | 0                     | 十                 | 5         | 10         | 0.0          |
| Lane Width                                           | TOR VOIGIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 12.0                        | 12.0      |          | 12.0                |                                      | 7           |             | +                | 0    | 12.0                                     | Ť                     | 7                 |           | 12.0       | 12.0         |
| Parking/Gra                                          | de/Parking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | N                           | 0         | Ν        | Ν                   | 0                                    |             | Ν           | N                |      | 0                                        | Ν                     |                   | Ν         | 0          | Ν            |
| Parking/hr                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                             |           |          |                     |                                      |             |             |                  |      |                                          |                       |                   |           |            |              |
| Bus stops/h                                          | Ine Width       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0 |             |                             |           |          |                     |                                      |             |             | 0                |      |                                          |                       |                   |           |            |              |
| Unit Extens                                          | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 3.0                         | 3.0       | 3.0      | 3.0                 | 3.0                                  |             |             | 3.6              | )    | 3.0                                      |                       |                   | 3.0       | 3.0        |              |
| Phasing                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _           |                             |           | l        |                     |                                      |             |             |                  |      |                                          |                       |                   | )7        |            | 08           |
| Timing                                               | G = 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G =         |                             | G =       |          | G =                 |                                      |             | = 10<br>= 5 | .0               |      | = 46.0<br>= 5                            |                       | ) =<br>' =        |           | G =<br>Y = |              |
| Duration of                                          | Y = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y = 0 '     |                             | Y =       |          | Υ=                  |                                      | Y           | = 5         |                  |      | le Len                                   |                       |                   | 105       |            |              |
| Lane Gro                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del> |                             | l Dela    | v ai     | nd I O              | S De                                 | ete         | rmir        |                  |      | JIC LCIT                                 | gur                   |                   | 100.      |            |              |
| Lanc Gro                                             | ир Сири                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>        | EB                          | · DCIC    | <u>Τ</u> |                     | /B                                   |             | T           | 1011             |      | √B                                       |                       |                   |           | SB         |              |
| Adj. flow rat                                        | :e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27          | 98                          | 163       | 20       |                     | 88                                   |             | 9           | 2                | 5    | 00                                       |                       | 13                | 36        | 1326       | 136          |
| Lane group                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 236         | 507                         | 218       | 45       | 8 4                 | 42                                   |             | 10          | 69               | 13   | 505                                      |                       | 16                | 59        | 1554       | 962          |
| v/c ratio                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.11        | 0.19                        | 0.75      | 0.4      | 5 0.                | 65                                   |             | 0.          | 54               | 0    | .33                                      |                       | 0.8               | 80        | 0.85       | 0.14         |
| Green ratio                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13        | 0.14                        | 0.14      | 0.1      | <i>3 0.</i>         | 14                                   | Г           | 0.          | 10               | 0    | .44                                      |                       | 0.1               | 10        | 0.44       | 0.62         |
| Unif. delay                                          | d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.0        | 39.7                        | 43.2      | 42.      | 0 42                | 2.5                                  | Γ           | 45          | 5.3              | 1    | 9.4                                      |                       | 46                | 5.5       | 26.5       | 8.3          |
| Delay factor                                         | r k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.11        | 0.11                        | 0.30      | 0.1      | 1 0.                | 23                                   |             | О.          | 14               | 0    | .11                                      |                       | 0.3               | 35        | 0.39       | 0.11         |
| Increm. dela                                         | ay d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2         | 0.2                         | 13.3      | 0.7      | 7 3                 | .4                                   |             | 3           | .6               | (    | 0.1                                      |                       | 24                | 1.0       | 4.8        | 0.1          |
| PF factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.889       | 0.889                       | 0.8       | 97 0.    | 889                 |                                      | 1.0         | 000         | 0.               | 851  |                                          | 1.0                   | 000               | 0.851     | 0.527      |              |
| Control dela                                         | trol delay 36.2 35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                             |           |          | 4 4                 | 1.2                                  |             | 48          | 3.9              | 1    | 6.6                                      |                       | 70                | ).5       | 27.4       | 4.5          |
| Lane group                                           | LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D           | D                           | D         | D        |                     | D                                    |             |             | כ                |      | В                                        |                       | E                 |           | Α          |              |
| Apprch. del                                          | ay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44          | 4.7                         |           |          | 40.0                |                                      |             |             | 2                | 21.7 | 7                                        |                       |                   | 2         |            |              |
| Approach L                                           | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1           | D                           |           |          | D                   |                                      |             |             |                  | С    |                                          |                       |                   |           |            |              |
| Intersec. de                                         | lay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30          | 0.9                         |           |          |                     | Int                                  | ers         | ection      | ı LO             | S    |                                          |                       |                   |           | С          |              |
| HCS2000 <sup>TM</sup>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Co                          | pyright © | 2000 U   | niversity (         | of Florid                            | a, A)       | ll Rights   | Reser            | ved  |                                          |                       |                   |           |            | Jersion 4.11 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                  |                                                  |                             |           | SH       | ORT           | REP                                              | OI           | RT        |               |          |     |                        |                         |             |                                                                                                                                                                                     |             |  |  |
|------------------------------------------------------|----------------------------------|--------------------------------------------------|-----------------------------|-----------|----------|---------------|--------------------------------------------------|--------------|-----------|---------------|----------|-----|------------------------|-------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| General Inf                                          | ormation                         |                                                  |                             |           |          |               | Site I                                           | nfc          | rma       | atio          | n        |     |                        |                         |             | -                                                                                                                                                                                   |             |  |  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med                              | U<br>05/                                         | SAI<br>SAI<br>10/12<br>PEAK | ,         |          |               | Inters<br>Area<br>Jurisc<br>Analy                | Tyr<br>licti | oe<br>ion | аг            |          | 0   | OR<br>All oth<br>CEANS | O RE<br>ner ar<br>SIDE- |             |                                                                                                                                                                                     |             |  |  |
| Volume an                                            | d Timing I                       | nput                                             |                             |           |          |               |                                                  |              | •         |               |          |     |                        |                         |             |                                                                                                                                                                                     |             |  |  |
|                                                      |                                  |                                                  |                             | EB        |          |               | W                                                |              |           |               |          |     | NB                     |                         |             | SB                                                                                                                                                                                  |             |  |  |
| Nima elle                                            |                                  |                                                  | LT                          | TH        | RT_      | LT            | <del></del>                                      |              | R         |               | LT       |     | TH                     | RT<br>0                 | LT<br>4     | TH<br>2                                                                                                                                                                             | RT<br>1     |  |  |
| Num. of Lar                                          | nes                              |                                                  | 1                           | 2         | 1        | 2             | 2                                                |              | 0         | _             | 1        |     | 2                      |                         | 1           |                                                                                                                                                                                     | +           |  |  |
| Lane group                                           |                                  |                                                  | L                           | T         | R 450    | L             | TH                                               |              | 1.        |               | L        |     | TR                     | 0.5                     | L           | T                                                                                                                                                                                   | R 405       |  |  |
| Volume (vpl<br>% Heavy vo                            |                                  |                                                  | 25<br>2                     | 92<br>2   | 152<br>2 | 190<br>2      | 80                                               |              | 18        |               | 94<br>2  |     | 375<br>2               | 85<br>2                 | 126<br>2    | 1220<br>2                                                                                                                                                                           | 125<br>2    |  |  |
| PHF                                                  | 511                              |                                                  | 0.92                        | 0.92      | 0.92     | 0.92          |                                                  |              | 0.9       |               | 0.92     | 2   | 0.92                   | 0.92                    |             | 0.92                                                                                                                                                                                | 0.92        |  |  |
| Actuated (P                                          | /A)                              |                                                  | A                           | A         | A        | A             | A                                                |              | A         | _             | Α        |     | A                      | Α                       | A           | Α                                                                                                                                                                                   | Α           |  |  |
| Startup lost                                         | time                             |                                                  | 2.0                         | 2.0       | 2.0      | 2.0           | 2.0                                              |              |           |               | 2.0      | _   | 2.0                    |                         | 2.0         | 2.0                                                                                                                                                                                 | 2.0         |  |  |
| Ext. eff. gre                                        | en                               |                                                  | 2.0<br>5                    | 2.0       | 2.0      | 2.0           | 2.0                                              |              |           |               | 2.0      |     | 2.0                    | ***                     | 2.0         | 2.0                                                                                                                                                                                 | 2.0         |  |  |
| Arrival type                                         |                                  | 5                                                | 5                           | 5         | 5        |               |                                                  |              | 4         |               | 3.0      |     | 3.0                    | 3.0                     | 3.0         |                                                                                                                                                                                     |             |  |  |
| Unit Extensi<br>Ped/Bike/R <sup>-</sup>              |                                  |                                                  | 3.0<br>5                    | 3.0<br>10 | 3.0<br>0 | 3.0<br>5      | 3.<br>10                                         |              | 0         |               | 3.0<br>5 | _   | 10                     | 0                       | 5           | 10                                                                                                                                                                                  | 0           |  |  |
| Lane Width                                           | IOR Volum                        | 12.0                                             | 12.0                        | 12.0      |          |               | ╁                                                |              | 12.0      | 7             | 12.0     |     | 12.0                   | 12.0                    | 12.0        |                                                                                                                                                                                     |             |  |  |
| Parking/Gra                                          | de/Parking                       |                                                  | 12.0<br>N                   | 0         | N        | N             | _                                                | )            | <u> </u>  | $\overline{}$ | N        |     | 0                      | N                       | N           | N                                                                                                                                                                                   |             |  |  |
| Parking/hr                                           | acri artirig                     |                                                  | · · · · · ·                 |           |          | <del>†"</del> | <del>                                     </del> | _            | +         | _             |          |     |                        |                         |             | -                                                                                                                                                                                   |             |  |  |
| Bus stops/h                                          | r                                |                                                  | 0                           | 0         | 0        | 0             | 1                                                | )            | †         |               | 0        |     | 0                      |                         | 0           | 0 0                                                                                                                                                                                 |             |  |  |
| Unit Extensi                                         |                                  |                                                  | 3.0                         | 3.0       | 3.0      | 3.0           | 3.                                               | 0            |           |               | 3.0      | ,   | 3.0                    |                         | 3.0         | 3.0                                                                                                                                                                                 | 3.0         |  |  |
| Phasing                                              | Excl. Left                       | Thru                                             | & RT                        | 03        | 3        | C             | )4                                               | T            | Excl      | . Le          | ft       | Th  | ru & R                 | r T                     | 07          | <del>`</del>                                                                                                                                                                        | 08          |  |  |
| Timing                                               | G = 14.0                         |                                                  | 15.0                        | G =       |          | G =           |                                                  |              | ) =       |               |          |     | <b>- 4</b> 6.0         | G                       |             | G =                                                                                                                                                                                 |             |  |  |
| Ĭ                                                    | Y = 5                            | Y =                                              |                             | Y =       |          | Υ=            |                                                  | Y            | <u> </u>  | 5             |          |     | 5                      | Y                       |             | Y =                                                                                                                                                                                 |             |  |  |
| Duration of                                          |                                  |                                                  |                             | I Dala    |          | - 4 1 4       | <del></del>                                      | 4            |           | . !           |          |     | le Len                 | gtn C                   | = 108       | 5.0                                                                                                                                                                                 | ·           |  |  |
| Lane Gro                                             | up Capa                          | CITY, C                                          |                             | Dela      | iy, ai   |               |                                                  | eτ           | ern       | una           | atic     |     |                        |                         |             | SB                                                                                                                                                                                  |             |  |  |
|                                                      |                                  |                                                  | EB                          | 1 405     |          |               | WB                                               | Т            |           | 40            |          | _   | NB                     |                         | 407         |                                                                                                                                                                                     | 1400        |  |  |
| Adj. flow rat                                        |                                  | 27                                               | 100                         | 165       | 20       |               | 289                                              | ╀            |           | 10.           |          | ╄   | 00                     |                         | 137         | 1326                                                                                                                                                                                | 136         |  |  |
| Lane group                                           | сар.                             | 236                                              | 507                         | 218       | 45       | _             | 442                                              | ╀            |           | 16            |          | ┺   | 505                    |                         | 169         | 1554                                                                                                                                                                                | 962         |  |  |
| v/c ratio                                            |                                  | 0.11                                             | 0.20                        | 0.76      | 0.4      | _             | 0.65                                             | ┸            |           | 0.6           |          | ₩   | .33                    |                         | 0.81        | 0.85                                                                                                                                                                                | 0.14        |  |  |
| Green ratio                                          |                                  | 0.13                                             | 0.14                        | 0.14      | 0.1      | 3 (           | 0.14                                             | 1            |           | 0.1           | 0        | 0.  | 44                     |                         | 0.10        |                                                                                                                                                                                     | 0.62        |  |  |
| Unif. delay                                          | <u>1</u> 1                       | 40.0                                             | 39.7                        | 43.2      | 42.      | 0 4           | 12.5                                             |              |           | 45.           | 6        | 1   | 9.4                    |                         | 46.6        | 26.5                                                                                                                                                                                | 8.3         |  |  |
| Delay factor                                         | ·k                               | 0.11                                             | 0.11                        | 0.31      | 0.1      | 1 (           | 0.23                                             |              |           | 0.1           | 9        | 0.  | .11                    |                         | 0.35        | 0.39                                                                                                                                                                                | 0.11        |  |  |
| Increm. dela                                         | ay d2                            | 0.2                                              | 0.2                         | 14.1      | 0.7      | 7             | 3.5                                              |              |           | 6.0           | )        | C   | ).1                    |                         | 24.9        | 4.8                                                                                                                                                                                 | 0.1         |  |  |
| PF factor                                            |                                  | 0.897                                            | 0.889                       | 0.889     | 0.8      | 97 0          | .889                                             |              |           | 1.0           | 00       | 0.  | 851                    |                         | 1.000 0.851 |                                                                                                                                                                                     | 0.527       |  |  |
| Control dela                                         | ıy                               | 36.2                                             | 35.5                        | 52.6      | 38.      | 4 4           | 11.3                                             |              |           | 51.           | 6        | 1   | 6.6                    |                         | 71.4        | 27.4                                                                                                                                                                                | 4.5         |  |  |
| Lane group                                           | LOS                              | D                                                | D                           | D         | D        |               | D                                                | T            |           | D             | ı        | Ī   | В                      |                         | Е           | С                                                                                                                                                                                   | Α           |  |  |
| Apprch. dela                                         |                                  | 48                                               | 5. <i>2</i>                 |           | 1        | 40.           | 1                                                | _            | <u></u>   |               | 2        | 2.6 | <u>_</u><br>}          |                         |             | 29.2                                                                                                                                                                                | -           |  |  |
|                                                      |                                  | <del>                                     </del> |                             |           | 1        | D             |                                                  |              |           |               |          | С   |                        |                         |             | 0.10     0.44     0.6       46.6     26.5     8.       0.35     0.39     0.4       24.9     4.8     0.       0.000     0.851     0.5       71.4     27.4     4.       E     C     A |             |  |  |
|                                                      | pproach LOS D tersec. delay 31.2 |                                                  |                             |           |          |               | lr                                               | nter         | rsec      | tion          |          |     |                        |                         |             |                                                                                                                                                                                     |             |  |  |
| HC22000TM                                            | -~,                              |                                                  |                             | nvright © | 2000 II  | la i carcita  |                                                  |              |           |               |          |     |                        |                         |             |                                                                                                                                                                                     | Version 4.1 |  |  |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                                        |           |                             |           | SH        | ORT        | RE                             | PO                         | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |           |                                             |                                                  |                     |             |           |            |  |  |
|-------------------------------------------------------|----------------------------------------|-----------|-----------------------------|-----------|-----------|------------|--------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|---------------------------------------------|--------------------------------------------------|---------------------|-------------|-----------|------------|--|--|
| General Inf                                           | ormation                               |           |                             |           |           |            | Site                           | Info                       | orma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tio    |           |                                             |                                                  | • ••                |             |           |            |  |  |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med                                    | U<br>05/0 | SAI<br>SAI<br>01/12<br>PEAK |           |           |            | Inter<br>Area<br>Juris<br>Anal | a Ty <sub>l</sub><br>sdict | pe<br>ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ar     |           | TA WAY<br>OF<br>All ot<br>OCEAN<br>D.ALT-2/ | RO F<br>her<br>SID:                              | RD.<br>are:<br>E-IN | as<br>VT.#7 |           |            |  |  |
| Volume an                                             | d Timing lı                            | nput      | ·                           |           |           |            |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |           |                                             |                                                  |                     |             |           |            |  |  |
|                                                       |                                        |           |                             | EB        |           |            |                                | WB                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |           | NB                                          |                                                  |                     |             | SB        |            |  |  |
|                                                       |                                        |           | LT                          | TH        | RT        | LT         | _                              | TH                         | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | LT        | TH                                          | +                                                | ₹T                  | LT          | TH        | RT         |  |  |
| Num. of Lar                                           | nes                                    |           | 1                           | 2         | 1         | 2          | _                              | 2                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1         | 2                                           |                                                  | )                   | 1           | 2         | 1          |  |  |
| Lane group                                            |                                        |           | L                           | Τ         | R         | L          |                                | TR                         | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |        | L         | TR                                          | L                                                |                     | L           | T         | R          |  |  |
| Volume (vpl                                           |                                        |           | 115                         | 190       | 430       | 385        |                                | 30                         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 115       | 1105                                        | 17                                               |                     | 60          | 580       | 180        |  |  |
| % Heavy ve                                            | ∍h                                     |           | 2                           | 2         | 2         | 2          | _                              | 2                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2         | 2                                           | _                                                | 2                   | 2           | 2         | 2          |  |  |
| PHF                                                   | /A \                                   |           | 0.92<br>A                   | 0.92<br>A | 0.92<br>A | 0.92<br>A  | _                              | .92<br>A                   | 0.9<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _      | 0.92<br>A | 0.92<br>A                                   | 0.9                                              |                     | 0.92<br>A   | 0.92<br>A | 0.92<br>A  |  |  |
| Actuated (P.<br>Startup lost                          |                                        |           | 2.0                         | 2.0       | 2.0       | 2.0        |                                | A<br>2.0                   | +~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      | 2.0       | 2.0                                         | +-                                               | 1                   | 2.0         | 2.0       | 2.0        |  |  |
| Ext. eff. gree                                        |                                        |           | 2.0                         | 2.0       | 2.0       | 2.0        |                                | 2.0                        | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 2.0       | 2.0                                         | <del>                                     </del> |                     | 2.0         | 2.0       | 2.0        |  |  |
| Arrival type                                          |                                        |           | 5                           | 5         | 5         | 5          | 丁                              | 5                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 4         | 4                                           |                                                  |                     | 4           | 4         | 4          |  |  |
| Unit Extensi                                          | on                                     |           | 3.0                         | 3.0       | 3.0       | 3.0        | 3                              | 3.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 3.0       | 3.0                                         |                                                  |                     | 3.0         | 3.0       | 3.0        |  |  |
| Ped/Bike/R1                                           | ΓOR Volum                              | е         | 5                           | 10        | 120       | 5          | 7                              | 10                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 5         | 10                                          | (                                                | )                   | 5           | 10        | 0          |  |  |
| Lane Width                                            |                                        |           | 12.0                        | 12.0      | 12.0      | 12.0       | ) 1:                           | 2.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 12.0      | 12.0                                        |                                                  |                     | 12.0        | 12.0      | 12.0       |  |  |
| Parking/Gra                                           | de/Parking                             |           | Ν                           | 0         | N         | N          |                                | 0                          | ٨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | N.        | 0                                           | ٨                                                | V                   | Ν           | 0         | N          |  |  |
| Parking/hr                                            |                                        |           |                             |           |           |            |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |           |                                             |                                                  |                     |             |           |            |  |  |
| Bus stops/h                                           | r                                      |           | 0                           | 0         | 0         | 0          |                                | 0                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 0         | 0                                           |                                                  |                     | 0           | 0         | 0          |  |  |
| Unit Extensi                                          | s stops/hr<br>t Extension              |           |                             | 3.0       | 3.0       | 3.0        | 3                              | 3.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 3.0       | 3.0                                         |                                                  |                     | 3.0         | 3.0       | 3.0        |  |  |
| Phasing                                               | Excl. Left                             | Thru      | & RT                        | 03        | 3         |            | )4                             |                            | Excl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . Le   |           | hru & R                                     | _                                                |                     | 07          |           | 80         |  |  |
| Timing                                                | G = 15.0                               | G =       |                             | G=        |           | G =        |                                |                            | 3 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |           | 6 = 50.0                                    | _                                                | G =                 |             | G =       |            |  |  |
|                                                       | Y = 5                                  | Y =       |                             | Y =       |           | Y =        |                                |                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5      |           | ′ = 5<br>ycle Ler                           |                                                  | Y =                 |             | Y =       |            |  |  |
| Duration of                                           |                                        |           |                             | L Dala    |           | المما      | 00                             | D-4                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |           |                                             | gui                                              | <u> </u>            | - 120       | .0        |            |  |  |
| Lane Gro                                              | up Capa                                | city, C   |                             | Dela      | ay, a     |            |                                | Det                        | ern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HIN    | atio      |                                             |                                                  | $\overline{}$       |             | 0.0       |            |  |  |
|                                                       |                                        |           | EB                          | T         |           |            | WB                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | _         | NB                                          |                                                  |                     |             | SB        |            |  |  |
| Adj. flow rat                                         | e                                      | 125       | 207                         | 337       | 41        | 8          | 429                            | _                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12     | 5         | 1391                                        |                                                  |                     | 65          | 630       | 196        |  |  |
| Lane group                                            | cap.                                   | 221       | 739                         | 320       | 43        | 0          | 651                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14     | 8         | 1443                                        |                                                  | 1                   | 148         | 1478      | 906        |  |  |
| v/c ratio                                             |                                        | 0.57      | 0.28                        | 1.05      | 0.9       | 7 (        | 0.66                           | T                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8    | 4         | 0.96                                        |                                                  | 0                   | .44         | 0.43      | 0.22       |  |  |
| Green ratio                                           |                                        | 0.13      | 0.21                        | 0.21      | 0.1       | 3 (        | 0.21                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0    | 8         | 0.42                                        |                                                  | 0                   | 0.08        | 0.42      | 0.58       |  |  |
| Unif. delay                                           | <u> </u>                               | 49.4      | 39.9                        | 47.5      | 52.       | 3 4        | 43.6                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.    | 2         | 34.1                                        |                                                  | 5                   | 2.3         | 24.8      | 11.9       |  |  |
| Delay factor                                          | ·k                                     | 0.16      | 0.11                        | 0.50      | 0.4       | 8 (        | 0.23                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3    | 8         | 0.47                                        |                                                  | o                   | .11         | 0.11      | 0.11       |  |  |
| Increm. dela                                          | ay d2                                  | 3.4       | 0.2                         | 64.9      | 36.       | 0          | 2.5                            | 十                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33.    | 8         | 15.9                                        |                                                  | 1                   | 2.1         | 0.2       | 0.1        |  |  |
| PF factor                                             | factor 0.90                            |           |                             | 0.825     | 0.9       | 05 (       | ).825                          | ,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0    | 00        | 0.876                                       |                                                  | 1.                  | .000        | 0.876     | 0.613      |  |  |
| Control dela                                          | actor 0.905 0.825 trol delay 48.1 33.1 |           |                             | 104.1     | 83.       | 4          | 38.4                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88.    | 0         | 45.8                                        |                                                  | 5                   | 4.4         | 22.0      | 7.4        |  |  |
| Lane group                                            | LOS                                    | D         | С                           | F         | F         |            | D                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F      |           | D                                           |                                                  |                     | Α           |           |            |  |  |
| Apprch. dela                                          | ay                                     | 7:        | 1.7                         |           |           | 60.        | 6                              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 49        | ).3                                         |                                                  |                     |             |           |            |  |  |
| Approach L                                            | os                                     |           | E                           |           |           | Ε          |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | I         | )                                           |                                                  |                     |             | С         |            |  |  |
| Intersec. de                                          | lay                                    | 49        | 9.1                         |           |           |            |                                | Inte                       | rsec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion   | LOS       |                                             |                                                  |                     |             | D         |            |  |  |
| HCS2000 <sup>TM</sup>                                 | ·                                      |           | Co                          | pyright © | 2000 U    | Iniversity | y of Flo                       | orida,                     | All Ri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ghts I | Reserve   | d                                           |                                                  |                     |             | •         | ersion 4.1 |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                        |            |                                         | <u></u>                     |          | SH       | ORT I       | REPO                                  | DR'         | T           |       |          |                                          |                           |              |       |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|-----------------------------|----------|----------|-------------|---------------------------------------|-------------|-------------|-------|----------|------------------------------------------|---------------------------|--------------|-------|-------------|
| General Inf                                                                                                                                                                                                                                                                                                                                                                            | ormation   |                                         |                             |          |          | 9           | ite In                                | for         | matio       | n     |          |                                          |                           |              |       |             |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period                                                                                                                                                                                                                                                                                                                                  | med        | U-<br>05/0                              | SAI<br>SAI<br>01/12<br>PEAK |          |          | /<br>J      | nterse<br>Area T<br>Iurisdi<br>Analys | yp∈<br>ctio | e<br>n      |       | 0        | WAY(<br>OR<br>All oth<br>CEANS<br>LT-2/W | O RD.<br>er are<br>SIDE-I | eas<br>NT.#7 |       |             |
| Volume an                                                                                                                                                                                                                                                                                                                                                                              | d Timing l | nput                                    |                             |          |          |             |                                       |             |             |       |          |                                          |                           |              |       | ·           |
|                                                                                                                                                                                                                                                                                                                                                                                        |            |                                         |                             | EB       |          |             | W                                     | 3           |             |       |          | NB                                       |                           |              | SB    |             |
|                                                                                                                                                                                                                                                                                                                                                                                        |            |                                         | LT                          | TH       | RT       | LT          | TH                                    |             | RT          | Lī    |          | TH                                       | RT                        | LT           | TH    | RT          |
| Num. of Lar                                                                                                                                                                                                                                                                                                                                                                            | nes        |                                         | 1                           | 2        | 1        | 2           | 2                                     |             | 0           | 1     |          | 2                                        | 0                         | 1            | 2     | 1           |
| Lane group                                                                                                                                                                                                                                                                                                                                                                             |            |                                         | L                           | T        | R        | L           | TR                                    |             |             | L     |          | TR                                       |                           | L            | T     | R           |
| Volume (vpl                                                                                                                                                                                                                                                                                                                                                                            | า)         |                                         | 115                         | 190      | 435      | 385         | 130                                   | )           | 315         | 120   | )        | 1105                                     | 175                       | 61           | 580   | 180         |
| % Heavy ve                                                                                                                                                                                                                                                                                                                                                                             | eh         | ···                                     | 2                           | 2        | 2        | 2           | 2                                     |             | 2           | 2     |          | 2                                        | 2                         | 2            | 2     | 2           |
| PHF                                                                                                                                                                                                                                                                                                                                                                                    |            |                                         | 0.92                        | 0.92     | 0.92     | 0.92        | 0.92                                  | 2 (         | 0.92        | 0.9   | 2        | 0.92                                     | 0.92                      | 0.92         | 0.92  | 0.92        |
| Actuated (P.                                                                                                                                                                                                                                                                                                                                                                           |            |                                         | A<br>2.0                    | A 2.0    | A<br>2.0 | 2.0         | 2.0                                   | +           | Α           | 2.0   | <u> </u> | A 2.0                                    | Α                         | 2.0          | 2.0   | 2.0         |
| Startup lost<br>Ext. eff. gree                                                                                                                                                                                                                                                                                                                                                         |            |                                         | 2.0                         | 2.0      | 2.0      | 2.0         | 2.0                                   | _           |             | 2.0   | _        | 2.0                                      | <b>_</b>                  | 2.0          | 2.0   | 2.0         |
| Arrival type         5         5         5         5         5         4           Unit Extension         3.0         3.0         3.0         3.0         3.0         3.0           Ped/Bike/RTOR Volume         5         10         120         5         10         50         5           Lane Width         12.0         12.0         12.0         12.0         12.0         12.0 |            |                                         |                             |          |          |             |                                       |             |             | 4     |          | 4                                        | 4                         | 4            |       |             |
|                                                                                                                                                                                                                                                                                                                                                                                        | ion        |                                         |                             |          | 3.0      | 3.0         | 3.0                                   | ,           |             | 3.0   | )        | 3.0                                      |                           | 3.0          | 3.0   | 3.0         |
|                                                                                                                                                                                                                                                                                                                                                                                        |            | е                                       | 5                           | 10       | 120      | 5           | 10                                    |             | 50          | 5     |          | 10                                       | 0                         | 5            | 10    | 0           |
| Lane Width                                                                                                                                                                                                                                                                                                                                                                             |            | 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 |                             |          |          |             |                                       |             |             | 12.0  |          |                                          |                           |              |       |             |
| Parking/Gra                                                                                                                                                                                                                                                                                                                                                                            | de/Parking |                                         | Ν                           | 0        | N        | N           | 0                                     |             | N           | Ν     |          | 0                                        | Ν                         | N            | N     |             |
| Parking/hr                                                                                                                                                                                                                                                                                                                                                                             |            |                                         |                             |          |          |             |                                       |             |             |       |          |                                          |                           |              |       |             |
| Bus stops/h                                                                                                                                                                                                                                                                                                                                                                            | r          |                                         | 0                           | 0        | 0        | 0           | 0                                     |             |             | 0     |          | 0                                        |                           | 0            | 0     |             |
| Unit Extensi                                                                                                                                                                                                                                                                                                                                                                           | ion        |                                         | 3.0                         | 3.0      | 3.0      | 3.0         | 3.0                                   | ,           |             | 3.0   | )        | 3.0                                      |                           | 3.0          | 3.0   | 3.0         |
| Phasing                                                                                                                                                                                                                                                                                                                                                                                | Excl. Left | Thru                                    | & RT                        | 03       | 3        | 04          | 1                                     | E:          | xçl. Le     | eft   | Th       | ru & R                                   | Γ                         | 07           |       | 08          |
| Timing                                                                                                                                                                                                                                                                                                                                                                                 | G = 15.0   | G =                                     |                             | G =      |          | G =         |                                       | _           | = 10.       |       |          | = 50.0                                   | G:                        |              | G =   |             |
|                                                                                                                                                                                                                                                                                                                                                                                        | Y = 5      | Y =                                     | _                           | Υ =      |          | Y =         |                                       | Υ:          | = 5         |       | _        | = 5                                      | Υ =                       |              | Y =   |             |
| Duration of                                                                                                                                                                                                                                                                                                                                                                            |            |                                         |                             |          |          |             |                                       |             |             |       | _        | le Len                                   | gth C                     | = 120        | .0    |             |
| Lane Gro                                                                                                                                                                                                                                                                                                                                                                               | up Capa    | city, C                                 |                             | l Dela   | ay, aı   |             |                                       | ete         | <u>rmin</u> | atic  |          |                                          |                           |              |       |             |
|                                                                                                                                                                                                                                                                                                                                                                                        |            |                                         | EB                          |          |          | V           | VB                                    |             |             |       |          | NB .                                     |                           |              | SB    |             |
| Adj. flow rat                                                                                                                                                                                                                                                                                                                                                                          | е          | 125                                     | 207                         | 342      | 418      | 8 4         | 29                                    |             | 13          | 30    | 13       | 391                                      |                           | 66           | 630   | 196         |
| Lane group                                                                                                                                                                                                                                                                                                                                                                             | cap.       | 221                                     | 739                         | 320      | 430      | 0 6         | 51                                    |             | 14          | 18    | 14       | 143                                      |                           | 148          | 1478  | 906         |
| v/c ratio                                                                                                                                                                                                                                                                                                                                                                              |            | 0.57                                    | 0.28                        | 1.07     | 0.9      | 7 0.        | .66                                   |             | 0.8         | 38    | 0.       | .96                                      |                           | 0.45         | 0.43  | 0.22        |
| Green ratio                                                                                                                                                                                                                                                                                                                                                                            |            | 0.13                                    | 0.21                        | 0.21     | 0.1      | <i>3 0.</i> | 21                                    |             | 0.0         | 28    | 0.       | .42                                      |                           | 0.08         | 0.42  | 0.58        |
| Unif. delay                                                                                                                                                                                                                                                                                                                                                                            | <u></u>    | 49.4                                    | 39.9                        | 47.5     | 52.      | 3 4.        | 3.6                                   | <u> </u>    | 54          | .4    | 3        | 4.1                                      |                           | 52.4         | 24.8  | 11.9        |
| Delay factor                                                                                                                                                                                                                                                                                                                                                                           | · k        | 0.16                                    | 0.11                        | 0.50     | 0.4      | 8 O.        | .23                                   |             | 0.4         | 41    | 0.       | .47                                      |                           | 0.11         | 0.11  | 0.11        |
| Increm. dela                                                                                                                                                                                                                                                                                                                                                                           | ay d2      | 3.4                                     | 0.2                         | 69.7     | 36.      | 0 2         | 2.5                                   |             | 40          | .8    | 1        | 5.9                                      |                           | 2.1          | 0.2   | 0.1         |
| PF factor                                                                                                                                                                                                                                                                                                                                                                              |            | 0.905                                   | 0.825                       | 0.825    | 0.90     | 05 0.       | 825                                   |             | 1.0         | 000   | 0.       | 876                                      |                           | 1.000        | 0.876 | 0.613       |
| Control dela                                                                                                                                                                                                                                                                                                                                                                           | ay         | 48.1                                    | 33.1                        | 108.9    | 83.      | 4 3         | 8.4                                   |             | 95          | 5.2   | 4        | 5.8                                      |                           | 54.5         | 22.0  | 7.4         |
| Lane group                                                                                                                                                                                                                                                                                                                                                                             | LOS        | D                                       | С                           | F        | F        |             | D                                     |             | F           | =     |          | D                                        |                           | D            | С     | Α           |
| Apprch. dela                                                                                                                                                                                                                                                                                                                                                                           | ay         | 74                                      | 4.4                         | <u>.</u> |          | 60.6        |                                       |             |             | 5     | 0.0      | )                                        |                           |              |       |             |
| Approach L                                                                                                                                                                                                                                                                                                                                                                             | os         | ,                                       | E                           |          |          | Ε           |                                       |             |             |       | D        |                                          |                           |              |       |             |
| Intersec. de                                                                                                                                                                                                                                                                                                                                                                           |            |                                         | Int                         | ers      | ection   | LO:         | S                                     |             |             |       | D        |                                          |                           |              |       |             |
| ricsanotM                                                                                                                                                                                                                                                                                                                                                                              |            | •                                       |                             |          | 2000 11  | niversity   | of Florid                             | lo A1       | 1 Diahta    | Dogga | red      |                                          |                           |              | ,     | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |                          |            |            | SHO     | ORT R                                 | EPOF                                      | ₹T       |                                              | <del></del>    |                                  |                           |                  |         |             |
|------------------------------------------------------|------------------------|--------------------------|------------|------------|---------|---------------------------------------|-------------------------------------------|----------|----------------------------------------------|----------------|----------------------------------|---------------------------|------------------|---------|-------------|
| General Inf                                          | ormation               |                          |            |            |         |                                       | te Info                                   |          | ion                                          |                |                                  |                           |                  |         |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                    | US<br>US<br>05/0<br>AM F | AI<br>1/12 |            |         | Ar<br>Ju                              | tersect<br>ea Typ<br>irisdicti<br>nalysis | e<br>on  |                                              | 00             | WB RA DEL ( All othe CEANS LT2/N | ORO I<br>er are<br>IDE-II | R<br>as<br>VT.#8 |         |             |
| Volume an                                            | d Timing In            | put                      |            |            |         | · · · · · · · · · · · · · · · · · · · |                                           |          |                                              |                |                                  | •                         |                  |         |             |
|                                                      |                        |                          |            | EB         | - T     |                                       | WB                                        | L D-     | _                                            | -              | NB                               | БТ                        | 1                | SB      | Lot         |
| Num. of Lar                                          | nes                    |                          | LT<br>0    | TH<br>0    | RT<br>0 | LT<br>0                               | TH 1                                      | R 1      | <u>'                                    </u> | <u>LT</u><br>1 | TH<br>2                          | RT<br>0                   | LT<br>0          | TH<br>2 | RT<br>1     |
| Lane group                                           |                        |                          |            |            |         |                                       | LTR                                       | R        | 十                                            | L              | Т                                |                           |                  | 7       | R           |
| Volume (vpl                                          | h)                     |                          |            |            |         | 5                                     | 5                                         | 400      |                                              | <u>-</u><br>5  | 145                              |                           |                  | 800     | 760         |
| % Heavy ve                                           |                        |                          |            |            |         | 10                                    | 10                                        | 0        |                                              | 10             | 10                               |                           |                  | 10      | 10          |
| PHF                                                  |                        |                          |            |            |         | 0.95                                  | 0.95                                      | 0.9      |                                              | .95            | 0.95                             |                           |                  | 0.95    | 0.95        |
| Actuated (P.                                         |                        |                          |            |            |         | Α                                     | A                                         | A        | _                                            | <u>A</u>       | A                                | Α                         | -                | A       | A           |
| Startup lost                                         |                        |                          | <u> </u>   | <b>-</b>   |         |                                       | 2.0                                       | 2.0      |                                              | 2.0<br>2.0     | 2.0<br>2.0                       |                           |                  | 2.0     | 2.0         |
| Ext. eff. gree<br>Arrival type                       | ən                     |                          |            |            |         |                                       | 3                                         | 3        |                                              | 3              | 2.0<br>5                         |                           |                  | 5       | 3           |
| Unit Extensi                                         | ion                    |                          |            | 1          |         |                                       | 3.0                                       | 3.0      |                                              | 3.0            | 3.0                              |                           | -                | 3.0     | 3.0         |
|                                                      | ΓOR Volume             |                          | 10         | +          |         | 0                                     | 0,10                                      | 0        |                                              |                | 0.0                              |                           | 0                | 0       | 200         |
| Lane Width                                           | <del></del>            |                          |            |            | 12.0    | 12.                                   | 0 1.                                      | 2.0      | 12.0                                         |                |                                  | 12.0                      | 12.0             |         |             |
| Parking/Gra                                          | de/Parking             |                          | N          | Ν          | 0       | N                                     |                                           | N        | 0                                            | N <sub>_</sub> | N                                | 0                         | N                |         |             |
| Parking/hr                                           |                        |                          |            |            |         |                                       |                                           |          |                                              |                |                                  |                           |                  |         |             |
| Bus stops/h                                          | rking/hr<br>s stops/hr |                          |            |            |         |                                       | 0                                         | 0        |                                              | 0              | 0                                |                           |                  | 0       | 0           |
| Unit Extensi                                         | ion                    | ,                        |            |            |         |                                       | 3.0                                       | 3.0      | ) [:                                         | 3.0            | 3.0                              |                           |                  | 3.0     | 3.0         |
| Phasing                                              | WB Only                | 02                       | 2          | 03         |         | 04                                    |                                           | NB C     |                                              |                | ʻu & RT                          |                           | 07               |         | 08          |
| Timing                                               | G = 22.0               | G =                      |            | G =        |         | G =                                   |                                           | 3 = 3    |                                              |                | 48.0                             | G =                       |                  | G =     |             |
|                                                      | Y = 5<br>Analysis (hrs | Y =                      | 5          | Υ =        |         | Y =                                   | ΙΥ                                        | = 5      |                                              | Y =            | le Leng                          | Y =                       |                  | Y =     |             |
|                                                      | up Capaci              |                          |            | l Dola     | v ar    | 410                                   | S Dot                                     | orm      | inat                                         |                | ie Leng                          | u1 C -                    | - 110            |         |             |
| Latie GIO                                            | up Capaci              | ly, ce                   | EB         | ol Dela    | y, ai   | WE                                    |                                           | <u> </u> | maı                                          |                | NB                               |                           |                  | SB      |             |
| Adj. flow rat                                        | e                      | +                        | I          |            |         | 199                                   | 232                                       | -        | 5                                            |                | 53                               |                           |                  | 842     | 589         |
| Lane group                                           |                        | †                        |            |            |         | 310                                   | 309                                       |          | 428                                          | -              | 199                              |                           |                  | 1445    | 613         |
| v/c ratio                                            | •                      | 1                        |            | 1          |         | 0.64                                  | 0.75                                      | -        | 0.01                                         |                | 06                               | 一                         |                  | 0.58    | 0.96        |
| Green ratio                                          |                        | †                        |            | 1          |         | 0.19                                  | 0.19                                      | -        | 0.26                                         | 0.             | 72                               |                           |                  | 0.42    | 0.42        |
| Unif. delay o                                        | <u>1</u> 1             |                          |            |            |         | 42.9                                  | 43.9                                      | , ,      | 31.5                                         | 4              | .7                               |                           |                  | 25.8    | 32.6        |
| Delay factor                                         | ·k                     | 1                        |            | 1          |         | 0.22                                  | 0.31                                      | 7        | 0.11                                         | 0.             | 11                               |                           |                  | 0.17    | 0.47        |
| Increm. dela                                         | ay d2                  |                          |            |            |         | 4.5                                   | 9.9                                       |          | 0.0                                          | C              | .0                               |                           |                  | 0.6     | 26.8        |
| PF factor                                            |                        |                          |            |            |         | 1.000                                 | 1.00                                      | 0_1      | 1.000                                        | 0.             | 180                              |                           |                  | 0.522   | 1.000       |
| Control dela                                         | ıy                     |                          |            |            |         | 47.3                                  | 53.8                                      |          | 31.5                                         | 0              | .8                               |                           |                  | 14.1    | 59.4        |
| Lane group                                           | group LOS              |                          |            |            |         | D                                     | D                                         |          | С                                            |                | A                                |                           |                  | В       | Ε           |
| Apprch. dela                                         | pprch. delay           |                          |            |            |         |                                       |                                           |          |                                              | 1.8            |                                  |                           |                  | 32.7    |             |
| Approach Lo                                          | pproach LOS            |                          |            |            |         |                                       |                                           |          |                                              | Α              |                                  |                           |                  | С       |             |
| Intersec. de                                         | lay                    | ] ;                      | 34.2       |            |         |                                       | Inter                                     | secti    | on L0                                        | os             |                                  |                           |                  | С       |             |
| 9CS2000 <sup>TM</sup>                                |                        | _                        | C          | opyright © | 2000 Hi | niversity of                          | Florida A                                 | All Riol | hte Res                                      | erved          |                                  |                           |                  |         | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                         |                                                  |               |              | SHO                                              | ORT R        | EPOF                                       | RT             |            |                    |                                 |                            |                                                  |          |             |
|-------------------------------------------------------|-------------------------|--------------------------------------------------|---------------|--------------|--------------------------------------------------|--------------|--------------------------------------------|----------------|------------|--------------------|---------------------------------|----------------------------|--------------------------------------------------|----------|-------------|
| General Info                                          | ormation                |                                                  |               |              |                                                  | Si           | te Info                                    | rma            |            |                    |                                 |                            |                                                  |          |             |
| Analyst<br>Agency or C<br>Date Perforr<br>Time Period | med                     | US<br>US<br>05/0<br>AM P                         | AI<br>1/12    |              |                                                  | Ar<br>Ju     | tersecti<br>ea Typ<br>irisdicti<br>nalysis | e<br>on        |            | 00                 | WB RA DEL ( All othe CEANS T2/W | ORO I<br>er are:<br>IDE-IN | ⋜<br>as<br>√T.#8                                 |          |             |
| Volume an                                             | d Timing Inp            | out                                              |               |              |                                                  |              |                                            |                |            |                    |                                 |                            | -                                                |          |             |
|                                                       |                         |                                                  | 1 -           | EB           |                                                  | ļ , <u>-</u> | WB                                         | -              | _          |                    | NB                              | БТ                         | 1                                                | SB       | l or        |
| Num. of Lan                                           |                         |                                                  | LT<br>O       | TH<br>0      | RT<br>0                                          | LT<br>O      | TH<br>1                                    | R <sup>-</sup> | <u> </u>   | <u>LT</u><br>1     | TH<br>2                         | RT<br>0                    | LT<br>O                                          | TH<br>2  | RT<br>1     |
|                                                       | 169                     |                                                  | -             | -            | <del>                                     </del> | -            |                                            | R              | +          | <u>'</u>           | T                               |                            | ۲                                                | T        | R           |
| Lane group                                            | -1                      |                                                  | <del> </del>  |              |                                                  | 5            | LTR<br>5                                   | 409            |            | 5                  | 145                             |                            | 1                                                | 802      | 760         |
| Volume (vpł<br>% Heavy ve                             |                         |                                                  | <del></del> - |              |                                                  | 10           | 10                                         | 0              |            | <del>0</del><br>10 | 10                              |                            | 1                                                | 10       | 10          |
| PHF                                                   | J11                     |                                                  |               | <b>†</b>     |                                                  | 0.95         | 0.95                                       | 0.9            |            | .95                | 0.95                            |                            | <del>                                     </del> | 0.95     | 0.95        |
| Actuated (P                                           | /A)                     |                                                  |               |              |                                                  | Α            | Α                                          | Α              |            | Α                  | Α                               | Α                          |                                                  | Α        | Α           |
| Startup lost                                          |                         |                                                  |               |              |                                                  |              | 2.0                                        | 2.0            | _          | 2.0                | 2.0                             |                            |                                                  | 2.0      | 2.0         |
| Ext. eff. gree                                        | en                      |                                                  |               |              |                                                  | <u> </u>     | 2.0                                        | 2.0            |            | 2.0                | 2.0                             |                            | 1                                                | 2.0      | 2.0         |
| Arrival type                                          |                         |                                                  |               |              |                                                  | <del> </del> | 3                                          | 3              |            | 3                  | 5                               |                            |                                                  | 5        | 3           |
| Unit Extensi                                          | on<br>FOR Volume        |                                                  | 10            |              |                                                  | 0            | 3.0                                        | 3.0            | <i>y</i> , | 3.0                | 3.0                             |                            | 0                                                | 3.0      | 3.0         |
| Lane Width                                            | OR volume               |                                                  | 10            |              |                                                  | 1.0          | 12.0                                       | 12.            | 0 1        | 2.0                | 12.0                            |                            | 1                                                | 12.0     | 12.0        |
|                                                       | de/Parking              | N                                                | N             | <del> </del> | -                                                | _            |                                            |                | N          | N                  | 0                               | N                          |                                                  |          |             |
| Parking/hr                                            | arking/orado/r arking   |                                                  |               |              |                                                  |              |                                            |                |            |                    |                                 |                            |                                                  |          |             |
| Bus stops/h                                           | r                       |                                                  |               |              |                                                  |              | 0                                          | 0              |            | 0                  | 0                               |                            |                                                  | 0        | 0           |
| Unit Extensi                                          |                         |                                                  |               |              |                                                  |              | 3.0                                        | 3.0            | <i>i</i>   | 3.0                | 3.0                             |                            |                                                  | 3.0      | 3.0         |
| Phasing                                               | WB Only                 | 02                                               | 2             | 03           |                                                  | 04           |                                            | NB (           | Only       | Th                 | ru & RT                         | <u> </u>                   | 07                                               | <u> </u> | 08          |
| Timing                                                | G = 22.0                | G =                                              |               | G =          |                                                  | G =          |                                            | <b>)</b> = 3   |            |                    | = 48.0                          | G=                         |                                                  | G =      |             |
|                                                       | Y = 5                   | Y =                                              |               | Υ =          |                                                  | Y =          | Y                                          | = 5            | 5          |                    | · 5                             | Y =                        |                                                  | Y =      |             |
|                                                       | Analysis (hrs           |                                                  |               |              |                                                  |              |                                            |                | • 4        |                    | le Leng                         | ith C =                    | = 115                                            | 0.0      |             |
| Lane Gro                                              | up Capaci               | ty, Co                                           |               | l Dela       | y, ar                                            |              | _                                          | erm            | inat       |                    |                                 |                            |                                                  |          |             |
|                                                       |                         |                                                  | EB            |              |                                                  | WE           |                                            |                |            |                    | NB                              |                            |                                                  | SB       | l           |
| Adj. flow rate                                        | e                       |                                                  |               |              |                                                  | 204          | 237                                        |                | 5          | -                  | 53                              |                            |                                                  | 844      | 589         |
| Lane group                                            | сар.                    |                                                  |               |              |                                                  | 310          | 309                                        |                | 428        | 24                 | 199                             |                            |                                                  | 1445     | 613         |
| v/c ratio                                             |                         |                                                  |               |              |                                                  | 0.66         | 0.77                                       | <u> </u>       | 0.01       | 0                  | .06                             |                            |                                                  | 0.58     | 0.96        |
| Green ratio                                           |                         |                                                  |               |              |                                                  | 0.19         | 0.19                                       |                | 0.26       | 0                  | .72                             | ]                          |                                                  | 0.42     | 0.42        |
| Unif. delay o                                         | <u></u><br><u>1</u> 1   |                                                  |               |              |                                                  | 43.0         | 44.1                                       |                | 31.5       |                    | 1.7                             |                            |                                                  | 25.8     | 32.6        |
| Delay factor                                          | ·k                      | T                                                |               |              |                                                  | 0.23         | 0.32                                       | ?              | 0.11       | 0                  | .11                             |                            |                                                  | 0.18     | 0.47        |
| Increm. dela                                          | ay d2                   | 1                                                |               | 1            |                                                  | 5.0          | 11.0                                       | ,              | 0.0        | (                  | 0.0                             |                            |                                                  | 0.6      | 26.8        |
| PF factor                                             | rem. delay d2<br>factor |                                                  |               |              |                                                  | 1.000        | 1.00                                       | 0              | 1.000      | 0.                 | 180                             |                            |                                                  | 0.522    | 1.000       |
| Control dela                                          | rol delay               |                                                  |               |              |                                                  | 48.1         | 55.1                                       |                | 31.5       |                    | 0.8                             |                            |                                                  | 14.1     | 59.4        |
| Lane group                                            |                         | <del>                                     </del> |               |              |                                                  | D            | E                                          | 一              | С          | 丁                  | A                               |                            |                                                  | В        | E           |
| Apprch. dela                                          | ···· ·                  | 1                                                |               |              |                                                  | 51.9         |                                            |                |            | 1.8                |                                 |                            |                                                  | 32.7     | •           |
|                                                       | Approach LOS            |                                                  |               |              |                                                  |              |                                            | $\dashv$       |            | Α                  | •                               |                            |                                                  | С        |             |
| Intersec. de                                          |                         | <b>†</b>                                         |               |              | D                                                | Inter        | secti                                      | ion L          |            |                    |                                 |                            | С                                                |          |             |
| HCS2000 <sup>TM</sup>                                 | ,                       | <u> </u>                                         |               | nvright ©    | 2000 Hz                                          | niversity of |                                            |                |            |                    |                                 |                            | <u> </u>                                         |          | Version 4.1 |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |                          |              |            | SH      | ORT R        | EPC                                   | RT          |          |       |                                               |                          |                  |            |             |
|------------------------------------------------------|------------------------|--------------------------|--------------|------------|---------|--------------|---------------------------------------|-------------|----------|-------|-----------------------------------------------|--------------------------|------------------|------------|-------------|
| General Inf                                          | ormation               |                          |              |            |         | Si           | te Inf                                | orm         | atior    | ì     |                                               |                          |                  |            |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med                    | US<br>US<br>05/0<br>PM F | AI<br>1/12   |            |         | Ar<br>Ju     | tersec<br>rea Ty<br>irisdic<br>nalysi | /pe<br>tion |          |       | 78WB RA<br>DEL<br>All oth<br>OCEANS<br>DALT2/ | ORO<br>er are<br>SIDE-II | R<br>as<br>NT.#8 |            |             |
| Volume an                                            | ıd Timing İnp          | out                      | <b>,</b>     |            |         | _            |                                       |             |          |       |                                               |                          |                  |            |             |
|                                                      |                        |                          |              | EB         | DT      | LT           | WE                                    |             | ₹T       | LT    | NB<br>TH                                      | RT                       | LT               | SB<br>T TH | RT          |
| Num. of Lar                                          | nes                    |                          | LT<br>0      | TH<br>0    | RT<br>0 | 0            | TH<br>1                               |             | 1        | 1     | 2                                             | 0                        | 0                | 2          | 1           |
| Lane group                                           | •                      |                          |              |            |         |              | LTR                                   | 7           | ₹        | L     | T                                             |                          |                  | Т          | R           |
| Volume (vpl                                          | h)                     |                          |              | +          |         | 5            | 5                                     |             | 50       | 5     | 645                                           | $\vdash$                 | _                | 720        | 675         |
| % Heavy v                                            |                        |                          |              |            |         | 10           | 10                                    | Ī           | 0        | 10    | 10                                            |                          |                  | 10         | 10          |
| PHF                                                  |                        |                          |              |            |         | 0.95         | 0.95                                  |             | 95       | 0.9   |                                               | <u> </u>                 |                  | 0.95       | 0.95        |
| Actuated (P                                          |                        |                          | <u></u>      | 1          |         | Α            | A 2.0                                 | _           | 4        | A     | A 2.0                                         | A                        | -                | A 2.0      | A           |
| Startup lost<br>Ext. eff. gre                        |                        |                          |              |            |         | +            | 2.0                                   |             | .0<br>.0 | 2.0   |                                               | +-                       |                  | 2.0        | 2.0         |
| Arrival type                                         | en                     |                          |              |            |         | <u> </u>     | 3                                     |             | 3        | 3     | 5                                             | +                        |                  | 5          | 3           |
| Unit Extens                                          | ion                    |                          |              |            |         |              | 3.0                                   |             | 3.0      | 3.0   |                                               |                          |                  | 3.0        | 3.0         |
| 1                                                    | TOR Volume             |                          | 10           |            |         | 0            | <u> </u>                              | (           | 0        |       |                                               | 1                        | 0                | 0          | 200         |
| Lane Width                                           |                        |                          |              |            | -       |              | 12.0                                  | 12          | 2.0      | 12.0  | 12.0                                          |                          |                  | 12.0       | 12.0        |
| Parking/Gra                                          | ade/Parking            |                          | N            |            | Ν       | Ν            | 0                                     |             | N        | Ν     | 0                                             | N                        | N                | 0          | N           |
| Parking/hr                                           |                        |                          |              |            |         |              |                                       |             |          |       |                                               |                          |                  |            |             |
| Bus stops/h                                          | r                      |                          |              |            |         |              | 0                                     |             | 0        | 0     | 0                                             |                          |                  | 0          | 0_          |
| Unit Extens                                          | ion                    |                          |              |            |         |              | 3.0                                   | 3           | 3.0      | 3,0   | 3.0                                           |                          |                  | 3.0        | 3.0         |
| Phasing                                              | WB Only                | 0:                       | 2            | 03         |         | 04           |                                       |             | Only     |       | Thru & R                                      |                          | 07               |            | 80          |
| Timing                                               | G = 37.0               | G =                      |              | G =        |         | G =          |                                       |             | 21.0     | _     | 3 = 47.0                                      | G :                      |                  | G =        |             |
|                                                      | Y = 5<br>Analysis (hrs | Y =                      | 5            | Y =        | •••     | Υ =          |                                       | Y =         | 5        |       | / = <i>5</i><br>cycle Len                     | Y =                      |                  | Y =        |             |
|                                                      | up Capaci              |                          |              | l Dola     | V 21    | 24 I O       | S Da                                  | tarr        | nins     |       | -                                             | guio                     | 120              | 7.0        |             |
| Latte GIO                                            | up Capaci              | ly, Co                   | EB           | n Dela     | y, ai   | WE           |                                       | LCII        | <u> </u> | 2110  | NB                                            |                          |                  | SB         |             |
| Adj. flow rat                                        | ie                     | +                        | T            | T          |         | 365          | 43                                    | 4           | 5        |       | 679                                           |                          |                  | 758        | 500         |
| Lane group                                           | cap.                   | 1                        | <del> </del> |            |         | 499          | 49                                    | 8           | 287      | 7     | 2106                                          | _                        |                  | 1356       | 575         |
| v/c ratio                                            |                        |                          |              |            |         | 0.73         | 0.8                                   | 37          | 0.0.     | 2     | 0.32                                          |                          |                  | 0.56       | 0.87        |
| Green ratio                                          |                        |                          |              |            |         | 0.31         | 0.3                                   | 31          | 0.1      | 7     | 0.61                                          |                          |                  | 0.39       | 0.39        |
| Unif. delay                                          | d1                     |                          |              |            |         | 37.1         | 39                                    | .3          | 41.      | 0     | 11.4                                          |                          |                  | 28.4       | 33.7        |
| Delay factor                                         | гk                     |                          |              |            |         | 0.29         | 0.4                                   | 10          | 0.1      | 1     | 0.11                                          |                          |                  | 0.16       | 0.40        |
| Increm. dela                                         | ay d2                  |                          |              |            |         | 5.5          | 15                                    | .5          | 0.0      | )     | 0.1                                           |                          |                  | 0.5        | 13.5        |
| PF factor                                            |                        |                          |              |            |         | 1.000        | 1.0                                   | 00          | 1.00     | 00    | 0.128                                         |                          |                  | 0.571      | 1.000       |
| Control dela                                         | factor<br>itrol delay  |                          |              |            |         | 42.5         | 54                                    | .7          | 41.      | 0     | 1.6                                           |                          |                  | 16.7       | 47.2        |
| Lane group                                           | LOS                    |                          |              |            |         | D            | E                                     | )           | D        |       | Α                                             |                          |                  | В          | D           |
| Apprch, del                                          | ay                     |                          |              |            |         | 49.1         |                                       |             |          | 1     | .8                                            |                          |                  | 28.8       |             |
| Approach L                                           | os                     |                          |              |            |         | D            |                                       |             |          |       | 4                                             |                          |                  | С          |             |
| Intersec. de                                         | elay                   |                          | 28.0         |            |         |              | Inte                                  | ersec       | tion     | LOS   | 3                                             |                          |                  | С          |             |
| HCS2000 <sup>TM</sup>                                |                        |                          | <u></u>      | anvright © | 2000 11 | niversity of | f Florida                             | AllR        | ights B  | eserv | ed                                            |                          | · <u></u>        | <u></u>    | Version 4.1 |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                         |                                                  |             |                                                  | SHO     | ORT R        |                                      |            |                    |               |            |                                              |                           |                                                  |            |             |
|-------------------------------------------------------|-------------------------|--------------------------------------------------|-------------|--------------------------------------------------|---------|--------------|--------------------------------------|------------|--------------------|---------------|------------|----------------------------------------------|---------------------------|--------------------------------------------------|------------|-------------|
| General Info                                          | ormation                |                                                  |             |                                                  |         | Si           | te Infe                              | orm        | atior              | ١             |            |                                              |                           |                                                  |            |             |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med                     | US<br>US<br>05/0<br>PM P                         | SAI<br>1/12 |                                                  |         | Ar<br>Ju     | tersec<br>ea Ty<br>risdic<br>nalysis | pe<br>tion | ar                 |               | 00         | WB RA<br>DEL C<br>All othe<br>CEANSI<br>T2/W | DRO F<br>er area<br>DE-IN | ₹<br>as<br>VT.#8                                 |            |             |
| Volume an                                             | d Timing In             | out                                              |             |                                                  |         |              |                                      |            |                    |               |            |                                              |                           |                                                  |            |             |
|                                                       |                         |                                                  |             | EB                                               |         |              | WB                                   |            |                    |               |            | NB                                           |                           | ļ                                                | SB         | T ==        |
|                                                       |                         |                                                  | LT          | TH                                               | RT      | LT           | TH                                   | _          | RT_                | L.            |            | TH                                           | RT                        | LT                                               | TH         | RT          |
| Num. of Lan                                           | nes                     |                                                  | 0           | 0                                                | 0       | 0            | 1                                    | —          | 1                  | 1             |            | 2                                            | 0                         | 0                                                | 2          | 1           |
| Lane group                                            |                         |                                                  |             | ļ                                                |         |              | LTR                                  |            | R                  | L             |            | T                                            | ,                         | ļ                                                | 7          | R           |
| Volume (vpf                                           |                         |                                                  |             |                                                  |         | 5            | 5                                    | _          | 55<br>^            | 5             |            | 645                                          |                           | -                                                | 725        | 675         |
| % Heavy ve<br>PHF                                     | eh                      |                                                  |             |                                                  |         | 10<br>0.95   | 10<br>0.95                           |            | 0<br>95            | 0.9           |            | 10<br>0.95                                   |                           |                                                  | 10<br>0.95 | 10<br>0.95  |
| Actuated (P                                           | /A)                     |                                                  |             |                                                  |         | 0.95<br>A    | 0.95<br>A                            |            | <del>95</del><br>4 | 0.9<br>A      |            | 0.95<br>A                                    | Α                         | <del>                                     </del> | 0.90<br>A  | 0.95<br>A   |
| Startup lost                                          |                         |                                                  |             | <del>                                     </del> |         | †            | 2.0                                  |            | .0                 | 2.0           |            | 2.0                                          | - 1                       |                                                  | 2.0        | 2.0         |
| Ext. eff. gree                                        |                         |                                                  |             |                                                  |         |              | 2.0                                  |            | .0                 | 2.0           |            | 2.0                                          |                           |                                                  | 2.0        | 2.0         |
| Arrival type                                          |                         |                                                  |             |                                                  |         |              | 3                                    | ,          | 3                  | 3             |            | 5                                            |                           |                                                  | 5          | 3           |
| Unit Extensi                                          |                         |                                                  |             |                                                  |         |              | 3.0                                  |            | 3.0                | 3.            | 0          | 3.0                                          |                           |                                                  | 3.0        | 3.0         |
|                                                       | ΓOR Volume              | ****                                             | 10          | 1                                                |         | 0            |                                      | _          | 0                  |               |            |                                              |                           | 0                                                | 0          | 200         |
| Lane Width                                            |                         |                                                  |             |                                                  | 12.0    | _            | 2.0                                  | 12.        |                    | 12.0          |            |                                              | 12.0                      | 12.0                                             |            |             |
| Parking/Gra                                           | ide/Parking             |                                                  | N           | N                                                | 0       |              | N                                    | Ν          |                    | 0             | N          | N                                            | 0                         | N                                                |            |             |
| Parking/hr                                            |                         |                                                  |             |                                                  |         |              |                                      | _          |                    |               |            | ļ                                            |                           | ļ                                                |            |             |
| Bus stops/h                                           |                         |                                                  |             |                                                  |         |              | 0                                    |            | 0                  | 0             |            | 0                                            |                           |                                                  | 0          | 0           |
| Unit Extensi                                          | ion                     |                                                  | <u> </u>    |                                                  |         | <u>l</u> .   | 3.0                                  | 3          | 3.0                | 3.            |            | 3.0                                          |                           |                                                  | 3.0        | 3.0         |
| Phasing                                               | WB Only                 | 02                                               | 2           | 03                                               |         | 04           |                                      |            | Only               |               |            | u & RT                                       |                           | 07                                               |            | 80          |
| Timing                                                | G = 37.0<br>Y = 5       | G =<br>Y =                                       |             | G =<br>Y =                                       |         | G =<br>Y =   |                                      | G =<br>Y = | 21.0               |               | G =<br>Y = | 47.0                                         | G =                       |                                                  | G =<br>Y = |             |
| Duration of                                           | TY = 5<br>Analysis (hrs | <u> </u>                                         | 5           | Y ==                                             | i       | Y —          |                                      | <u> </u>   | 0                  | _             | _          | le Leng                                      |                           |                                                  |            |             |
|                                                       | up Capaci               |                                                  |             | l Dola                                           | W ar    | 74 I U       | S Do                                 | forr       | nin                |               |            | io Long                                      |                           | 120                                              | ,,,        |             |
| Laile Gio                                             | up Capaci               | T                                                | EB          | Dela                                             | iy, ai  | WE           |                                      | ten        | <u> </u>           | atic          |            | NB                                           |                           | · · · · · · · · · · · · · · · · · · ·            | SB         |             |
| Adj. flow rate                                        | Α                       | +                                                | 1           | T                                                |         | 368          | 43                                   | 7          | 5                  |               |            | 79                                           | $\dashv$                  |                                                  | 763        | 500         |
| Lane group                                            |                         | +                                                |             |                                                  |         | 499          | 49                                   |            | 28                 | <del></del> 7 | _          | 106                                          |                           |                                                  | 1356       | 575         |
| v/c ratio                                             | сар.                    | <del> </del>                                     | +-          | +                                                | 1       | 0.74         | 0.8                                  |            | 0.0                |               | +          | 32                                           |                           |                                                  | 0.56       | 0.87        |
| Green ratio                                           | <del>.</del>            | -                                                | $\vdash$    | +                                                |         | 0.31         | 0.3                                  |            | 0.1                |               | +          | 61                                           |                           |                                                  | 0.39       | 0.39        |
| Unif. delay o                                         |                         |                                                  |             |                                                  |         | 37.2         | 39.                                  |            | 41.                |               | +          | 1.4                                          |                           |                                                  | 28.5       | 33.7        |
| Delay factor                                          |                         | +                                                | +           |                                                  |         | 0.30         | 0.4                                  |            | 0.1                |               | -          | 11                                           |                           |                                                  | 0.16       | 0.40        |
| Increm. dela                                          |                         | <del>                                     </del> | 1           | 1                                                |         | 5.7          | 16.                                  |            | 0.0                |               | ┿          | ).1                                          |                           |                                                  | 0.5        | 13.5        |
| PF factor                                             |                         |                                                  |             |                                                  |         | 1.000        | 1.0                                  |            | 1.00               |               | +          | 128                                          |                           |                                                  | 0.571      | 1.000       |
| Control dela                                          | ay                      | 1                                                | T           | <del>                                     </del> |         | 42.9         | 55.                                  | 5          | 41.                | 0             | 1          | .6                                           |                           |                                                  | 16.8       | 47.2        |
|                                                       | ane group LOS           |                                                  |             |                                                  |         | D            | E                                    | •          | D                  | · ·           | 1          | A                                            |                           |                                                  | В          | D           |
| Apprch. dela                                          | pprch. delay            |                                                  |             |                                                  |         | 49.7         |                                      |            |                    |               | 1.8        |                                              |                           |                                                  | 28.8       | •           |
| Approach Lo                                           |                         |                                                  | D           |                                                  |         |              |                                      | Α          |                    |               |            | С                                            |                           |                                                  |            |             |
| Intersec. de                                          | ntersec. delay 28.2     |                                                  |             |                                                  |         |              | Inte                                 | rsec       | ction              | LO            | s          |                                              |                           |                                                  | С          |             |
| ticeroaaTM                                            |                         | -                                                |             |                                                  | 2000 II | niversity of | TTlo≓do                              | A 11 D     |                    |               | uod.       |                                              |                           |                                                  |            | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                                                        |                             |            |          | SH              | OF             | RT RE                      | PC           | )R           |          |                  |                                                  |                                                  |                 |              |                                                  |
|-------------------------------------------------------|--------------------------------------------------------|-----------------------------|------------|----------|-----------------|----------------|----------------------------|--------------|--------------|----------|------------------|--------------------------------------------------|--------------------------------------------------|-----------------|--------------|--------------------------------------------------|
| General Inf                                           | ormation                                               |                             |            |          |                 |                |                            |              |              | natio    | า                |                                                  |                                                  |                 |              |                                                  |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med                                                    | US.<br>US.<br>05/01<br>AM P | AI<br>1/12 |          |                 |                | Inte<br>Are<br>Juri<br>Ana | a Ty<br>sdid | ype<br>ction | 1        | Q                | DEL<br>All oth<br>CEANS                          | ORO<br>er are<br>SIDE-II                         | as              |              |                                                  |
| Volume an                                             | d Timing In                                            | out                         |            |          |                 |                |                            |              |              |          |                  |                                                  |                                                  |                 |              |                                                  |
|                                                       |                                                        |                             | 1 7        | EB       | _               | , <del>-</del> | 1 77                       |              | /B           | DT       | LT               | NB<br>TTU                                        | DT                                               | 1 -             | SB           | RT                                               |
| Num. of Lar                                           | 100                                                    |                             | LT<br>1    | 1 TH     |                 | <u>T∑</u>      | <u>LT</u>                  | 10           | H            | RT<br>0  | 0                | TH<br>0                                          | RT<br>0                                          | LT<br>2         | ΤH<br>0      | 0                                                |
|                                                       | 103                                                    | • • •                       |            | LT       | <del></del>     |                |                            | H            |              | _        |                  | <del>Ľ</del>                                     | <del>Ť</del>                                     |                 | Ť            |                                                  |
| Lane group                                            | h)                                                     |                             | 150        | 5        |                 |                |                            | ⊢            |              |          | <u> </u>         |                                                  | <del>                                     </del> | 805             |              |                                                  |
| Volume (vpl<br>% Heavy ve                             |                                                        |                             | 10         | 10       |                 |                |                            | ┢            |              |          | <u> </u>         | +                                                | <del>                                     </del> | 10              |              |                                                  |
| PHF                                                   | <u> </u>                                               |                             | 0.95       | 0.95     | 5               |                |                            |              |              |          |                  | <del>                                     </del> | <b></b>                                          | 0.95            |              | <del>                                     </del> |
| Actuated (P                                           | /A)                                                    |                             | Α          | Α        | 1               | 1              |                            |              |              |          |                  |                                                  |                                                  | Α               | Α            |                                                  |
| Startup lost                                          | time                                                   |                             | 2.0        | 2.0      |                 |                |                            |              |              |          |                  |                                                  |                                                  | 2.0             |              |                                                  |
| Ext. eff. gree                                        | en                                                     |                             | 2.0        | 2.0      |                 |                |                            |              |              |          |                  |                                                  | ļ                                                | 2.0             |              | <u> </u>                                         |
| Arrival type                                          |                                                        |                             | 3          | 3        | -               |                |                            | ļ            |              |          | <u> </u>         | -                                                |                                                  | 5               | -            | -                                                |
| Unit Extensi                                          |                                                        |                             | 3.0        | 3.0      | _               |                |                            |              |              |          | 10               |                                                  |                                                  | 3.0             | -            | <del> </del>                                     |
| Lane Width                                            | TOR Volume                                             |                             | 12.0       | 12.0     | , —             |                | 0                          | ┢            |              |          | 10               | +                                                | -                                                | 12.0            |              | +                                                |
|                                                       | rking/Grade/Parking                                    |                             |            | 0        | _               | V              | N                          | $\vdash$     |              | N        | N                | <del>                                     </del> | N                                                | N N             | 0            | $\frac{1}{N}$                                    |
| Parking/bra                                           | don arking                                             |                             | N          | Ť        | +               | •              | ,,,                        | ┢            |              | ,,,      | 1 ''             |                                                  | 1                                                | <del>  ``</del> | <del>Ť</del> | † ' '                                            |
| Bus stops/h                                           | r                                                      |                             | 0          | 0        | 十               |                |                            |              |              |          |                  | 1                                                |                                                  | 0               |              | <b>-</b>                                         |
| Unit Extensi                                          | ting/Grade/Parking<br>ting/hr<br>stops/hr<br>Extension |                             |            | 3.0      | $\top$          |                |                            | H            |              |          |                  | †                                                |                                                  | 3.0             | •            | 1                                                |
| Phasing                                               | sing/hr stops/hr Extension sing EB Only                |                             |            | 0        | _ <del></del> 3 | Т              | 04                         | <del>`</del> | S            | B Only   | <del>/    </del> | 06                                               | ╁                                                | 07              | 1            | 08                                               |
|                                                       | G = 23.0                                               | 02<br>G =                   |            | G =      |                 | G              |                            |              |              | = 37.0   |                  | =                                                | G :                                              | =               | G =          |                                                  |
| Timing                                                | Y= 5                                                   | Y =                         |            | Y =      |                 | Υ              | =                          |              | Y =          | = 5      | Y                |                                                  | Y =                                              |                 | Υ =          |                                                  |
|                                                       | Analysis (hrs                                          |                             |            |          |                 |                |                            |              |              |          |                  | le Len                                           | gth C                                            | = 70.0          |              |                                                  |
| Lane Gro                                              | up Capac                                               | ty, Co                      |            |          | ay, a           | ınd            |                            |              | etei         | rmin     | ation            |                                                  |                                                  | T               |              |                                                  |
|                                                       |                                                        |                             | E          |          |                 |                | V                          | ۷B           |              |          |                  | NB                                               | -                                                |                 | SB           | <del></del>                                      |
| Adj. flow rat                                         | e                                                      | 88                          | 75         | 5        |                 |                |                            |              | 上            |          |                  |                                                  |                                                  | 847             | <u> </u>     |                                                  |
| Lane group                                            | сар.                                                   | 539                         | 54         | 2        |                 |                |                            |              | L            |          |                  |                                                  | _                                                | 1685            |              |                                                  |
| v/c ratio                                             |                                                        | 0.16                        | 0.1        | 4        |                 |                |                            |              |              |          |                  |                                                  | _                                                | 0.50            |              |                                                  |
| Green ratio                                           | ·                                                      | 0.33                        | 0.3        | 3        |                 |                |                            |              |              |          |                  |                                                  |                                                  | 0.53            |              |                                                  |
| Unif. delay                                           |                                                        | 16.7                        | 16.        | 5        |                 |                |                            |              | Τ            |          |                  |                                                  |                                                  | 10.6            |              |                                                  |
| Delay factor                                          | · k                                                    | 0.11                        | 0.1        | 1        |                 |                |                            |              | T            |          |                  |                                                  |                                                  | 0.11            |              |                                                  |
| Increm. dela                                          |                                                        | 0.1                         | 0.         | 1        |                 |                |                            |              | T            |          |                  |                                                  |                                                  | 0.2             |              |                                                  |
| PF factor                                             |                                                        | 1.00                        | 0 1.0      | 00       |                 |                |                            |              | Τ            |          |                  |                                                  |                                                  | 0.253           |              |                                                  |
| Control dela                                          |                                                        |                             |            | 6        |                 |                |                            |              | T            | ì        |                  |                                                  |                                                  | 2.9             |              |                                                  |
|                                                       | trol delay<br>e group LOS                              |                             |            |          |                 |                |                            |              | T            |          |                  |                                                  |                                                  | Α               |              |                                                  |
| Apprch. del                                           | -                                                      | В                           | 16.7       |          |                 |                |                            |              | .l           |          |                  |                                                  |                                                  |                 | 2.9          |                                                  |
| Approach L                                            |                                                        | +                           | В          |          |                 |                |                            |              |              |          |                  |                                                  |                                                  |                 | A            |                                                  |
| Intersec. de                                          |                                                        |                             | 5.1        |          |                 |                |                            | 1            | Inte         | rsection | on LOS           | <del></del>                                      |                                                  | 1               | Α            | <u> </u>                                         |
| HCS2000 <sup>TM</sup>                                 | ,                                                      | L                           |            | wright ( | <u>ක 2000 :</u> | L<br>(Inive    | rsity of F                 |              |              |          | Reserved         |                                                  |                                                  | 1               |              | Version 4.1                                      |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                                       | <u> </u>                 |            |          |           | SH       | OF       | T RE               | PC          | DR <sup>-</sup>      | T          |               |                                                  |                         |             |          |            |
|------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|------------|----------|-----------|----------|----------|--------------------|-------------|----------------------|------------|---------------|--------------------------------------------------|-------------------------|-------------|----------|------------|
| General Inf                                          | ormation                                                              |                          |            |          |           |          | <u> </u> |                    |             |                      | -<br>natio | 1             |                                                  |                         |             |          |            |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | Co.<br>med                                                            | US<br>US<br>05/0<br>AM P | AI<br>1/12 |          |           |          |          | Inte<br>Are<br>Jur | erse<br>a T | ctio<br>ype<br>ctior | n          | SR-7<br>O     | DEL<br>All oth<br>CEANS                          | ORO<br>er are<br>SIDE-I | as          |          |            |
| Volume an                                            | d Timing In                                                           | out                      |            |          |           |          |          |                    |             |                      |            |               |                                                  |                         |             |          |            |
|                                                      |                                                                       |                          |            |          | EB        |          |          |                    |             | /B                   |            |               | NB                                               |                         |             | SB       |            |
|                                                      |                                                                       |                          | LT         | _        | TH        | R        | _        | LT                 | I           |                      | RT         | LT            | TH                                               | RT                      | LT          | TH       | RT         |
| Num. of Lar                                          | nes                                                                   |                          | 1          | _        | 1         | 0        |          | 0                  | C           |                      | 0          | 0             | 0                                                | 0                       | 2           | 0        | 0          |
| Lane group                                           |                                                                       |                          | L          |          | LT        |          |          |                    |             |                      |            |               |                                                  |                         | L           |          |            |
| Volume (vpl                                          |                                                                       |                          | 150        |          | 5         |          |          |                    |             |                      |            |               |                                                  | ļ                       | 807         |          |            |
| % Heavy ve                                           | eh                                                                    |                          | 10         | 4        | 10        | _        |          |                    | ▙           |                      |            | <del> </del>  | <b>.</b>                                         | ļ                       | 10          | ļ        | <u> </u>   |
| PHF<br>Actuated (P                                   | ///                                                                   |                          | 0.95       | 4        | 0.95<br>A |          |          |                    | ├           |                      |            |               | <u> </u>                                         | -                       | 0.95<br>A   | A        | ┼          |
| Startup lost                                         |                                                                       |                          | A<br>2.0   | +        | 2.0       | <u> </u> |          |                    | ╁           |                      |            | 1             | +                                                | $\vdash$                | 2.0         | 1        | +          |
| Ext. eff. gree                                       |                                                                       |                          | 2.0        | _        | 2.0       | $\vdash$ |          |                    | $\vdash$    |                      |            | 1             | <del>                                     </del> | $\vdash$                | 2.0         |          | $\vdash$   |
| Arrival type                                         |                                                                       |                          | 3          | Ť        | 3         |          |          |                    |             |                      |            | İ             |                                                  |                         | 5           |          |            |
| Unit Extensi                                         | ion                                                                   |                          | 3.0        |          | 3.0       |          |          |                    |             |                      |            |               |                                                  |                         | 3.0         |          |            |
| Ped/Bike/R                                           | TOR Volume                                                            |                          |            |          |           |          |          | 0                  |             |                      |            | 10            |                                                  |                         |             |          |            |
| Lane Width                                           |                                                                       |                          | 12.0       | <u>'</u> | 12.0      |          |          |                    | 乚           |                      |            |               |                                                  |                         | 12.0        |          | <u> </u>   |
| Parking/Gra                                          | ide/Parking                                                           |                          | Ν          |          | 0         | Ν        | '        | Ν                  |             |                      | N          | N             |                                                  | N                       | N           | 0        | N          |
| Parking/hr                                           |                                                                       |                          |            | $\perp$  |           |          |          |                    |             |                      |            |               |                                                  |                         |             | <u> </u> | <u> </u>   |
| Bus stops/h                                          | r                                                                     |                          | 0          |          | 0         |          |          |                    |             |                      |            |               |                                                  | ŀ                       | 0           |          |            |
| Unit Extensi                                         | ion                                                                   |                          | 3.0        |          | 3.0       |          |          |                    |             |                      |            |               |                                                  |                         | 3.0         |          | <u> </u>   |
| Phasing                                              | ting/Grade/Parking ting/hr stops/hr Extension sing EB Only G = 23.0 G |                          |            |          | 03        |          |          | 04                 |             |                      | B Only     |               | 06                                               |                         | 07          |          | 08         |
| Timing                                               |                                                                       | G =                      |            | G        |           |          | G        |                    | _           |                      | = 37.0     |               |                                                  | G:                      |             | G =      |            |
|                                                      | Y = 5<br>Analysis (hrs                                                | Y =                      |            | Υ        | =         |          | Υ        | =                  |             | Υ =                  | = 5        | Y :           |                                                  | Y =                     | =<br>= 70.0 | Y =      |            |
|                                                      |                                                                       |                          |            | L<br>J F | ) olay    |          | n d      | I OS               | Da          | .to:                 | min        |               | Je Len                                           | guito                   | - 70.0      |          |            |
| Latie Gio                                            | up Capaci                                                             | ly, CC                   |            |          | Jelay     | ', ai    | ilu      |                    |             | :LEI                 | 1111114    | ation         | ND                                               |                         | 1           | SB       |            |
| A 11 51 .                                            |                                                                       |                          |            | EB       |           |          |          | <u></u>            | VB          |                      |            | <del></del> 1 | NB                                               |                         | 1           | 1 38     |            |
| Adj. flow rat                                        | • • • • • • • • • • • • • • • • • • • •                               | 88                       | _          | 5        | _         | _        |          | _                  |             | ┞                    |            |               |                                                  |                         | 849         | ╄        | ┼          |
| Lane group                                           | сар.                                                                  | 539                      | 5.         | 42       |           |          |          |                    |             | L                    |            |               |                                                  |                         | 1685        |          |            |
| v/c ratio                                            |                                                                       | 0.16                     | 0.         | 14       |           |          |          |                    |             |                      |            |               |                                                  |                         | 0.50        |          |            |
| Green ratio                                          |                                                                       | 0.33                     | 0.         | 33       |           |          |          |                    |             |                      |            |               |                                                  |                         | 0.53        |          |            |
| Unif. delay o                                        | <u></u>                                                               | 16.7                     | 16         | 3.5      |           |          |          |                    |             |                      |            |               |                                                  |                         | 10.6        | 1 "      |            |
| Delay factor                                         | ·k                                                                    | 0.11                     | 0.         | 11       | $\top$    | $\top$   |          | $\top$             |             |                      |            |               |                                                  |                         | 0.11        |          |            |
| Increm. dela                                         | ay d2                                                                 | 0.1                      | 0          | .1       | 十         |          |          |                    |             |                      |            |               | ·                                                |                         | 0.2         | 1        |            |
| PF factor                                            |                                                                       |                          | ) 1.       | 000      | ,         |          |          |                    |             |                      |            |               |                                                  |                         | 0.253       |          |            |
| Control dela                                         | ay                                                                    | 16.8                     | 16         | 3.6      |           |          |          |                    |             |                      |            |               |                                                  |                         | 2.9         |          |            |
| Lane group                                           | LOS                                                                   | В                        |            | В        |           |          |          |                    |             |                      |            |               |                                                  |                         | Α           |          |            |
| Apprch. dela                                         | ay                                                                    |                          | 16.7       |          |           |          |          |                    |             |                      |            |               |                                                  |                         |             | 2.9      |            |
| Approach L                                           | os                                                                    |                          | В          |          |           |          |          |                    |             |                      |            |               |                                                  |                         |             | Α        |            |
| Intersec. de                                         | lay                                                                   |                          | 5.1        |          |           |          |          |                    | ı           | nte                  | rsectio    | n LOS         | 5                                                |                         |             | Α        |            |
| HCS2000 <sup>TM</sup>                                |                                                                       |                          |            |          | :L+ @ 21  | 100 T I  | niron    | rsity of F         | larida      | . A 11               | Diahta I   | Lagarriad     |                                                  |                         |             | - V      | ersion 4.1 |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                                            |                          |            |           |            | SH             | OR       | T RE                       | PC       | DR <sup>-</sup> | Γ         |                |                         |                           |            |                                                  |             |
|------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|------------|-----------|------------|----------------|----------|----------------------------|----------|-----------------|-----------|----------------|-------------------------|---------------------------|------------|--------------------------------------------------|-------------|
| General Inf                                          | ormation                                                                   |                          |            |           |            |                |          |                            |          |                 | natio     | )              |                         |                           |            |                                                  |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                                                                        | US<br>US<br>05/0<br>PM F | AI<br>1/12 | •         |            |                |          | Inte<br>Are<br>Juri<br>Ana | a T      | ype<br>ction    | n         | 00             | DEL<br>All oth<br>CEANS | ORO I<br>er are<br>IDE-II | as         |                                                  |             |
| Volume an                                            | d Timing In                                                                | out                      |            |           |            |                |          |                            |          |                 |           |                |                         |                           |            |                                                  |             |
|                                                      |                                                                            |                          |            |           | EB         |                |          |                            |          | /B              |           |                | NB                      |                           |            | SB                                               | <del></del> |
|                                                      |                                                                            |                          | LT         | _         | TH         | R              |          | LT                         | 1        | H               | RT        | LT             | TH                      | RT                        | LT         | TH                                               | RT          |
| Num. of Lar                                          | nes                                                                        |                          | 1          |           | 1          | 0              | _        | 0                          | (        |                 | 0         | 0              | 0                       | 0                         | 2          | 0                                                | 0           |
| Lane group                                           |                                                                            |                          | L          |           | LT         | 上              |          |                            | <u> </u> |                 |           |                |                         |                           | L          |                                                  | <u> </u>    |
| Volume (vpl                                          |                                                                            |                          | 650        |           | 5          | -              |          |                            |          |                 |           | <u> </u>       |                         | -                         | 725        |                                                  |             |
| % Heavy vo                                           | en                                                                         |                          | 10<br>0.98 |           | 10<br>0.95 | ╆              |          |                            | ┢        |                 |           | -              | }                       | <del> </del>              | 10<br>0.95 |                                                  | <u> </u>    |
| Actuated (P                                          | /Δ)                                                                        |                          | 0.90<br>A  | )         | 0.95<br>A  | l A            |          |                            | ┢        |                 |           | -              | <u> </u>                |                           | 0.90<br>A  | Α                                                | ┼           |
| Startup lost                                         |                                                                            |                          | 2.0        | )         | 2.0        | <del>† ^</del> |          |                            | H        |                 |           |                | 1                       | <u> </u>                  | 2.0        | <del>                                     </del> | $\vdash$    |
| Ext. eff. gre                                        |                                                                            |                          | 2.0        |           | 2.0        |                |          |                            |          |                 |           |                |                         |                           | 2.0        |                                                  |             |
| Arrival type                                         |                                                                            |                          | 3          |           | 3          |                |          |                            |          |                 |           |                |                         |                           | 5          |                                                  |             |
| Unit Extensi                                         | Extension<br>/Bike/RTOR Volume<br>e Width<br>king/Grade/Parking<br>king/hr |                          |            | )         | 3.0        |                |          |                            |          |                 |           |                |                         |                           | 3.0        |                                                  |             |
|                                                      | TOR Volume                                                                 |                          |            |           |            | <u> </u>       |          | 0                          |          |                 |           | 10             |                         | ↓                         |            |                                                  | <u> </u>    |
| Lane Width                                           | king/Grade/Parking                                                         |                          |            | 0_        | 12.0       | igspace        |          |                            |          |                 |           |                |                         |                           | 12.0       |                                                  |             |
| Parking/Gra                                          | king/Grade/Parking                                                         |                          |            |           | 0          | I N            | <i>l</i> | N                          | _        |                 | N         | N              |                         | N                         | N          | 0                                                | N           |
| Parking/hr                                           | king/Grade/Parking<br>king/hr<br>stops/hr                                  |                          |            |           |            |                |          |                            |          |                 |           |                |                         | <u> </u>                  |            |                                                  | <u> </u>    |
| Bus stops/h                                          | king/hr<br>stops/hr                                                        |                          | 0          |           | 0          |                |          |                            | L        |                 |           |                |                         |                           | 0          |                                                  |             |
| Unit Extens                                          | stops/hr                                                                   |                          | 3.0        | )         | 3.0        |                |          |                            |          |                 |           |                |                         |                           | 3.0        | <u></u>                                          | <u> </u>    |
| Phasing                                              | EB Only                                                                    | 02                       | 2          |           | 03         |                |          | 04                         |          |                 | B Only    |                | 06                      |                           | 07         |                                                  | 08          |
| Timing                                               | G = 25.0                                                                   | G =                      |            |           | ) =        |                | G        |                            | _        |                 | = 35.0    |                |                         | G =                       |            | G =<br>Y =                                       |             |
|                                                      | Y = 5<br>Analysis (hrs                                                     | Y =                      | =          | +         | <b>/</b> = |                | Υ        | =                          |          | Υ =             | = 5       | Y =            |                         |                           | = 70.0     | Υ =                                              |             |
|                                                      |                                                                            |                          |            | <u></u> _ | Dolos      |                | - d      | 100                        | D        | · t o ı         | rmin      |                | ie reiiį                | giii O -                  | - 70.0     |                                                  | -           |
| Lane Gro                                             | up Capaci                                                                  | Ty, Co                   |            |           |            | y, a<br>T      | nu       |                            | VB       | ; LEI           | 1,1111111 | 111011         | NB                      |                           | T          | SB                                               |             |
| A 11 61 .                                            |                                                                            |                          |            | EB        |            | -              |          | <del>- 1</del>             | VD       | т               |           | T              | IND                     |                           | 700        | J J                                              | T .         |
| Adj. flow rat                                        |                                                                            | 383                      | -          | 306       | _          | _              |          |                            |          | ╄               | _         |                |                         |                           | 763        | <u> </u>                                         | -           |
| Lane group                                           | сар.                                                                       | 586                      |            | 588       |            |                |          |                            |          |                 |           |                |                         |                           | 1594       | <u> </u>                                         | ↓           |
| v/c ratio                                            |                                                                            | 0.65                     | C          | .52       | 2          |                |          |                            |          |                 |           |                |                         |                           | 0.48       |                                                  |             |
| Green ratio                                          |                                                                            | 0.36                     |            | 0.36      | 5          |                |          |                            |          |                 |           |                |                         |                           | 0.50       |                                                  |             |
| Unif. delay                                          | d1                                                                         | 18.9                     | 1          | 7.8       | 3          |                |          |                            |          |                 |           |                |                         |                           | 11.5       |                                                  |             |
| Delay factor                                         | r k                                                                        | 0.23                     | 0          | 0.13      | 3          |                |          |                            |          | T               |           |                |                         |                           | 0.11       |                                                  |             |
| Increm. dela                                         |                                                                            | 2.6                      | 1          | 0.8       |            |                |          |                            |          | T               |           | 一十             |                         |                           | 0.2        |                                                  |             |
| PF factor                                            | <u>,                                      </u>                             | 1.00                     | -          | .00       |            | _              |          |                            |          | ╁               |           | <del></del>    |                         |                           | 0.333      | <u> </u>                                         | <u> </u>    |
| Control dela                                         |                                                                            |                          | 1          | 18.6      | 5          |                |          |                            |          | T               |           |                |                         |                           | 4.1        | 1                                                | <b>—</b>    |
| Lane group                                           |                                                                            | c                        | 十          | В         | $\neg$     | 寸              |          | _                          |          | T               |           | $\neg \dagger$ |                         |                           | Α          | 1                                                | 1           |
| Apprch. del                                          |                                                                            |                          | 20.2       | ?         |            | $\dashv$       |          | -                          |          | <u></u>         |           |                | •                       |                           |            | 4.1                                              |             |
| Approach L                                           |                                                                            | 1                        | С          |           |            |                |          |                            |          |                 |           |                | и                       |                           |            | Α                                                |             |
| Intersec. de                                         | elay                                                                       |                          | 11.7       | 7         | -,         | 一              |          |                            |          | Inte            | rsection  | on LOS         |                         |                           |            | В                                                |             |
| EECG2000TM                                           |                                                                            |                          |            |           | zrioht © 2 | 1000 T         |          | CT                         | na       | 4 11            | D:-1-4- I |                |                         |                           |            | τ.                                               | ersion 4.1  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                           |        |                             |      |            | SH                                               | OR  | TR         | EP(                           | DR.         | T                                                |                    |        |                                       |                                                   |               |          |                                                  |
|------------------------------------------------------|---------------------------|--------|-----------------------------|------|------------|--------------------------------------------------|-----|------------|-------------------------------|-------------|--------------------------------------------------|--------------------|--------|---------------------------------------|---------------------------------------------------|---------------|----------|--------------------------------------------------|
| General Inf                                          | ormation                  |        |                             |      |            |                                                  |     |            |                               |             | natio                                            | n                  |        |                                       | •                                                 |               |          |                                                  |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                       | U.     | SAI<br>SAI<br>01/12<br>PEAF |      |            |                                                  |     | Are<br>Jui | erse<br>ea T<br>risdi<br>alys | ype<br>ctio |                                                  |                    | 00     | DEL<br>All oth<br>CEANS               | ORO I<br>er area<br>IDE-IN                        | as            |          |                                                  |
| Volume an                                            | nd Timing In              | put    |                             |      |            |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   |               |          |                                                  |
|                                                      |                           |        | H                           | _    | EB<br>TH   | R                                                | , T | LT         |                               | /B<br>H     | RT                                               | -                  | LT     | NB<br>TH                              | RT                                                | LT            | SB<br>TH | RT                                               |
| Num. of Lar                                          | nes                       |        | 1                           | !    | 1          | (                                                | —   | 0          | + (                           |             | 0                                                | +                  | 0      | 0                                     | 0                                                 | 2             | 0        | 0                                                |
| Lane group                                           | 100                       |        | 1                           |      | LT         |                                                  |     |            | +                             |             | Ť                                                | $\dagger$          |        |                                       |                                                   | $\frac{1}{L}$ | <u> </u> | <del>                                     </del> |
| Volume (vpl                                          | h)                        |        | 65                          | 0    | 5          | ╀                                                |     |            | ╫                             | İ           | <b></b>                                          | +                  |        |                                       |                                                   | 730           |          |                                                  |
| % Heavy v                                            |                           |        | 10                          |      | 10         | 十                                                | -   |            | +                             |             | <del>                                     </del> | +                  |        |                                       |                                                   | 10            |          | $\vdash$                                         |
| PHF                                                  |                           |        | 0.9                         |      | 0.95       | $\vdash$                                         |     |            | 十                             |             |                                                  | 十                  |        | İ                                     |                                                   | 0.95          |          | <u> </u>                                         |
| Actuated (P                                          |                           |        | Α                           |      | Α          | A                                                |     |            |                               |             |                                                  |                    |        |                                       |                                                   | Α             | Α        |                                                  |
| Startup lost                                         |                           |        | 2.0                         |      | 2.0        |                                                  |     |            | $\perp$                       |             |                                                  | $oldsymbol{\perp}$ |        |                                       |                                                   | 2.0           |          | <u> </u>                                         |
| Ext. eff. gre                                        | en                        |        | 2.0                         |      | 2.0        | _                                                |     |            | ╂                             |             | <u> </u>                                         | +                  |        | <u> </u>                              |                                                   | 2.0           |          |                                                  |
| Arrival type<br>Unit Extens                          | !oo                       |        | 3                           |      | 3<br>3.0   | ┼                                                |     |            | ╀                             |             |                                                  | ╁                  |        |                                       |                                                   | 5<br>3.0      | -        | ├─                                               |
|                                                      | TOR Volume                |        | 3.0                         |      | 3.0        | ╀╌                                               |     | 0          | ╀                             |             | <del> </del>                                     | ╬                  | 10     | -                                     | <u> </u>                                          | 3.0           | -        | ₩                                                |
| Lane Width                                           | TOIX VOIGITIE             |        | 12.                         | 0    | 12.0       | ┢                                                |     | U          | ╁                             |             |                                                  | ╁                  | 10     |                                       |                                                   | 12.0          |          | <u> </u>                                         |
|                                                      | rking/Grade/Parking       |        | 1.Z                         |      | 0          | <u> </u>                                         | ı   | N          | ╫                             |             | N                                                | _                  | N      |                                       | N                                                 | N             | 0        | N                                                |
| Parking/hr                                           |                           |        |                             |      |            | T                                                |     |            | +                             |             | <u> </u>                                         | ╅                  |        |                                       |                                                   |               |          |                                                  |
| Bus stops/h                                          | rking/hr                  |        |                             |      | 0          | <del>                                     </del> |     |            | 1                             |             |                                                  | T                  |        |                                       |                                                   | 0             |          |                                                  |
| Unit Extens                                          | ion                       |        | 3.0                         | 0    | 3.0        |                                                  |     |            | 1                             |             |                                                  | Ť                  |        |                                       |                                                   | 3.0           |          |                                                  |
| Phasing                                              | EB Only                   | C      | 2                           | T    | 03         |                                                  | Π   | 04         |                               | S           | B On                                             | ly                 |        | 06                                    | <del>'                                     </del> | 07            | (        | )8                                               |
| Timing                                               | G = 25.0                  | G =    |                             | _    | ∋ =        |                                                  | G:  |            |                               | Ü           | = 35.                                            |                    | G=     |                                       | G =                                               |               | G =      |                                                  |
| Ů                                                    | Y = 5                     | Y =    |                             | 1    | <i>(</i> = |                                                  | Υ = | =          |                               | Υ =         | = <u>5</u>                                       |                    | Y =    |                                       | Y =                                               |               | Y =      |                                                  |
|                                                      | Analysis (hrs             |        |                             | ᆣ    |            |                                                  |     |            | _                             | _           |                                                  | 4.                 |        | e Len                                 | gth C =                                           | 70.0          |          |                                                  |
| Lane Gro                                             | up Capac                  | ity, C | onti                        |      |            | /, a                                             | na  |            |                               | etei        | rmin                                             | ati                | on     | N 150                                 |                                                   | 1             |          |                                                  |
|                                                      |                           | _      |                             | EB   | - 1        |                                                  |     | <u> </u>   | WB                            |             |                                                  |                    |        | NB                                    |                                                   |               | SB       |                                                  |
| Adj. flow rat                                        | te                        | 383    |                             | 306  |            |                                                  |     |            |                               | ļ           |                                                  |                    | 4      |                                       |                                                   | 768           |          | <u> </u>                                         |
| Lane group                                           | cap.                      | 586    | 3                           | 588  |            |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   | 1594          |          |                                                  |
| v/c ratio                                            |                           | 0.6    | 5                           | 0.52 | 2          |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   | 0.48          |          |                                                  |
| Green ratio                                          |                           | 0.3    | 6                           | 0.36 | 3          |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   | 0.50          |          |                                                  |
| Unif. delay                                          | d1                        | 18.    | 9                           | 17.8 | 3          |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   | 11.5          |          |                                                  |
| Delay factor                                         | rk                        | 0.2    | 3                           | 0.13 | 3          |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   | 0.11          |          |                                                  |
| Increm. dela                                         | ay d2                     | 2.6    | ;                           | 0.8  |            |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   | 0.2           |          |                                                  |
| PF factor                                            |                           | 1.00   | 00                          | 1.00 | 00         |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   | 0.333         |          |                                                  |
| Control dela                                         | ay                        | 21.    | 5                           | 18.6 | 3          |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   | 4.1           |          |                                                  |
| Lane group                                           | LOS                       | С      |                             | В    |            | Ţ                                                |     |            |                               | T           |                                                  |                    | $\neg$ |                                       |                                                   | Α             |          |                                                  |
| Apprch. del                                          | e group LOS<br>rch. delay |        |                             | 2    |            |                                                  |     |            |                               | •           |                                                  |                    |        | · · · · · · · · · · · · · · · · · · · |                                                   |               | 4.1      |                                                  |
| Approach L                                           |                           |        |                             |      |            |                                                  |     |            |                               |             |                                                  |                    |        |                                       |                                                   |               | Α        |                                                  |
| Intersec. de                                         |                           |        | 11.                         |      |            |                                                  |     |            |                               | Inte        | rsect                                            | ion                | LOS    |                                       |                                                   |               | В        |                                                  |
| MCconoaTM                                            |                           |        |                             |      | vright © 2 | 000 T                                            | T-2 |            |                               |             |                                                  |                    |        |                                       |                                                   |               |          | ersion 4.                                        |

HCS2000<sup>TM</sup>

Copyright  ${\mathbb C}$  2000 University of Florida, All Rights Reserved

Short Report

|                                                      |                                 |          |                             |             | SH        | OR'     |           |                                   |               |        |             |          |                        |                       |             |          |                                         |                                                  |
|------------------------------------------------------|---------------------------------|----------|-----------------------------|-------------|-----------|---------|-----------|-----------------------------------|---------------|--------|-------------|----------|------------------------|-----------------------|-------------|----------|-----------------------------------------|--------------------------------------------------|
| General Inf                                          | ormation                        |          |                             |             |           |         | <u> S</u> | ite Ir                            | nfor          | matic  |             |          |                        |                       |             |          |                                         |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                             | U<br>08/ | SAI<br>SAI<br>22/12<br>PEAK |             |           |         | A<br>Ji   | iterse<br>rea T<br>urisd<br>nalys | Гуре<br>ictio | :<br>n |             | 0        | All o                  | WAY<br>ther a<br>SIDE | rea<br>E-IN |          |                                         |                                                  |
| Volume an                                            | d Timing I                      | nput     |                             |             |           |         |           |                                   |               |        |             |          |                        |                       |             | -        |                                         |                                                  |
|                                                      |                                 |          |                             | EB          |           |         |           | WI                                |               |        |             |          | NB                     |                       |             |          | SB                                      |                                                  |
| -                                                    |                                 |          | LT                          | TH          | RT        | L       | .T_       | Th                                | 1             | RT     | L           | <u> </u> | TH                     | R                     |             | LT       | TH                                      | RT                                               |
| Num. of Lar                                          | ies                             |          | 2                           | 2           | 1         |         | 2         | 2                                 |               | 0      | 1           |          | 3                      | 1                     |             | 2        | 3                                       | 0                                                |
| Lane group                                           |                                 |          | L                           | Τ           | R         | I       | _         | TR                                | 1             |        | L           |          | Τ                      | R                     |             | L        | TR                                      |                                                  |
| Volume (vpl                                          |                                 |          | 85                          | 135         | 265       | 44      |           | 110                               | ) ;           | 340    | 150         | )        | 885                    | 810                   | )           | 45       | 1625                                    | 75                                               |
| % Heavy ve                                           | ∍h                              |          | 2                           | 2           | 2         | 2       |           | 2                                 |               | 2      | 2           |          | 2                      | 2                     | _           | 2        | 2                                       | 2                                                |
| PHF                                                  | /A \                            |          | 0.95                        | 0.95        | 0.95      |         |           | 0.98                              | ) (           | 0.95   | 0.9         | 5        | 0.95                   | 0.9                   | 5           | 0.95     | 0.95                                    | 0.95                                             |
| Actuated (P<br>Startup lost                          |                                 | ·        | A<br>2.0                    | A<br>2.0    | A<br>2.0  | 2.      |           | A<br>2.0                          | +             | Α      | 2.0         | )        | A<br>2.0               | 2.0                   | ,—          | A<br>2.0 | A<br>2.0                                | Α                                                |
| Ext. eff. gre                                        |                                 |          | 2.0                         | 2.0         | 2.0       | 2.      |           | 2.0                               |               |        | 2.0         | _        | 2.0                    | 2.0                   |             | 2.0      | 2.0                                     | <del>                                     </del> |
| Arrival type                                         |                                 |          | 5                           | 5           | 5         |         |           | 5                                 |               |        | 5           |          | 5                      | 5                     |             | 5        | 5                                       |                                                  |
| Unit Extensi                                         | on                              |          | 3.0                         | 3.0         | 3.0       | 3.      | 0         | 3.0                               | )             |        | 3.0         | )        | 3.0                    | 3.0                   | )           | 3.0      | 3.0                                     |                                                  |
| Ped/Bike/R                                           | 「OR Volum                       | е        | 5                           | 5           | 0         |         | 5         | 5                                 |               | 123    | 5           |          | 5                      | 120                   | )           | 5        | 5                                       | 0                                                |
| Lane Width                                           |                                 |          | 12.0                        | 12.0        | 12.0      | 12      | 2.0       | 12.0                              | )             |        | 12.         | 0        | 12.0                   | 12.0                  | 2           | 12.0     | 12.0                                    |                                                  |
| Parking/Gra                                          | rking/Grade/Parking<br>rking/hr |          |                             | 0           | Ν         | ٨       | V         | 0                                 |               | Ν      | N           |          | 0                      | N                     |             | Ν        | 0                                       | N                                                |
| Parking/hr                                           |                                 |          |                             |             |           |         |           |                                   |               |        |             |          |                        |                       |             |          |                                         |                                                  |
| Bus stops/h                                          | r                               |          | 0                           | 0           | 0         | C       | )         | 0                                 |               |        | 0           |          | 0                      | 0                     |             | 0        | 0                                       |                                                  |
| Unit Extensi                                         | on                              |          | 3.0                         | 3.0         | 3.0       | 3.      | 0         | 3.0                               | )             |        | 3.0         | )        | 3.0                    | 3.0                   | )           | 3.0      | 3.0                                     |                                                  |
| Phasing                                              | Excl. Left                      |          | Only                        | Thru 8      |           |         | 04        |                                   |               | cl. Le | _           |          | ru & R                 | _                     |             | 07       |                                         | 08                                               |
| Timing                                               | G = 4.0                         | G =      |                             | G = 7       |           | G =     |           |                                   |               | = 11.  |             |          | = 40.0                 |                       | ) =<br>,    |          | G =                                     |                                                  |
| Duration of                                          | Y = 5.6                         | Y =      |                             | Y = 6       | .4        | Y =     |           |                                   | Υ =           | 5.6    |             |          | = <i>6.3</i><br>de Len |                       | ′ <u>=</u>  | 100.     | Y =                                     |                                                  |
|                                                      |                                 |          |                             | I Dale      |           | nd I    |           | <u> </u>                          | -to-          | min    |             |          | de Lei                 | gur                   | <i>,</i> –  | 100.0    |                                         |                                                  |
| Lane Gro                                             | up Capa                         | lity, C  |                             | Dela        | ay,a<br>T | nu i    | •         |                                   | eter          | 111111 | lauc        |          | ND                     |                       | 1           |          | SB                                      |                                                  |
| A -1: 61                                             | -                               | 00       | EB                          | 070         | +         |         | W         |                                   |               | +;     |             | _        | NB                     | 700                   |             | 47       |                                         |                                                  |
| Adj. flow rat                                        |                                 | 89       | 142                         | 279         | 46        |         | 34        |                                   |               |        | 58          | +        |                        | 726                   |             | 47       | 1790                                    |                                                  |
| Lane group                                           | cap.                            | 137      | 248                         | 379         | 60        |         | 64        |                                   |               | -      | )4          | -        | 030                    | 782                   |             | 395      | 2014                                    |                                                  |
| v/c ratio                                            |                                 | 0.65     | 0.57                        | 0.74        | 0.7       | 77      | 0.5       | 53                                |               | 0.7    | 77          | 0.       | 46                     | 0.93                  |             | 0.12     | 0.89                                    |                                                  |
| Green ratio                                          |                                 | 0.04     | 0.07                        | 0.25        | 0.1       | 18      | 0.2       | ?1                                |               | 0.     | 12          | 0.       | 40                     | 0.50                  |             | 0.12     | 0.40                                    |                                                  |
| Unif. delay o                                        | 11                              | 47.3     | 45.1                        | 34.5        | 39        | .2      | 35.       | .4                                |               | 43     | 3.0         | 2.       | 2.0                    | 23.2                  |             | 39.7     | 27.9                                    |                                                  |
| Delay factor                                         | k                               | 0.23     | 0.17                        | 0.29        | 0.3       | 32      | 0.1       | '3                                |               | 0.3    | 32          | O.       | 11                     | 0.44                  |             | 0.11     | 0.41                                    |                                                  |
| Increm. dela                                         | ay d2                           | 10.4     | 3.2                         | 7.3         | 5.        | 8       | 0.8       | 8                                 |               | 16     | 8.8         | C        | .2                     | 17.3                  |             | 0.1      | 5.3                                     |                                                  |
| PF factor                                            |                                 | 0.972    | 0.950                       | 0.779       | 0.8       | 58      | 0.8       | 27                                |               | 0.9    | 913         | 0.       | 556                    | 0.328                 | 5           | 0.913    | 0.556                                   | ;                                                |
| Control dela                                         |                                 |          |                             | 34.2        | 39        | .5      | 30.       | .1                                |               | 56     | 6.1         | 1.       | 2.4                    | 24.8                  |             | 36.4     | 20.9                                    |                                                  |
| Lane group                                           | LOS                             | Ε        | D                           | С           | L         | )       | С         | ;                                 |               | TE     | <u> </u>    | 1        | В                      | С                     |             | D        | С                                       |                                                  |
| Apprch. dela                                         | <del></del>                     | 4        | 1.4                         | •           | $\top$    | 35      | 5.5       |                                   |               | 十      | 2           | 1.2      | ?                      |                       |             |          | 21.2                                    | •                                                |
| Approach Lo                                          | OS                              | ı        | D                           |             | T         | I       | D         |                                   |               | 十      |             | С        |                        | -                     |             |          | С                                       |                                                  |
| Intersec. de                                         |                                 | 28       | 5.6                         | <del></del> | 1         |         |           | Ir                                | iters         | ectio  | n LC        | S        | <del></del>            |                       |             |          | С                                       | <del></del>                                      |
| HC52000TM                                            | -                               | I        | ·····                       | nvright ©   | 2000 T    | Inixare | ity of    |                                   |               |        | <del></del> |          |                        |                       |             |          | • • • • • • • • • • • • • • • • • • • • | ersion 4.1                                       |

|                                                      |                    |            |                             |                | SH             | ORT F        | REPO                                 | R           | Γ              |       |             |                 |                           | · ·    | ·          |                                                  |
|------------------------------------------------------|--------------------|------------|-----------------------------|----------------|----------------|--------------|--------------------------------------|-------------|----------------|-------|-------------|-----------------|---------------------------|--------|------------|--------------------------------------------------|
| General Inf                                          | ormation           |            |                             |                |                | S            | ite In                               | fori        | natio          | n     |             |                 |                           |        |            |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                | U<br>08/   | SAI<br>SAI<br>22/12<br>PEAK |                | ·              | م<br>J       | nterse<br>vrea T<br>urisdi<br>vnalys | ype<br>ctio | n              |       | 0           | All or<br>CEAN  | WAY<br>ther ard<br>SIDE-I |        |            |                                                  |
| Volume an                                            | d Timina l         | nnut       |                             |                |                |              | Marys                                | 15 1        | eai            | Ъ     | <i>J.</i> A | L1,-2/          | VVIII I                   | NOOL   |            |                                                  |
| volume an                                            | u mining i         | iput       | <u> </u>                    | EB             |                |              | WE                                   | 3           |                | Γ     |             | NB              |                           | Ī      | SB         |                                                  |
|                                                      |                    |            | LT                          | TH             | RT             | LT           | TH                                   |             | RT             | L٦    | Γ           | TH              | RT                        | LT     | TH         | RT                                               |
| Num. of Lar                                          | nes                | •          | 2                           | 2              | 1              | 2            | 2                                    |             | 0              | 1     |             | 3               | 1                         | 2      | 3          | 0                                                |
| Lane group                                           |                    |            | L                           | Т              | R              | L            | TR                                   |             |                | L     |             | T               | R                         | L      | TR         |                                                  |
| Volume (vpl                                          | h)                 |            | 85                          | 135            | 269            | 462          | 110                                  | (           | 340            | 162   | 2           | 929             | 903                       | 45     | 1641       | 75                                               |
| % Heavy ve                                           | eh                 |            | 2                           | 2              | 2              | 2            | 2                                    |             | 2              | 2     |             | 2               | 2                         | 2      | 2          | 2                                                |
| PHF                                                  | 16.                |            | 0.95                        |                | 0.95           | 0.95         | 0.95                                 | _           | 0.95           | 0.9   | 5           | 0.95            | 0.95                      | 0.95   | 0.95       | 0.95                                             |
| Actuated (P<br>Startup lost                          |                    |            | A<br>2.0                    | A<br>2.0       | A<br>2.0       | 2.0          | A<br>2.0                             | +           | Α              | 2.0   | $\dashv$    | A<br>2.0        | A<br>2.0                  | 2.0    | A<br>2.0   | Α                                                |
| Ext. eff. gre                                        |                    |            | 2.0                         | 2.0            | 2.0            | 2.0          | 2.0                                  | +           |                | 2.0   |             | 2.0             | 2.0                       | 2.0    | 2.0        | <del>                                     </del> |
| Arrival type                                         | -                  |            | 5                           | 5              | 5              | 5            | 5                                    | 1           |                | 5     |             | 5               | 5                         | 5      | 5          |                                                  |
| Unit Extensi                                         | ion                |            | 3.0                         | 3.0            | 3.0            | 3.0          | 3.0                                  |             |                | 3.0   | )           | 3.0             | 3.0                       | 3.0    | 3.0        |                                                  |
| Ped/Bike/R                                           | TOR Volum          | e          | 5                           | 5              | 0              | 5            | 5                                    | _           | 123            | 5     |             | 5               | 120                       | 5      | 5          | 0                                                |
| Lane Width                                           |                    |            | 12.0                        | 12.0           | 12.0           | 12.0         | 12.0                                 |             |                | 12.   |             | 12.0            | 12.0                      | 12.0   | 12.0       | <u> </u>                                         |
| Parking/Gra                                          | de/Parking         |            | N                           | 0              | N              | N            | 0                                    | _           | N              | N     |             | 0               | N                         | N      | 0          | N                                                |
| Parking/hr                                           |                    |            |                             |                |                |              | ـــــــــ                            | _           |                |       |             |                 | ļ                         |        |            | <u> </u>                                         |
| Bus stops/h                                          |                    |            | 0                           | 0              | 0              | 0            | 0                                    | _           |                | 0     | _           | 0               | 0                         | 0      | 0          | <u> </u>                                         |
| Unit Extens                                          |                    |            | 3.0                         | 3.0            | 3.0            | 3.0          | 3.0                                  |             |                | 3.0   |             | 3.0             | 3.0                       | 3.0    | 3.0        | <u> </u>                                         |
| Phasing                                              | Excl. Left         |            | Only                        | Thru 8         |                | 04           |                                      |             | cl. Le         |       |             | ru & R          |                           | 07     |            | 80                                               |
| Timing                                               | G = 4.0<br>Y = 5.6 | G =<br>Y = |                             | G = 7<br>Y = 6 |                | G =<br>Y =   |                                      |             | = 11.<br>= 5.6 |       |             | = 40.0<br>= 6.3 | ) G =<br>Y =              |        | G =<br>Y = |                                                  |
| Duration of                                          |                    |            |                             | 1 - 0.         | . <del>T</del> |              |                                      |             | 0.0            |       |             |                 |                           | = 100. |            |                                                  |
| Lane Gro                                             |                    |            |                             | l Dela         | v. aı          | nd LO        | S De                                 | ter         | min            |       |             |                 | <u> </u>                  |        |            |                                                  |
|                                                      |                    | <u> </u>   | EB                          |                | Ť              | V            |                                      |             |                |       |             | NB              |                           |        | SB         |                                                  |
| Adj. flow rat                                        | e                  | 89         | 142                         | 283            | 48             | 6 34         | 14                                   |             | 17             | 1     | 9           | 78              | 824                       | 47     | 1806       | Т                                                |
| Lane group                                           |                    | 137        | 248                         | 379            | 60:            | -            | 47                                   |             | 20             |       | +           | 30              | 782                       | 395    | 2015       | $\top$                                           |
| v/c ratio                                            |                    | 0.65       | 0.57                        | 0.75           | 0.8            | 0 0.         | 53                                   |             | 0.8            | 34    | 0.          | 48              | 1.05                      | 0.12   | 0.90       | 1                                                |
| Green ratio                                          |                    | 0.04       | 0.07                        | 0.25           | 0.1            |              | 21                                   |             | 0.1            | 12    | 0.          | 40              | 0.50                      | 0.12   | 0.40       |                                                  |
| Unif. delay o                                        | <u></u><br>d1      | 47.3       | 45.1                        | 34.6           | 39.            | 5 35         | 5.4                                  |             | 43             | .3    | 22          | 2.3             | 24.8                      | 39.7   | 28.1       | $\top$                                           |
| Delay factor                                         | ·k                 | 0.23       | 0.17                        | 0.30           | 0.3            | 5 0.         | 13                                   |             | 0.3            | 37    | 0.          | 11              | 0.50                      | 0.11   | 0.42       |                                                  |
| Increm. dela                                         |                    | 10.4       | 3.2                         | 7.9            | 7.7            | 7 0.         | .8                                   |             | 25             | .4    | 0           | .2              | 47.3                      | 0.1    | 5.8        | 7                                                |
| PF factor                                            |                    |            | 0.950                       | 0.779          | 0.8            | 58 0.8       | 327                                  |             | 0.9            | 13    | 0.          | 556             | 0.325                     | 0.913  | 0.556      | ;                                                |
| Control dela                                         | ontrol delay 56.4  |            |                             | 34.9           | 41.            | 7 30         | ).1                                  |             | 64             | .9    | 12          | 2.6             | 55.3                      | 36.4   | 21.3       |                                                  |
| Lane group                                           | LOS                | Ε          | D                           | C              | D              |              | )                                    |             | E              |       |             | В               | E                         | D      | С          |                                                  |
| Apprch. dela                                         | ay                 | 4          | 1.7                         |                |                | 36.9         |                                      |             |                | 3     | 35.0        | )               |                           |        | 21.7       |                                                  |
| Approach L                                           | os                 |            | D                           |                |                | D            |                                      |             |                |       | С           |                 |                           |        | С          |                                                  |
| Intersec. de                                         | lay                | 3          | 1.2                         |                |                | •            | In                                   | ters        | ectio          | n LC  | S           |                 |                           |        | С          |                                                  |
| ricesnonTM                                           | , <u>, ,</u>       | 1          | C                           | and the first  | 2000 11        | Iniversity o | f Elorida                            | A 11        | Righte         | Dacam | المور       |                 |                           |        | ٧          | Jersion 4.                                       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                    |            |                             |                | SH        | ORT F        |                                       |               |                 |           |                                   |                              |                   |            |            |
|-------------------------------------------------------|--------------------|------------|-----------------------------|----------------|-----------|--------------|---------------------------------------|---------------|-----------------|-----------|-----------------------------------|------------------------------|-------------------|------------|------------|
| General Inf                                           | ormation           |            |                             |                |           | 9            | ite Ir                                | forr          | natio           |           |                                   |                              |                   |            |            |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med                | U<br>08/   | SAI<br>SAI<br>22/12<br>PEAK |                |           | /<br>/<br>J  | nterse<br>Area T<br>Iurisdi<br>Analys | ype<br>ictior | ו               |           | OLLEGE<br>All o<br>OCEAN<br>O.ALT | WAY<br>other are<br>ISIDE-II | -<br>eas<br>NT#11 |            |            |
| Volume an                                             | d Timing I         | nput       |                             |                |           |              |                                       |               |                 |           |                                   |                              |                   |            |            |
|                                                       |                    |            |                             | EB             |           |              | WE                                    | _             |                 |           | NB                                | _                            | <u> </u>          | SB         | ·          |
|                                                       |                    |            | LT                          | TH             | RT        | LT           | TH                                    | -             | RT              | LT        | TH                                | RT                           | LT                | TH         | RT         |
| Num. of Lar                                           | ies                |            | 2                           | 2              | 1         | 2            | 2                                     | -             | 0               | 1         | 3                                 | 1                            | 2                 | 3          | 0          |
| Lane group                                            |                    |            | L                           | Τ              | R         | L            | TR                                    | _             |                 | L         | T                                 | R                            | L                 | TR         |            |
| Volume (vpl                                           |                    |            | 145                         | 120            | 330       | 450          | 285                                   |               | 25              | 295       | 1830                              | 740                          | 45                | 1305       | 100        |
| % Heavy vo                                            | en                 |            | 2<br>0.95                   | 2<br>0.95      | 2<br>0.95 | 2<br>0.95    | 0.95                                  |               | <u>2</u><br>.95 | 2<br>0.95 | 0.95                              | 2<br>0.95                    | 2<br>0.95         | 2<br>0.95  | 2<br>0.95  |
| Actuated (P                                           | /A)                |            | 0.90<br>A                   | 0.95<br>A      | 0.95<br>A | 0.93<br>A    | 0.90<br>A                             | _             | .90<br>A        | 0.9c      | 0.93<br>A                         | 0.95<br>A                    | 0.95<br>A         | A          | 0.90<br>A  |
| Startup lost                                          |                    |            | 2.0                         | 2.0            | 2.0       | 2.0          | 2.0                                   |               |                 | 2.0       | 2.0                               | 2.0                          | 2.0               | 2.0        |            |
| Ext. eff. gree                                        |                    |            | 2.0                         | 2.0            | 2.0       | 2.0          | 2.0                                   | _             |                 | 2.0       | 2.0                               | 2.0                          | 2.0               | 2.0        |            |
| Arrival type                                          |                    |            | 5                           | 5              | 5         | 5            | 5                                     |               |                 | 5         | 5                                 | 5                            | 5                 | 5          |            |
| Unit Extensi                                          |                    |            | 3.0                         | 3.0            | 3.0       | 3.0          | 3.0                                   |               |                 | 3.0       | 3.0                               | 3.0                          | 3.0               | 3.0        |            |
| Ped/Bike/R                                            | TOR Volum          | е          | 5                           | 5              | 10        | 5            | 5                                     | -             | 65              | 5         | 5                                 | 0                            | 5                 | 5          | 0          |
| Lane Width                                            |                    |            | 12.0                        | 12.0           | 12.0      | 12.0         | 12.0                                  | -             |                 | 12.0      |                                   | 12.0                         | 12.0              | 12.0       |            |
| Parking/Gra                                           | de/Parking         |            | N                           | 0              | N         | N            | 0                                     |               | N               | Ν         | 0                                 | N                            | N                 | 0          | N          |
| Parking/hr                                            |                    |            |                             |                |           |              | <u> </u>                              |               |                 |           |                                   | ļ                            |                   |            |            |
| Bus stops/h                                           |                    |            | 0                           | 0              | 0         | 0            | 0                                     |               |                 | 0         | 0                                 | 0                            | 0                 | 0          |            |
| Unit Extensi                                          |                    |            | 3.0                         | 3.0            | 3.0       | 3.0          | 3.0                                   |               |                 | 3.0       | <u> </u>                          | 3.0                          | 3.0               | 3.0        |            |
| Phasing                                               | Excl. Left         |            | Only                        | Thru           |           | 04           |                                       |               | cl. Le          |           | NB Onl                            |                              | ru & RT           |            | 08         |
| Timing                                                | G = 6.0<br>Y = 5.6 | G =<br>Y = | 9.0<br>5.6                  | G = 1<br>Y = 6 |           | G =<br>Y =   |                                       |               | 8.0<br>5.6      |           | G = 6.0 $G = 5.6$                 |                              | = 36.1<br>= 6.2   | G =<br>Y = |            |
| Duration of                                           |                    |            |                             |                | ,,,       | -            |                                       |               | 0.0             |           | ycle Le                           |                              |                   |            |            |
| Lane Gro                                              |                    |            |                             | l Dela         | av ai     | O I bn       | S De                                  | eter          | min             |           |                                   |                              |                   | <u></u>    |            |
|                                                       | ир очри            |            | EB                          |                |           |              | /B                                    |               | T               | 0.0.0     | NB                                |                              | 1                 | ŞB         |            |
| Adj. flow rat                                         | e                  | 153        | 126                         | 337            | 47.       |              | 79                                    | <u> </u>      | 31              | 1         | 1926                              | 779                          | 47                | 1479       |            |
| Lane group                                            |                    | 187        | 322                         | 338            | 64        |              | 17                                    |               | 37              | 5         | 2200                              | 1055                         | 250               | 1645       |            |
| v/c ratio                                             |                    | 0.82       | 0.39                        | 1.00           | 0.7       |              | 95                                    |               | 0.9             |           | 0.88                              | 0.74                         | 0.19              | 0.90       | 1          |
| Green ratio                                           |                    | 0.05       | 0.09                        | 0.22           | 0.1       |              | 22                                    |               | +               | 18        | 0.43                              | 0.68                         | 0.07              | 0.33       | 1          |
| Unif. delay                                           | 11                 | 51.5       | 47.1                        | 42.8           | 42.       |              | 2.1                                   | <b> </b>      | 45              | .1        | 28.4                              | 11.5                         | 47.9              | 35.2       |            |
| Delay factor                                          |                    | 0.36       | 0.11                        | 0.50           | 0.2       | 9 0.         | 46                                    | 一             | 0.4             | 49        | 0.40                              | 0.30                         | 0.11              | 0.42       |            |
| Increm. dela                                          |                    | 24.0       | 0.8                         | 48.1           | 4.4       | 1 21         | 1.6                                   |               | 47              | 7.1       | 4.3                               | 2.8                          | 0.4               | 7.1        |            |
| PF factor                                             |                    |            |                             | 0.811          | 0.8       | 46 0.8       | 808                                   |               | 0.8             | 355       | 0.490                             | 0.155                        | 0.948             | 0.674      | !          |
| Control dela                                          | ıy                 | 73.5       | 44.8                        | 82.8           | 40.       | 1 55         | 5.6                                   |               | 85              | .7        | 18.2                              | 4.6                          | 45.8              | 30.8       |            |
| Lane group                                            | LOS                | E          | D                           | F              | D         |              | E                                     |               | F               |           | В                                 | Α                            | D                 | С          |            |
| Apprch. dela                                          | ay                 | 7.         | 2.7                         | <u> </u>       |           | 49.2         |                                       |               | $\top$          | 2         | 1.7                               | <del></del>                  |                   | 31.3       | _          |
| Approach L                                            | os                 |            | Ē                           |                |           | D            |                                       |               |                 |           | С                                 |                              |                   | С          |            |
| Intersec. de                                          | lay                | 3,         | 4.0                         |                |           |              | Ir                                    | iters         | ectic           | n LO      | s                                 |                              |                   | С          |            |
| HCS2000 <sup>TM</sup>                                 |                    | -          | C                           | nnvright (     | 2000 H    | niversity of | of Florid                             | a. All        | Rights          | Reserv    | ed                                |                              | •                 |            | ersion 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                                       |              |                             |            | SH       | ORT         | RE                     | PO                                           | RT          |          |          |             |              |                                        |                      |          |          |               |
|-------------------------------------------------------|---------------------------------------|--------------|-----------------------------|------------|----------|-------------|------------------------|----------------------------------------------|-------------|----------|----------|-------------|--------------|----------------------------------------|----------------------|----------|----------|---------------|
| General Inf                                           | ormation                              |              |                             |            |          |             | Site                   | Inf                                          | orm         | atic     | n        |             |              |                                        |                      |          |          |               |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med                                   | U<br>08/2    | SAI<br>SAI<br>22/12<br>PEAK |            |          |             | Inter<br>Area<br>Juris | a Ty<br>sdic                                 | /pe<br>tion |          |          | 0           | All of       | W/<br>he<br>SIL                        | AY<br>r are<br>DE-IN | VT#11    |          |               |
| Time Period                                           |                                       | PIVI         | PEAN                        |            |          |             | Anal                   | lysi                                         | s Ye        | аг       | BC       | ). <i>A</i> | LT2/         | WI                                     | TH P                 | ROJE     | CT       |               |
| Volume an                                             | d Timing I                            | nput         |                             |            |          |             |                        |                                              |             |          |          |             |              |                                        |                      |          |          |               |
|                                                       |                                       |              | LT                          | EB<br>TH   | RT       | LT          |                        | NB<br>TH                                     |             | ₹T       | LT       | - 1         | NB<br>TH     |                                        | RT                   | LT       | SB<br>TH | RT            |
| Num, of Lar                                           | nes                                   |              | 2                           | 2          | 1        | 2           | _                      | <u>1                                    </u> |             |          | 1        |             | 3            | ┢                                      | 1                    | 2        | 3        | 0             |
|                                                       | 103                                   |              | L                           | T          | R        |             |                        | <u>-</u><br>'R                               | +           | _        | L        | _           | T            | ╁                                      | R                    | L        | TR       | <del>Ľ</del>  |
| Lane group<br>Volume (vpl                             | 2)                                    |              | 145                         | 120        | 343      | 518         |                        | <u>85</u>                                    | 42          | 25       | 301      | í           | 1854         | ــــــــــــــــــــــــــــــــــــــ | 90                   | 45       | 1354     | 100           |
| % Heavy ve                                            | · · · · · · · · · · · · · · · · · · · |              | 2                           | 2          | 2        | 2           | _                      | 2                                            | 2           |          | 2        |             | 2            | -                                      | 2                    | 2        | 2        | 2             |
| PHF                                                   | 511                                   |              | 0.95                        | 0.95       | 0.95     | 0.9         |                        | 95                                           | 0.9         |          | 0.98     | 5           | 0.95         |                                        | .95                  | 0.95     | 0.95     | 0.95          |
| Actuated (P                                           |                                       |              | Α                           | Α          | Α        | Α           |                        | Α                                            | 1           |          | Α        |             | Α            |                                        | Α                    | Α        | Α        | Α             |
| Startup lost                                          |                                       |              | 2.0                         | 2.0        | 2.0      | 2.0         | _                      | 2.0                                          |             |          | 2.0      |             | 2.0          | _                                      | 2.0                  | 2.0      | 2.0      |               |
| Ext. eff. gre                                         | en                                    |              | 2.0                         | 2.0        | 2.0      | 2.0         |                        | 2.0                                          | +           |          | 2.0      |             | 2.0          | _                                      | 2.0<br>5             | 2.0<br>5 | 2.0<br>5 |               |
| Arrival type<br>Unit Extensi                          | ·                                     |              | 5<br>3.0                    | 5<br>3.0   | 5<br>3.0 | 3.0         | _                      | 5<br>3.0                                     | ╁           |          | 5<br>3.0 |             | 5<br>3.0     | +                                      | <del>5</del><br>3.0  | 3.0      | 3.0      |               |
| Ped/Bike/R                                            |                                       |              | 5.0<br>5                    | 5.0        | 10       | 5.0         |                        | 5.U<br>5                                     | 6           | 5        | 5.0      | _           | 5            | -                                      | 0                    | 5        | 5        | 0             |
| Lane Width                                            | IOR Volum                             | <u>e</u>     | 12.0                        | 12.0       | 12.0     | 12.0        | _                      | 2.0                                          | + 6         | <u> </u> | 12.0     | 2           | 12.0         | +-                                     | 2.0                  | 12.0     | 12.0     | -             |
| Parking/Gra                                           | de/Parking                            |              | N                           | 0          | N        | N           | _                      | 0                                            | 17          | V        | N        |             | 0            | -                                      | N                    | N        | 0        | N             |
| Parking/hr                                            |                                       |              |                             |            |          |             |                        |                                              | †           |          |          |             |              | T                                      |                      |          |          |               |
| Bus stops/h                                           | Γ                                     |              | 0                           | 0          | 0        | 0           |                        | 0                                            |             |          | 0        |             | 0            | T                                      | 0                    | 0        | 0        |               |
| Unit Extensi                                          |                                       |              | 3.0                         | 3.0        | 3.0      | 3.0         | 3                      | 3.0                                          | _           |          | 3.0      | )           | 3.0          | 1                                      | 3.0                  | 3.0      | 3.0      |               |
| Phasing                                               | Excl. Left                            | WB           | Only                        | Thru &     | & RT     | (           | 04                     |                                              | Exc         | l. Le    | eft      | N           | B Only       | /                                      | Thr                  | u & RT   |          | 08            |
| Timing                                                | G = 6.0                               | G =          |                             | G = 1      |          | G =         |                        | _                                            | G =         |          |          |             | = 6.0        |                                        |                      | 36.1     | G =      |               |
|                                                       | Y = 5.6                               | Y =          |                             | Y = 6      | .3       | Y =         |                        |                                              | Y =         | 5.6      |          |             | = <i>5.6</i> | - a+l                                  |                      | 6.2      | Y =      |               |
| Duration of                                           |                                       |              |                             | I Dala     |          |             | 06.1                   | Dai                                          | 40.00       | <u> </u> |          | _           | le Lei       | yı                                     | 10-                  | : 110.   | 0        |               |
| Lane Gro                                              | up Capai                              | city, C      |                             | Dela       | ay, a    |             | WB                     | De                                           | teri        | <u> </u> | auc      | <u> </u>    | NB           |                                        |                      |          | SB       |               |
| A 1: 61 .                                             |                                       | 450          | EB                          | Laca       |          |             |                        | <del>-</del>                                 |             | 31       | 7        | ۱.,         |              | 83                                     | 20                   | 47       | 1530     | $\overline{}$ |
| Adj. flow rat                                         |                                       | 153          | 126                         | 351        | 54       | -           | 679                    | +                                            |             | +        |          | ╄           | 952          |                                        |                      | 47       |          |               |
| Lane group                                            | сар.                                  | 187          | 322                         | 338        | 64       |             | 717                    | +                                            |             | 31       |          | ╌           |              |                                        | 55                   | 250      | 1646     | <del></del> - |
| v/c ratio                                             |                                       | 0.82         | 0.39                        | 1.04       | 0.8      | <u> </u> -  | 0.95                   | 4                                            |             | 1.0      |          | ╄           |              |                                        | 79                   | 0.19     | 0.93     |               |
| Green ratio                                           |                                       | 0.05         | 0.09                        | 0.22       | 0.1      | 9           | 0.22                   |                                              |             | 0.1      | 18       | 0.          | .43          | 0.0                                    | 68                   | 0.07     | 0.33     |               |
| Unif. delay                                           | d1                                    | 51.5         | 47.1                        | 42.8       | 43.      | 2           | 42.1                   | $\bot$                                       |             | 45       | .2       | 2           | 8.7          | 12                                     | 2.3                  | 47.9     | 35.7     |               |
| Delay factor                                          | ·k                                    | 0.36         | 0.11                        | 0.50       | 0.3      | 8           | 0.46                   |                                              |             | 0.5      | 50       | 0.          | .41          | 0.3                                    | 34                   | 0.11     | 0.45     |               |
| Increm. dela                                          | ay d2                                 | 24.0         | 0.8                         | 59.3       | 10.      | 2           | 21.6                   |                                              |             | 52       | .3       | 4           | 1.8          | 4.                                     | 1                    | 0.4      | 9.8      |               |
| PF factor                                             |                                       | 0.962        | 0.933                       | 0.811      | 0.8      | 46          | 0.808                  | 7                                            |             | 0.8      | 55       | 0.          | 490          | 0.1                                    | 55                   | 0.948    | 0.674    | 1             |
| Control dela                                          | ny                                    | 73.5         | 44.8                        | 94.0       | 46.      | 7           | 55.6                   | 寸                                            |             | 91       | .0       | 1           | 8.9          | 6.                                     | .0                   | 45.8     | 33.9     |               |
| Lane group                                            | LOS                                   | E            | D                           | F          | D        |             | Ε                      | 1                                            |             | F        | =        | T           | В            | -                                      | 4                    | D        | С        |               |
| Apprch. dela                                          |                                       | <del> </del> | 9.2                         | 1          |          | 51.         | 6                      |                                              |             | T        | 2        | 2.8         | <del></del>  |                                        |                      |          | 34.2     | <u> </u>      |
| Approach L                                            |                                       |              | <u></u><br>Е                |            | +        | D           |                        |                                              | •           | T        |          | С           |              |                                        |                      |          | С        |               |
| Intersec. de                                          | •                                     |              | 6. <i>4</i>                 |            | +        |             |                        | Int                                          | erse        | ctio     | n LC     |             |              |                                        |                      | <u> </u> | D        |               |
| FICS2000TM                                            | ı.w.y                                 |              |                             | ppyright © | 1 2000 T | Tadero mode | ri of Elo              |                                              |             |          |          |             |              |                                        |                      |          |          | Version 4.1   |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

WITH MIT, ADD NB PTO LANE/ADD WB PTO LANE

|                                                      |                                  | -    |          |                                | ,         |           | ORTE         |               |                          |           | - W      |      | 100/11                | 130                             | NB R      |           | 9         |
|------------------------------------------------------|----------------------------------|------|----------|--------------------------------|-----------|-----------|--------------|---------------|--------------------------|-----------|----------|------|-----------------------|---------------------------------|-----------|-----------|-----------|
| General Inf                                          | ormation                         |      |          |                                |           |           |              | 71-1-1        | 10000                    | mati      | on       |      |                       |                                 |           |           |           |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | Co.<br>med                       |      | U<br>08/ | ISAI<br>ISAI<br>'22/12<br>PEAK |           |           | Ir<br>A<br>J | nters<br>rea  | ection<br>Type<br>iction | on<br>e   | o        | CE   | All ot<br>ANSIE<br>MI | WAY<br>her ar<br>DE-INT<br>TIGA | T#11/WI   | тн        |           |
| Volume an                                            | d Timing                         | Inp  | ut       |                                |           |           |              |               |                          |           |          |      |                       |                                 |           |           |           |
|                                                      |                                  |      |          |                                | EB        |           |              | W             | -                        |           |          |      | NB                    |                                 | 97        | SB        |           |
|                                                      | -                                |      | _        | LT                             | TH        | RT        | LT.          | TH            | 1                        | RT        | L        | Γ    | TH                    | RT                              | LT        | TH        | RT        |
| Num. of Lar                                          | nes                              |      |          | 2                              | 2         | 1         | 2            | 2             | -                        | 1         | 1        | ٠    | 3                     | 2                               | 2         | 3         | 0         |
| Lane group                                           |                                  |      |          | L                              | T         | R         | L            | T             |                          | R         | L        |      | T                     | R                               | L         | TR        |           |
| Volume (vpl                                          |                                  |      |          | 85                             | 135       | 265       | 440          | 110           | )                        | 340       | 15       | 0    | 885                   | 810                             | 45        | 1625      | 75        |
| % Heavy ve                                           | en                               | -    | -        | 2                              | 2         | 2         | 2<br>0.95    | 0.9           | 5                        | 2<br>0.95 | 0.9      | 5    | 2<br>0.95             | 2<br>0.95                       | 2<br>0.95 | 2<br>0.95 | 0.95      |
| Actuated (P                                          | /A)                              | -    | -        | 0.95<br>A                      | 0.95<br>A | 0.95<br>A | 0.95<br>A    | 0.9.          |                          | 0.95<br>A | 0.9<br>A | J    | 0.95<br>A             | 0.95<br>A                       | 0.95<br>A | 0.95<br>A | 0.93      |
| Startup lost                                         |                                  | -    | -        | 2.0                            | 2.0       | 2.0       | 2.0          | 2.0           | ,                        | 2.0       | 2.0      | )    | 2.0                   | 2.0                             | 2.0       | 2.0       | 1         |
| Ext. eff. gre                                        |                                  |      |          | 2.0                            | 2.0       | 2.0       | 2.0          | 2.0           | _                        | 2.0       | 2.0      | _    | 2.0                   | 2.0                             | 2.0       | 2.0       |           |
| Arrival type                                         |                                  |      |          | 5                              | 5         | 5         | 5            | 5             |                          | 5         | 5        | _    | 5                     | 5                               | 5         | 5         |           |
| Unit Extensi                                         | ion                              |      |          | 3.0                            | 3.0       | 3.0       | 3.0          | 3.0           | )                        | 3.0       | 3.       | )    | 3.0                   | 3.0                             | 3.0       | 3.0       |           |
| Ped/Bike/R                                           | TOR Volu                         | me   |          | 5                              | 5         | 0         | 5            | 5             |                          | 123       | 5        | Ē,   | 5                     | 120                             | 5         | 5         | 0         |
| Lane Width                                           | ne Width<br>irking/Grade/Parking |      |          |                                | 12.0      | 12.0      | 12.0         | 12.           | 0                        | 12.0      | 12.      | 0    | 12.0                  | 12.0                            | 12.0      | 12.0      |           |
| Parking/Gra                                          | ide/Parkir                       | ıg   |          | N                              | 0         | N         | N            | 0             |                          | Ν         | N        |      | 0                     | N                               | N         | 0         | N         |
| Parking/hr                                           |                                  |      |          |                                | -         |           |              |               |                          |           |          |      |                       |                                 |           |           |           |
| Bus stops/h                                          | r                                |      |          | 0                              | 0         | 0         | 0            | 0             |                          | 0         | 0        | F    | 0                     | 0                               | 0         | 0         |           |
| Unit Extensi                                         | ion                              |      |          | 3.0                            | 3.0       | 3.0       | 3.0          | 3.0           | )                        | 3.0       | 3.       | 0    | 3.0                   | 3.0                             | 3.0       | 3.0       |           |
| Phasing                                              | Excl. Le                         | eft  | WB       | Only                           | Thru      | & RT      | 04           |               | E                        | xcl. L    | eft      | Th   | ru & R                |                                 | 07        |           | 08        |
| Timing                                               | G = 4.0                          |      | G =      |                                | G = 7     |           | G =          |               | _                        | = 11      |          |      | = 40.0                |                                 |           | G =       |           |
|                                                      | Y = 5.6                          |      | Y =      |                                | Y = 6     | 5.4       | Y =          |               | Υ:                       | = 5.6     |          | _    | = 6.3                 | Y                               |           | Y =       |           |
| Duration of                                          |                                  |      | _        |                                | 151       | 2071      |              | 2.5           | 546                      |           |          | _    | cle Len               | igtn C                          | = 100.    | 0         |           |
| Lane Gro                                             | up Cap                           | acıt | y, C     |                                | ol Dela   | ay, aı    |              |               | ete                      | rmir      | natio    | on   |                       |                                 | f         |           |           |
|                                                      |                                  |      |          | EB                             |           | - L-      | W            | $\overline{}$ |                          |           |          | -    | NB                    |                                 |           | SB        |           |
| Adj. flow rat                                        | e                                | 89   | )        | 142                            | 279       | 463       | 116          | 3             | 228                      | 1         | 58       |      | 932                   | 726                             | 47        | 1790      | )         |
| Lane group                                           | cap.                             | 13   | 7        | 248                            | 379       | 605       | 731          |               | 318                      | 2         | 204      | 2    | 030                   | 1368                            | 395       | 2014      | 1         |
| v/c ratio                                            |                                  | 0.6  | 5        | 0.57                           | 0.74      | 0.77      | 0.16         | 6             | 0.72                     | 2 0       | .77      | 0    | 0.46                  | 0.53                            | 0.12      | 0.89      | AM II     |
| Green ratio                                          |                                  | 0.0  | 4        | 0.07                           | 0.25      | 0.18      | 0.21         | 1             | 0.21                     | 0         | .12      | (    | 0.40                  | 0.50                            | 0.12      | 0.40      |           |
| Unif. delay                                          | d1                               | 47.  | 3        | 45.1                           | 34.5      | 39.2      | 32.6         | 3             | 37.0                     | ) 4       | 3.0      | 2    | 22.0                  | 16.8                            | 39.7      | 27.9      |           |
| Delay factor                                         |                                  | 0.2  |          | 0.17                           | 0.29      | 0.32      | 0.11         | 1             | 0.28                     | 3 0       | .32      | 0    | 0.11                  | 0.13                            | 0.11      | 0.41      |           |
| Increm. dela                                         |                                  | 10.  |          | 3.2                            | 7.3       | 5.8       | 0.1          |               | 7.6                      | 1         | 6.8      | 1    | 0.2                   | 0.4                             | 0.1       | 5.3       |           |
| PF factor                                            |                                  |      |          | 0.950                          | 0.779     | 0.85      |              | _             | 0.82                     | _         | 913      | -    | .556                  | 0.325                           | _         | -         | _         |
| Control dela                                         | ay                               | _    | 46.0     | 34.2                           | 39.5      | _         | -            | 38.1          |                          | 6.1       | +        | 12.4 | 5.9                   | 36.4                            | 20.9      | _         |           |
| Lane group                                           |                                  | _    | D        | С                              | D         | С         | -            | D             | -                        | E         | 1        | В    | Α                     | D                               | С         |           |           |
| Apprch. dela                                         |                                  | E    | 41       |                                |           |           | 37.3         |               | 198                      |           |          | 13.  |                       | AL POL                          |           | 21.2      | -         |
| Approach L                                           |                                  |      | E        |                                |           |           | D            |               |                          | +         |          | В    |                       |                                 | 1         | С         |           |
| Intersec. de                                         |                                  | +    | 23       |                                |           |           |              | Ir            | iters                    | sectio    | n I C    | -    |                       |                                 |           | С         |           |
| HCS2000TM                                            | ,                                | 1    | 20       |                                |           | 200011    | niversity o  |               |                          |           |          | -    |                       | _                               |           |           | Version 4 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

MITE: ADDNE PTO LANGADO WE PTO LANG

| 1                                                    |                      |          |                                   |             | SHO     | ORT F       | _                     |               |          |       | LO LAN             |                            |                       |            |           |
|------------------------------------------------------|----------------------|----------|-----------------------------------|-------------|---------|-------------|-----------------------|---------------|----------|-------|--------------------|----------------------------|-----------------------|------------|-----------|
| General Inf                                          | ormation             | 1        |                                   |             |         | S           | ite l                 | nfor          | rmatio   | on    |                    |                            |                       |            |           |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                  |          | USAI<br>USAI<br>8/22/12<br>M PEAK |             |         | Д<br>J      | nters<br>rea<br>urisd | Type          | е        | 0     | CEANS              | WAY<br>other and<br>DE-INT | reas<br>F#11/WI<br>TI | TH         |           |
| Volume an                                            | d Timing             | Input    |                                   |             |         |             |                       |               |          |       |                    |                            | UI .                  |            |           |
|                                                      |                      |          |                                   | EB          | T DE    |             | W                     | _             | DT       |       | NB                 | T DT                       | 1.7                   | SB         | Loz       |
| Num. of Lar                                          |                      |          | LT<br>2                           | TH<br>2     | RT      | LT<br>2     | Th                    | 1             | RT<br>1  | L 1   | TH<br>3            | RT 2                       | LT<br>2               | TH<br>3    | RT<br>0   |
|                                                      |                      |          |                                   |             | 1       |             | -                     |               |          | -     | T                  | -                          | _                     | TR         | 10        |
| Lane group                                           |                      |          | L                                 | T 405       | R       | L           | T                     | _             | R        | L     |                    | R                          | L                     |            | 75        |
| Volume (vpl<br>% Heavy v                             |                      |          | 85<br>2                           | 135         | 269     | 462         | 110                   | +             | 340<br>2 | 162   | 929                | 903                        | 45                    | 1641       | 75        |
| PHF                                                  | en                   |          | 0.95                              | 0.95        | 0.95    | 0.95        | 0.9                   | 5             | 0.95     | 0.9   |                    | 0.95                       | 0.95                  | 0.95       | 0.95      |
| Actuated (P                                          | /A)                  |          | A                                 | A           | A       | A           | A                     | <del>-</del>  | A        | A     | A                  | A                          | A                     | A          | A         |
| Startup lost                                         |                      |          | 2.0                               | 2.0         | 2.0     | 2.0         | 2.0                   | )             | 2.0      | 2.0   | _                  | 2.0                        | 2.0                   | 2.0        |           |
| Ext. eff. gre                                        |                      |          | 2.0                               | 2.0         | 2.0     | 2.0         | 2.0                   | _             | 2.0      | 2.0   | _                  | 2.0                        | 2.0                   | 2.0        |           |
| Arrival type                                         |                      |          | 5                                 | 5           | 5       | 5           | 5                     |               | 5        | 5     | 5                  | 5                          | 5                     | 5          |           |
| Unit Extensi                                         | 100                  |          | 3.0                               | 3.0         | 3.0     | 3.0         | 3.0                   | _             | 3.0      | 3.0   |                    | 3.0                        | 3.0                   | 3.0        |           |
| Ped/Bike/R                                           | TOR Volu             | ıme      | 5                                 | 5           | 0       | 5           | 5                     | -             | 123      | 5     | 5                  | 120                        | 5                     | 5          | 0         |
| Lane Width                                           |                      |          | 12.0                              | 12.0        | 12.0    | 12.0        | 12.                   | $\rightarrow$ | 12.0     | 12.   |                    | 12.0                       | 12.0                  | 12.0       |           |
| Parking/Gra                                          | de/Parkii            | ng       | N                                 | 0           | N       | N           | 0                     |               | N        | Ν     | 0                  | N                          | N                     | 0          | N         |
| Parking/hr                                           |                      |          |                                   |             |         |             | -                     | -             |          |       |                    |                            |                       |            | -         |
| Bus stops/h                                          |                      |          | 0                                 | 0           | 0       | 0           | 0                     | _             | 0        | 0     | 0                  | 0                          | 0                     | 0          | -         |
| Unit Extens                                          |                      |          | 3.0                               | 3.0         | 3.0     | 3.0         | 3.0                   |               | 3.0      | 3.0   |                    | 3.0                        | 3.0                   | 3.0        |           |
| Phasing                                              | Excl. L              |          | /B Only                           | Thru        |         | 04          |                       |               | xcl. L   |       | Thru & F           |                            | 07                    |            | 80        |
| Timing                                               | G = 4.0<br>Y = 5.6   |          | = 8.0<br>= 5.6                    | G = 0       |         | G =<br>Y =  |                       | _             | = 11.    |       | G = 40.<br>Y = 6.3 |                            |                       | G =<br>Y = | -         |
| Duration of                                          |                      |          |                                   | 4.5         | 7.4     | 100         |                       |               | - 0.0    | _     | Cycle Le           |                            |                       |            | _         |
| Lane Gro                                             |                      | <u> </u> |                                   | ol Del      | av. ar  | nd LO       | S D                   | ete           | rmir     | _     |                    |                            |                       |            |           |
|                                                      | -11-                 | 1        | EB                                |             | T .     | W           |                       |               |          |       | NB                 |                            | 1                     | SB         |           |
| Adj. flow rat                                        | e                    | 89       | 142                               | 283         | 486     | 116         | 3                     | 228           | 1        | 71    | 978                | 824                        | 47                    | 1806       | 3         |
| Lane group                                           |                      | 137      | 248                               | 379         | 605     | 731         | -                     | 318           | _        | 04    | 2030               | 1368                       | 395                   | 2015       | _         |
| v/c ratio                                            |                      | 0.65     | 0.57                              | 0.75        | 0.80    | 0.16        | -                     | 0.72          | _        | .84   | 0.48               | 0.60                       | 0.12                  | 0.90       | 01        |
| Green ratio                                          |                      | 0.04     | 0.07                              | 0.25        | 0.18    | 0.21        | 1 (                   | 0.21          | 0.       | .12   | 0.40               | 0.50                       | 0.12                  | 0.40       |           |
| Unif. delay o                                        |                      | 47.3     | 45.1                              | 34.6        | 39.5    | _           | _                     | 37.0          | _        | 3.3   | 22.3               | 17.7                       | 39.7                  | 28.1       |           |
| Delay factor                                         |                      | 0.23     | 0.17                              | 0.30        | 0.35    |             | _                     | 0.28          | 3 0.     | .37   | 0.11               | 0.19                       | 0.11                  | 0.42       |           |
|                                                      | ncrem. delay d2 10.4 |          |                                   | 7.9         | 7.7     | 0.1         |                       | 7.6           | 2        | 5.4   | 0.2                | 0.8                        | 0.1                   | 5.8        | 7         |
| PF factor                                            |                      | 0.950    | 0.779                             | 0.858       | 0.82    | 7 (         | 0.82                  | 7 0.          | 913      | 0.556 | 0.325              | 0.913                      | 0.55                  | 6          |           |
| Control dela                                         | ay                   | 56.4     | 46.0                              | 34.9        | 41.7    | 27.1        | 1                     | 38.1          | 6        | 4.9   | 12.6               | 6.5                        | 36.4                  | 21.3       | 9 7       |
| Lane group                                           | LOS                  | E        | D                                 | С           | D       | С           |                       | D             |          | E     | В                  | Α                          | D                     | С          |           |
| Apprch. dela                                         | ay                   | -        | 11.7                              |             |         | 38.6        |                       |               |          |       | 14.6               |                            |                       | 21.7       |           |
| Approach L                                           | os                   |          | D                                 |             |         | D           |                       |               |          |       | В                  |                            | 1                     | С          |           |
| Intersec. de                                         | lay                  | 1        | 23.7                              |             |         |             | lr                    | nters         | sectio   | n LO  | S                  |                            |                       | С          |           |
| HCS2000 <sup>TM</sup>                                |                      | -        | 7000                              | 'answight ( | 2000 11 | niversity o |                       | _             |          |       |                    |                            | _                     |            | Version 4 |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

MIT & AND NB RTO LAND/AND WB RTO LANE,

|                                                       |                   |      |        |                                |            | SH      | ORT          |                                     |               |          |      |     |        | ,                                   | 1110    |      |          |
|-------------------------------------------------------|-------------------|------|--------|--------------------------------|------------|---------|--------------|-------------------------------------|---------------|----------|------|-----|--------|-------------------------------------|---------|------|----------|
| General Inf                                           | ormatio           | n    |        |                                |            |         | S            | ite Ir                              | nfor          | matie    |      |     |        |                                     |         |      |          |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med               |      | 08/    | JSAI<br>JSAI<br>/22/12<br>PEAK |            |         | A<br>J       | nterso<br>area T<br>urisd<br>analys | Гуре<br>ictio | e<br>on  | C    | CE  | All of | WAY<br>ther are<br>DE-INT<br>ITIGAT | #11/WI  | TH   |          |
| Volume an                                             | d Timin           | g In | put    |                                |            |         |              |                                     |               |          |      |     |        |                                     |         |      |          |
|                                                       |                   |      | ***    |                                | EB         |         |              | W                                   | _             |          |      |     | NB     |                                     |         | SB   |          |
|                                                       |                   | -    |        | LT                             | TH         | RT      | LT           | TH                                  | 1             | RT       | L    |     | TH     | RT                                  | LT      | TH   | RT       |
| Num. of Lan                                           | nes               |      |        | 2                              | 2          | 1       | 2            | 2                                   |               | 1        | 1    | _   | 3      | 2                                   | 2       | 3    | 0        |
| Lane group                                            |                   |      |        | L                              | T          | R       | L            | T                                   |               | R        | L    |     | T      | R                                   | L       | TR   |          |
| Volume (vpl                                           |                   |      |        | 145                            | 120        | 330     | 450          | 285                                 | 5 4           | 425      | 29   | _   | 1830   | 740                                 | 45      | 1305 | 100      |
| % Heavy ve                                            | eh                |      |        | 2                              | 2          | 2       | 2            | 2                                   |               | 2        | 2    | _   | 2      | 2                                   | 2       | 2    | 2        |
| PHF                                                   |                   |      |        | 0.95                           | 0.95       | 0.95    | 0.95         | 0.98                                | 5 (           | 0.95     | 0.9  | 5   | 0.95   | 0.95                                | 0.95    | 0.95 | 0.95     |
| Actuated (P                                           |                   |      |        | A                              | A          | A       | A            | A                                   |               | A        | A    | 1   | A      | A                                   | A       | A    | Α        |
| Startup lost                                          |                   |      |        | 2.0                            | 2.0        | 2.0     | 2.0          | 2.0                                 | _             | 2.0      | 2.0  | _   | 2.0    | 2.0                                 | 2.0     | 2.0  | -        |
| Ext. eff. gree<br>Arrival type                        | en                |      |        | 2.0                            | 2.0        | 2.0     | 2.0          | 2.0                                 |               | 2.0<br>5 | 2.0  | )   | 2.0    | 2.0                                 | 2.0     | 2.0  |          |
| Unit Extensi                                          | ion               |      |        | 3.0                            | 3.0        | 3.0     | 3.0          | 3.0                                 | )             | 3.0      | 3.   | 2   | 3.0    | 3.0                                 | 3.0     | 3.0  |          |
| Ped/Bike/R1                                           | ALL V             | ume  |        | 5                              | 5          | 10      | 5            | 5                                   |               | 65       | 5    |     | 5      | 0                                   | 5       | 5    | 0        |
| Lane Width                                            |                   |      |        | 12.0                           | 12.0       | 12.0    | 12.0         | 12.0                                | _             | 12.0     | 12.  | _   | 12.0   | 12.0                                | 12.0    | 12.0 |          |
| Parking/Gra                                           | de/Parki          | ng   |        | N                              | 0          | N       | N            | 0                                   |               | N        | N    | -   | 0      | N                                   | N       | 0    | N        |
| Parking/hr                                            |                   |      |        |                                |            |         |              |                                     |               |          |      |     |        |                                     |         |      |          |
| Bus stops/hi                                          | r                 |      |        | 0                              | 0          | 0       | 0            | 0                                   |               | 0        | 0    |     | 0      | 0                                   | 0       | 0    |          |
| Unit Extensi                                          | on                |      |        | 3.0                            | 3.0        | 3.0     | 3.0          | 3.0                                 | )             | 3.0      | 3.   | )   | 3.0    | 3.0                                 | 3.0     | 3.0  |          |
| Phasing                                               | Excl. L           | .eft | WE     | Only                           | Thru       | & RT    | 04           |                                     | E             | kcl. L   | eft  | N   | B Only | Th                                  | ru & RT | 1    | 08       |
| Timing                                                | G = 6.            | 0    | G =    | 9.0                            | G = '      | 10.0    | G =          |                                     | G:            | = 8.0    | )    | G:  | = 6.0  | G =                                 | = 36.1  | G =  |          |
| 7 T                                                   | Y = 5.6           | _    | Y =    |                                | Y = 6      | 5.3     | Y =          |                                     | Υ =           | = 5.6    |      |     | = 5.6  |                                     | 6.2     | Y =  |          |
| Duration of A                                         |                   |      |        |                                |            |         |              |                                     |               |          |      | _   | de Ler | igth C                              | = 110.  | 0    |          |
| Lane Gro                                              | up Cap            | oaci | ity, C | Contro                         | ol Del     | ay, ar  | nd LO        | S D                                 | ete           | rmir     | atio | on  |        |                                     |         |      |          |
|                                                       |                   |      |        | EB                             |            |         | W            | В                                   |               |          |      |     | NB     |                                     |         | SB   |          |
| Adj. flow rate                                        | е                 | 1    | 53     | 126                            | 337        | 474     | 300          |                                     | 379           | 3        | 11   | 1   | 926    | 779                                 | 47      | 1479 |          |
| Lane group                                            | сар.              | 1    | 87     | 322                            | 338        | 644     | 793          |                                     | 346           | 3        | 15   | 2   | 200    | 1845                                | 250     | 1645 |          |
| v/c ratio                                             |                   | 0.   | 82     | 0.39                           | 1.00       | 0.74    | 0.38         | 3 1                                 | 1.10          | 0.       | .99  | C   | 0.88   | 0.42                                | 0.19    | 0.90 |          |
| Green ratio                                           |                   | 0.   | 05     | 0.09                           | 0.22       | 0.19    | 0.22         | 2 (                                 | 0.22          | 0.       | .18  | C   | 0.43   | 0.68                                | 0.07    | 0.33 |          |
| Unif. delay o                                         | 11                | 51   | 1.5    | 47.1                           | 42.8       | 42.1    | 36.2         | 2 4                                 | 12.7          | 4.       | 5.1  | 2   | 28.4   | 8.0                                 | 47.9    | 35.2 |          |
| Delay factor                                          | k                 | 0.   | 36     | 0.11                           | 0.50       | 0.29    | 0.11         | (                                   | 0.50          | 0.       | .49  | C   | 0.40   | 0.11                                | 0.11    | 0.42 |          |
| Increm. dela                                          | ay d2             | 24   | 4.0    | 0.8                            | 48.1       | 4.4     | 0.3          | 1                                   | 76.5          | 4        | 7.1  |     | 4.3    | 0.2                                 | 0.4     | 7.1  |          |
| PF factor                                             |                   |      |        | 0.933                          | 0.811      | 0.846   | 0.80         | 8 0                                 | 0.808         | 8 0.     | 855  | 0   | .490   | 0.155                               | 0.948   | 0.67 | 4        |
| Control dela                                          | ontrol delay 73.5 |      |        | 44.8                           | 82.8       | 40.1    | 29.6         | 3 1                                 | 11.0          | 0 8      | 5.7  | 1   | 8.2    | 1.4                                 | 45.8    | 30.8 |          |
|                                                       | ane group LOS E   |      |        |                                | F          | D       | С            |                                     | F             |          | F    | T   | В      | Α                                   | D       | С    |          |
| Apprch. dela                                          |                   |      | 72     | 2.7                            |            |         | 60.6         | -                                   |               |          | 7    | 20. | 8      |                                     |         | 31.3 |          |
| Approach Lo                                           |                   |      | E      |                                |            |         | E            |                                     |               |          |      | С   |        |                                     |         | С    |          |
| Intersec. del                                         |                   | 1    |        | 5.7                            |            |         |              | In                                  | iters         | ectio    | n LC | -   |        |                                     |         | D    |          |
| HCS2000 <sup>TM</sup>                                 | 49                | _    |        |                                | onvright ( | 2000 Li | niversity of | _                                   |               |          | _    | _   |        |                                     |         |      | ersion 4 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

TABLE 9-3-A

MITE ADDN'S PTO LAND ADD WIS RTOLANE SHORT REPORT General Information Site Information COLLEGE BLVD.@ VISTA Intersection Analyst USAI WAY Agency or Co. USAI All other areas Area Type Date Performed 08/22/12 OCEANSIDE-INT#11/WITH Jurisdiction Time Period MITIGATI PM PEAK Analysis Year BO.ALT.-2/WITH PROJECT Volume and Timing Input FB WB NB SB LT TH RT LT TH RT LT TH RT LT TH RT 2 2 1 2 2 1 3 2 2 3 0 Num, of Lanes 1 T T T L TR 1 R 1 R L R ane group 145 120 343 518 285 425 301 1854 790 45 1354 100 Volume (vph) % Heavy veh 2 2 2 2 2 2 2 2 2 2 2 2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 PHF Actuated (P/A) A A A A A A A A A A A A 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Startup lost time 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Ext. eff. green 2.0 5 5 5 5 5 5 5 5 Arrival type 5 5 5 3.0 3.0 3.0 3.0 3.0 3.0 Unit Extension 3.0 3.0 3.0 3.0 3.0 Ped/Bike/RTOR Volume 5 5 10 5 5 65 5 0 5 5 0 5 12.0 12.0 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 0 Parking/Grade/Parking N 0 N N 0 N N 0 N N N Parking/hr Bus stops/hr 0 0 0 0 0 0 0 0 0 0 0 Unit Extension 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 WB Only Thru & RT 04 Excl. Left **NB Only** Thru & RT 80 Phasing Excl. Left G = 6.0G = 36.1G = G = 6.0G = 9.0G = 10.0G =G = 8.0Timing Y = 5.6Y = 5.6Y = 6.3Y = Y = 5.6Y = 5.6Y = 6.2Y = Cycle Length C = 110.0 Duration of Analysis (hrs) = 0.25Lane Group Capacity, Control Delay, and LOS Determination EB WB NB SB Adj. flow rate 153 126 351 545 300 379 317 1952 832 47 1530 2200 1845 1646 Lane group cap. 187 322 338 644 793 346 315 250 0.38 1.10 1.01 0.82 0.39 1.04 0.85 0.89 0.45 0.19 0.93 v/c ratio Green ratio 0.05 0.09 0.22 0.19 0.22 0.22 0.18 0.43 0.68 0.07 0.33 28.7 8.2 35.7 Unif. delay d1 51.5 47.1 42.8 43.2 36.2 42.7 45.2 47.9 0.36 0.11 0.50 0.38 0.11 0.50 0.50 0.41 0.11 0.11 0.45 Delay factor k 24.0 59.3 10.2 0.3 76.5 52.3 4.8 0.2 0.4 9.8 Increm. delay d2 0.8 0.155 0.674 PF factor 0.962 0.933 0.811 0.846 0.808 0.808 0.855 0.490 0.948 73.5 44.8 94.0 46.7 29.6 111.0 91.0 18.9 1.5 45.8 33.9 Control delay F C E D F D C F B A D Lane group LOS 79.2 62.4 21.6 34.2 Apprch. delay C E C Approach LOS E 37.8 Intersec, delay D Intersection LOS

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                |              | SH               | OF             | RT RE           | PC                           | )R          | T       |         |                |                                               |                            |                                                  |              |                                                  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|--------------|------------------|----------------|-----------------|------------------------------|-------------|---------|---------|----------------|-----------------------------------------------|----------------------------|--------------------------------------------------|--------------|--------------------------------------------------|
| General Inf                                          | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | ***            |              |                  |                | Sit             | e In                         | for         | mati    | on      |                |                                               |                            |                                                  |              |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | US<br>US<br>08/24<br>AM P | AI<br>4/12     |              |                  |                | Are<br>Jur      | erse<br>ea T<br>isdi<br>alys | ype<br>ctic | €       |         | 0              | LLEGE<br>78EB (<br>All oth<br>CEANS<br>ALT-2/ | OFF-F<br>her are<br>IDE-II | RAM<br>eas<br>VT.#1:                             | 2            |                                                  |
| Volume an                                            | d Timing In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | put                       |                |              |                  |                |                 |                              |             |         |         |                |                                               |                            |                                                  |              |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                | EB           | L D.             | _              | I               | W                            | _           |         |         | ΙΤ             | NB                                            | Lot                        | +                                                | SB           | T DT                                             |
| Num of Lan                                           | nes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | <u>LT</u><br>2 | TH<br>0      | R <sup>.</sup>   |                | LT<br>O         | $\frac{T}{o}$                |             | R1<br>0 | +       | <u>LT</u><br>0 | TH<br>4                                       | RT<br>0                    | LT                                               | TH 5         | RT<br>0                                          |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | L              | ╁            | R                |                | <del>-</del> ٔ  | Ť                            |             | Ť       | +       | <u> </u>       | <del>'</del>                                  | <del>Ť</del>               | Ť                                                | T            | <del>                                     </del> |
|                                                      | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 640            |              | 27               |                | <u> </u>        |                              |             |         | +       |                | 1205                                          | ┢                          | ┼                                                | 1965         | <del> </del>                                     |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2              |              | 2                |                | <b></b>         | -                            |             |         | +       |                | 2                                             |                            |                                                  | 2            | ╁                                                |
| PHF                                                  | J11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 0.95           | 1            | 0.9              |                |                 |                              |             |         | 十       |                | 0.95                                          |                            | 1                                                | 0.95         |                                                  |
| Actuated (P                                          | /A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Α              |              | Α                |                |                 |                              |             |         | 工       |                | Α                                             |                            |                                                  | Α            |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2.0            |              | 2.0              |                |                 |                              |             |         | $\prod$ |                | 2.0                                           |                            |                                                  | 2.0          |                                                  |
| Ext. eff. gree                                       | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 2.0            |              | 2.0              |                |                 |                              |             |         | 4       |                | 2.0                                           |                            | 1                                                | 2.0          | <u> </u>                                         |
| Arrival type                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | 4              | ļ            | 4                |                |                 | -                            |             |         | +       |                | 5                                             |                            |                                                  | 5            | $\vdash$                                         |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 3.0<br>5       | <del> </del> | 3.0              |                | 5               | -                            |             |         | +       |                | 3.0                                           |                            |                                                  | 3.0          | ├─                                               |
| Lane Width                                           | IOR volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 12.0           |              | 12.              | n              | 5               |                              |             |         | ┰       |                | 12.0                                          |                            |                                                  | 12.0         | ╁                                                |
|                                                      | ney or Co. Performed Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Pe |                           | N N            | 0            | N<br>N           |                | N               | $\vdash$                     |             | N       | -       | N              | 0                                             | N                          | N                                                | 0            | N                                                |
| Parking/hr                                           | ncy or Co. Performed Performed Period  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  Image: Period A  I |                           | <u> </u>       |              | <del>  ''</del>  |                |                 | H                            |             |         | ┪       |                |                                               | <u> </u>                   | <del>                                     </del> |              | <del>                                     </del> |
| Bus stops/h                                          | e Performed e Period  Iume and Timing Input  In. of Lanes e group Ime (vph) Heavy veh Interpolated (P/A) Itup lost time eff. green Ival type Extension If Bike/RTOR Volume Ite Width Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Parking) Item (Ring/Grade/Pa |                           | 0              |              | 0                |                |                 | 一                            |             |         | ┪       |                | 0                                             |                            | <u> </u>                                         | 0            |                                                  |
| Unit Extensi                                         | Performed Period  A Period  A Period  A Period  A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 3.0            |              | 3.0              | ,              |                 |                              |             |         | ┪       |                | 3.0                                           |                            | 1                                                | 3.0          |                                                  |
| Phasing                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02                        | 2              | 03           |                  | Т              | 04              | <u> </u>                     | Th          | iru C   | nly     |                | 06                                            |                            | 07                                               | <del> </del> | 08                                               |
| Timing                                               | G = 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G =                       |                | G =          | <u> </u>         | G              |                 |                              |             | = 64    | 1.0     | G:             |                                               | G =                        |                                                  | G =          |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Υ=                        |                | Y =          |                  | Υ              | =               |                              | Υ:          | = 5     |         | Υ :            |                                               | Υ =                        |                                                  | Y =          |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                | <u> </u>     |                  |                | 1.00            | _                            | _           |         |         |                | le Lenç                                       | gth C                      | = 100                                            | ).0          |                                                  |
| Lane Gro                                             | up Capaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ity, Co                   |                |              | <u>у, а</u><br>Т | nd             |                 |                              | te          | rmii    | nat     | ion            |                                               |                            | 1                                                |              |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | El             |              | _                |                |                 | /B                           | _           |         |         |                | NB                                            | 1                          | 1                                                | SB           |                                                  |
| Adj. flow rat                                        | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 674                       |                | 284          | $\dashv$         |                |                 |                              | L           |         |         |                | 268                                           |                            | _                                                | 2068         | ↓                                                |
| Lane group                                           | сар.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 894                       |                | 412          | 2                |                |                 |                              |             |         |         | 4              | 330                                           |                            |                                                  | 5412         |                                                  |
| v/c ratio                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75                      |                | 0.69         | 7                |                |                 |                              |             |         |         | 0              | .29                                           |                            |                                                  | 0.38         |                                                  |
| Green ratio                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.26                      |                | 0.26         | 3                |                |                 |                              |             |         |         | 0              | .64                                           |                            |                                                  | 0.64         |                                                  |
| Unif. delay o                                        | d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.1                      |                | 33.4         | 1                |                |                 |                              |             |         |         | Į              | 3 <i>.0</i>                                   |                            |                                                  | 8.6          |                                                  |
| Delay factor                                         | ·k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.31                      |                | 0.26         | 3                |                |                 |                              |             |         |         | 0              | .11                                           |                            |                                                  | 0.11         |                                                  |
| Increm. dela                                         | ay d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7                       |                | 4.8          |                  |                |                 | •••••                        |             |         |         | 7              | 0.0                                           |                            |                                                  | 0.0          |                                                  |
| PF factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000                     | )              | 1.00         | 0                |                |                 | •                            |             |         |         | 0              | .139                                          |                            |                                                  | 0.139        |                                                  |
| Control dela                                         | ny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.7                      |                | 38.2         | 2                |                |                 |                              | Г           |         |         |                | 1.1                                           |                            |                                                  | 1.2          | 1                                                |
| Lane group                                           | LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D                         |                | D            | 寸                |                | $\neg \uparrow$ |                              |             |         |         | $\top$         | Α                                             |                            | ĺ                                                | Α            |                                                  |
| Apprch. dela                                         | up lost time eff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension sing EB Only ng G = 26.0 G = 7 = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                | 1            | $\dashv$         |                |                 | <del></del>                  | L           |         |         | 1.             | .1                                            |                            | 1                                                | 1.2          | <del></del>                                      |
| Approach L                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 37.9<br>D      | •            | $\dashv$         |                | •               |                              |             |         |         | -              | 4 P                                           |                            | 1                                                | Α            | <u> </u>                                         |
| Intersec. de                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                         | 9.4            |              | $\dashv$         |                |                 |                              | nte         | rsec    | tion    | LOS            |                                               |                            | 1                                                | A            |                                                  |
| HCS2000TM                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                | ovright © :  |                  | <del>.</del> . | *               |                              |             |         |         |                | <del></del>                                   | •                          | 1                                                |              | ersion 4.1                                       |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                   |                   | SH            | OR'      | ΓRE         | PO       | R           | Γ                    | -        |            |                                               |                                                  |                      |          |                                                  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------|-------------------|---------------|----------|-------------|----------|-------------|----------------------|----------|------------|-----------------------------------------------|--------------------------------------------------|----------------------|----------|--------------------------------------------------|
| General Inf                                          | formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                                   |                   |               |          | Sit         | e Inf    | for         | matic                |          |            |                                               |                                                  |                      |          |                                                  |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | US<br>US<br>08/24<br>AM P | AI<br>4/12                                        |                   |               |          | Are<br>Jur  |          | ype<br>etio | e<br>n               |          | 00         | LLEGE<br>78EB (<br>All oth<br>CEANS<br>LT-2/M | OFF-R<br>ner are<br>IDE-IN                       | PAM<br>Pas<br>JT.#12 | ?        |                                                  |
| Volume ar                                            | nd Timing Inj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | put                       |                                                   |                   |               |          |             |          |             |                      |          |            |                                               |                                                  |                      |          |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 1 7                                               | EB                |               | -        | LT          | W        |             | DT                   | ╀.       | _          | NB                                            | Lot                                              | LT                   | SB<br>TH | Грт                                              |
| Num of Lar                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                         | LT<br>2                                           | TH<br>0           | R1<br>1       |          | 0           | Th<br>O  | -           | <u>RT</u>            |          |            | TH<br>4                                       | RT<br>0                                          | 0                    | 5<br>5   | RT<br>0                                          |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | L                                                 | -                 | R             | +        |             | ۳        | $\dashv$    |                      | ┯        |            | $\frac{\tau}{T}$                              | <del>                                     </del> | ╁                    | T        | ⊬                                                |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 640                                               | -                 | 296           | +        |             |          | ┥           |                      | +        |            | 1354                                          |                                                  | +                    | 2007     | <del> </del>                                     |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2                                                 |                   | 2             | +        |             |          | _           |                      | +-       |            | 2                                             |                                                  |                      | 2        | <del>                                     </del> |
| PHF                                                  | ncy or Co. Performed Period  ume and Timing Input  n. of Lanes group Ime (vph) Ideavy veh  stated (P/A) tup lost time eff. green val type Extension /Bike/RTOR Volume e Width sing/Grade/Parking sing EB Only Ty = 5 Interpretation  The Group Capacity  ation of Analysis (hrs) Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Interpretation Int |                           | 0.95                                              |                   | 0.98          | 5        |             |          | $\dashv$    |                      | +        |            | 0.95                                          |                                                  |                      | 0.95     | <u> </u>                                         |
| Actuated (P                                          | P/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | Α                                                 |                   | Α             |          |             |          |             |                      |          |            | Α                                             |                                                  |                      | A        |                                                  |
|                                                      | yst ncy or Co. Performed Period  ume and Timing Inpu  i. of Lanes group me (vph) leavy veh  ated (P/A) tup lost time eff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension sing EB Only Ty = 5 Ty ation of Analysis (hrs) = The Group Capacity  flow rate group cap. atio en ratio delay d1 y factor k tem. delay d2 factor trol delay group LOS ch. delay toach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 2.0                                               |                   | 2.0           |          |             |          |             |                      |          |            | 2.0                                           |                                                  |                      | 2.0      |                                                  |
| Ext. eff. gre                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2.0                                               |                   | 2.0           | I        |             |          |             |                      |          |            | 2.0                                           |                                                  |                      | 2.0      | lacksquare                                       |
| Arrival type                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | <i>4</i><br><i>3.0</i>                            |                   | 4             | _        |             |          | _           |                      | ╄        |            | 5                                             |                                                  |                      | 5        | <del> </del>                                     |
|                                                      | le group  Jume (vph)  Heavy veh  Juated (P/A)  Intup lost time  Jeff. green  Val type  It Extension  Jeke/RTOR Volume  Width  King/Grade/Parking  King/hr  Stops/hr  TExtension  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Only  Jeking EB Onl |                           |                                                   |                   | 3.0           |          |             |          |             |                      | _        |            | 3.0                                           |                                                  |                      | 3.0      |                                                  |
|                                                      | e Performed e Period  Iume and Timing Input  In. of Lanes  e group  Iume (vph)  Heavy veh  Iuated (P/A)  Irtup lost time  If green  If green  If green  If green  If grade/Parking  If king/Grade/Parking  If Extension  If Extension  If Extension  If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input If Input I |                           | 5                                                 | ļ                 | 0             | _        | 5           |          | 4           |                      | +        |            | /2.2                                          |                                                  | ļ                    | 1.5.5    | —                                                |
| Lane Width                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 12.0                                              |                   | 12.0          | 2        |             |          |             |                      | +        |            | 12.0                                          | ļ.,.                                             | <u> </u>             | 12.0     | <del> </del>                                     |
|                                                      | Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | N                                                 | 0                 | N             | +        | N           |          | 4           | Ν                    | 1        |            | 0                                             | N                                                | N                    | 0        | N                                                |
| Parking/hr                                           | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                                                   |                   |               | +        |             |          | 4           |                      | ┼        |            |                                               |                                                  | -                    |          | —                                                |
|                                                      | ing/Grade/Parking<br>ing/hr<br>stops/hr<br>Extension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 0                                                 |                   | 0             | +        |             |          | 4           |                      | ╀        |            | 0                                             | ļ                                                | ļ                    | 0        | ├─                                               |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 3.0                                               |                   | 3.0           |          |             | <u> </u> |             |                      | <u> </u> |            | 3.0                                           | <u> </u>                                         | <u> </u>             | 3.0      | <u> </u>                                         |
| Phasing                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02                        |                                                   | 03<br>G =         |               |          | 04          |          |             | ru Or                |          | Ω.         | 06                                            | G =                                              | 07                   | G =      | )8                                               |
| Timing                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G =<br>Y =                |                                                   | <i>j</i> =<br>Y = |               | G =      |             | _        |             | = <i>64</i> .<br>= 5 |          | G =<br>Y = |                                               | Y =                                              |                      | Y =      |                                                  |
| Duration of                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                   | 1                 |               | <u> </u> |             |          | <u> </u>    |                      |          | -          | le Leng                                       |                                                  |                      |          | <del></del>                                      |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                   | Dela              | v. aı         | nd L     | .OS         | De       | tei         | min                  |          |            |                                               |                                                  | •                    |          |                                                  |
|                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ĺ                         | EE                                                |                   | T             |          | -           | /B       | •           |                      |          |            | NB                                            |                                                  |                      | SB       |                                                  |
| Adj. flow rat                                        | te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 674                       |                                                   | 312               |               |          |             |          |             |                      |          | 14         | 425                                           |                                                  |                      | 2113     | П                                                |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 894                       |                                                   | 412               |               |          |             |          |             |                      |          | 4          | 330                                           |                                                  |                      | 5412     | 1                                                |
| v/c ratio                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75                      |                                                   | 0.76              | -             |          | <del></del> |          |             |                      |          | 10         | .33                                           |                                                  |                      | 0.39     | 1                                                |
| Green ratio                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.26                      | _                                                 | 0.26              | -             |          | +           | _        |             | _                    |          | +-         | .64                                           |                                                  | $\vdash$             | 0.64     | ${}$                                             |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.1                      |                                                   | 34.1              |               |          | +           | $\dashv$ |             | +                    |          | -          | 3,2                                           |                                                  |                      | 8.6      | $\vdash$                                         |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31                      |                                                   | 0.31              |               |          | +           | $\dashv$ |             | $\dashv$             |          | +          | .11                                           |                                                  | _                    | 0.11     | <del>                                     </del> |
| -                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7                       | $\dashv$                                          | 7.9               | -             |          |             |          |             |                      |          | +          | 0.0                                           |                                                  |                      | 0.0      | $\vdash$                                         |
| PF factor                                            | <u>,                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.000                     | <del>,                                     </del> | 1.00              | -             |          | 1           | $\dashv$ |             | $\dashv$             |          | -          | 139                                           |                                                  |                      | 0.139    | <u> </u>                                         |
| Control dela                                         | зу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.7                      |                                                   | 42.0              | $\overline{}$ |          | 1           | 一        |             | 十                    |          | +          | 1.2                                           |                                                  |                      | 1.2      | $\top$                                           |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                         | <del></del>                                       | D                 | 十             |          | T           | $\dashv$ |             | 十                    |          | +          | A                                             |                                                  |                      | A        | 1                                                |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 39.1                                              |                   |               |          |             |          |             |                      |          | 1.         | 2                                             |                                                  |                      | 1.2      |                                                  |
| Approach L                                           | ane group LOS  pprch. delay  pproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                                                   |                   | 十             |          |             |          |             | 十                    |          | A          | ١                                             |                                                  |                      | Α        |                                                  |
| Intersec. de                                         | lay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 9.5                                               |                   | 寸             |          |             | lr       | nte         | rsecti               | on L     | os         |                                               |                                                  |                      | Α        |                                                  |
| HCS2000 <sup>TM</sup>                                | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                                   | yright © 2        | 2000 11       | nivers   | ity of F    |          |             |                      |          |            |                                               |                                                  |                      |          | ersion 4.                                        |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                |              | SH            | OF    | RT RE              | ΕPC                           | )R          | T            |        |             |                                               |                                              |                                                  |          |                                                  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|--------------|---------------|-------|--------------------|-------------------------------|-------------|--------------|--------|-------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|
| General Inf                                          | ormation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                | •            |               |       | Sit                | e In                          | for         | mat          | ion    |             |                                               |                                              |                                                  |          |                                                  |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | US<br>US<br>08/2/<br>PM P | AI<br>4/12     |              |               |       | Are<br>Jur         | erse<br>ea T<br>risdi<br>alys | ype<br>ctic | <del>3</del> |        | 0           | LLEGE<br>78EB (<br>All oth<br>CEANS<br>ALT-2/ | OFF-R<br>ner are<br>IDE-IN                   | AM<br>as<br>IT.#12                               |          |                                                  |
| Volume an                                            | nd Timing In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | out                       |                |              |               |       | •                  |                               |             |              |        |             |                                               |                                              | •                                                |          |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | LT             | EB<br>TH     | R             | _     | LT                 | V<br>T                        |             | RT           | _      | LT          | NB<br>TH                                      | RT                                           | LT                                               | SB<br>TH | RT                                               |
| Num. of Lar                                          | nes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 2              | 0            | 1             |       | 0                  | 0                             |             | 0            | -      | 0           | 4                                             | 0                                            | 0                                                | 5        | 0                                                |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | L              | <u> </u>     | R             |       | <u> </u>           |                               |             | ┝╌           | ┪      |             | T                                             |                                              |                                                  | T        |                                                  |
|                                                      | h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 650            | <u> </u>     | 47            |       |                    |                               |             |              | +      |             | 2215                                          |                                              | <del>                                     </del> | 1675     | <del>                                     </del> |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2              |              | 2             |       |                    | 1                             |             |              | $\top$ |             | 2                                             |                                              |                                                  | 2        |                                                  |
| PHF                                                  | ncy or Co. Performed Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Pe |                           | 0.95           |              | 0.9           | 5     |                    |                               |             |              | 寸      |             | 0.95                                          |                                              |                                                  | 0.95     |                                                  |
| Actuated (P                                          | yst ney or Co. Performed Period  Ime and Timing Input  of Lanes group me (vph) eavy veh  ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension sing EB Only My = 5 Y tion of Analysis (hrs) =  e Group Capacity  flow rate group cap. atio on ratio delay d1 y factor k em. delay d2 actor rol delay oach LOS  ch. delay oach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Α              |              | Α             |       |                    |                               |             |              |        |             | Α                                             |                                              |                                                  | Α        |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2.0            |              | 2.0           |       |                    |                               |             |              | I      |             | 2.0                                           |                                              |                                                  | 2.0      |                                                  |
| Ext. eff. gre                                        | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 2.0<br>4       | 1            | 2.0           |       |                    | <b> </b>                      |             | ļ            | _      |             | 2.0                                           |                                              | 1                                                | 2.0      |                                                  |
| Arrival type                                         | ncy or Co. e Performed e Period  ume and Timing Inpu  n. of Lanes e group ume (vph) Heavy veh  tup lost time eff. green val type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing EB Only ing G = 36.0 C Y = 5 Y ation of Analysis (hrs) = ne Group Capacity  flow rate e group cap. ratio en ratio delay d1 ay factor k em. delay d2 factor trol delay e group LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                | <del> </del> | 4             |       | <u> </u>           | <del> </del>                  |             | $\vdash$     | +      |             | 5                                             | <u> </u>                                     | 1                                                | 5        | -                                                |
|                                                      | e Performed e Period  Iume and Timing Input  In. of Lanes e group Iume (vph) Heavy veh Iuated (P/A) Itup lost time eff. green Ival type Extension I/Bike/RTOR Volume e Width Ixing/Grade/Parking Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing Ixing |                           | 3.0<br>5       | -            | 3.0           | ,     | 5                  | $\vdash$                      |             | <u> </u>     | +      |             | 3.0                                           |                                              | <del>                                     </del> | 3.0      |                                                  |
| Lane Width                                           | Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                | <u> </u>     | 12.           | 0     | 5                  | ╁                             |             |              | +      |             | 12.0                                          |                                              |                                                  | 12.0     |                                                  |
|                                                      | Bike/RTOR Volume Width ng/Grade/Parking ng/hr stops/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                | 0            | N             |       | N                  |                               |             | N            | 十      | N           | 0                                             | N                                            | N                                                | 0        | N                                                |
| Parking/hr                                           | ixtension ike/RTOR Volume Width ng/Grade/Parking ng/hr tops/hr ixtension ng EB Only G = 36.0 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                | 1            |               |       |                    |                               |             |              | 十      |             |                                               |                                              |                                                  |          |                                                  |
| Bus stops/h                                          | al type Extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr stops/hr Extension ing EB Only G = 36.0 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | 0              |              | 0             |       |                    |                               |             |              | 寸      |             | 0                                             |                                              |                                                  | 0        |                                                  |
| Unit Extens                                          | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 3.0            |              | 3.0           | )     |                    |                               |             |              | 十      |             | 3.0                                           |                                              |                                                  | 3.0      |                                                  |
| Phasing                                              | EB Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02                        | 2              | 03           | <u> </u>      | Τ     | 04                 |                               | Th          | ıru C        | nly    |             | 06                                            | <u>-                                    </u> | 07                                               |          | )8                                               |
| Timing                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G =                       |                | G =          |               | G     |                    |                               |             | = 54         | 4.0    | G:          |                                               | G =                                          |                                                  | G =      |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y =                       |                | Y =          |               | Υ     | =                  |                               | Υ:          | = 5          |        | Y =         |                                               | Y =                                          |                                                  | Y =      |                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                | Dala         |               |       | 1.00               | D-                            | 4.          |              |        |             | le Leng                                       | jin C =                                      | - 100.                                           | .0       |                                                  |
| Lane Gro                                             | up Capaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ity, GC                   |                |              | y, a          | na    |                    |                               | te          | rmi          | nat    | ion         | NB                                            |                                              | 1                                                | CD       |                                                  |
| A 1: 61 4                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.4                      | E              |              |               |       | 1                  | VB                            | _           |              |        |             |                                               | :                                            |                                                  | SB       | 1                                                |
| _                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 684                       | _              | 495          | $\rightarrow$ |       |                    |                               | ┝           | $\dashv$     |        |             | 332                                           |                                              | <u> </u>                                         | 1763     | <u> </u>                                         |
|                                                      | cap.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1237                      |                | 570          |               |       |                    |                               | L           | $\dashv$     |        | _           | 653                                           |                                              |                                                  | 4567     | -                                                |
| v/c ratio                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.55                      |                | 0.87         |               |       |                    |                               | _           |              |        |             | .64                                           |                                              |                                                  | 0.39     | _                                                |
| Green ratio                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.36                      | $-\!\!\!\!\!-$ | 0.36         |               |       | +                  |                               | <u> </u>    | _            |        | <del></del> | .54                                           |                                              |                                                  | 0.54     | ļ                                                |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.6                      | _              | 29.8         | -             |       | _                  |                               |             | _            |        | <del></del> | 6.1                                           |                                              |                                                  | 13.4     | ļ                                                |
| Delay factor                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.15                      |                | 0.40         |               |       |                    |                               |             | _            |        | <del></del> | .22                                           |                                              |                                                  | 0.11     | ļ                                                |
|                                                      | ay d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                       |                | 13.5         |               |       |                    |                               | _           |              |        |             | 0.4                                           |                                              |                                                  | 0.1      | _                                                |
| PF factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.934                     | ——             | 0.93         | -             |       | $\bot\!\!\!\!\bot$ |                               | _           |              |        | _           | .217                                          |                                              |                                                  | 0.217    |                                                  |
| Control dela                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.4                      |                | 41.3         | 3             |       |                    |                               | _           |              |        | -+          | 3.9                                           |                                              | <u> </u>                                         | 3.0      | <u> </u>                                         |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С                         | 31.5           | D            |               |       |                    |                               | <u> </u>    |              |        |             | Α                                             |                                              | <u> </u>                                         | Α        |                                                  |
| Apprch. dela                                         | ne group LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                |              |               |       |                    |                               |             |              |        | 3.          | 9                                             |                                              |                                                  | 3.0      |                                                  |
| Approach L                                           | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | С              |              |               |       |                    |                               |             |              |        | 1           | 1                                             |                                              |                                                  | Α        |                                                  |
| Intersec. de                                         | lay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 9.8            |              | T             |       |                    | Ī                             | nte         | rsec         | tion   | LOS         | ;                                             |                                              |                                                  | Α        |                                                  |
| HCS2000TM                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | Cor            | ovright © 2  | anna T        | Today | regitar of E       | llaeide                       | . A 11      | l Diaht      | ta Das | nwrod       |                                               |                                              |                                                  | 17       | ersion 4.                                        |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                                                                                                                                                                              |                          |                 |           |          | SH            | OF    | RT RE        | PC       | )R          | T        |           |        |                                                 |                            |                      |          |                                                  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|-----------|----------|---------------|-------|--------------|----------|-------------|----------|-----------|--------|-------------------------------------------------|----------------------------|----------------------|----------|--------------------------------------------------|
| General In                                           | formation                                                                                                                                                                                                    |                          |                 |           |          |               |       | Sit          | e In     | for         | mati     | on        |        | •                                               |                            |                      |          |                                                  |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med :                                                                                                                                                                                                        | US<br>US<br>08/2<br>PM P | AI<br>4/12      |           |          |               |       | Are<br>Jur   |          | ype<br>ctio |          |           | 0      | DLLEGE<br>78EB  <br>All otl<br>CEANS<br>ALT-2/V | OFF-R<br>her are<br>IDE-IN | PAM<br>Pas<br>JT.#12 | )        |                                                  |
| Volume ar                                            | nd Timing In                                                                                                                                                                                                 | out                      | 1               |           |          |               |       |              |          |             |          | ·         |        |                                                 |                            | _                    |          |                                                  |
|                                                      |                                                                                                                                                                                                              |                          | LT              | _         | EB<br>TH | R             |       | LT           | W<br>T   |             | RT       | +         | LT     | NB<br>TH                                        | RT                         | LT                   | SB<br>TH | RT                                               |
| Num. of Lar                                          | nes                                                                                                                                                                                                          |                          | 2               | +         | 0        | 1             |       | 0            | 0        |             | 0        | ╅         | 0      | 4                                               | 0                          | 0                    | 5        | 0                                                |
| Lane group                                           |                                                                                                                                                                                                              |                          | L               | ╅         |          | R             |       |              |          |             |          | 十         |        | T                                               |                            | <u> </u>             | T        |                                                  |
| Volume (vp                                           |                                                                                                                                                                                                              |                          | 650             | ┿         |          | 55            |       |              | ╁        |             | -        | +         |        | 2295                                            |                            |                      | 1805     | <del>                                     </del> |
| % Heavy v                                            |                                                                                                                                                                                                              |                          | 2               | $\dagger$ |          | 2             |       |              |          | -           |          | 十         |        | 2                                               | <del> </del>               |                      | 2        |                                                  |
| PHF                                                  |                                                                                                                                                                                                              |                          | 0.95            | ┪         |          | 0.9           |       |              |          |             |          | 十         |        | 0.95                                            |                            |                      | 0.95     |                                                  |
| Actuated (F                                          |                                                                                                                                                                                                              |                          | Α               |           |          | Α             |       |              |          |             |          |           |        | Α                                               |                            |                      | Α        |                                                  |
|                                                      |                                                                                                                                                                                                              |                          | 2.0             |           |          | 2.0           |       |              | <u> </u> |             |          | 4         |        | 2.0                                             |                            | ļ                    | 2.0      | <u> </u>                                         |
|                                                      |                                                                                                                                                                                                              |                          | 2.0             | +         |          | 2.0           |       |              |          |             |          | +         |        | 2.0                                             | -                          | <u> </u>             | 2.0      | <b>├</b>                                         |
| Arrival type                                         |                                                                                                                                                                                                              |                          | <i>4</i><br>3.0 | +         |          | 3.0           |       |              | $\vdash$ |             |          | +         |        | 5<br>3.0                                        | <del> </del>               | $\vdash$             | 5<br>3.0 | <del> </del>                                     |
|                                                      |                                                                                                                                                                                                              |                          | 5               | +         |          | 0             | _     | 5            | $\vdash$ |             |          | +         |        | 3.0                                             | <del> </del>               | +                    | 3.0      | $\vdash$                                         |
| Lane Width                                           |                                                                                                                                                                                                              |                          | 12.0            | +         |          | 12.           | 0     | <del>Ľ</del> |          |             |          | $\dagger$ |        | 12.0                                            |                            |                      | 12.0     | <del>                                     </del> |
|                                                      |                                                                                                                                                                                                              |                          | N               | $\top$    | 0        | N             |       | N            |          |             | N        | 十         | N      | 0                                               | N                          | N                    | 0        | N                                                |
| Parking/hr                                           |                                                                                                                                                                                                              |                          |                 |           |          |               |       |              |          |             |          | T         |        |                                                 |                            |                      |          |                                                  |
| Bus stops/h                                          | tup lost time eff. green val type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing EB Only ng G = 36.0 G Y = 5 Y ation of Analysis (hrs) = ne Group Capacity flow rate |                          | 0               | 1         |          | 0             |       |              |          |             |          | 十         |        | 0                                               |                            |                      | 0        |                                                  |
| Unit Extens                                          | ion                                                                                                                                                                                                          |                          | 3.0             |           |          | 3.0           | )     |              |          |             |          | 十         |        | 3.0                                             |                            |                      | 3.0      |                                                  |
| Phasing                                              | EB Only                                                                                                                                                                                                      | 02                       | 2               |           | 03       |               |       | 04           |          | Th          | ru O     | nly       |        | 06                                              |                            | 07                   | (        | )8                                               |
| Timing                                               |                                                                                                                                                                                                              | G =                      |                 | G         |          |               | G     |              |          |             | = 54     | 1.0       | G      |                                                 | G =                        |                      | G =      |                                                  |
|                                                      |                                                                                                                                                                                                              | Y =                      | _               | Υ:        | =        |               | Υ     |              |          | Υ =         | = 5      |           | Υ:     |                                                 | Y =                        |                      | Y =      |                                                  |
|                                                      |                                                                                                                                                                                                              |                          |                 |           | \_       |               | 4     | 1.06         | Da       | 4           |          |           |        | cle Lenç                                        | jin C =                    | - 100                | .0       |                                                  |
| Lane Gro                                             | oup Capaci                                                                                                                                                                                                   | iy, CC                   |                 | B         | elay     | y, a<br>T     | na    |              | <i>В</i> | ; LE        | <u> </u> | naı       | ion    | NB                                              |                            | 1                    | SB       |                                                  |
| Adi flow rat                                         | to.                                                                                                                                                                                                          | 684                      | 7               | .D        | 580      | _             |       | V            | /D       |             |          |           | Ta     | 416                                             |                            |                      | 1900     | $\overline{}$                                    |
|                                                      |                                                                                                                                                                                                              | 1237                     | _               |           | 570      |               |       |              |          | ┝           | _        |           | -      | 653                                             |                            | -                    | 4567     | +-                                               |
| v/c ratio                                            | oup.                                                                                                                                                                                                         | 0.55                     | -               |           | 1.02     | $\rightarrow$ |       |              |          | H           | $\dashv$ |           |        | 0.66                                            |                            |                      | 0.42     |                                                  |
| Green ratio                                          |                                                                                                                                                                                                              | 0.36                     | -               |           | 0.36     | $\rightarrow$ |       |              |          | $\vdash$    | $\dashv$ |           | -+     | ).54                                            |                            |                      | 0.54     | <del> </del>                                     |
| Unif. delay                                          |                                                                                                                                                                                                              | 25.6                     |                 |           | 32.0     |               |       |              |          | $\vdash$    |          |           | -      | 16.5                                            |                            |                      | 13.6     | $\vdash$                                         |
| Delay factor                                         |                                                                                                                                                                                                              | 0.15                     | -               |           | 0.50     |               |       |              |          |             |          |           |        | 0.24                                            |                            |                      | 0.11     | T                                                |
|                                                      | •                                                                                                                                                                                                            | 0.5                      | +               |           | 42.2     | -+            |       | $\top$       |          |             | $\dashv$ |           | -      | 0.5                                             |                            |                      | 0.1      | 1                                                |
| PF factor                                            |                                                                                                                                                                                                              | 0.934                    | 4               |           | 0.93     | 4             |       |              |          |             | $\neg$   |           |        | .217                                            |                            |                      | 0.217    | <b>†</b>                                         |
| Control dela                                         | ау                                                                                                                                                                                                           | 24.4                     |                 |           | 72.1     |               |       |              |          |             |          |           | $\neg$ | 4.0                                             | •                          |                      | 3.0      |                                                  |
| Lane group                                           | LOS                                                                                                                                                                                                          | С                        |                 |           | E        |               |       |              |          |             |          |           |        | Α                                               |                            |                      | Α        |                                                  |
| Apprch. del                                          | ay                                                                                                                                                                                                           |                          | 46.3            |           |          |               |       |              |          |             |          |           | 4      | .0                                              |                            |                      | 3.0      |                                                  |
| Approach L                                           | ontrol delay<br>ne group LOS                                                                                                                                                                                 |                          |                 |           | •        | $\neg$        |       | •            |          |             |          |           | ,      | 4                                               |                            |                      | Α        |                                                  |
| Intersec. de                                         | een ratio f. delay d1 ay factor k rem. delay d2 factor ntrol delay ne group LOS orch. delay oroach LOS                                                                                                       |                          |                 |           |          |               |       |              | 1        | nte         | rsect    | tion      | LOS    | 3                                               |                            |                      | В        |                                                  |
| HCS2000 <sup>TM</sup>                                |                                                                                                                                                                                                              | •                        | Co              | nvri      | ight @ 2 | 1 000         | Inive | rsity of F   | lorida   | a. A11      | Right    | s Res     | erved  |                                                 |                            |                      | V        | ersion 4.                                        |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |              |             | SHO            | ORTR                                          | EP                                             | ORT            |              |             |                        |                                   |                          |            |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|-------------|----------------|-----------------------------------------------|------------------------------------------------|----------------|--------------|-------------|------------------------|-----------------------------------|--------------------------|------------|------------|
| General Inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ormation    |              |              |             |                | S                                             | ite lı                                         | nform          | atic         |             |                        |                                   |                          |            |            |
| Date Perform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | med         | U.<br>08/2   | SAI<br>25/12 |             |                | A<br>Ji                                       | rea <sup>-</sup><br>urisd                      | Гуре<br>iction |              | oc          | All ot<br>EANSI<br>MIT | DR.<br>her are<br>DE-INT<br>IGATI | -<br>eas<br>Γ.#13/N<br>Ο | 10         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | <del></del>  |              |             |                | Α                                             | naly                                           | sis Ye         | ar           | ВО          | .ALT2                  | /NO PI                            | ROJEC                    | <u>:T</u>  |            |
| Volume an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d Timing In | put          |              | ED          |                | <u>r                                     </u> | 1/1/                                           | D              |              | T           | ND                     |                                   | 1                        | SB         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              | LT           |             | RT             | LT                                            |                                                |                | रा           | LT          |                        | RT                                | LT                       | TH         | RT         |
| Agency or Co.   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date Performed   Date |             |              |              |             |                |                                               | 3                                              | 0              |              |             |                        |                                   |                          |            |            |
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              |              | TR          |                | L                                             | Т                                              | 1              | ₹            | L           | TR                     |                                   | L                        | TR         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1)          |              | 110          | 55          | 5              | 140                                           | 30                                             | 28             | 30           | 30          | 910                    | 300                               | 525                      | 1555       | 155        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              | 2            | 2           | 2              | 2                                             | 2                                              |                | 2            | 2           | 2                      |                                   | 2                        | 2          | 2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              | 0.95         |             |                |                                               |                                                |                |              |             |                        |                                   |                          | 0.95       | 0.95       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              | Α            |             |                | _                                             |                                                |                |              | Α           |                        | Α                                 | Α                        |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |              |             |                |                                               | -                                              | _              |              |             |                        |                                   |                          | 3.0        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∍n          |              |              |             |                |                                               | -                                              |                |              |             | -                      |                                   | +                        | 2.0        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |              |             |                |                                               | •                                              |                | <u></u>      |             | <del></del>            |                                   |                          | 5          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |              | 3.0         | 0              |                                               | <u>.                                      </u> |                |              |             |                        | 56                                |                          | 3.0<br>10  | 0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OR VOIUME   | ;            |              | 120         | <del>  0</del> |                                               | +                                              | -              |              | <del></del> | _                      | 50                                |                          |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de/Parking  |              |              |             | N              |                                               | -                                              | _              |              | <del></del> | +                      | N                                 |                          | 0          | N          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>    |              |              |             |                |                                               | Ť                                              | +              |              |             | <u> </u>               |                                   |                          |            |            |
| Parking/Grade/Parking         N         0         N         N         0         N         N         0         N         N         0           Parking/hr         Bus stops/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |              |             |                |                                               |                                                | 0              | <b> </b>     |             |                        |                                   |                          |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              | 3.0          | 3.0         |                | 3.0                                           | 3.0                                            | ) 3            | .0           | 3.0         | 3.0                    |                                   | 3.0                      |            |            |
| Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EB Only     | WB           | Only         | 0:          | 3              | 04                                            |                                                | Exc            | l. Le        | eft S       | SB Only                | Thr                               | u & RT                   |            | 08         |
| Timina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |              |              |             |                |                                               |                                                |                |              |             |                        |                                   |                          | G =<br>Y = |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |              | Υ =         | i              | Υ =                                           |                                                | Υ =            | 4            |             | •                      |                                   |                          |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |              | l Dela      | av ar          | nd I O                                        | S D                                            | eterr          | nin          |             |                        | garo                              | 100.                     |            |            |
| Lano Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ap capac    | ity, U       |              |             | 1              |                                               |                                                | <del></del>    | Τ            | utio1       |                        |                                   |                          | SB         |            |
| Adi flow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e.          | 116          | <del>-</del> |             | 147            |                                               |                                                | 295            |              | 32          | •                      | T                                 | 553                      | 1800       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |              |             |                |                                               | -                                              |                | <del>-</del> |             | -                      | +                                 | -                        | 2645       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | <del> </del> |              | +           | _              |                                               | _                                              |                |              |             |                        |                                   |                          | 0.68       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 0.11         | 0.11         |             | 0.07           | 0.0                                           | 7                                              | 0.21           | 0            | .09         | 0.30                   | 1                                 | 0.32                     | 0.53       |            |
| Unif. delay o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>    | 42.4         | 41.0         | $\dashv$    | 46.5           | 44.                                           | 0                                              | 38.7           | 4            | 2.2         | 32.6                   |                                   | 27.6                     | 17.3       |            |
| Delay factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k           | 0.18         | 0.11         |             | 0.50           | 0.1                                           | 1                                              | 0.44           | 0            | ).11        | 0.37                   |                                   | 0.11                     | 0.25       |            |
| Increm. dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y d2        | 4.9          | 0.9          |             | 146.           | 7 1.0                                         | )                                              | 31.6           | 7            | 0.6         | 4.1                    |                                   | 0.4                      | 0.7        |            |
| PF factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 1.000        | 1.000        | 7           | 1.000          | 0 1.00                                        | 00                                             | 1.000          | 0.           | .934        | 0.714                  |                                   | 0.686                    | 0.248      |            |
| Control dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | У           | 47.2         | 41.9         |             | 193.           | 2 45.0                                        | 9                                              | 70.4           | 4            | 0.0         | 27.4                   |                                   | 19.3                     | 5.0        |            |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOS         | D            | D            |             | F              | D                                             |                                                | Ε              |              | D           | С                      |                                   | В                        | Α          |            |
| Apprch. dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ay          | 4            | 5.4          |             |                | 106.8                                         |                                                |                |              | 2           | 7.7                    |                                   |                          | 8.4        |            |
| Approach Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | os          | D            |              |             | F              |                                               |                                                |                |              | С           |                        |                                   | Α                        |            |            |
| Intersec. de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ay          | 2            | 6.6          |             |                |                                               | In                                             | terse          | ctior        | ı LOS       |                        |                                   |                          | С          |            |
| HC 52000TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              |              | م عام ندریم | 3 2000 TT      | niversity o                                   | f Elorid                                       | lo A11 D       | iahta        | Danamiad    |                        |                                   |                          |            | ersion 4.1 |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                |                                       |            |              |            | SHO                                              | ORT R          | EP            | ORT        |        |              |               |                    |          | •          |             |
|--------------------------------|---------------------------------------|------------|--------------|------------|--------------------------------------------------|----------------|---------------|------------|--------|--------------|---------------|--------------------|----------|------------|-------------|
| General Inf                    | ormation                              |            |              |            |                                                  | S              | ite Ir        | form       | atic   |              |               |                    |          |            |             |
| A t                            |                                       |            | C A I        |            |                                                  | Ir             | nterse        | ection     |        | COL          | LEGE          |                    | @ PLA    | ZA         |             |
| Analyst<br>Agency or C         | Σo.                                   |            | SAI<br>SAI   |            |                                                  | l <sub>A</sub> | rea 1         | Type       |        |              | All of        | DR.<br>her are     | eas      |            |             |
| Date Perfori                   | med                                   | 08/2       | 25/12        |            |                                                  | - 1            |               | iction     |        | 00           | EANSI         | DE-IN7             | Г.#13/N  | 0          |             |
| Time Period                    |                                       | AM .       | PEAK         |            |                                                  |                |               | sis Ye     | or     | RO.          | MI7<br>ALT2/1 | TIGATION INVITALIS |          | $\sim$ T   |             |
| Volume an                      | d Timing In                           | put        |              |            |                                                  |                | ilaly         | 313 [ 6    | aı     | <u>Б</u> О./ | 4 <i>L12</i>  | 7 4 1 1 1 1        | NOOL     | <i></i>    |             |
| TOTAL TOTAL                    | ~ · · · · · · · · · · · · · · · · · · | lo us c    |              | EB         |                                                  |                | WI            | 3          |        |              | NB            |                    |          | SB         |             |
|                                |                                       |            | LT           | TH         | RT                                               | LT             | Th            | l R        | T      | LT           | TH            | RT                 | LT       | TH         | RT          |
| Num. of Lar                    | nes                                   |            | 1            | 1          | 0                                                | 1              | 1             | 1          |        | 1            | 3             | 0                  | 2        | 3          | 0           |
| Lane group                     |                                       |            | L            | TR         |                                                  | L              | T             | F          | ?      | L            | TR            |                    | L        | TR         |             |
| Volume (vpl                    |                                       |            | 180          | 87         | 55                                               | 145            | 35            | 28         |        | 45           | 989           | 336                | 525      | 1591       | 187         |
| % Heavy ve                     | eh                                    |            | 2            | 2          | 2                                                | 2              | 2             | 2          |        | 2            | 2             | 2                  | 2        | 2          | 2           |
| PHF                            | /A \                                  |            | 0.95         | 0.95       | 0.95                                             | 0.95           | 0.98          | _          |        | 0.95         | 0.95          | 0.95               | 0.95     | 0.95       | 0.95        |
| Actuated (P.                   |                                       |            | <i>A</i> 3.0 | A<br>3.0   | Α                                                | 3.0            | 3.0           | 3.         |        | 3.0          | 3.0           | Α                  | A<br>3.0 | A<br>3.0   | A           |
| Startup lost<br>Ext. eff. gree |                                       |            | 2.0          | 2.0        | -                                                | 2.0            | 2.0           |            |        | 2.0          | 2.0           |                    | 2.0      | 2.0        |             |
| Arrival type                   | 511                                   |            | 4            | 4          | <del>                                     </del> | 4              | 4             | 4          |        | 5            | 5             |                    | 5        | 5          | -           |
| Unit Extensi                   | on                                    |            | 3.0          | 3.0        |                                                  | 3.0            | 3.0           |            |        | 3.0          | 3.0           |                    | 3.0      | 3.0        |             |
| Ped/Bike/R1                    | ΓOR Volume                            | )          | 5            |            | 0                                                | 5              | 10            | 0          | )      | 5            | 10            | 56                 | 5        | 10         | 0           |
| Lane Width                     |                                       |            | 12.0         | 12.0       |                                                  | 12.0           | 12.0          | ) 12       | .0     | 12.0         | 12.0          |                    | 12.0     | 12.0       |             |
| Parking/Gra                    | de/Parking                            |            | Ν            | 0          | Ν                                                | Ν              | 0             | ٨          | /      | N            | 0             | Ν                  | Ν        | 0          | Ν           |
| Parking/hr                     |                                       |            |              |            |                                                  |                |               |            |        |              |               |                    |          |            |             |
| Bus stops/h                    | r                                     |            | 0            | 0          |                                                  | 0              | 0             | (          | )      | 0            | 0             |                    | 0        | 0          |             |
| Unit Extensi                   | on                                    |            | 3.0          | 3.0        |                                                  | 3.0            | 3.0           | 3.         | 0      | 3.0          | 3.0           |                    | 3.0      | 3.0        |             |
| Phasing                        | EB Only                               |            | Only         | 00         | 3                                                | 04             |               | Excl       |        |              | SB Only       |                    | u & RT   |            | 08          |
| Timing                         | G = 12.0<br>Y = 4                     | G =<br>Y = |              | G =<br>Y = |                                                  | G =<br>Y =     |               | G =<br>Y = |        |              | = 19.0<br>= 4 | G =<br>  Y =       | 31.0     | G =<br>Y = |             |
| Duration of                    |                                       |            | ·            | <u> </u>   |                                                  | <u> </u>       |               |            | 4      |              | cle Len       |                    |          |            |             |
|                                | ир Сарас                              |            |              | l Dela     | av. ar                                           | nd LO          | S De          | etern      | nin    |              |               | J                  |          |            |             |
|                                |                                       | <u> </u>   | EB           |            | 1                                                | W              |               |            | T      |              | NB            |                    |          | SB         |             |
| Adj. flow rat                  | e                                     | 189        | 150          |            | 153                                              | 37             |               | 295        | 1      | 47           | 1336          | T                  | 553      | 1872       |             |
| Lane group                     |                                       | 195        | 193          |            | 122                                              | 130            | $\rightarrow$ | 319        | +      | 59           | 1464          |                    | 1100     | 2638       |             |
| v/c ratio                      |                                       | 0.97       | 0.78         |            | 1.25                                             |                |               | 0.92       | _      | .30          | 0.91          | $\dagger$          | 0.50     | 0.71       |             |
| Green ratio                    |                                       | 0.11       | 0.11         | +          | 0.07                                             |                | <del></del>   | 0.21       |        | .09          | 0.30          |                    | 0.32     | 0.53       |             |
| Unif. delay o                  | <del></del>                           | 44.3       | 43.3         |            | 46.5                                             | _              | -+            | 38.7       | +      | 2.5          | 33.7          |                    | 27.6     | 17.7       |             |
| Delay factor                   |                                       | 0.48       | 0.33         |            | 0.50                                             | 0.1            | 1             | 0.44       | 0      | .11          | 0.43          | <u> </u>           | 0.11     | 0.27       |             |
|                                |                                       | 55.4       | 18.0         |            | 164.9                                            | 9 1.2          |               | 31.6       | 7      | 1.0          | 9.0           | †                  | 0.4      | 0.9        |             |
| PF factor                      | rem. delay d2 55                      |            |              | ,          | 1.000                                            | 0 1.00         | 00            | 1.000      | 0.     | 934          | 0.714         |                    | 0.686    | 0.248      |             |
| Control dela                   | ntrol delay 99                        |            |              |            | 211.4                                            | 4 45.          | 3             | 70.4       | 4      | 0.8          | 33.1          |                    | 19.3     | 5.3        |             |
| Lane group                     | ne group LOS F                        |            |              |            | F                                                | D              |               | Ε          | T      | D            | C             |                    | В        | Α          |             |
| Apprch. dela                   | эу                                    | 8          | 2.7          |            |                                                  | 112.9          |               |            |        | 33           | 3.4           |                    |          | 8.5        |             |
| Approach Lo                    | os                                    |            | F            |            |                                                  | F              |               |            | T      | i            | C             |                    |          | Α          |             |
| Intersec. de                   | lay                                   | 3          | 2.3          |            |                                                  |                | In            | tersec     | tior   | LOS          |               |                    |          | С          |             |
| HC\$2000 <sup>TM</sup>         |                                       |            |              | anvrioht @ | 2000 I II                                        | niversity of   | f Florid      | a All Pi   | ahte ' | Decerved     |               |                    |          |            | ersion 4.1f |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                           |                                        |            | <u>.</u>      | · · · · · · · · · · · · · · · · · · · | SHO                                              | ORT R         | REP         | ORT          |          |         |                         |                 |             |            |                                                  |
|---------------------------|----------------------------------------|------------|---------------|---------------------------------------|--------------------------------------------------|---------------|-------------|--------------|----------|---------|-------------------------|-----------------|-------------|------------|--------------------------------------------------|
| General Inf               | ormation                               |            |               |                                       |                                                  | s             | ite lı      | nform        | atic     |         | =                       |                 |             |            |                                                  |
| Analyst                   |                                        | U:         | SAI           |                                       |                                                  | Ir            | nters       | ection       |          | COL     | LEGE                    | BLVD.(<br>DR.   | @ PLA       | ZA         |                                                  |
| Agency or C               |                                        |            | SAI           |                                       |                                                  | A             | rea -       | Гуре         |          |         |                         | her are         |             | _          |                                                  |
| Date Perform              |                                        |            | 22/12<br>PEAK |                                       |                                                  | J             | urisd       | iction       |          | 00      | EANSI                   | DE-IN<br>IGATIC |             | 0          |                                                  |
| Time Period               |                                        | PMI        | PEAK          |                                       |                                                  | A             | naly        | sis Ye       | ar       | ВО      | ו וועו<br>ALT2.         |                 |             | Т          |                                                  |
| Volume an                 | d Timing In                            | put        |               |                                       |                                                  |               |             |              |          |         |                         |                 |             |            |                                                  |
|                           |                                        |            |               | EB                                    | T 5-                                             |               | W           |              | _        | 1.7     | NB                      |                 |             | SB         | L 0.7                                            |
| Ni                        |                                        |            | LT            | TH                                    | RT                                               | LT            | Th          | _            |          | LT      | TH<br>3                 | RT<br>0         | LT<br>2     | TH<br>3    | RT<br>0                                          |
| Num. of Lan               | es                                     |            | 1             | 1                                     | 0                                                | 1             | 1           | . 1          |          | 1       |                         | 0               |             |            | -                                                |
| Lane group                | `                                      |            | L             | TR                                    | 0.5                                              | L             | LT          |              |          | L       | TR                      | 005             | L           | TR         | 440                                              |
| Volume (vpl<br>% Heavy ve |                                        |            | 170<br>2      | 115<br>2                              | 25<br>2                                          | 265<br>2      | 20<br>2     | 53<br>2      |          | 15<br>2 | 1515<br>2               | 385<br>2        | 585<br>2    | 1550<br>2  | 110<br>2                                         |
| PHF                       | en                                     |            | ∠<br>0.95     | 0.95                                  | 0.95                                             | 0.95          | 0.9         |              |          | 0.95    | 0.95                    | 0.95            | 0.95        | 0.95       | 0.95                                             |
| Actuated (P               | /A)                                    |            | A             | A                                     | A                                                | A             | A           | <i>J</i> 0.3 |          | A       | A                       | A               | A           | A          | A                                                |
| Startup lost              |                                        |            | 3.0           | 3.0                                   | <del>                                     </del> | 3.0           | 3.0         | _            |          | 3.0     | 3.0                     |                 | 3.0         | 3.0        |                                                  |
| Ext. eff. gree            |                                        |            | 2.0           | 2.0                                   | <b> </b>                                         | 2.0           | 2.0         |              |          | 2.0     | 2.0                     | <u> </u>        | 2.0         | 2.0        |                                                  |
| Arrival type              |                                        |            | 4             | 4                                     |                                                  | 4             | 4           | 4            |          | 5       | 5                       |                 | 5           | 5          |                                                  |
| Unit Extensi              | on                                     |            | 3.0           | 3.0                                   |                                                  | 3.0           | 3.0         | 3.           | 0        | 3.0     | 3.0                     |                 | 3.0         | 3.0        |                                                  |
| Ped/Bike/R1               | OR Volume                              | ,          | 5             |                                       | 4                                                | 5             | 5           | 50           | ĵ        | 5       | 5                       | 53              | 5           | 5          | 5                                                |
| Lane Width                |                                        |            | 12.0          | 12.0                                  |                                                  | 12.0          | 12.0        | ) 12         | .0       | 12.0    | 12.0                    |                 | 12.0        | 12.0       |                                                  |
| Parking/Gra               | de/Parking                             |            | N             | 0                                     | N                                                | N             | 0           | ^            | 1        | N       | 0                       | N               | N           | 0          | N                                                |
| Parking/hr                |                                        |            |               |                                       |                                                  |               |             |              |          |         |                         |                 |             |            |                                                  |
| Bus stops/h               | ^                                      |            | 0             | 0                                     |                                                  | 0             | 0           | (            | )        | 0       | 0                       |                 | 0           | 0          |                                                  |
| Unit Extensi              | on                                     |            | 3.0           | 3.0                                   | <u> </u>                                         | 3.0           | 3.0         | 3.           | 0        | 3.0     | 3.0                     | <u></u>         | 3.0         | 3.0        |                                                  |
| Phasing                   | EB Only                                |            | Only          | 0                                     | 3                                                | 04            |             | Exc          |          |         | B Only                  |                 | u & RT      |            | 08                                               |
| Timing                    | G = 12.0                               | G =        |               | G =                                   |                                                  | G =           |             | G =          |          |         | = 10.0                  |                 | 42.2<br>5.6 | G =<br>Y = |                                                  |
| Duration of A             | Y = 4.2                                | Y = 3      |               | Y =                                   |                                                  | Y =           |             | Υ =          | 4.2      |         | = <i>5.2</i><br>cle Len |                 |             |            |                                                  |
|                           | up Capac                               |            |               | ı Del:                                | av ar                                            | nd I O        | S D         | otorn        | nin      |         |                         | guio            | 170.        |            |                                                  |
| Lane Olo                  | up capac                               | ity, O     | EB            | n DCI                                 | l ay, ar                                         | W             |             | Ciciii       | Τ        | ution   | NB                      |                 | <u> </u>    | SB         |                                                  |
| Adj. flow rate            |                                        | 179        | 143           | $\neg$                                | 153                                              |               |             | 499          | ╫        | 16      | 1944                    | T               | 616         | 1743       |                                                  |
| Lane group                | **                                     | 177        | 182           | +                                     | 207                                              |               | -           | 558          |          | 97      | 1843                    |                 | 631         | 2572       |                                                  |
| v/c ratio                 | оар.                                   | 1.01       | 0.79          |                                       | 0.74                                             |               | -           | 0.89         | +        | ).16    | 1.05                    | <u> </u>        | 0.98        | 0.68       | +                                                |
| Green ratio               |                                        | 0.10       | 0.10          |                                       | 0.12                                             |               |             | 0.36         | +        | 0.05    | 0.37                    |                 | 0.18        | 0.51       | +                                                |
| Unif. delay               | 11                                     | 49.5       | 48.3          | +                                     | 46.9                                             | $\rightarrow$ |             | 33.1         |          | 19.6    | 34.4                    | +-              | 44.7        | 20.0       |                                                  |
| Delay factor              |                                        | 0.50       | 0.33          | _                                     | 0.30                                             | _             |             | 0.42         | +        | ).11    | 0.50                    | +-              | 0.48        | 0.25       |                                                  |
| Increm. dela              | ······································ | 70.6       | 20.0          |                                       | 13.1                                             |               | _           | 16.8         | +        | 0.3     | 30.1                    | <del> </del>    | 15.9        | 0.3        | +                                                |
| PF factor                 | ·y uz                                  | 1.000      | 1.000         | ——                                    | 1.000                                            |               |             | 0.933        | —        | .962    | 0.601                   | <u> </u>        | 0.850       | 0.299      | -                                                |
| Control dela              | v                                      | 120.1      | 68.3          |                                       | 60.0                                             |               |             | 47.7         |          | 18.0    | 50.7                    | +               | 53.9        | 6.2        |                                                  |
| Lane group                | •                                      | 120.1<br>F | E             | +                                     | E                                                | E             |             | D            | +        | D D     | D                       | +               | D           | A          | <del>                                     </del> |
| Apprch. dela              |                                        |            | 7.1           |                                       |                                                  | 51.7          | 1           |              | +        |         | 0.7                     | 1               | -           | 18.7       |                                                  |
| Approach Lo               | <u> </u>                               |            | F             |                                       |                                                  | D             | <del></del> |              | +        |         | D                       |                 |             | В          |                                                  |
| Intersec. de              |                                        | <u> </u>   | 9.7           |                                       | +                                                |               | ln          | itersec      | <br>tion | n LOS   | -                       |                 |             | D          |                                                  |
| HCS2000 <sup>TM</sup>     | ·~· J                                  | L          |               | onvright (                            |                                                  | niversity o   |             |              |          |         |                         |                 | L           |            | ersion 4.                                        |

Page 1 of 1

|                                                       |                                     |              |                             |                                                  | SHO                                   | ORT R       | EP(            | DRT                      |          |           |                         |                                    |                     |           |             |
|-------------------------------------------------------|-------------------------------------|--------------|-----------------------------|--------------------------------------------------|---------------------------------------|-------------|----------------|--------------------------|----------|-----------|-------------------------|------------------------------------|---------------------|-----------|-------------|
| General Info                                          | ormation                            |              |                             |                                                  |                                       | S           | ite Ir         | ıforma                   | tio      |           |                         |                                    |                     |           |             |
| Analyst<br>Agency or C<br>Date Perforr<br>Time Period | med                                 | U.<br>08/2   | SAI<br>SAI<br>22/12<br>PEAK |                                                  | · · · · · · · · · · · · · · · · · · · | A<br>Ji     | rea 1<br>urisd | ection<br>Type<br>iction | ar       | 00        | All ot<br>EANSI         | DR.<br>her are<br>DE-INT<br>'GATIC | eas<br>T#13/N<br>DN | 0         |             |
| Volume an                                             | d Timing In                         | put          |                             |                                                  |                                       |             | lialy          | 313 1 66                 | A I      | DQ.7      | 1L 12/1                 | <u> </u>                           | /(ODL               |           |             |
|                                                       |                                     |              |                             | EB                                               |                                       |             | W              | 3                        |          | _         | NB                      |                                    |                     | SB        |             |
|                                                       |                                     |              | LT                          | TH                                               | RT                                    | LT          | TH             | l R                      |          | LT        | TH                      | RT                                 | LT                  | TH        | RT          |
| Num. of Lan                                           | es                                  |              | 1                           | 1                                                | 0                                     | 1           | 1              | 1                        | ┙        | 1         | 3                       | 0                                  | 2                   | 3         | 0           |
| Lane group                                            |                                     |              | L                           | TR                                               |                                       | L           | LT             | R                        |          | L         | TR                      |                                    | L                   | TR        |             |
| Volume (vph                                           | - / · · · · ·                       |              | 208                         | 132                                              | 52                                    | 281         | 34             | 530                      | 2        | 70        | 1557                    | 404                                | 585                 | 1561      | 210         |
| % Heavy ve                                            | ∍h                                  |              | 2                           | 2                                                | 2                                     | 2           | 2              | 2                        |          | 2         | 2                       | 2                                  | 2                   | 2         | 2           |
| PHF                                                   | /A \                                |              | 0.95                        | 0.95                                             | 0.95<br>A                             | 0.95        | 0.98<br>A      | 5 0.9.<br>A              | 5        | 0.95<br>A | 0.95<br>A               | 0.95<br>A                          | 0.95<br>A           | 0.95<br>A | 0.95<br>A   |
| Actuated (P/<br>Startup lost                          |                                     |              | A<br>3.0                    | A<br>3.0                                         | A                                     | 3.0         | 3.0            |                          | $\vdash$ | 3.0       | 3.0                     | A                                  | 3.0                 | 3.0       | A           |
| Ext. eff. gree                                        |                                     |              | 2.0                         | 2.0                                              |                                       | 2.0         | 2.0            |                          | -        | 2.0       | 2.0                     | -                                  | 2.0                 | 2.0       | <u> </u>    |
| Arrival type                                          | 211                                 |              | 4                           | 4                                                |                                       | 4           | 4              | 4                        |          | 5         | 5                       |                                    | 5                   | 5         |             |
| Unit Extensi                                          | on                                  |              | 3.0                         | 3.0                                              |                                       | 3.0         | 3.0            | 3.0                      | )        | 3.0       | 3.0                     |                                    | 3.0                 | 3.0       |             |
| Ped/Bike/RT                                           | ΓOR Volume                          | :            | 5                           | ,                                                | 4                                     | 5           | 5              | 56                       | <b>)</b> | 5         | 5                       | 53                                 | 5                   | 5         | 5           |
| Lane Width                                            |                                     |              | 12.0                        | 12.0                                             |                                       | 12.0        | 12.0           | 12.                      | 0        | 12.0      | 12.0                    |                                    | 12.0                | 12.0      |             |
| Parking/Gra                                           | de/Parking                          |              | Ν                           | 0                                                | N                                     | Ν           | 0              | N                        | 1        | Ν         | 0                       | Ν                                  | Ν                   | 0         | Ν           |
| Parking/hr                                            |                                     |              |                             |                                                  |                                       |             |                |                          |          |           |                         |                                    | <u></u>             |           |             |
| Bus stops/hi                                          | r                                   |              | 0                           | 0                                                |                                       | 0           | 0              | 0                        |          | 0         | 0                       | L                                  | 0                   | 0         |             |
| Unit Extensi                                          | on                                  |              | 3.0                         | 3.0                                              |                                       | 3.0         | 3.0            | 3.0                      | 2        | 3.0       | 3.0                     |                                    | 3.0                 | 3.0       |             |
| Phasing                                               | EB Only                             | WB           | Only                        | 0                                                | 3                                     | 04          |                | Excl.                    |          | _         | SB Only                 |                                    | u & RT              |           | 08          |
| Timing                                                | G = 12.0                            | G =          |                             | G =                                              |                                       | G =         |                | G = 1                    |          |           | = 10.0                  |                                    | 42.2                | G =       |             |
| Duration of A                                         | Y = 4.2                             | Y = 0 1      |                             | Y =                                              |                                       | Υ=          |                | Y = 4                    | 7.2      |           | = <i>5.2</i><br>cle Len |                                    | 5.6<br>= 110        | Y = .     |             |
|                                                       | up Capac                            | <del>/</del> |                             | l Dali                                           | 3W 3r                                 | 74 I O      | s n            |                          | in       |           |                         | garo                               |                     |           |             |
| Lane Gio                                              | up Capac                            | ity, C       | EB                          | n Dei                                            | ay, ai                                | W           |                | <u> </u>                 | T        | ation     | NB                      |                                    |                     | SB        |             |
| Adj. flow rate                                        |                                     | 219          | 190                         |                                                  | 163                                   | <del></del> |                | 499                      | +        | 74        | 2008                    | T                                  | 616                 | 1859      |             |
| Lane group                                            |                                     | 177          | 179                         |                                                  | 207                                   |             |                | 558                      | +        | 97        | 1842                    | -                                  | 631                 | 2548      |             |
| v/c ratio                                             | Cap.                                | 1.24         | 1.06                        |                                                  | 0.79                                  |             | -              | 0.89                     | +        | .76       | 1.09                    |                                    | 0.98                | 0.73      |             |
| Green ratio                                           |                                     | 0.10         | 0.10                        | +                                                | 0.12                                  |             | $\rightarrow$  | 0.36                     |          | .05       | 0.37                    | +                                  | 0.18                | 0.51      | +           |
| Unif. delay of                                        | 11                                  | 49.5         | 49.5                        |                                                  | 47.2                                  | -           |                | 33.1                     | +        | 1.3       | 34.4                    | +                                  | 44.7                | 20.9      |             |
| Delay factor                                          |                                     | 0.50         | 0.50                        |                                                  | 0.33                                  | <del></del> |                | 0.42                     | +        | .32       | 0.50                    |                                    | 0.48                | 0.29      |             |
| Increm. dela                                          |                                     | 145.7        |                             | _                                                | 18.1                                  |             | -              | 16.8                     | ┿~       | 1.9       | 44.3                    |                                    | 15.9                | 0.4       |             |
| PF factor                                             | •                                   | 1.000        | 1.000                       |                                                  | 1.000                                 |             | -+             | 0.933                    | ┽        | .962      | 0.601                   | †                                  | 0.850               | 0.299     | ,           |
| Control dela                                          | ıy                                  | 195.2        | +-                          |                                                  | 65.3                                  | _           |                | 47.7                     | +        | 1.2       | 65.0                    |                                    | 53.9                | 6.6       | 1           |
|                                                       | ontrol delay 195<br>ane group LOS F |              | F                           | <del>                                     </del> | E                                     | E           | $\neg \dagger$ | D                        | T        | E         | E                       |                                    | D                   | A         |             |
|                                                       | oprch. delay 166.7                  |              |                             |                                                  |                                       | 55.1        |                |                          | 十        | 64        | 4.9                     | <u> </u>                           |                     | 18.4      |             |
| Approach Lo                                           | os                                  |              |                             | E                                                |                                       |             | T              |                          | E        |           |                         | В                                  |                     |           |             |
| Intersec. de                                          | tersec. delay 50.8                  |              |                             |                                                  |                                       |             | In             | tersec                   | tior     | LOS       |                         |                                    |                     | D         |             |
| HCS2000 <sup>TM</sup>                                 |                                     |              |                             |                                                  |                                       | niversity o | f Floric       | ia, All Ri               | ghts :   | Reserved  |                         |                                    |                     | 7         | Jersion 4.1 |

MIT, ADDNB RTO LANE

|                                                       |                     |            |                             |           | SHO            | ORT R        | EPO                                     |            | 111       |      |                      |                                      | IU L     |          |          |
|-------------------------------------------------------|---------------------|------------|-----------------------------|-----------|----------------|--------------|-----------------------------------------|------------|-----------|------|----------------------|--------------------------------------|----------|----------|----------|
| General Inf                                           | ormation            |            |                             |           |                | S            | ite Infe                                | orma       |           |      |                      |                                      |          |          |          |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med                 | U<br>08/   | SAI<br>SAI<br>25/12<br>PEAK |           |                | A<br>Ji      | itersec<br>rea Ty<br>urisdic<br>nalysis | pe<br>tion | (         | OCE  | All of<br>ANSIE<br>M | DR.<br>ther are<br>DE-INT.<br>ITIGAT | #13/WI   | TH       |          |
| Volume an                                             | d Timing lı         | nput       |                             |           |                |              |                                         |            |           |      |                      |                                      |          |          |          |
|                                                       |                     |            | LT                          | EB        | RT             | LT           | WB                                      | RT         | 11/2      | T    | NB<br>TH             | RT                                   | LT       | SB       | RT       |
| Num. of Lar                                           | nes                 |            | 1                           | 1         | 0              | 1            | 1                                       | 1          | _         | 1    | 3                    | 1                                    | 2        | 3        | 0        |
| Lane group                                            |                     |            | L                           | TR        |                | L            | T                                       | R          |           | L    | T                    | R                                    | L        | TR       |          |
| Volume (vpl                                           | n)                  |            | 110                         | 55        | 5              | 140          | 30                                      | 280        |           | 30   | 910                  | 300                                  | 525      | 1555     | 155      |
| % Heavy ve                                            |                     |            | 2                           | 2         | 2              | 2            | 2                                       | 2          |           | 2    | 2                    | 2                                    | 2        | 2        | 2        |
| PHF                                                   |                     |            | 0.95                        | 0.95      | 0.95           | 0.95         | 0.95                                    | 0.98       | 5 0.      | 95   | 0.95                 | 0.95                                 | 0.95     | 0.95     | 0.95     |
| Actuated (P.                                          |                     |            | Α                           | Α         | A              | Α            | Α                                       | Α          | _         | 4    | Α                    | Α                                    | Α        | Α        | Α        |
| Startup lost                                          |                     |            | 3.0                         | 3.0       |                | 3.0          | 3.0                                     | 3.0        | _         | .0   | 3.0                  | 2.0                                  | 3.0      | 3.0      |          |
| Ext. eff. gree                                        | en                  |            | 2.0                         | 2.0       |                | 2.0          | 2.0                                     | 2.0        | _         | .0   | 2.0                  | 2.0                                  | 2.0      | 2.0      | -        |
| Arrival type<br>Unit Extensi                          | ion                 | _          | 3.0                         | 3.0       |                | 3.0          | 3.0                                     | 3.0        | _         | 5    | 5<br>3.0             | 5<br>3.0                             | 5<br>3.0 | 5<br>3.0 | -        |
| Ped/Bike/R                                            | 400                 | ρ.         | 5                           | 3.0       | 0              | 5            | 10                                      | 0          |           | 5    | 10                   | 56                                   | 5        | 10       | 0        |
| Lane Width                                            | Volum               |            | 12.0                        | 12.0      |                | 12.0         | 12.0                                    | 12.0       | _         | 2.0  | 12.0                 | 12.0                                 | 12.0     | 12.0     | -        |
| 131/11/19/20 11 11/19/19                              | de/Parking          |            | N                           | 0         | N              | N            | 0                                       | N          |           | V    | 0                    | N                                    | N        | 0        | N        |
| Parking/hr                                            |                     |            |                             |           |                |              |                                         | 13         |           |      |                      |                                      |          |          |          |
| Bus stops/h                                           | king/hr<br>stops/hr |            | 0                           | 0         | 1) ===         | 0            | 0                                       | 0          | 50 0      | 0    | 0                    | 0                                    | 0        | 0        |          |
| Unit Extensi                                          | on                  |            | 3.0                         | 3.0       |                | 3.0          | 3.0                                     | 3.0        | ) 3       | 3.0  | 3.0                  | 3.0                                  | 3.0      | 3.0      |          |
| Phasing                                               | EB Only             |            | Only                        | 0         | 3              | 04           |                                         | Excl.      |           |      | B Only               |                                      | u & RT   |          | 30       |
| Timing                                                | G = 12.0            | G =        |                             | G=        |                | G =          |                                         | 3 = 1      |           |      | = 19.0               |                                      | 31.0     | G =      |          |
| Duration of                                           | Y = 4               | Y =        |                             | Y =       |                | Y =          |                                         | Y = 4      |           | _    | = 4                  | Y =                                  | = 100.   | Y =      |          |
|                                                       |                     |            |                             | I Dal     | 011 01         | 410          | C Dos                                   | orm        | inat      |      | de Lei               | igin C -                             | - 100.   | U        |          |
| Lane Gro                                              | up Capa             | illy, C    | EB                          | Dei       | ay, ar         | WB           |                                         | em         | maı       | ion  | NB                   |                                      | _        | SB       |          |
| Adi flavoret                                          | 0                   | 116        |                             |           | 117            | 32           | 29                                      | 5          | 32        | 10   | 58                   | 257                                  | 553      | 1800     | 1        |
| Adj. flow rat                                         |                     | 116<br>195 | 63<br>203                   |           | 147            | 130          | 31:                                     | -          | 32<br>159 | -    | 522                  | 479                                  | 1100     | 2645     | _        |
| Lane group<br>v/c ratio                               | сар.                | 0.59       | 0.31                        | -         | 1.20           | 0.25         | 0.9                                     | -          | 0.20      | -    |                      | 0.54                                 | 0.50     | 0.68     |          |
| Green ratio                                           |                     | 0.59       | 0.31                        | -         | 0.07           | 0.25         | 0.9                                     | -          | 0.20      | -    |                      | 0.31                                 | 0.32     | 0.53     | +        |
| Unif. delay                                           | 11                  | 42.4       | 41.0                        | +         | 46.5           | 44.0         | 38.                                     | -          | 42.2      | -    | 0.2                  | 28.6                                 | 27.6     | 17.3     | -        |
| Delay factor                                          |                     | 0.18       | 0.11                        |           | 0.50           | 0.11         | 0.4                                     | _          | 0.11      | -    | .21                  | 0.14                                 | 0.11     | 0.25     |          |
| Increm. dela                                          |                     | 4.9        | 0.11                        |           | 146.7          | 1.0          | 31.                                     | -          | 0.6       | - 60 | 0.8                  | 1.2                                  | 0.4      | 0.20     | +        |
| PF factor                                             | ., w.               | 1.000      | 1.000                       |           | 1.000          | 1.000        | _                                       | -          | 0.934     | _    |                      | 0.700                                | 0.686    | 0.248    | 1        |
| Control dela                                          | ıv                  | 47.2       | 41.9                        |           | 193.2          | 45.0         | 70.                                     |            | 40.0      | -    | 2.4                  | 21.2                                 | 19.3     | 5.0      |          |
| Lane group                                            |                     | D          | D                           |           | F              | D            | E                                       | -          | D         | _    | С                    | С                                    | В        | A        | +        |
|                                                       |                     |            | 5.4                         |           |                | 06.8         |                                         |            |           | 22.0 |                      |                                      |          | 8.4      |          |
| Apprch. delay 4 Approach LOS                          |                     |            | D                           |           |                | F            |                                         |            |           | С    |                      |                                      |          | Α        |          |
| ntersec. delay                                        |                     |            | 5.1                         |           |                | -            | Inte                                    | rsecti     | on LO     | _    |                      |                                      |          | С        |          |
| 7.50 67.55.77.3                                       |                     |            |                             | nvright ( | 1<br>© 2000 Hr | niversity of |                                         |            |           |      |                      |                                      | 1        | _        | ersion - |

 $HCS2000^{\mathrm{TM}}$ 

MIT. I ADD NB RTO LANE

|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           | SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORTR         | EP           | OF           |          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                             |              |                                                                                                                    |           |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|-----------|--|
| General Inf                                          | formation                                                                                                                                                                                                                                                                                                                                                                                      |       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              | _            |          | ion  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                             |              |                                                                                                                    |           |  |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                                                                                                                                                                                                                                                                                                                                                                                            | 08/   | SAI<br>25/12 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A<br>Ji      | rea<br>uriso | Typ<br>dicti | oe<br>on |      | OCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All of<br>ANSIE<br>M | the<br>DE- | R.<br>er are<br>INT.<br>GAT | as<br>#13/WI | ТН                                                                                                                 |           |  |
| Volume ar                                            | nd Timina I                                                                                                                                                                                                                                                                                                                                                                                    | nput  |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | lialy        | 313          | i cai    |      | DO.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1L12/                | V V I      | 1111                        | NOOL         | 01                                                                                                                 |           |  |
| volume ai                                            | ia mining i                                                                                                                                                                                                                                                                                                                                                                                    | iiput |              | EB        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | V            | B            |          | T    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NB                   |            |                             |              | SB                                                                                                                 |           |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |       | LT           | TH        | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LT           | Т            | H            | RT       |      | LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TH                   | I          | RT                          | LT           | TH                                                                                                                 | RT        |  |
| Num, of La                                           | nes                                                                                                                                                                                                                                                                                                                                                                                            |       | 1            | 1         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            | 1            |              | 1        |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                    |            | 1                           | 2            | 3                                                                                                                  | 0         |  |
| Lane group                                           |                                                                                                                                                                                                                                                                                                                                                                                                |       | L            | TR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L            | 7            |              | R        |      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                    |            | R                           | L            | TR                                                                                                                 |           |  |
| Volume (vp                                           |                                                                                                                                                                                                                                                                                                                                                                                                |       | 180          | 87        | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 145          | _            | _            | 280      |      | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 989                  | 3          |                             | 525          | 1591                                                                                                               | 187       |  |
|                                                      | est by or Co. Performed Period  me and Timing Input  of Lanes group e (vph) avy veh  ded (P/A) p lost time ff. green type xtension ike/RTOR Volume Width g/Grade/Parking g/hr ops/hr xtension  og EB Only Y = 4 on of Analysis (hrs)  Group Capacit  ow rate group cap. io ratio lelay d1 factor k o. delay d2 or Co. Performed Imput Group Capacit oc. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co |       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | _            |              |          | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1          |                             |              | 2                                                                                                                  | 2         |  |
| PHF<br>Actuated (F                                   | Area Type                                                                                                                                                                                                                                                                                                                                                                                      |       |              | 0.95<br>A | 0.95<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |              |          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                             |              |                                                                                                                    |           |  |
|                                                      | st cy or Co. Performed Period  me and Timing Input  of Lanes group ne (vph) eavy veh  ted (P/A) up lost time ff. green al type extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr extension  og EB Only g G = 12.0 y = 4 ion of Analysis (hrs) e Group Capacit  ow rate group cap. tio on ratio delay d1 factor k on delay d2 ctor ol delay group LOS ch. delay pach LOS                  |       |              |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | _            |              |          | +    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5                  | -          |                             |              | 3.0                                                                                                                | 1         |  |
| Ext. eff. gre                                        |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              |              |          | _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | _          |                             |              | 2.0                                                                                                                |           |  |
| Arrival type                                         |                                                                                                                                                                                                                                                                                                                                                                                                |       | 4            | 4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4            | 4            |              | 4        |      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                    |            | 5                           |              | 5                                                                                                                  |           |  |
| Unit Extens                                          | Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr                                                                                                                                                                                                                                                                                                                                 |       |              | 3.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALCOHOL: NO  | 3.           | 0            | 3.0      |      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 1 QAL 12             | _          |                             |              | 3.0                                                                                                                |           |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                | е     | _            |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | -            |              |          | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | +          |                             |              |                                                                                                                    | 0         |  |
| Lane Width                                           |                                                                                                                                                                                                                                                                                                                                                                                                |       |              | -         | 0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95 <th< td=""><td></td><td>1</td><td></td><td></td><td>+</td><td></td><td>Charles and</td><td></td><td>N</td></th<> |              |              |              | 1        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                    |            | Charles and                 |              | N                                                                                                                  |           |  |
|                                                      | ade/Parking                                                                                                                                                                                                                                                                                                                                                                                    |       | N            | 0         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N            | (            | )            | N        |      | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                    | 1          | N                           | N            | 3.0 3.0<br>2.0 2.0<br>5 5<br>3.0 3.0<br>5 10<br>12.0 12.0<br>N 0<br>0 0<br>3.0 3.0<br>& RT 08<br>31.0 G =<br>4 Y = |           |  |
| Parking/hr                                           |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              |              |          | 4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1          |                             |              |                                                                                                                    |           |  |
| Bus stops/h                                          |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | -            | _            |          | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    | 1          | _                           |              | _~                                                                                                                 | _         |  |
| Service Control                                      |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | _            | -            | 1 222    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                  | _          |                             |              | -0.55                                                                                                              |           |  |
| Phasing                                              |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              | -            |          | _    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |            | _                           |              |                                                                                                                    | 80        |  |
| Timing                                               |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | _            | _            |          | 0.0  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | ,          |                             |              |                                                                                                                    |           |  |
| Duration of                                          |                                                                                                                                                                                                                                                                                                                                                                                                |       |              | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e el co      |              | 1,           |          | _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | nat        |                             |              |                                                                                                                    |           |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |       |              | l Del     | ay, ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd LO        | S D          | ete          | ermi     | na   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                             |              |                                                                                                                    |           |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |              |              |          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                             | 4 -          | SB                                                                                                                 |           |  |
| Adj. flow rat                                        | te                                                                                                                                                                                                                                                                                                                                                                                             | 189   | 150          |           | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37           |              | 295          |          | 47   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 041                  | 29         | 95                          | 553          | 1872                                                                                                               | 211       |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |       | -            |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _            |              | 319          |          | 159  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 47         | 79                          | 1100         | 2638                                                                                                               |           |  |
| v/c ratio                                            | 200                                                                                                                                                                                                                                                                                                                                                                                            |       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | -            |              | -        | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | _                           | 0.50         | 0.71                                                                                                               | +         |  |
| Green ratio                                          |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _            |              | 0.21         | -        | -    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 0.         | 31                          | 0.32         | 0.53                                                                                                               |           |  |
| Unif. delay                                          |                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _            | -            | _            | _        | 12.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 29         | 0.4                         | 27.6         | 17.7                                                                                                               |           |  |
| Delay facto                                          |                                                                                                                                                                                                                                                                                                                                                                                                | 0.48  | 0.33         |           | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.11         | -            | ).44         | 1 0      | 0.11 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .25                  | 0          | 20                          | 0.11         | 0.27                                                                                                               |           |  |
| Increm. dela                                         | ay d2                                                                                                                                                                                                                                                                                                                                                                                          | 55.4  | 18.0         |           | 164.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2          | 1            | 31.6         | 3        | 1.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3                  | 2          | 4                           | 0.4          | 0.9                                                                                                                | 1         |  |
| PF factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                | 1.000 | 1.000        |           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000        | ) 1          | .00          | 0 0      | .93  | 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 714                  | 0.7        | 700                         | 0.686        | 0.248                                                                                                              | 3         |  |
| Control dela                                         | ay                                                                                                                                                                                                                                                                                                                                                                                             | 99.7  | 61.3         |           | 211.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.3         | 7            | 70.4         | 1 4      | 10.8 | 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3                  | 23         | 3.0                         | 19.3         | 5.3                                                                                                                |           |  |
| Lane group                                           | LOS                                                                                                                                                                                                                                                                                                                                                                                            | F     | Е            |           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D            |              | E            |          | D    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С                    | (          | 2                           | В            | A                                                                                                                  | T I       |  |
| Apprch. del                                          | ay                                                                                                                                                                                                                                                                                                                                                                                             | 8.    | 2.7          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.9        |              |              |          |      | 23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                    |            |                             |              | 8.5                                                                                                                |           |  |
| Approach L                                           | .os                                                                                                                                                                                                                                                                                                                                                                                            |       | F            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F            |              |              |          |      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |            |                             |              | Α                                                                                                                  |           |  |
| Intersec. de                                         | proach LOS<br>ersec. delay                                                                                                                                                                                                                                                                                                                                                                     |       |              |           | $\vdash =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | Ir           | ters         | section  | on L | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |            |                             |              | С                                                                                                                  |           |  |
| TM                                                   | prch. delay<br>proach LOS                                                                                                                                                                                                                                                                                                                                                                      |       |              |           | @ 2000 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | niversity of | crt.         | J. A         | II Dist  | . D. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | _                           |              | ,                                                                                                                  | Version 4 |  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

MIT SADO NB PTO LANE

|                                                      |                                                                   |         |                                |            | SH        | ORT F       | REPO                                 | ORT          |            |           |                  |                             |                                  | 1210      |           |         |
|------------------------------------------------------|-------------------------------------------------------------------|---------|--------------------------------|------------|-----------|-------------|--------------------------------------|--------------|------------|-----------|------------------|-----------------------------|----------------------------------|-----------|-----------|---------|
| General Inf                                          | ormation                                                          |         |                                |            |           | S           | ite In                               | form         | atio       | _         |                  |                             |                                  |           |           |         |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                                                               | 08/     | ISAI<br>ISAI<br>'22/12<br>PEAK |            |           | A<br>J      | nterse<br>irea T<br>urisdi<br>inalys | ype<br>ction |            |           | AI<br>OCEAI<br>N | l<br>I oth<br>NSIL<br>IITIO | DR.<br>ner are<br>DE-IN<br>GATIC | T#13/V    | VI        |         |
| Volume an                                            | d Timing I                                                        | nput    |                                |            |           |             |                                      |              |            |           |                  |                             |                                  |           |           |         |
|                                                      |                                                                   |         | 17                             | EB         | LDT       | 1.7         | WE                                   |              | )T         | 1.7       | N                |                             | DT                               | 1.7       | SB        | LDT     |
| Num. of Lar                                          | 200                                                               |         | LT<br>1                        | TH<br>1    | RT 0      | LT<br>1     | TH<br>1                              | -            | RT<br>1    | L7        | TI 3             | -                           | RT<br>1                          | LT<br>2   | TH<br>3   | RT<br>0 |
|                                                      | 103                                                               | -       | L                              | TR         | -         | L           | LT                                   | F            |            | L         | T                | -                           | R                                | L         | TR        | ۳       |
| Lane group<br>Volume (vpl                            | 2)                                                                |         | 170                            | 115        | 25        | 265         | 20                                   | 53           | 3          | 15        | 151              | _                           | 385                              | 585       | 1550      | 110     |
| % Heavy ve                                           |                                                                   | _       | 2                              | 2          | 2         | 2           | 2                                    | 2            |            | 2         | 2                | _                           | 2                                | 2         | 2         | 2       |
| PHF                                                  | 211                                                               |         | 0.95                           | 0.95       | 0.95      | 0.95        | 0.95                                 | _            | _          | 0.9       |                  | _                           | 0.95                             | 0.95      | 0.95      | 0.95    |
| Actuated (P                                          | /A)                                                               |         | Α                              | Α          | Α         | Α           | A                                    | 1            |            | Α         | A                |                             | Α                                | Α         | Α         | Α       |
| Startup lost                                         |                                                                   |         | 3.0                            | 3.0        |           | 3.0         | 3.0                                  | 3.           |            | 3.0       |                  |                             | 2.0                              | 3.0       | 3.0       | 04.5    |
| Ext. eff. gree                                       | en                                                                |         | 2.0                            | 2.0        |           | 2.0         | 2.0                                  | 2.           |            | 2.0       | _                | -                           | 2.0                              | 2.0       | 2.0       |         |
| Arrival type                                         |                                                                   |         | 4                              | 4          |           | 4           | 4                                    | 4            |            | 5         | 5                | _                           | 5                                | 5         | 5         |         |
| Unit Extensi                                         |                                                                   |         | 3.0                            | 3.0        | -         | 3.0         | 3.0                                  |              | .0         | 3.0       |                  |                             | 3.0                              | 3.0       | 3.0       | -       |
|                                                      | d/Bike/RTOR Volume<br>ne Width<br>rking/Grade/Parking<br>rking/hr |         | 5                              | 12.0       | 4         | 5<br>12.0   | 5<br>12.0                            | _            | 6          | 5<br>12.0 | 5 12.            | $\rightarrow$               | 53<br>12.0                       | 5<br>12.0 | 5<br>12.0 | 5       |
|                                                      | ne Width<br>king/Grade/Parking<br>king/hr                         |         | 12.0<br>N                      | 0          | N         | 12.0<br>N   | 0                                    |              | N.U.       | 12.0<br>N | 0                | 0                           | N                                | N         | 0         | N       |
|                                                      | king/Grade/Parking<br>king/hr                                     |         | 7.4                            | -          | 1         | 11          | - 0                                  | 7            | ¥          | 14        | 10               | -                           | 1.9                              | 1         | Ü         |         |
|                                                      | rking/hr<br>s stops/hr                                            |         |                                | 0          | -         | 0           | 0                                    |              | 0          | 0         | 0                |                             | 0                                | 0         | 0         |         |
|                                                      |                                                                   |         |                                | 3.0        |           | 3.0         | 3.0                                  |              | .0         | 3.0       | _                | _                           | 3.0                              | 3.0       | 3.0       | 1       |
| Phasing                                              | EB Only                                                           | I WB    | 3.0<br>Only                    |            | 3         | 04          | 1000                                 |              | l. Le      | 5 4 35    | SB C             |                             | 245.54                           | ru & RT   |           | 08      |
|                                                      | G = 12.0                                                          |         | 14.0                           | G =        |           | G =         |                                      | G =          |            |           | G = 1            |                             |                                  | 42.2      | G =       |         |
| Timing                                               | Y = 4.2                                                           | Y =     | 5.6                            | Y =        |           | Y =         |                                      | Y =          | 4.2        |           | Y = 5            |                             |                                  | 5.6       | Y =       |         |
| Duration of                                          |                                                                   |         |                                |            |           |             |                                      |              |            | _         |                  | eng                         | gth C =                          | = 110.    | 0         |         |
| Lane Gro                                             | up Capa                                                           | city, C | ontro                          | l Del      | ay, ar    | nd LO       | S De                                 | eterr        | <u>min</u> | atic      | n                |                             |                                  |           |           |         |
|                                                      |                                                                   |         | EB                             |            |           | WE          | 3                                    |              |            |           | NB               |                             |                                  |           | SB        |         |
| Adj. flow rat                                        | е                                                                 | 179     | 143                            |            | 153       | 147         | 4                                    | 99           | 16         | 6         | 1595             | 3                           | 349                              | 616       | 1743      |         |
| Lane group                                           | сар.                                                              | 177     | 182                            |            | 207       | 209         | 5                                    | 58           | 97         | 7         | 1900             | 1                           | 596                              | 631       | 2572      |         |
| v/c ratio                                            |                                                                   | 1.01    | 0.79                           |            | 0.74      | 0.70        | 0.                                   | 89           | 0.1        | 6         | 0.84             | C                           | ).59                             | 0.98      | 0.68      |         |
| Green ratio                                          |                                                                   | 0.10    | 0.10                           |            | 0.12      | 0.12        | 0.                                   | 36           | 0.0        | )5        | 0.37             | 0                           | 0.38                             | 0.18      | 0.51      |         |
| Unif. delay o                                        | 11                                                                | 49.5    | 48.3                           |            | 46.9      | 46.6        | 33                                   | 3.1          | 49.        | .6        | 31.4             | 2                           | 26.9                             | 44.7      | 20.0      |         |
| Delay factor                                         | k                                                                 | 0.50    | 0.33                           |            | 0.30      | 0.27        | 0.                                   | 42           | 0.1        | 11        | 0.37             | C                           | 0.18                             | 0.48      | 0.25      |         |
| Increm. dela                                         | ay d2                                                             | 70.6    | 20.0                           |            | 13.1      | 10.2        | 16                                   | 5.8          | 0.         | 3         | 1.3              |                             | 0.5                              | 15.9      | 0.3       |         |
| PF factor                                            |                                                                   | 1.000   | 1.000                          |            | 1.000     | 1.000       | 0.9                                  | 933          | 0.9        | 62        | 0.601            | 0                           | .585                             | 0.850     | 0.299     | )       |
| Control dela                                         | ıy                                                                | 120.1   | 68.3                           |            | 60.0      | 56.8        | 47                                   | 7.7          | 48.        | .0        | 20.1             | 1                           | 6.3                              | 53.9      | 6.2       |         |
| Lane group                                           | LOS                                                               | F       | E                              |            | Ε         | E           | 1                                    | D            | D          | )         | С                | T                           | В                                | D         | A         |         |
|                                                      |                                                                   | 9       | 7.1                            |            |           | 51.7        |                                      |              |            | 1         | 9.7              | _                           |                                  |           | 18.7      |         |
| Approach LOS                                         |                                                                   | F       |                                |            | D         |             |                                      | T            |            | В         |                  |                             |                                  | В         |           |         |
|                                                      |                                                                   | 8.5     |                                |            |           | Inte        | ersec                                | ction        | LOS        | S         |                  |                             |                                  | С         |           |         |
|                                                      |                                                                   |         |                                | onvright ( | © 2000 II | niversity o |                                      |              |            |           |                  |                             |                                  | 4         | _         | /ersion |

 $HCS2000^{\mathrm{TM}}$ 

MIT, & ADD NB RED LANE

| Canada                                | C                                  |          |                        |             | SH      | ORT R        |                            |        | -4:-  |          |            | _                |                      |               |       |           |
|---------------------------------------|------------------------------------|----------|------------------------|-------------|---------|--------------|----------------------------|--------|-------|----------|------------|------------------|----------------------|---------------|-------|-----------|
| General In                            | rormation                          |          |                        |             |         |              | ite In                     | 7.7    |       |          | OLLEGI     | = RI             | VD                   | @ PI A        | 7A    |           |
| Analyst<br>Agency or (<br>Date Perfor | rmed                               | U<br>08/ | ISAI<br>ISAI<br>'22/12 |             |         | A            | iterse<br>rea T<br>urisdic | ype    |       |          | All o      | D<br>othe<br>IDE | R.<br>er are<br>-INT | eas<br>#13/WI |       |           |
| Time Period                           | d                                  | PM       | PEAK                   |             |         |              | nalysi                     |        | ar    | BC       | ۸<br>2ALT. |                  | GAT.                 |               | CT    |           |
| Volume ar                             | nd Timing                          | Innut    | _                      |             |         |              | ilaiysi                    | 13 1 6 | aı    | DC       | 7.AL12     | 700              | HIST                 | NOOL          | 01    |           |
| Volume an                             | ia mining                          | input    |                        | EB          |         |              | WB                         |        |       |          | NB         |                  |                      |               | SB    |           |
|                                       |                                    |          | LT                     | TH          | RT      | LT           | TH                         | R      | T     | LT       | TH         |                  | RT                   | LT            | TH    | RT        |
| Num. of La                            | nes                                |          | 1                      | 1           | 0       | 1            | 1                          | 1      |       | 1        | 3          |                  | 1                    | 2             | 3     | 0         |
| Lane group                            | 1                                  |          | L                      | TR          |         | L            | LT                         | F      | ?     | L        | T          |                  | R                    | L             | TR    |           |
| Volume (vp                            |                                    |          | 208                    | 132         | 52      | 281          | 34                         | 53     | 30    | 70       | 1557       |                  | 104                  | 585           | 1561  | 210       |
| % Heavy v                             |                                    |          | 2                      | 2           | 2       | 2            | 2                          | 2      | ?     | 2        | 2          |                  | 2                    | 2             | 2     | 2         |
| PHF                                   |                                    |          | 0.95                   | 0.95        | 0.95    | 0.95         | 0.95                       | 0.9    | 95    | 0.95     | 0.95       | C                | 0.95                 | 0.95          | 0.95  | 0.95      |
| Actuated (F                           |                                    |          | Α                      | Α           | Α       | Α            | Α                          | A      | -     | Α        | Α          |                  | Α                    | Α             | Α     | A         |
| Startup lost                          |                                    |          | 3.0                    | 3.0         |         | 3.0          | 3.0                        | 3.     | _     | 3.0      | 3.0        | _                | 2.0                  | 3.0           | 3.0   |           |
| Ext. eff. gre                         |                                    |          | 2.0                    | 2.0         | -       | 2.0          | 2.0                        | 2.     |       | 2.0<br>5 | 2.0        | +                | 2.0<br>5             | 2.0           | 2.0   |           |
| Arrival type<br>Unit Extens           |                                    | -        | 3.0                    | 3.0         |         | 3.0          | 3.0                        | 3.     | _     | 3.0      |            | +                | 3.0                  | 3.0           | 3.0   |           |
| E31000 (-1000) (-0.00)                | A                                  | ne       | 5                      | 3.0         | 4       | 5            | 5                          | 5.     |       | 5        | 5          | _                | 53                   | 5             | 5     | 5         |
| Lane Width                            | king/Grade/Parking<br>king/hr      |          | 12.0                   | 12.0        | 1       | 12.0         | 12.0                       | 12     | _     | 12.0     |            | _                | 2.0                  | 12.0          | 12.0  |           |
|                                       | king/Grade/Parking<br>king/hr      |          | N                      | 0           | N       | N            | 0                          | 1      | V     | N        | 0          | 1                | N                    | N             | 0     | N         |
| Parking/hr                            |                                    |          |                        |             |         |              | 5                          |        |       |          |            |                  |                      |               |       |           |
| Bus stops/h                           | king/hr<br>stops/hr<br>: Extension |          |                        | 0           |         | 0            | 0                          | (      | )     | 0        | 0          |                  | 0                    | 0             | 0     |           |
| Unit Extens                           | stops/hr<br>Extension              |          | 3.0                    | 3.0         |         | 3.0          | 3.0                        | 3.     | 0     | 3.0      | 3.0        | <u> </u>         | 3.0                  | 3.0           | 3.0   |           |
| Phasing                               | tops/hr<br>extension               |          | Only                   | 0           | 3       | 04           |                            | Exc    | l. Le | ft       | SB On      | ly               | Thr                  | u & RT        |       | 08        |
| Timing                                | G = 12.0                           | ) G=     | 14.0                   | G =         |         | G =          |                            | G =    | _     |          | G = 10.    |                  |                      | 42.2          | G =   |           |
|                                       | Y = 4.2                            | Y =      |                        | Y =         |         | Y =          |                            | Y =    | 4.2   | _        | Y = 5.2    | _                |                      | 5.6           | Y =   |           |
| Duration of                           |                                    |          |                        | <u> </u>    |         |              |                            |        |       | _        | Cycle Le   | engt             | h C =                | = 110.        | 0     |           |
| Lane Gro                              | oup Capa                           | city, C  |                        | ol Del      | ay, aı  |              |                            | tern   | nin   | atio     |            |                  |                      | _             |       |           |
|                                       |                                    |          | EB                     |             |         | WB           | _                          |        |       |          | NB         | r                |                      |               | SB    |           |
| Adj. flow ra                          | te                                 | 219      | 190                    |             | 163     | 169          | 49                         |        | 74    |          | 1639       |                  | 69                   | 616           | 1859  | _         |
| Lane group                            | cap.                               | 177      | 179                    |             | 207     | 210          | 55                         | 58     | 97    | 7        | 1900       | 59               | 96                   | 631           | 2548  |           |
| v/c ratio                             |                                    | 1.24     | 1.06                   |             | 0.79    | 0.80         | 0.8                        | 89     | 0.7   | 76       | 0.86       | 0.               | 62                   | 0.98          | 0.73  |           |
| Green ratio                           |                                    | 0.10     | 0.10                   |             | 0.12    | 0.12         | 0.3                        | 36     | 0.0   | )5       | 0.37       | 0.               | 38                   | 0.18          | 0.51  |           |
| Unif. delay                           | d1                                 | 49.5     | 49.5                   |             | 47.2    | 47.3         | 33                         | 3.1    | 51.   | .3       | 31.8       | 27               | 7.4                  | 44.7          | 20.9  | 1/24      |
| Delay facto                           | rk                                 | 0.50     | 0.50                   |             | 0.33    | 0.35         | 0.4                        | 42     | 0.3   | 32       | 0.39       | 0.               | 20                   | 0.48          | 0.29  | •         |
| Increm. del                           | ay d2                              | 145.7    | 84.5                   |             | 18.1    | 20.0         | 16                         | 8.8    | 11.   | 9        | 1.6        | 0                | .7                   | 15.9          | 0.4   |           |
| PF factor                             |                                    | 1.000    | 1.000                  |             | 1.000   | 1.000        | 0.9                        | 933    | 0.9   | 62       | 0.601      | 0.8              | 585                  | 0.850         | 0.299 | 9         |
| Control dela                          | ay                                 | 195.2    | 134.0                  | _           | 65.3    | 67.3         |                            | 7.7    | 61.   | 2        | 20.7       | 16               | 6.7                  | 53.9          | 6.6   |           |
| Lane group                            |                                    | F        | F                      |             | E       | E            | L                          | _      | E     |          | С          | -                | 3                    | D             | Α     |           |
| Apprch. del                           |                                    | 16       | 66.7                   |             |         | 55.1         |                            |        |       | 2        | 1.4        | -                |                      |               | 18.4  |           |
| Apprch. delay 1 Approach LOS          |                                    | _        | F                      |             |         | E            |                            |        |       | _        | С          |                  |                      |               | В     |           |
|                                       |                                    |          |                        |             |         |              | Inte                       | ersec  | tion  |          |            | _                |                      |               | D     |           |
| HCS2000 <sup>TM</sup>                 | ,                                  |          | 5.2                    | succeded by | 2000 11 | niversity of |                            |        |       |          |            |                  |                      | 1             |       | Version 4 |

|                                                      |            |          |                |                             |                                                                                                               | SH          | ORT      | RE            | POF                               | ₹T       |              |           |                         |                     |                           |                   |                                                |            |
|------------------------------------------------------|------------|----------|----------------|-----------------------------|---------------------------------------------------------------------------------------------------------------|-------------|----------|---------------|-----------------------------------|----------|--------------|-----------|-------------------------|---------------------|---------------------------|-------------------|------------------------------------------------|------------|
| General Inf                                          | ormation   |          |                |                             |                                                                                                               |             |          | Site          | Info                              | rma      | tion         | )         |                         |                     |                           |                   |                                                |            |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med        |          | U.<br>08/2     | SAI<br>SAI<br>24/12<br>PEAK |                                                                                                               |             |          | Area<br>Juris | rsect<br>a Typ<br>sdicti<br>lysis | e<br>ion | ır           |           |                         | RR(<br>othe<br>ISIL | ON RI<br>er area<br>DE-IN | D.<br>as<br>T.#14 | г                                              |            |
| Volume an                                            | ıd Timing  | Inp      | ut             |                             | MITTING STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL STEEL |             |          |               |                                   |          |              |           | ,                       |                     |                           |                   |                                                |            |
|                                                      |            |          |                |                             | EB                                                                                                            |             |          |               | WB                                |          | $\Box$       |           | NB                      |                     |                           |                   | SB                                             |            |
|                                                      |            |          |                | LT                          | TH                                                                                                            | RT          | L'       |               | TH_                               | R        |              | LT        | _                       | +                   | RT                        | LT                | TH                                             | RT         |
| Num. of Lar                                          | nes        |          |                | 2                           | 1                                                                                                             | 1           | 1        | _             | 1                                 | 1        |              | 2         | 2                       | 4                   | 1                         | 2                 | 2                                              | 0          |
| Lane group                                           |            |          |                | L                           | T                                                                                                             | R           | L        |               | T                                 | R        |              | L         | T                       |                     | R                         | L                 | Τ                                              |            |
| Volume (vp                                           |            |          |                | 115                         | 35                                                                                                            | 100         | 39.      |               | 70                                | 35       |              | 130       |                         | 4                   | 240                       | 225               | 1290                                           |            |
| % Heavy v                                            | eh         |          |                | 2                           | 2                                                                                                             | 2           | 2        | _             | 2                                 | 2        | _            | 2<br>0.92 | 2 0.92                  | ٠,                  | 2<br>0.92                 | 2<br>0.92         | 2<br>0.92                                      |            |
| PHF<br>Actuated (P                                   | /A\        |          |                | 0.92<br>A                   | 0.92<br>A                                                                                                     | 0.92<br>A   | 0.9<br>A | _             | 0.92<br>A                         | 0.9<br>A |              | 0.92<br>A | . 0.92<br>A             | +                   | ).92<br>A                 | 0.92<br>A         | 0.92<br>A                                      | Α          |
| Startup lost                                         |            | <u> </u> |                | 2.0                         | 2.0                                                                                                           | 2.0         | 2.0      | _             | 2.0                               | 2.0      |              | 2.0       | 2.0                     | $\dagger$           | 2.0                       | 2.0               | 2.0                                            |            |
| Ext. eff. gre                                        |            |          |                | 2.0                         | 2.0                                                                                                           | 2.0         | 2.0      | _             | 2.0                               | 2.0      | _            | 2.0       | 2.0                     |                     | 2.0                       | 2.0               | 2.0                                            |            |
| Arrival type                                         |            |          |                | 4                           | 4                                                                                                             | 4           | 4        |               | 4                                 | 5        |              | 5         | 5                       |                     | 5                         | 5                 | 5                                              |            |
| Unit Extens                                          | ion        |          |                | 3.0                         | 3.0                                                                                                           | 3.0         | 3.0      | ) .           | 3.0                               | 3.       | 0            | 3.0       | 3.0                     |                     | 3.0                       | 3.0               | 3.0                                            |            |
| Ped/Bike/R                                           | TOR Volu   | me       |                | 5                           | 5                                                                                                             | 0           | 5        | _             | 5                                 | 0        | _            | 5         | 5                       | $\bot$              | 0                         | 5                 |                                                |            |
| Lane Width                                           |            |          |                | 12.0                        | 12.0                                                                                                          | 12.0        | 12.      |               | 2.0                               | 12.      | _            | 12.0      | 12.0                    | 1                   | 12.0                      | 12.0              | 12.0                                           |            |
| Parking/Gra                                          | ade/Parkin | g        |                | N                           | 0                                                                                                             | Ν           | N        | <u>'</u>      | 0                                 | ٨        | 1            | Ν         | 0                       |                     | Ν                         | N                 | 0                                              | N          |
| Parking/hr                                           |            |          |                |                             |                                                                                                               |             |          |               |                                   | <u> </u> |              |           |                         |                     |                           |                   |                                                |            |
| Bus stops/h                                          | r          |          |                | 0                           | 0                                                                                                             | 0           | 0        |               | 0                                 | 0        | )            | 0         | 0                       | $\perp$             | 0                         | 0                 | 0                                              |            |
| Unit Extens                                          | ion        |          |                | 3.0                         | 3.0                                                                                                           | 3.0         | 3.0      | ) .           | 3.0                               | 3.       | 0            | 3.0       | 3.0                     |                     | 3.0                       | 3.0               | 3.0                                            |            |
| Phasing                                              | Excl. Le   | _        |                | Only                        | Thru 8                                                                                                        |             |          | 04            |                                   | Excl.    |              |           | SB Onl                  | -                   |                           | ı & RT            | 0.                                             | 8          |
| Timing                                               | G = 5.0    |          | G =            |                             | G = 1                                                                                                         | 0.0         | G =      |               |                                   | ; = 4    |              | _         | 6.0                     |                     |                           | 31.0              | G =                                            |            |
| Duration of                                          | Y = 4      | bro)     | Y = .          | -                           | Y = 4                                                                                                         |             | Υ =      |               | Y                                 | = 4      | <del> </del> | _         | ′ = <i>4</i><br>ycle Le | nati                | Y =                       |                   | Y =                                            |            |
|                                                      |            |          |                |                             | l Dala                                                                                                        |             | المد     | 06            | Dat                               |          | ina          |           | <u> </u>                | ngu                 | 110-                      | 100.0             | <u>,                                      </u> |            |
| Lane Gro                                             | up Cap     | T        | ıy, C          |                             | Dela                                                                                                          | ıy, aı<br>İ | •        |               | Deti                              | 21111    | lina         | uo        | NB                      |                     |                           | I                 | SB                                             |            |
|                                                      |            | 1.       | <del>- 1</del> | EB                          | 400                                                                                                           | 400         | -        | WB            | Laa                               | •        | 11           |           |                         | Τ̈́                 | 0.4                       | 0.45              |                                                | т —        |
| Adj. flow rat                                        | :e         | 12       | -              | 38                          | 109                                                                                                           | 429         | -        | 76            | 386                               |          | 14           |           | 842                     | ╂                   | 61                        | 245               | 1402                                           | +          |
| Lane group                                           | cap.       | 17       | 2              | 186                         | 276                                                                                                           | 513         | 6        | 33            | 65.                               | 3        | 13           | 7         | 1100                    | 9.                  | 95                        | 481               | 1454                                           |            |
| v/c ratio                                            |            | 0.7      | 73             | 0.20                        | 0.39                                                                                                          | 0.84        | 0.       | .12           | 0.5                               | 8        | 1.0          | 3         | 0.77                    | 0.                  | 26                        | 0.51              | 0.96                                           |            |
| Green ratio                                          |            | 0.0      | 05             | 0.10                        | 0.18                                                                                                          | 0.29        | 0.       | .34           | 0.4                               | 2        | 0.0          | 4         | 0.31                    | 0.                  | 64                        | 0.14              | 0.41                                           | T          |
| Unif. delay                                          | d1         | 46       | .8             | 41.3                        | 36.2                                                                                                          | 33.3        | 22       | 2.7           | 22.                               | 3        | 48.          | 0         | 31.2                    | 7                   | '.8                       | 39.8              | 28.8                                           |            |
| Delay factor                                         | r k        | 0.2      | 29             | 0.11                        | 0.11                                                                                                          | 0.37        | 0.       | .11           | 0.1                               | 7        | 0.5          | 0         | 0.32                    | 0.                  | 11                        | 0.12              | 0.47                                           |            |
| Increm. dela                                         | ay d2      | 14       | .3             | 0.5                         | 0.9                                                                                                           | 11.5        | 0        | ).1           | 1.3                               | 3        | 84.          | 9         | 3.3                     | 0                   | ).1                       | 0.9               | 15.9                                           |            |
| PF factor                                            |            | 1.0      | 000            | 1.000                       | 1.000                                                                                                         | 0.993       | 3 0.     | 953           | 0.5                               | 17       | 0.97         | 72        | 0.700                   | 0.                  | 139                       | 0.891             | 0.537                                          |            |
| Control dela                                         | ay         | 61       | .1             | 41.9                        | 37.1                                                                                                          | 44.6        | 2        | 1.7           | 12.                               | 8        | 131          | .5        | 25.1                    | 1                   | .2                        | 36. <i>4</i>      | 31.3                                           |            |
| Lane group                                           | LOS        | E        |                | D                           | D                                                                                                             | D           |          | С             | В                                 |          | F            |           | Ç                       |                     | A                         | D                 | С                                              |            |
| Apprch. del                                          | ay         |          | 48.            | 8                           |                                                                                                               |             | 29.0     | )             |                                   |          |              | 3         | 2.2                     |                     |                           |                   | 32.1                                           |            |
| Approach L                                           | os         |          | D              |                             |                                                                                                               |             | С        |               |                                   |          |              |           | C                       |                     |                           |                   | С                                              |            |
| Intersec. de                                         | lay        |          | 32.            | 6                           |                                                                                                               |             |          |               | Inte                              | rsec     | tion         | LOS       | 3                       |                     |                           |                   | C                                              |            |
| HCS2000 <sup>TM</sup>                                |            | _        |                | C                           | opyright ©                                                                                                    | 2000 IJ     | niversit | v of Flo      | orida A                           | All Rie  | thts R       | eserve    | ed.                     |                     |                           |                   | Ve                                             | rsion 4.11 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Short Report

|                                                      |                                       |          |                                   |            | SHO         | ORT R        | EPO                                   | RT           |        |          |          |                   |                          |                   |            |            |
|------------------------------------------------------|---------------------------------------|----------|-----------------------------------|------------|-------------|--------------|---------------------------------------|--------------|--------|----------|----------|-------------------|--------------------------|-------------------|------------|------------|
| General Inf                                          | ormation                              |          | •                                 |            |             | S            | ite Inf                               | forma        | atio   | n        |          |                   |                          |                   |            |            |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                                   |          | USAI<br>USAI<br>8/24/12<br>M PEAK |            |             | Aı<br>Ju     | tersed<br>rea Ty<br>urisdic<br>nalysi | /pe<br>ction | ar     |          |          | RRI<br>the<br>SIL | ON R<br>er area<br>DE-IN | D.<br>as<br>T.#14 | e <b>r</b> |            |
| Volume an                                            | d Timing                              | Input    |                                   |            |             |              | 1                                     |              |        |          |          |                   |                          | 1                 |            |            |
|                                                      |                                       |          | LT                                | EB<br>TH   | RT          | LT           | WE<br>TH                              |              | ₹T     | LT       | NB<br>TH | т                 | RT                       | LT                | SB<br>TH   | RT         |
| Num. of Lar                                          | nes                                   |          | 2                                 | 1          | 1           | 1            | 1                                     | 1            | _      | 2        | 2        | +                 | 1                        | 2                 | 2          | 0          |
| Lane group                                           |                                       |          | L                                 | T          | R           | L            | T                                     | F            | ?      | L        | T        | 十                 | R                        | L                 | T          |            |
| Volume (vpl                                          | h)                                    |          | 230                               | 42         | 147         | 395          | 88                                    | 35           |        | 148      |          | +                 | 240                      | 232               | 1333       |            |
| % Heavy v                                            |                                       |          | 2                                 | 2          | 2           | 2            | 2                                     | 1 2          |        | 2        | 2        | ť                 | 2                        | 2                 | 2          |            |
| PHF                                                  |                                       |          | 0.92                              | 0.92       | 0.92        | 0.92         | 0.92                                  |              |        | 0.92     |          | 1                 | 0.92                     | 0.92              | 0.92       |            |
| Actuated (P                                          |                                       |          | Α                                 | Α          | Α           | Α            | Α                                     | Α            |        | Α        | Α        |                   | Α                        | Α                 | Α          | Α          |
| Startup lost                                         |                                       |          | 2.0                               | 2.0        | 2.0         | 2.0          | 2.0                                   | 2.           |        | 2.0      | _        | _                 | 2.0                      | 2.0               | 2.0        |            |
| Ext. eff. gre                                        | en                                    |          | 2.0                               | 2.0        | 2.0<br>4    | 2.0          | 2.0                                   | 2.<br>5      |        | 2.0<br>5 | 2.0<br>5 | +                 | 2.0<br>5                 | 2.0<br>5          | 2.0<br>5   |            |
| Arrival type<br>Unit Extens                          | ion                                   |          | 3.0                               | 3.0        | 3.0         | 3.0          | 3.0                                   | 3.           |        | 3.0      | _        | +                 | 3.0                      | 3.0               | 3.0        |            |
| Ped/Bike/R                                           |                                       | me       | 5                                 | 5          | 0           | 5            | 5.0                                   | 0.           |        | 5.0      | 5        | +                 | 0                        | 5                 | 3.0        |            |
| Lane Width                                           | TOIL VOID                             | IIIC     | 12.0                              | 12.0       | 12.0        | 12.0         | 12.0                                  |              |        | 12.0     | _        | +                 | 12.0                     | 12.0              | 12.0       |            |
| Parking/Gra                                          | de/Parkin                             | g        | N                                 | 0          | N           | N            | 0                                     |              | V      | N        | 0        | +                 | N                        | N                 | 0          | N          |
| Parking/hr                                           |                                       | <u> </u> |                                   |            |             |              |                                       |              |        |          |          | +                 |                          |                   |            |            |
| Bus stops/h                                          | r                                     |          | 0                                 | 0          | 0           | 0            | 0                                     |              | )      | 0        | 0        | 十                 | 0                        | 0                 | 0          |            |
| Unit Extens                                          | ion                                   |          | 3.0                               | 3.0        | 3.0         | 3.0          | 3.0                                   | 3.           | .0     | 3.0      | 3.0      | 7                 | 3.0                      | 3.0               | 3.0        |            |
| Phasing                                              | Excl. Le                              | eft W    | B Only                            | Thru 8     | RT          | 04           | Ī                                     | Excl         | . Lef  | t        | SB Only  | У                 | Thru                     | ı & RT            | 0          | 8          |
| Timing                                               | G = 10.                               |          | = 10.0                            | G = 1      |             | G =          |                                       | G = .        |        |          | 6 = 6.0  |                   |                          | 32.0              | G =        |            |
|                                                      | Y = 4                                 |          | = <i>4</i>                        | Y = 4      |             | Y =          |                                       | Y = 4        | 4      |          | / = 4    |                   | Y =                      |                   | Y =        |            |
| Duration of                                          |                                       |          |                                   | l Dola     |             | . d I O      | 2 Day                                 | 40 vm        | .inc   |          | ycle Ler | ıgı               | n C =                    | 700.0             | <i>'</i>   |            |
| Lane Gro                                             | up Cap                                | acity,   | EB                                | oi Dela    | iy, ar<br>I | IG LOS<br>WE |                                       | tern         | IIII   | iuo.     | NB       |                   |                          | <u> </u>          | SB         |            |
| Adj. flow rat                                        | ΄                                     | 250      | 46                                | 160        | 429         | 96           |                                       | 83           | 16     | 1        | 859      | 2                 | 61                       | 252               | 1449       | Т.         |
| Lane group                                           | · · · · · · · · · · · · · · · · · · · | 344      | 186                               | 337        | 425         | 447          |                                       | 58           | 27     |          | 1135     | -                 | 33                       | 619               | 1490       | +          |
| v/c ratio                                            |                                       | 0.73     | 0.25                              | 0.47       | 1.01        | 0.21         |                                       | 69           | 0.5    |          | 0.76     | ╄                 | <u>28</u>                | 0.41              | 0.97       | +          |
| Green ratio                                          |                                       | 0.10     | 0.10                              | 0.22       | 0.24        | 0.24         |                                       | 36           | 0.0    |          | 0.32     | -                 | 60                       | 0.18              | 0.42       | +          |
| Unif. delay                                          | <br>d1                                | 43.7     | 41.5                              | 34.0       | 38.0        | 30.4         | -                                     | 7.2          | 44.    |          | 30.5     | ┡                 | 2.6                      | 36.3              | 28.4       | +-         |
| Delay factor                                         | ·                                     | 0.29     | 0.11                              | 0.11       | 0.50        | 0.11         | _                                     | 26           | 0.1    |          | 0.31     | ⊢                 | 11                       | 0.11              | 0.48       | +          |
| Increm. dela                                         |                                       | 7.5      | 0.7                               | 1.1        | 46.0        | 0.2          |                                       | .5           | 3.2    |          | 3.0      | ╄                 | .2                       | 0.4               | 17.1       | 1          |
| PF factor                                            | -                                     | 1.000    | 1.000                             | 1.000      | 1.000       | _            | _                                     | 625          | 0.9    | -        | 0.686    | <del> </del>      | 125                      | 0.854             | 0.517      |            |
| Control dela                                         | ay                                    | 51.2     | 42.2                              | 35.0       | 84.0        | 30.7         | 20                                    | ).5          | 45.    | 0        | 23.9     | 1                 | .4                       | 31.4              | 31.8       | $\top$     |
| Lane group                                           | LOS                                   | D        | D                                 | D          | F           | С            | 7                                     | С            | D      | l        | С        | 1                 | 4                        | С                 | С          |            |
| Apprch. dela                                         | ay                                    | 4        | 4.6                               |            |             | 51.6         |                                       |              |        | 2        | 2.0      |                   |                          |                   | 31.8       |            |
| Approach L                                           | os                                    |          | D                                 |            |             | D            |                                       |              |        | **       | С        |                   |                          |                   | С          |            |
| Intersec. de                                         | lay                                   | 3        | 4.4                               |            |             |              | Inte                                  | ersec        | tion   | LOS      | 3        |                   |                          |                   | С          |            |
| HCS2000 <sup>TM</sup>                                |                                       |          | C                                 | onvright © | 2000 Ut     | iversity of  | Florida                               | All Ric      | ohts R | eserva   | ıd       |                   |                          |                   | Ve         | rsion 4.1f |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                      |           |          |                                  |              | SHO              | ORT R        | EP                       | ORT                                 |          |          |       |                      |                 |                         |          |            |               |
|------------------------------------------------------|-----------|----------|----------------------------------|--------------|------------------|--------------|--------------------------|-------------------------------------|----------|----------|-------|----------------------|-----------------|-------------------------|----------|------------|---------------|
| General Inf                                          | ormation  |          |                                  |              |                  | Si           | te lı                    | nform                               | natio    | n        |       |                      |                 |                         |          |            |               |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med       | 08       | JSAI<br>JSAI<br>/22/12<br>I PEAK |              |                  | Aı<br>Ju     | ea <sup>-</sup><br>irisd | ectior<br>Type<br>liction<br>sis Ye |          | В        | OCE   | AAR<br>All of<br>ANS | RC<br>he<br>SID | ON Ri<br>r area<br>E-IN |          | Γ          |               |
| Volume an                                            | d Timing  | Input    |                                  |              |                  |              |                          |                                     |          |          |       |                      |                 |                         |          |            |               |
|                                                      |           |          |                                  | EB           |                  |              | W                        |                                     |          |          |       | NB                   |                 |                         | <u> </u> | SB         |               |
| Num. of Lar                                          |           |          | LT<br>2                          | TH<br>1      | RT<br>1          | LT<br>1      | TI                       |                                     | RT<br>1  |          | Γ     | <u>TH</u><br>2       | +               | RT<br>1                 | LT<br>2  | TH<br>2    | RT<br>0       |
|                                                      | ies       |          | +                                |              |                  |              | ┿                        | -                                   |          |          |       |                      | +               |                         |          | T          | <del>اٽ</del> |
| Lane group                                           |           |          | L 150                            | T            | R                | L            | T                        |                                     | R        | L        |       | T                    | 4,              | R                       | L 105    |            | · · ·         |
| Volume (vpl                                          |           |          | 470                              | 230<br>2     | 210<br>2         | 255<br>2     | 14<br>2                  |                                     | 10<br>2  | 20:<br>2 | 5 7   | 135<br>2             | ť               | 585<br>2                | 435<br>2 | 810<br>2   |               |
| % Heavy vo                                           | en        |          | 2<br>0.95                        | 0.95         | <i>2</i><br>0.95 | 0.95         | 0.9                      |                                     | .95      | 0.9      | 5 0   | .95                  | +               | ).95                    | 0.95     | 0.95       |               |
| Actuated (P                                          | /Δ)       |          | 0.95<br>A                        | A            | 0.95<br>A        | A            | A<br>A                   |                                     | .90<br>A | 0.9<br>A |       | <u>.95</u><br>A      | ۲               | A.30                    | A        | A          | A             |
| Startup lost                                         |           |          | 3.0                              | 3.0          | 3.0              | 3.0          | 3.0                      |                                     | 3.0      | 3.0      |       | 3.0                  | †               | 3.0                     | 3.0      | 3.0        |               |
| Ext. eff. gre                                        |           |          | 2.0                              | 2.0          | 2.0              | 2.0          | 2.0                      |                                     | 2.0      | 2.0      |       | 2.0                  | _               | 2.0                     | 2.0      | 2.0        |               |
| Arrival type                                         |           |          | 4                                | 4            | 4                | 4            | 4                        |                                     | 5        | 5        |       | 5                    |                 | 5                       | 5        | 5          |               |
| Unit Extens                                          | ion       |          | 3.0                              | 3.0          | 3.0              | 3.0          | 3,                       | 0 .                                 | 3.0      | 3.0      | ) .   | 3.0                  | Т               | 3.0                     | 3.0      | 3.0        |               |
| Ped/Bike/R                                           | TOR Volu  | me       | 5                                | 10           | 0                | 5            | 10                       | )                                   | 0        | 5        |       | 10                   |                 | 0                       | 5        |            |               |
| Lane Width                                           |           |          | 12.0                             | 12.0         | 12.0             | 12.0         | 12.                      | 0 1                                 | 2.0      | 12.      | 0 1   | 2.0                  | 1               | 2.0                     | 12.0     | 12.0       |               |
| Parking/Gra                                          | de/Parkin | ng       | N                                | 0            | Ν                | N            | (                        | )                                   | Ν        | Ν        |       | 0                    |                 | N                       | Ν        | 0          | N             |
| Parking/hr                                           |           |          |                                  |              |                  |              |                          |                                     |          |          |       |                      | ┸               |                         |          |            |               |
| Bus stops/h                                          | r         |          | 0                                | 0            | 0                | 0            | 0                        | 1                                   | 0        | 0        |       | 0                    |                 | 0                       | 0        | 0          |               |
| Unit Extens                                          | ion       |          | 3.0                              | 3.0          | 3.0              | 3.0          | 3.                       | 0 .                                 | 3.0      | 3.0      | ) .   | 3.0                  |                 | 3.0                     | 3.0      | 3.0        |               |
| Phasing                                              | Excl. Le  | eft Thr  | u & RT                           | 03           | 3                | 04           |                          |                                     | l. Le    |          | Thru  |                      |                 |                         | 07       | 0          | 8             |
| Timing                                               | G = 19.   |          | 15.5                             | G =          |                  | G =          |                          |                                     | 12.2     |          | G =   |                      |                 | G =                     |          | G =        |               |
|                                                      | Y = 4.6   |          | 5.3                              | Y =          |                  | Y =          |                          | Y =                                 | 5.3      | _        | Y = ; |                      |                 | Y =                     | 00 F     | Y =        |               |
| Duration of                                          |           |          |                                  | <u> </u>     |                  | 110          |                          |                                     |          |          |       | Len                  | gtr             | 10=                     | 99.5     |            |               |
| Lane Gro                                             | up Cap    | acity, ( |                                  | ol Dela      | ıy, ar           |              |                          | eteri                               | mina     | atio     |       |                      |                 |                         | <u> </u> | <b>O</b> D |               |
|                                                      |           |          | EB                               | l            |                  | WE           |                          |                                     |          |          | N     |                      |                 | 4.0                     | 450      | SB         | _             |
| Adj. flow rat                                        |           | 495      | 242                              | 221          | 268              | 153          | -+                       | 326                                 | 21       |          | 119   |                      |                 | 16                      | 458      | 853        | +             |
| Lane group                                           | сар.      | 622      | 271                              | 495          | 320              | 271          | -                        | 495                                 | 38       |          | 110   |                      | _               | 67                      | 387      | 1102       |               |
| v/c ratio                                            |           | 0.80     | 0.89                             | 0.45         | 0.84             | 0.56         | (                        | 0.66                                | 0.5      | 6        | 1.0   | 8                    | 0.              | 71                      | 1.18     | 0.77       |               |
| Green ratio                                          |           | 0.18     | 0.15                             | 0.32         | 0.18             | 0.15         | ·                        | 0.32                                | 0.1      | 11       | 0.3   | 1                    | 0.:             | 56                      | 0.11     | 0.31       |               |
| Unif. delay                                          | d1        | 39.0     | 41.7                             | 26.7         | 39.3             | 39.6         | ;                        | 29.0                                | 41       | .8       | 34.   | 3                    | 16              | 3.1                     | 44.1     | 31.1       |               |
| Delay factor                                         | k         | 0.34     | 0.42                             | 0.11         | 0.37             | 0.16         | - (                      | 0.23                                | 0.1      | 16       | 0.5   | 0                    | 0.2             | 27                      | 0.50     | 0.32       |               |
| Increm. dela                                         | ay d2     | 7.1      | 28.9                             | 0.6          | 17.5             | 2.7          |                          | 3.2                                 | 1.       | 8        | 53.   | 0                    | 2.              | .7                      | 105.9    | 3.5        |               |
| PF factor                                            |           | 1.000    | 1.000                            | 0.968        | 1.000            | 1.000        | 0 (                      | ).684                               | 0.9      | 15       | 0.70  | 00                   | 0. 1            | 156                     | 0.915    | 0.700      |               |
| Control dela                                         | ay        | 46.1     | 70.6                             | 26.5         | 56.8             | 42.3         | 1                        | 23.1                                | 40       | .1       | 77.   | 0                    | 5.              | .2                      | 146.4    | 25.3       |               |
| Lane group                                           | LOS       | D        | E                                | С            | Ε                | D            |                          | С                                   | E        | )        | Ε     |                      | ļ               | 4                       | F        | С          |               |
| Apprch. del                                          | ay        | 47       | 7.8                              | <del>-</del> |                  | 39.1         |                          |                                     |          |          | 51.3  |                      |                 |                         |          | 67.6       |               |
| Approach L                                           | os        |          | )                                |              |                  | D            |                          |                                     |          |          | D     |                      |                 |                         |          | E          |               |
| Intersec. de                                         | lay       | 55       | 3.0                              |              |                  |              | Ir                       | nterse                              | ction    | LO       | S     |                      |                 |                         |          | D          |               |
| HCS2000 <sup>TM</sup>                                |           | •        | C                                | opyright ©   | 2000 U           | niversity of | Floric                   | ia, All F                           | Rights F | leserv   | ed    |                      |                 |                         |          | Ve         | rsion 4.11    |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      | · .                                   |       |                                  |            | SH                                                | ORT R        | EPC                                | RT           |               |            |                   |                 |                           |                   |            |            |
|------------------------------------------------------|---------------------------------------|-------|----------------------------------|------------|---------------------------------------------------|--------------|------------------------------------|--------------|---------------|------------|-------------------|-----------------|---------------------------|-------------------|------------|------------|
| General Inf                                          | ormation                              |       |                                  |            |                                                   |              | ite In                             |              | atio          | า          |                   |                 |                           |                   |            |            |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | Co.<br>med                            | 08    | JSAI<br>JSAI<br>½22/12<br>I PEAK |            |                                                   | Ai<br>Ju     | terse<br>rea T<br>urisdio<br>nalys | ype<br>ction |               |            |                   | RR<br>the<br>SI | ON Ri<br>er area<br>DE-IN | D.<br>as<br>T.#14 | e <b>r</b> |            |
| Volume an                                            | d Timing                              | Input |                                  |            |                                                   |              |                                    |              |               |            |                   |                 |                           |                   |            |            |
|                                                      |                                       |       |                                  | EB         |                                                   |              | WE                                 |              |               |            | NB                | _               |                           |                   | SB         |            |
|                                                      |                                       |       | LT                               | TH         | RT                                                | LT           | TH                                 |              | RT_           | LT         | TH                | +               | RT                        | LT                | TH         | RT         |
| Num. of Lar                                          | nes                                   |       | 2                                | 1          | 1                                                 | 1            | 1                                  | _            | 1             | 2          | 2                 | -               | 1                         | 2                 | 2          | 0          |
| Lane group                                           |                                       |       | L                                | T          | R                                                 | L            | T                                  |              | R             | L          | T                 | _               | R                         | L                 | T          |            |
| Volume (vpl                                          |                                       | 0.40  | 531<br>2                         | 234<br>2   | 235<br>2                                          | 255<br>2     | 154<br>2                           |              | 18<br>2       | 257<br>2   | 1182<br>2         | 4               | 585<br>2                  | 439<br>2          | 833        |            |
| % Heavy ve                                           | en                                    |       | 0.95                             | 0.95       | 0.95                                              | 0.95         | 0.95                               |              | 2<br>95       | 0.95       |                   | ╅               | 0.95                      | 0.95              | 0.95       |            |
| Actuated (P                                          | /A)                                   |       | A                                | A          | A                                                 | A            | A                                  |              | 4             | A          | A                 | +               | A                         | A                 | A          | Α          |
| Startup lost                                         |                                       |       | 3.0                              | 3.0        | 3.0                                               | 3.0          | 3.0                                |              | .0            | 3.0        | 3.0               | ╛               | 3.0                       | 3.0               | 3.0        |            |
| Ext. eff. gre                                        | en                                    |       | 2.0                              | 2.0        | 2.0                                               | 2.0          | 2.0                                | _            | .0            | 2.0        | 2.0               |                 | 2.0                       | 2.0               | 2.0        |            |
| Arrival type                                         |                                       |       | 4                                | 4          | 4                                                 | 4            | 4                                  | _            | 5             | 5          | 5                 | 4               | 5                         | 5                 | 5          |            |
| Unit Extensi                                         |                                       |       | 3.0                              | 3.0        | 3.0                                               | 3.0          | 3.0                                |              | 3.0           | 3.0        |                   | 4               | 3.0                       | 3.0               | 3.0        |            |
| Ped/Bike/R                                           | FOR Volur                             | ne    | 5                                | 10         | 0                                                 | 5            | 10                                 | -            | 0             | 5          | 10                | +               | 0                         | 5                 | 40.0       |            |
| Lane Width                                           |                                       |       | 12.0                             | 12.0       | 12.0                                              | 12.0         | 12.0                               | -            | 2.0           | 12.0       |                   | 4               | 12.0<br>N                 | 12.0              | 12.0<br>0  | 8.1        |
| Parking/Gra                                          | ide/Parkin                            | g     | N                                | 0          | N                                                 | N            | 0                                  |              | N             | N          | 0                 | +               | IV                        | N                 | 0          | N          |
| Parking/hr                                           | _                                     |       |                                  |            |                                                   | + -          |                                    |              | $\overline{}$ |            | <del> </del>      | +               |                           | 0                 | 0          |            |
| Bus stops/h                                          |                                       |       | 0                                | 0          | 0                                                 | 0            | 0                                  |              | 0             | 0          | 0                 | 4               | 0                         |                   | <u> </u>   |            |
| Unit Extensi                                         |                                       | 6 J-1 | 3.0                              | 3.0        | 3.0                                               | 3.0          | 3.0                                |              | 3.0           | 3.0        |                   | <u></u>         | 3.0                       | 3.0               | 3.0        |            |
| Phasing                                              | Excl. Le<br>G = 19.0                  | _     | u & RT<br>15.5                   | 03<br>G =  | i                                                 | 04<br>G =    |                                    | G =          | 1. Lef        |            | hru & F<br>= 31.9 |                 | G =                       | 07                | G =        | 5          |
| Timing                                               | Y = 4.6                               |       | 5.3                              | Y =        |                                                   | Y=           |                                    | Y =          |               |            | r = 5.7           | ,               | Y =                       |                   | Y =        |            |
| Duration of                                          |                                       |       |                                  |            |                                                   | -            |                                    | •            |               |            | ycle Ler          | ngt             | h C =                     | 99.5              |            |            |
| Lane Gro                                             | up Capa                               | city, | Contro                           | l Dela     | ıy, aı                                            | nd LOS       | S De                               | tern         | nina          | tio        | <u>1</u>          |                 |                           |                   |            |            |
|                                                      |                                       |       | EB                               |            | Ĭ                                                 | WE           |                                    |              |               |            | NB                |                 |                           |                   | SB         |            |
| Adj. flow rat                                        | e                                     | 559   | 246                              | 247        | 268                                               | 162          | 3                                  | 35           | 27            | 1          | 1244              | 6               | 616                       | 462               | 877        |            |
| Lane group                                           | cap.                                  | 622   | 271                              | 495        | 320                                               | 271          | 4                                  | 95           | 38            | 7          | 1102              | 8               | 367                       | 387               | 1102       |            |
| v/c ratio                                            |                                       | 0.90  | 0.91                             | 0.50       | 0.84                                              | 0.60         | 0.                                 | .68          | 0.7           | <i>'</i> 0 | 1.13              | 0               | .71                       | 1.19              | 0.80       |            |
| Green ratio                                          |                                       | 0.18  | 0.15                             | 0.32       | 0.18                                              | 0.15         | 0.                                 | .32          | 0.1           | 1          | 0.31              | 0               | .56                       | 0.11              | 0.31       |            |
| Unif. delay                                          | <br>ქ1                                | 39.9  | 41.8                             | 27.3       | 39.3                                              | 39.8         | 2:                                 | 9.3          | 42.           | 5          | 34.3              | 1               | 6.1                       | 44.1              | 31.4       | -          |
| Delay factor                                         | · · · · · · · · · · · · · · · · · · · | 0.42  | 0.43                             | 0.11       | 0.37                                              | -            | _                                  | .25          | 0.2           |            | 0.50              | ┿               | .27                       | 0.50              | 0.34       |            |
| Increm, dela                                         |                                       | 16.0  | 31.7                             | 0.8        | 17.5                                              |              |                                    | 3.7          | 5.0           |            | 69.9              | ┿               | 2.7                       | 109.9             | 4.2        |            |
| PF factor                                            |                                       | 1.000 | ├──                              | 0.968      | 1.000                                             |              |                                    | 684          | 0.9           |            | 0.700             | ╄               | 156                       | 0.915             | 0.700      | $\top$     |
| Control dela                                         | ay                                    | 55.9  | 73.6                             | 27.2       | 56.8                                              | _            |                                    | 3.7          | 44.           |            | 93.9              | ╆               | 5.2                       | 150.4             | 26.1       |            |
| Lane group                                           | LOS                                   | E     | E                                | С          | Ε                                                 | D            | $\top$                             | С            | D             | l          | F                 | T               | A                         | F                 | С          |            |
| Apprch. dela                                         |                                       | 5.    | 3.3                              |            | <del>                                      </del> | 39.5         | <u>, 1</u>                         |              | 1             | 6.         | 2.0               | _               |                           |                   | 69.0       |            |
| Approach L                                           | os                                    |       | ס                                |            | 1                                                 | D            |                                    |              |               |            | E                 |                 |                           |                   | Е          |            |
| Intersec. de                                         |                                       | 5.    | 3.8                              |            |                                                   |              | Int                                | erse         | ction         | LOS        |                   |                 |                           |                   | Е          |            |
| HCS2000 <sup>TM</sup>                                |                                       |       | C                                | opyright @ | 2000 TI                                           | niversity of | Florida                            | A11 R        | iohte P       | PÉRTUR     | d                 |                 |                           |                   | Ve         | rsion 4.1f |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

MIT. I ADD ZNONB RTO LANE

|                                                      |                                               |       |          |                                |            | SHO     | ORTR         |                                     | _             |             |      |           |                            | MAN     |                      |       |          |
|------------------------------------------------------|-----------------------------------------------|-------|----------|--------------------------------|------------|---------|--------------|-------------------------------------|---------------|-------------|------|-----------|----------------------------|---------|----------------------|-------|----------|
| General Inf                                          | formatio                                      | n     |          |                                |            |         | S            | ite lı                              | nfor          | matio       | n    |           |                            |         |                      |       |          |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                                           |       | U<br>08/ | ISAI<br>ISAI<br>'24/12<br>PEAK |            |         | A<br>Ji      | ntersone<br>rea -<br>urisd<br>naly: | Type<br>ictic | е           |      | N<br>EEAN | MAR<br>III ot<br>ISID<br>M | ITIGAT  | RD.<br>eas<br>#14/WI |       |          |
| Volume an                                            | nd Timin                                      | g Inp | ut       |                                |            |         |              |                                     |               |             |      |           |                            |         |                      |       |          |
|                                                      |                                               |       |          | LT                             | EB         | LDT     | LT           | TTI                                 | _             | DT          | L    |           | NB                         | LDT     | LT                   | SB    | LD       |
| Num. of Lar                                          | nes                                           |       |          | 2                              | 1          | RT<br>1 | 1            | 1                                   |               | RT<br>1     | 2    | _         | TH<br>2                    | RT<br>2 | 2                    | 2     | R1       |
| Lane group                                           |                                               |       | _        | L                              | T          | R       | L            | T                                   | _             | R           | L    | _         | T                          | R       | 1                    | T     | Ť        |
| Volume (vp                                           |                                               | _     | -        | 115                            | 35         | 100     | 395          | 70                                  | _             | 350         | 13   |           | 75                         | 240     | 225                  | 1290  | -        |
| % Heavy v                                            |                                               |       |          | 2                              | 2          | 2       | 2            | 2                                   |               | 2           | 2    |           | 2                          | 2       | 2                    | 2     |          |
| PHF                                                  | OIT                                           |       |          | 0.92                           | 0.92       | 0.92    | 0.92         | 0.9                                 | _             | 0.92        | 0.9  |           | 92                         | 0.92    | 0.92                 | 0.92  |          |
| Actuated (P                                          | /A)                                           |       |          | Α                              | Α          | A       | Α            | A                                   | _             | Α           | A    |           | A                          | A       | A                    | Α     | A        |
| Startup lost                                         |                                               |       |          | 2.0                            | 2.0        | 2.0     | 2.0          | 2.0                                 | )             | 2.0         | 2.   | 0 2       | 2.0                        | 2.0     | 2.0                  | 2.0   |          |
| Ext. eff. gre                                        | en                                            |       |          | 2.0                            | 2.0        | 2.0     | 2.0          | 2.0                                 | _             | 2.0         | 2.0  |           | 2.0                        | 2.0     | 2.0                  | 2.0   |          |
| Arrival type                                         | Extension                                     |       |          |                                | 4          | 4       | 4            | 4                                   | _             | 5           | 5    | _         | 5                          | 5       | 5                    | 5     |          |
|                                                      |                                               |       |          |                                | 3.0        | 3.0     | 3.0          | 3.                                  |               | 3.0         | 3.   |           | 3.0                        | 3.0     | 3.0                  | 3.0   |          |
|                                                      | l/Bike/RTOR Volume<br>e Width                 |       |          |                                | 5          | 0       | 5            | 5                                   | _             | 0           | 5    | _         | 5                          | 0       | 5                    |       |          |
| Lane Width                                           |                                               |       | 12.0     | 12.0                           | 12.0       | 12.0    | 12.          | _                                   | 12.0          | 12.         | ~    | 2.0       | 12.0                       | 12.0    | 12.0                 |       |          |
| Parking/Gra                                          | de/Park                                       | ing   |          | N                              | 0          | N       | N            | 0                                   | )             | Ν           | N    |           | 0                          | N       | N                    | 0     | Ν        |
| Parking/hr                                           |                                               |       |          |                                |            |         |              |                                     |               |             |      |           |                            |         |                      |       |          |
| Bus stops/h                                          | r                                             |       | 0        | 0                              | 0          | 0       | 0            | 4                                   | 0             | 0           |      | 0         | 0                          | 0       | 0                    |       |          |
| Unit Extens                                          | ion                                           |       |          | 3.0                            | 3.0        | 3.0     | 3.0          | 3.0                                 | 0             | 3.0         | 3.   | 0 3       | 3.0                        | 3.0     | 3.0                  | 3.0   |          |
| Phasing                                              | Excl. L                                       | _eft  | WB       | Only                           | Thru &     | RT      | 04           |                                     | E             | xcl. Le     | ft   | SB (      | Only                       | Th      | ru & RT              | 0     | 8(       |
| Timing                                               | G = 5.                                        |       |          | 20.0                           | G = 1      |         | G =          |                                     | _             | = 4.0       |      | G = (     |                            |         | = 31.0               | G =   |          |
|                                                      | Y = 4                                         | _     | Y =      |                                | Y = 4      |         | Y =          |                                     | Υ:            | = 4         | _    | Y = 4     |                            | Y =     |                      | Y =   |          |
| Duration of                                          |                                               |       |          |                                |            |         |              | 27 100                              |               |             |      |           | Len                        | gth C:  | = 100.0              | )     |          |
| Lane Gro                                             | up Cap                                        | pacit | y, C     | ontro                          | ol Dela    | y, ar   |              |                                     | ete           | <u>rmin</u> | atic |           |                            |         |                      |       |          |
|                                                      | 4.4                                           | 1/4   |          | EB                             |            |         | WI           | В                                   |               |             |      | N         | В                          |         |                      | SB    |          |
| Adj. flow rat                                        | e                                             | 12    | 5        | 38                             | 109        | 429     | 76           |                                     | 380           | 14          | 11   | 842       |                            | 261     | 245                  | 1402  |          |
| Lane group                                           | сар.                                          | 17    | 2        | 186                            | 276        | 513     | 633          | Чį.                                 | 653           | 13          | 37   | 110       | 0                          | 1738    | 481                  | 1454  |          |
| v/c ratio                                            |                                               | 0.7   | 3        | 0.20                           | 0.39       | 0.84    | 0.12         | 2 (                                 | 0.58          | 1.          | 03   | 0.77      | 7                          | 0.15    | 0.51                 | 0.96  |          |
| Green ratio                                          |                                               | 0.0   | )5       | 0.10                           | 0.18       | 0.29    | 0.34         | 1 (                                 | 0.42          | 0.0         | 04   | 0.31      |                            | 0.64    | 0.14                 | 0.41  |          |
| Unif. delay o                                        | d1                                            | 46.   | 8        | 41.3                           | 36.2       | 33.3    | 22.7         | 2                                   | 22.3          | 48          | 3.0  | 31.2      | 2                          | 7.2     | 39.8                 | 28.8  |          |
| Delay factor                                         | ·k                                            | 0.2   | 29       | 0.11                           | 0.11       | 0.37    | 0.11         | (                                   | 0.17          | 0           | 50   | 0.32      | 2                          | 0.11    | 0.12                 | 0.47  |          |
| Increm. dela                                         | ay d2                                         | 14.   | 3        | 0.5                            | 0.9        | 11.5    | 0.1          |                                     | 1.3           | 84          | .9   | 3.3       |                            | 0.0     | 0.9                  | 15.9  |          |
| PF factor                                            |                                               | 1.0   | 00       | 1.000                          | 1.000      | 0.993   | 0.95         | 3 0                                 | .51           | 7 0.9       | 972  | 0.70      | 0                          | 0.139   | 0.891                | 0.537 |          |
| Control dela                                         | ay                                            | 61.   | 1        | 41.9                           | 37.1       | 44.6    | 21.7         |                                     | 12.8          | 13          | 1.5  | 25.1      | 1                          | 1.0     | 36.4                 | 31.3  |          |
| Lane group                                           | ane group LOS E                               |       |          | D                              | D          | D       | С            | 11)                                 | В             | F           |      | С         |                            | Α       | D                    | С     |          |
| Apprch. dela                                         | ay                                            | 48.   | 8        |                                |            | 29.0    |              |                                     |               |             | 32.1 |           |                            |         | 32.1                 |       |          |
| Approach L                                           | D                                             |       | 1        |                                | С          |         |              |                                     |               | С           |      |           | 1                          | С       |                      |       |          |
| Intersec. de                                         | lay                                           | 32.   | .5       |                                |            |         | In           | ters                                | ection        | LO          | S    |           |                            |         | С                    |       |          |
| HCS2000 <sup>TM</sup>                                | e group LOS Erch. delay roach LOS rsec. delay |       |          |                                | anvright C | 2000 Ur | niversity of | _                                   | -             |             |      |           | -                          | -       | 1                    |       | ersion - |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

TABLE 9-3-A

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |         |                                    |            | SHO     | ORT R        | _        |       | 74 (31) | J C.     | 101                        | 3 1-(0     | L'AI                 |       |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------|------------|---------|--------------|----------|-------|---------|----------|----------------------------|------------|----------------------|-------|--------|
| General Inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ormatio                                                                                                                                                                          | n       |                                    |            |         | Si           | te In    | forma | ation   |          |                            |            |                      |       |        |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | med                                                                                                                                                                              | 08      | USAI<br>USAI<br>8/24/12<br>1/ PEAK |            |         | Ar<br>Ju     | ea T     |       | ar      | OCE      | MAF<br>All o<br>ANSIE<br>M | ITIGAT     | RD.<br>eas<br>#14/WI |       |        |
| Volume an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of Lanes group ne (vph) eavy veh  ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr extops/hr Extension ing Excl. Left G = 10.0 |         |                                    |            |         |              |          |       |         |          |                            |            |                      | 0.5   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |         | LT                                 | EB TH      | RT      | LT           | WE       |       | т       | LT       | NB<br>TH                   | RT         | LT                   | SB    | R      |
| Num. of Lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nes                                                                                                                                                                              |         | 2                                  | 1          | 1       | 1            | 1        | 1     | -       | 2        | 2                          | 2          | 2                    | 2     | 0      |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                  |         | L                                  | T          | R       | L            | T        | F     | _       | L        | T                          | R          | 1                    | T     |        |
| Volume (vpl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | h)                                                                                                                                                                               |         | 230                                | 42         | 147     | 395          | 88       | 35    |         | 148      | 790                        | 240        | 232                  | 1333  |        |
| % Heavy v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                  |         | 2                                  | 2          | 2       | 2            | 2        | 2     |         | 2        | 2                          | 2          | 2                    | 2     |        |
| PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |         | 0.92                               | 0.92       | 0.92    | 0.92         | 0.92     | 2 0.9 | 92 (    | 0.92     | 0.92                       | 0.92       | 0.92                 | 0.92  |        |
| Actuated (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  |         | Α                                  | Α          | Α       | Α            | Α        | Α     | _       | Α        | Α                          | A          | Α                    | Α     | Α      |
| Startup lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                  |         | 2.0                                | 2.0        | 2.0     | 2.0          | 2.0      | _     | _       | 2.0      | 2.0                        | 2.0        | 2.0                  | 2.0   |        |
| Ext. eff. gre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | en                                                                                                                                                                               |         | 2.0                                | 2.0        | 2.0     | 2.0          | 2.0      |       | _       | 2.0      | 2.0                        | 2.0        | 2.0                  | 2.0   |        |
| Arrival type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                  |         | 3.0                                | 4          | 4       | 4            | 4        | 5     | _       | 5        | 5                          | 5          | 5                    | 5     |        |
| A CHILD COLUMN TO THE SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND S | d/Bike/RTOR Volume<br>ne Width                                                                                                                                                   |         |                                    | 3.0<br>5   | 3.0     | 3.0          | 3.0<br>5 | 3.    |         | 3.0<br>5 | 3.0                        | 3.0        | 3.0                  | 3.0   | -      |
| Lane Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I OIX VOII                                                                                                                                                                       | une     | 5<br>12.0                          | 12.0       | 12.0    | 12.0         | 12.0     | _     | -       | 12.0     | 12.0                       | 12.0       | 12.0                 | 12.0  | 1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne Width<br>king/Grade/Parking                                                                                                                                                   |         |                                    | 0          | N       | N            | 0        | 1.2   |         | N        | 0                          | N          | N                    | 0     | N      |
| Parking/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Width<br>king/Grade/Parking<br>king/hr                                                                                                                                         |         |                                    |            |         |              |          |       |         |          |                            |            |                      |       |        |
| Bus stops/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | king/Grade/Parking<br>king/hr                                                                                                                                                    |         |                                    | 0          | 0       | 0            | 0        | 0     |         | 0        | 0                          | 0          | 0                    | 0     |        |
| Unit Extens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion                                                                                                                                                                              |         | 3.0                                | 3.0        | 3.0     | 3.0          | 3.0      | 3.    | 0       | 3.0      | 3.0                        | 3.0        | 3.0                  | 3.0   |        |
| Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Excl. L                                                                                                                                                                          | eft W   | B Only                             | Thru 8     | & RT    | 04           |          | Excl. | Left    | S        | B Only                     | Thr        | u & RT               | 0     | 8      |
| Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.00                                                                                                                                                                            | 1007    | = 10.0                             | G = 1      |         | G =          |          | G = 8 |         |          | = 6.0                      |            | 32.0                 | G =   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |         | 4                                  | Y = 4      |         | Y =          |          | Y = 4 | 1       |          | = 4                        | Y =        |                      | Y =   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |         | w                                  |            |         |              |          |       |         |          | cle Ler                    | ngth C =   | = 100.0              | )     |        |
| Lane Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | up Cap                                                                                                                                                                           | pacity, | 10.72                              | ol Dela    | ay, ar  |              |          | term  | ina     | tion     |                            |            |                      |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |         | EB                                 |            | - AA-   | WE           |          | 200   |         |          | NB                         | Covat A in | 223                  | SB    | -      |
| Adj. flow rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | е                                                                                                                                                                                | 250     | 46                                 | 160        | 429     | 96           |          | 83    | 161     | _        | 859                        | 261        | 252                  | 1449  |        |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | сар.                                                                                                                                                                             | 344     | 186                                | 337        | 425     | 447          | _        | 58    | 275     |          | 135                        | 1631       | 619                  | 1490  |        |
| v/c ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                  | 0.73    | 0.25                               | 0.47       | 1.01    | 0.21         | 0.       | .69   | 0.59    | 9 (      | 0.76                       | 0.16       | 0.41                 | 0.97  |        |
| Green ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  | 0.10    | 0.10                               | 0.22       | 0.24    | 0.24         | 0.       | .36   | 0.08    | 3 (      | 0.32                       | 0.60       | 0.18                 | 0.42  |        |
| Unif. delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d1                                                                                                                                                                               | 43.7    | 41.5                               | 34.0       | 38.0    | 30.4         | 2        | 7.2   | 44.4    | 4 3      | 30.5                       | 8.8        | 36.3                 | 28.4  |        |
| Delay factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k                                                                                                                                                                                | 0.29    | 0.11                               | 0.11       | 0.50    | 0.11         | 0.       | .26   | 0.18    | 3 (      | 0.31                       | 0.11       | 0.11                 | 0.48  |        |
| Increm, dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ay d2                                                                                                                                                                            | 7.5     | 0.7                                | 1.1        | 46.0    | 0.2          | 3        | 3.5   | 3.2     |          | 3.0                        | 0.0        | 0.4                  | 17.1  |        |
| PF factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                  | 1.000   | 1.000                              | 1.000      | 1.000   | 1.000        | 0.       | 625   | 0.94    | 12 0     | .686                       | 0.125      | 0.854                | 0.517 |        |
| Control dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ny                                                                                                                                                                               | 51.2    | 42.2                               | 35.0       | 84.0    | 30.7         | 2        | 0.5   | 45.0    | 0 2      | 23.9                       | 1.2        | 31.4                 | 31.8  |        |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOS                                                                                                                                                                              | D       | D                                  | D          | F       | С            |          | С     | D       |          | С                          | Α          | С                    | С     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  |         | 4.6                                |            |         | 51.6         |          |       |         | 21.      | 9                          |            |                      | 31.8  |        |
| Approach L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                                                                                                                                                                                |         |                                    | D          |         |              |          | С     |         |          |                            | С          |                      |       |        |
| 20.00 (2004) (2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |         | 4.4                                |            |         |              | Int      | ersec | tion I  | LOS      |                            |            |                      | С     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pproach LOS                                                                                                                                                                      |         |                                    | onvright © | 2000 11 | niversity of |          |       | -       |          |                            |            | 1                    |       | ersion |

 $HCS2000^{TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

MIT: ADD ZND NB RTO LANE

|                                                       |                                         |       |                           |      |           | SHC     | RT R     | EP                   |      |      | 1 :  | -   | +111) | de l'                       |                           | N ILS              | ISTO         | LAN   |          |
|-------------------------------------------------------|-----------------------------------------|-------|---------------------------|------|-----------|---------|----------|----------------------|------|------|------|-----|-------|-----------------------------|---------------------------|--------------------|--------------|-------|----------|
| General Inf                                           | ormation                                | 1     |                           |      |           |         |          |                      | _    | rma  | tior | 1   |       |                             |                           |                    |              |       |          |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med                                     |       | US<br>US<br>08/2:<br>PM P | Al   |           |         | Aı<br>Ju | ters<br>rea<br>urisc | Typ  | е    | ır   |     | CEA   | MAR<br>All of<br>NSID<br>MI | ROI<br>her<br>E-II<br>TIG | N R<br>are<br>NT.‡ | as<br>‡14/WI |       |          |
| Volume an                                             | d Timing                                | Inpu  | t                         |      |           |         |          |                      |      |      |      |     |       |                             |                           |                    |              |       |          |
|                                                       |                                         |       | - (                       |      | EB        |         |          | V                    | √B   |      |      |     |       | NB                          |                           |                    |              | SB    |          |
|                                                       |                                         |       |                           | LT   | TH        | RT      | LT       | T                    | Н    | R    | T    | L   | Т     | TH                          | _                         | RT                 | LT           | TH    | R        |
| Num. of Lan                                           | es                                      |       |                           | 2    | 1         | 1       | 1        | 1                    |      | 1    |      | 2   |       | 2                           | 1                         | 2                  | 2            | 2     | 0        |
| Lane group                                            |                                         |       |                           | L    | T         | R       | L        | 7                    |      | R    |      | L   |       | T                           | F                         | 7                  | L            | T     |          |
| Volume (vpl                                           | ۱)                                      |       |                           | 470  | 230       | 210     | 255      | 14                   | 5    | 31   | 0    | 20  | 5     | 1135                        | 58                        | 35                 | 435          | 810   |          |
| % Heavy ve                                            | eh                                      |       |                           | 2    | 2         | 2       | 2        | 2                    |      | 2    | _    | 2   | _     | 2                           | _                         | 2                  | 2            | 2     |          |
| PHF                                                   | (                                       |       | (                         | 0.95 | 0.95      | 0.95    | 0.95     | 0.9                  |      | 0.9  | _    | 0.9 | _     | 0.95                        | 0.                        |                    | 0.95         | 0.95  |          |
| Actuated (P.                                          |                                         |       | +                         | 3.0  | 3.0       | 3.0     | 3.0      | 3.                   |      | 3.0  | _    | 3.0 |       | A<br>3.0                    | 1                         | .0                 | 3.0          | 3.0   | Α        |
| Startup lost<br>Ext. eff. gree                        | 5 5 1 5 5 5                             |       | $\dashv$                  | 2.0  | 2.0       | 2.0     | 2.0      | 3.<br>2.             | _    | 2.0  | _    | 2.0 | _     | 2.0                         | _                         | .0                 | 2.0          | 2.0   |          |
| Arrival type                                          | 511                                     |       |                           | 4    | 4         | 4       | 4        | 4                    | _    | 5    | _    | 5   |       | 5                           | _                         | 5                  | 5            | 5     |          |
| Unit Extensi                                          | Extension                               |       |                           |      | 3.0       | 3.0     | 3.0      | 3.                   | _    | 3.   | _    | 3.  | _     | 3.0                         | _                         | .0                 | 3.0          | 3.0   |          |
| The second of the second of the second                | /Bike/RTOR Volume                       |       |                           |      | 10        | 0       | 5        | 10                   |      | 0    |      | 5   | A     | 10                          |                           | )                  | 5            |       |          |
| Lane Width                                            | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - |       |                           |      | 12.0      | 12.0    | 12.0     | 12                   | .0   | 12.  | 0    | 12. | .0    | 12.0                        | 12                        | 2.0                | 12.0         | 12.0  |          |
| Parking/Gra                                           | de/Parkir                               | ng    | T                         | N    | 0         | N       | N        |                      | 0    | ٨    | 1    | N   |       | 0                           | 1                         | V                  | N            | 0     | Ν        |
| Parking/hr                                            |                                         |       |                           |      |           |         |          | Ĭ.                   |      |      |      |     |       |                             |                           |                    |              |       |          |
| Bus stops/hi                                          |                                         |       |                           | 0    | 0         | 0       | 0        | (                    | )    | 0    | (    | 0   | )     | 0                           |                           | 0                  | 0            | 0     |          |
| Unit Extensi                                          | on                                      |       |                           | 3.0  | 3.0       | 3.0     | 3.0      | 3.                   | 0    | 3.   | 0    | 3.  | 0     | 3.0                         | 3                         | .0                 | 3.0          | 3.0   |          |
| Phasing                                               | Excl. Le                                | eft T | hru 8                     | & RT | 03        | 3       | 04       |                      | E    | xcl. | Lef  | t   | Thru  | 1 & R                       | T                         |                    | 07           | 0     | 8        |
| Timing                                                | G = 19                                  |       | = 1                       |      | G =       |         | G =      |                      | _    | = 1  |      | _   | _     | 31.9                        | _                         | G =                |              | G =   |          |
| N                                                     | Y = 4.6                                 |       | = 5                       |      | Y =       |         | Y =      |                      | Υ    | = 5  | 5.3  |     | Y =   |                             | _                         | Y =                |              | Y =   |          |
| Duration of                                           |                                         |       |                           |      |           |         |          |                      |      |      |      | _   |       | e Len                       | gth                       | C =                | 99.5         |       |          |
| Lane Gro                                              | ир Сар                                  | acity |                           |      | l Dela    | y, an   |          | _                    | ete  | rm   | ina  | tic | _     |                             |                           |                    | •            |       |          |
|                                                       | 1-                                      |       |                           | EB   |           | I I     | WE       | 3                    |      |      |      |     | _     | NB                          |                           |                    | 7            | SB    | _        |
| Adj. flow rat                                         | Э                                       | 495   | 2                         | 42   | 221       | 268     | 153      |                      | 326  | 3    | 21   | 6   | 11    | 95                          | 616                       | 3                  | 458          | 853   |          |
| Lane group                                            | cap.                                    | 622   | 2                         | 71   | 495       | 320     | 271      | T                    | 495  | 5    | 38   | 7   | 11    | 02                          | 151                       | 3                  | 387          | 1102  |          |
| v/c ratio                                             |                                         | 0.80  | 0.                        | .89  | 0.45      | 0.84    | 0.56     |                      | 0.66 | 6    | 0.5  | 6   | 1.0   | 08                          | 0.4                       | 1                  | 1.18         | 0.77  | T        |
| Green ratio                                           |                                         | 0.18  | 0.                        | .15  | 0.32      | 0.18    | 0.15     |                      | 0.32 | 2    | 0.1  | 1   | 0.3   | 31                          | 0.5                       | 6                  | 0.11         | 0.31  |          |
| Unif. delay o                                         | 11                                      | 39.0  | _                         | 1.7  | 26.7      | 39.3    | 39.6     | _                    | 29.0 | )    | 41.  | 8   | 34    | .3                          | 12.                       | 5                  | 44.1         | 31.1  |          |
| Delay factor                                          |                                         | 0.34  | -                         | .42  | 0.11      | 0.37    | 0.16     | $\rightarrow$        | 0.23 |      | 0.1  | _   | 0.8   | _                           | 0.1                       | —                  | 0.50         | 0.32  |          |
| Increm. dela                                          |                                         | 7.1   | _                         | 8.9  | 0.6       | 17.5    | 2.7      | 1                    | 3.2  |      | 1.8  | -   | 53    | _                           | 0.2                       | _                  | 105.9        | 3.5   | +        |
| PF factor                                             |                                         | 1.000 | _                         |      | 0.968     | 1.000   | _        | ) (                  | 0.68 | _    | 0.9  | _   |       |                             | 0.15                      |                    | 0.915        | 0.700 | -        |
| Control dela                                          | V                                       | 46.1  | _                         | 0.6  | 26.5      | 56.8    | 42.3     |                      | 23.  |      | 40.  |     | 77    |                             | 2.1                       |                    | 146.4        | 25.3  |          |
|                                                       | ane group LOS D                         |       | _                         | E    | С         | E       | D        | $\exists$            | С    | _    | D    | _   | E     | _                           | A                         | _                  | F            | С     | +        |
|                                                       | pprch. delay                            |       |                           |      |           |         | 39.1     |                      |      |      | -    |     | 50.3  |                             |                           |                    |              | 67.6  |          |
| Approach LOS                                          |                                         |       |                           |      |           |         | D        |                      | =    |      |      |     | D     |                             |                           |                    |              | E     |          |
| Intersec. del                                         | 52.7                                    |       |                           |      |           | Îr      | nter     | sect                 | ion  | LO   | -    |     |       |                             |                           | D                  |              |       |          |
| HCS2000 <sup>TM</sup>                                 | ~,                                      |       | JL. 1                     |      | pyright © | 2000 11 |          | _                    |      | _    | -    | -   |       |                             |                           |                    |              |       | ersion 4 |

 $HCS2000^{\text{TM}}$ 

MIT: ADD 2ND NB RTO LANE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |       |          |                                |            | SHO       | ORT R        | EPC                               |              | 111      | (1)     | * 17 |                                 |           | RIVE                  | , , , , |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------|----------|--------------------------------|------------|-----------|--------------|-----------------------------------|--------------|----------|---------|------|---------------------------------|-----------|-----------------------|---------|----------|
| General Inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ormatio                        | n     |          |                                |            |           | Si           | te In                             | form         | atio     | n       |      |                                 |           |                       |         |          |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | med                            |       | U<br>08/ | ISAI<br>ISAI<br>'22/12<br>PEAK |            |           | Aı<br>Ju     | terse<br>rea T<br>urisdi<br>nalys | ype<br>ction |          |         | CEA  | MARI<br>All oti<br>ANSIDI<br>MI | TIGAT     | RD.<br>Pas<br>#14/WIT |         |          |
| Volume an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d Timin                        | g Inp | out      |                                |            |           |              |                                   |              |          |         |      |                                 |           |                       |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |       |          | LT                             | EB<br>TH   | RT        | LT           | WI<br>TH                          |              | RT       | L       | T    | NB<br>TH                        | RT        | LT                    | SB      | RT       |
| Num. of Lar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 188                            |       | -        | 2                              | 1          | 1         | 1            | 1                                 |              | 1        | 2       |      | 2                               | 2         | 2                     | 2       | 0        |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                            |       | _        | L                              | T          | R         | L            | T                                 | _            | R        | L       |      | T                               | R         | L                     | T       | -        |
| Volume (vp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h)                             | -     | -        | 531                            | 234        | 235       | 255          | 154                               |              | 18       | 25      |      | 1182                            | 585       | 439                   | 833     |          |
| % Heavy v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |       |          | 2                              | 2          | 2         | 2            | 2                                 |              | 2        | 2       | _    | 2                               | 2         | 2                     | 2       |          |
| PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |       |          | 0.95                           | 0.95       | 0.95      | 0.95         | 0.9                               | _            | 95       | 0.9     | _    | 0.95                            | 0.95      | 0.95                  | 0.95    |          |
| Actuated (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /A)                            |       |          | Α                              | Α          | Α         | Α            | A                                 |              | A        | A       |      | Α                               | Α         | Α                     | Α       | Α        |
| Startup lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | time                           |       |          | 3.0                            | 3.0        | 3.0       | 3.0          | 3.0                               | _            | 3.0      | 3.      | _    | 3.0                             | 3.0       | 3.0                   | 3.0     |          |
| Ext. eff. gre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | en                             |       |          | 2.0                            | 2.0        | 2.0       | 2.0          | 2.0                               | _            | 2.0      | 2.      |      | 2.0                             | 2.0       | 2.0                   | 2.0     |          |
| Arrival type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extension                      |       |          |                                | 4          | 4         | 4            | 4                                 | _            | 5        | 5       | _    | 5                               | 5         | 5                     | 5       |          |
| Date of Disputer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d/Bike/RTOR Volume             |       |          | 3.0                            | 3.0        | 3.0       | 3.0          | 3.0                               |              | 3.0      | 3.      |      | 3.0                             | 3.0       | 3.0                   | 3.0     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne Width                       |       |          | 5                              | 10         | 0         | 5            | 10                                | _            | 0        | 5       | _    | 10                              | 0         | 5                     | 40.0    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne Width<br>king/Grade/Parking |       |          | 12.0<br>N                      | 12.0       | 12.0<br>N | 12.0<br>N    | 12.0                              | _            | 2.0<br>N | 12<br>1 | _    | 12.0<br>0                       | 12.0<br>N | 12.0<br>N             | 12.0    | N        |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                |       |          | /V                             | U          | 11        | IN           | 0                                 | +            | 7.       | -       |      | U                               | 114       | - IV                  | -       | 14       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | king/Grade/Parking             |       |          | 0                              | 0          | 0         | 0            | 0                                 |              | 0        | 0       | )    | 0                               | 0         | 0                     | 0       | 1        |
| Unit Extens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |       |          | 3.0                            | 3.0        | 3.0       | 3.0          | 3.0                               | _            | 3.0      | 3.      |      | 3.0                             | 3.0       | 3.0                   | 3.0     |          |
| Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Excl. L                        | eft   | Thru     | & RT                           | 03         |           | 04           | 1                                 |              | l. Le    | _       | Year | u & R                           |           | 07                    | -80.60  | 8        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G = 16                         |       |          | 15.5                           | G =        |           | G =          |                                   | G =          | _        | -       | _    | 33.0                            | G =       |                       | G=      |          |
| Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y = 4.                         |       | Y =      |                                | Y =        |           | Y =          |                                   | Y =          |          |         |      | 5.7                             | Y =       |                       | Y =     |          |
| Duration of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analysis                       | (hrs  | ) = 0.   | 25                             |            |           |              |                                   |              |          |         | Сус  | le Len                          | gth C =   | 99.5                  |         |          |
| Lane Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | up Cap                         | oaci  | ty, C    | Contro                         | ol Dela    | ay, ar    | nd LOS       | S De                              | terr         | nin      | atio    | on   |                                 |           |                       |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |       |          | EB                             |            |           | WE           | 3                                 |              |          |         | Ð    | NB                              |           | 1                     | SB      |          |
| Adj. flow rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :e                             | 55    | 59       | 246                            | 247        | 268       | 162          | 3                                 | 35           | 27       | 1       | 12   | 244                             | 616       | 462                   | 877     | 1        |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | сар.                           | 54    | 16       | 271                            | 512        | 281       | 271          | 5                                 | 12           | 42       | 25      | 1:   | 141                             | 1483      | 425                   | 1141    | 1        |
| v/c ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | 1.0   | 02       | 0.91                           | 0.48       | 0.95      | 0.60         | 0                                 | .65          | 0.6      | 64      | 1.   | .09                             | 0.42      | 1.09                  | 0.77    |          |
| Green ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 0.    | 16       | 0.15                           | 0.33       | 0.16      | 0.15         | 0                                 | .33          | 0.1      | 12      | 0.   | .32                             | 0.55      | 0.12                  | 0.32    |          |
| Unif. delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d1                             | 41    | .9       | 41.8                           | 26.4       | 41.5      | 39.8         | 2                                 | 8.3          | 41       | .5      | 3.   | 3.8                             | 13.2      | 43.6                  | 30.4    |          |
| Delay factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 0.    | 50       | 0.43                           | 0.11       | 0.46      | 0.19         | 0                                 | .23          | 0.2      | 22      | 0.   | .50                             | 0.11      | 0.50                  | 0.32    |          |
| Increm. dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ay d2                          | 44    | 1.7      | 31.7                           | 0.7        | 41.2      | 3.6          | 1                                 | 3.0          | 3.       | 2       | 5    | 4.8                             | 0.2       | 69.1                  | 3.2     |          |
| PF factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | _     |          | 1.000                          | 0.959      | 1.000     | _            | 0.                                | 668          | 0.9      | 06      | -    | -                               | 0.193     | 0.906                 | 0.684   | 4        |
| Control dela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ay                             | -     | 5.5      | 73.6                           | 26.0       | 82.6      | 43.4         | 2                                 | 1.9          | 40       | .8      | 7    | 7.8                             | 2.7       | 108.6                 | 24.0    |          |
| Lane group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | F     |          | E                              | С          | F         | D            | _                                 | С            | L        |         | -    | E                               | Α         | F                     | С       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |       | 69       |                                |            |           | 47.7         |                                   |              |          | 0       | 51.4 | 1                               |           |                       | 53.2    |          |
| Approach LOS E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |       |          |                                |            | D         | -            |                                   |              |          | D       |      |                                 |           | D                     |         |          |
| Intersec. delay 54.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |       |          |                                | 13         |           | Int          | erse                              | ction        | LO       | -       |      |                                 | 1         | D                     |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntersec. delay                 |       |          |                                | opyright C | 2000 11   | niversity of |                                   |              |          |         | -    |                                 |           | 1                     | _       | ersion 4 |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                       |                                                |                             |                 | SI                 | HOR   | RT R            | EPC                                | R           | T             |                                                  |    |                                           |                   |                       |                        |            |              |
|------------------------------------------------------|---------------------------------------|------------------------------------------------|-----------------------------|-----------------|--------------------|-------|-----------------|------------------------------------|-------------|---------------|--------------------------------------------------|----|-------------------------------------------|-------------------|-----------------------|------------------------|------------|--------------|
| General Inf                                          | formation                             |                                                |                             |                 |                    |       |                 | ite In                             |             |               | on                                               |    |                                           |                   |                       |                        |            |              |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                                   | U.<br>05/0                                     | SAI<br>SAI<br>01/12<br>PEAK |                 |                    |       | A<br>Ji         | nterse<br>rea T<br>urisdi<br>nalys | ype<br>ctio | e<br>n        | В                                                | c  | COLLE<br>CARLS<br>All ot<br>ARLSE<br>ALT2 | SB)<br>hei<br>SAi | AD \<br>r are<br>D-IN | /ILL.<br>eas<br>IT.#15 | :T         |              |
| Volume an                                            | nd Timing In                          | put                                            |                             |                 |                    |       |                 |                                    |             |               |                                                  |    |                                           |                   |                       |                        |            |              |
|                                                      |                                       |                                                |                             | EB              |                    | _     | , _             | WE                                 |             |               | <del>                                     </del> | ,  | NB                                        | r r               | <u> </u>              |                        | SB         | I DT         |
| Num. of Lar                                          | 200                                   |                                                | LT<br>1                     | TH<br>1         | R1                 |       | <u>LT</u><br>1  | TH<br>1                            | +           | RT<br>0       | LT<br>1                                          |    | TH<br>2                                   | -                 | RT<br>0               | LT<br>1                | TH<br>2    | RT<br>0      |
|                                                      |                                       |                                                | L                           | LT              | R                  | -     | <u>'</u><br>L   | TR                                 | +           |               | $\frac{1}{L}$                                    |    | TR                                        | H                 |                       | L                      | TR         | ╁┷           |
| Lane group<br>Volume (vp                             |                                       |                                                | 400                         | 5               | 75                 |       | 5               | 10                                 | +           | 15            | 65                                               |    | 595                                       | <u> </u>          | 5                     | 5                      | 1380       | 420          |
| % Heavy v                                            |                                       |                                                | 1                           | 1               | 10                 |       | 1               | 10                                 | +           | 1             | 1                                                |    | 2                                         |                   | <u>.</u><br>1         | 1                      | 2          | 1            |
| PHF                                                  | OII                                   |                                                | 0.95                        | 0.95            | 0.9                | 5 0   | .95             | 0.95                               | 0           | ).95          | 0.98                                             | 5  | 0.95                                      |                   | 95                    | 0.95                   | 0.95       | 0.95         |
| Actuated (P                                          | P/A)                                  |                                                | Α                           | Α               | Α                  |       | Α               | Α                                  |             | Α             | Α                                                |    | Α                                         |                   | 4                     | Α                      | Α          | Α            |
| Startup lost                                         | <del> </del>                          |                                                | 2.0                         | 2.0             | 2.0                |       | 2.0             | 2.0                                | Ţ           |               | 2.0                                              | _  | 2.0                                       | 匚                 |                       | 2.0                    | 2.0        |              |
| Ext. eff. gre                                        | en                                    |                                                | 2.0                         | 2.0             | 2.0                |       | 2.0             | 2.0                                | +           |               | 2.0                                              |    | 2.0                                       | $\vdash$          |                       | 2.0                    | 2.0        |              |
| Arrival type<br>Unit Extens                          | !a-                                   |                                                | 3.0                         | <i>4</i><br>3.0 | 3.0                |       | <u>4</u><br>3.0 | 3.0                                | +           |               | 3.0                                              | _  | 5<br>3.0                                  | -                 |                       | 5<br>3.0               | 5<br>3.0   | ├            |
|                                                      | TOR Volume                            | `                                              | 5                           | 5               | 0                  |       | 5               | 5                                  | +           | 0             | 5.0                                              |    | 5                                         | ١,                | )                     | 5                      | 5          | 150          |
| Lane Width                                           |                                       | <u>,                                      </u> | 12.0                        | 12.0            | 12.0               | _     | 2.0             | 12.0                               | +           | <u> </u>      | 12.0                                             | )  | 12.0                                      | H                 |                       | 12.0                   | 12.0       | 1.00         |
| Parking/Gra                                          | ade/Parking                           |                                                | N                           | 0               | N                  |       | N               | 0                                  | 十           | Ν             | N                                                |    | 0                                         | 7                 | V                     | N                      | 0          | N            |
| Parking/hr                                           |                                       |                                                |                             |                 |                    |       |                 |                                    |             |               |                                                  |    |                                           |                   |                       |                        |            |              |
| Bus stops/h                                          | ır                                    |                                                | 0                           | 0               | 0                  |       | 0               | 0                                  | T           |               | 0                                                |    | 0                                         |                   |                       | 0                      | 0          |              |
| Unit Extens                                          | ion                                   |                                                | 3.0                         | 3.0             | 3.0                | 3     | 3.0             | 3.0                                |             |               | 3.0                                              | )  | 3.0                                       |                   |                       | 3.0                    | 3.0        |              |
| Phasing                                              | EB Only                               |                                                | Perm                        | 03              | 3                  |       | 04              |                                    |             | cl. L         |                                                  |    | ru & R                                    |                   |                       | 07                     |            | 08           |
| Timing                                               | G = 17.0                              | G =                                            |                             | G =             |                    | G     |                 |                                    |             | = 13          |                                                  |    | = 60.0<br>= 5                             | 4                 | G =<br>Y =            |                        | G =<br>Y = |              |
| Duration of                                          | Y = 5<br>Analysis (hrs                | Y = 0.3                                        |                             | Y =             |                    | Υ:    | =               |                                    | Y =         | - <u>5</u>    |                                                  |    | le Len                                    | ath               |                       |                        |            |              |
|                                                      | up Capac                              |                                                |                             | l Dela          | av :               | and   | LOS             | S De                               | ter         | rmir          |                                                  | _  | JO LON                                    | 9.1               |                       | 120.                   |            |              |
| Lane Gro                                             | up Capac                              | l July 1                                       | EB                          | n Dele          | <del>, y , .</del> | una   |                 | VB                                 |             | T             | iacio                                            | •  | NB                                        |                   |                       |                        | SB         |              |
| Adj. flow rat                                        |                                       | 211                                            | 215                         | 79              | -                  | 5     |                 | 27                                 | Т           |               | 68                                               | Т  | 631                                       | Т                 |                       | 5                      | 1737       |              |
| Lane group                                           |                                       | 405                                            | 400                         | 220             | +                  | 147   | -               | 39                                 | t           | $\dashv$      | 194                                              |    | 1771                                      | ╁                 |                       | 194                    | 1725       | <del> </del> |
| v/c ratio                                            | · · · · · · · · · · · · · · · · · · · | 0.52                                           | 0.54                        | 0.36            | _                  | 0.03  | -               | 19                                 | t           | $\overline{}$ | 0.35                                             | -  | 0.36                                      | t                 |                       | 0.03                   | 1.01       | +            |
| Green ratio                                          |                                       | 0.27                                           | 0.27                        | 0.14            | _                  | 0.08  | <del></del>     | 08                                 | 十           | _             | 0.11                                             | -  | 0.50                                      | t                 |                       | 0.11                   | 0.50       | +            |
| Unif. delay                                          |                                       | 36.6                                           | 37.7                        | 46.6            | -                  | 50.6  | ——              | 1.2                                | T           | -             | 49.6                                             | ┪  | 18.3                                      | $\dagger$         |                       | 47.8                   | 30.0       | +-           |
| Delay factor                                         |                                       | 0.13                                           | 0.14                        | 0.11            | -+                 | 0.11  | <del></del>     | .11                                | T           | 7             | 0.11                                             | -  | 0.11                                      | t                 |                       | 0.11                   | 0.50       | +-           |
| Increm. dela                                         |                                       | 1.2                                            | 1.4                         | 1.0             | -                  | 0.1   | -               | ).7                                | T           | 十             | 1.1                                              | +  | 0.1                                       | T                 |                       | 0.1                    | 23.4       | $\top$       |
| PF factor                                            |                                       | 1.000                                          | 1.000                       | 1.00            | 0 1                | .000  | 1.0             | 000                                | T           | C             | 0.919                                            | 7  | 0.333                                     | T                 |                       | 0.919                  | 0.333      | 1            |
| Control dela                                         | ау                                    | 37.9                                           | 39.1                        | 47.6            | 3 5                | 50.7  | 5               | 1.9                                | T           | 1             | 46.7                                             | 1  | 6.2                                       | T                 |                       | 44.0                   | 33.4       |              |
| Lane group                                           | LOS                                   | D                                              | D                           | D               |                    | D     |                 | D                                  |             |               | D                                                | 7  | Α                                         | 1                 |                       | D                      | С          |              |
| Apprch. del                                          | ay                                    | 3                                              | 9.9                         | <u>-</u>        | $\Box$             |       | 51.7            |                                    |             |               |                                                  | 10 | .1                                        |                   |                       |                        | 33.4       |              |
| Approach L                                           | os                                    |                                                | D                           |                 |                    |       | D               | •                                  | ,           |               |                                                  | Ε  | 3                                         |                   |                       |                        | С          |              |
| Intersec. de                                         | elay                                  | 2                                              | 9.2                         |                 |                    |       |                 | In                                 | ters        | secti         | on LC                                            | S  |                                           |                   |                       |                        | С          |              |
| HCS2000 <sup>TM</sup>                                |                                       | -                                              | C                           | opyright ©      | 2000               | Unive | rsity of        | f Florida                          | ı. A11      | Rights        | s Reserv                                         | ed |                                           |                   |                       |                        | 7          | ersion 4.1   |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |              |            |                             |             | SI       | HOR      | ΓR        | EPC                                  | R           | Т        |          |          |                                            |                                                  |                    |                     |          |            |
|------------------------------------------------------|--------------|------------|-----------------------------|-------------|----------|----------|-----------|--------------------------------------|-------------|----------|----------|----------|--------------------------------------------|--------------------------------------------------|--------------------|---------------------|----------|------------|
| General Inf                                          | ormation     |            |                             |             |          |          | S         | ite In                               | for         | mati     | on       |          |                                            |                                                  |                    |                     |          |            |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med          | U.<br>05/0 | SAI<br>SAI<br>01/12<br>PEAK |             |          |          | A<br>Ji   | nterse<br>.rea T<br>urisdi<br>.nalys | ype<br>ctio | e<br>n   | В        | C        | COLLE<br>CARLS<br>All ot<br>CARLS<br>ALT2/ | SBAL<br>ther a<br>BAD-                           | D V<br>area<br>INT | ILL.<br>as<br>T.#15 | CT       |            |
| Volume an                                            | d Timing In  | put        |                             |             |          | <u>-</u> |           |                                      |             |          |          |          |                                            |                                                  | ,                  |                     |          |            |
|                                                      |              |            |                             | EB          |          |          |           | WB                                   |             |          |          |          | NB                                         |                                                  |                    |                     | SB       |            |
|                                                      |              |            | LT                          | TH          | R        |          | <u>.T</u> | TH                                   | 4           | RT       | <u> </u> | Γ        | TH                                         | RT                                               | 4                  | LT                  | TH       | RT         |
| Num. of Lar                                          | nes          |            | 1                           | 1           | 1        | 1        | '         | 1                                    |             | 0        | 1        |          | 2                                          | 0                                                |                    | 1                   | 2        | 0          |
| Lane group                                           |              |            | L                           | ĹT          | R        | L        |           | TR                                   |             |          | L        |          | TR                                         |                                                  |                    | L                   | TR       |            |
| Volume (vpi                                          |              |            | 408                         | 5           | 75       |          |           | 10                                   |             | 15       | 65       | 5        | 613                                        | 5                                                |                    | 5                   | 1429     | 444        |
| % Heavy v                                            | <u>eh</u>    |            | 1                           | 1           | 1        | 1        |           | 1                                    |             | 1        | 1        | _        | 2                                          | 1                                                | 4                  | 1                   | 2        | 1          |
| PHF<br>Actuated (P                                   | /A)          |            | 0.95                        | 0.95        | 0.9      |          |           | 0.95                                 | (           | ).95     | 0.9      | 5        | 0.95                                       | 0.95                                             | 7                  | 0.95                | 0.95     | 0.95       |
| Startup lost                                         |              |            | A<br>2.0                    | A<br>2.0    | 2.0      | A 2.     | _         | A<br>2.0                             | +           | Α        | 2.0      | 7        | A<br>2.0                                   | Α                                                | +                  | A<br>2.0            | A<br>2.0 | Α          |
| Ext. eff. gre                                        |              |            | 2.0                         | 2.0         | 2.0      | _        |           | 2.0                                  | $\dagger$   |          | 2.0      |          | 2.0                                        |                                                  | $\dashv$           | 2.0                 | 2.0      |            |
| Arrival type                                         |              |            | 4                           | 4           | 4        | 4        |           | 4                                    | T           |          | 5        |          | 5                                          |                                                  |                    | 5                   | 5        |            |
| Unit Extens                                          | ion          |            | 3.0                         | 3.0         | 3.0      | 3.0      | 0         | 3.0                                  | T           |          | 3.0      | )        | 3.0                                        |                                                  | T                  | 3.0                 | 3.0      |            |
| Ped/Bike/R                                           | TOR Volume   | )          | 5                           | 5           | 0        | 5        | i         | 5                                    |             | 0        | 5        |          | 5                                          | 0                                                |                    | 5                   | 5        | 150        |
| Lane Width                                           |              | ·          | 12.0                        | 12.0        | 12.0     | ) 12.    | .0        | 12.0                                 |             |          | 12.      | 0        | 12.0                                       |                                                  |                    | 12.0                | 12.0     |            |
| Parking/Gra                                          | de/Parking   |            | N                           | 0           | Ν        | Λ        | 1         | 0                                    |             | N        | N        |          | 0                                          | N                                                |                    | Ν                   | 0        | N          |
| Parking/hr                                           |              |            |                             |             |          |          |           |                                      |             |          |          |          |                                            |                                                  |                    | •                   |          |            |
| Bus stops/h                                          | Γ            |            | 0                           | 0           | 0        | 0        | )         | 0                                    |             |          | 0        |          | 0                                          |                                                  |                    | 0                   | 0        |            |
| Unit Extens                                          | ion          |            | 3.0                         | 3.0         | 3.0      | 3.6      | 0         | 3.0                                  |             |          | 3.0      | )        | 3.0                                        |                                                  |                    | 3.0                 | 3.0      |            |
| Phasing                                              | EB Only      |            | Perm                        | 00          | 3        |          | 04        |                                      |             | cl. L    |          | _        | ıru & R                                    |                                                  |                    | )7                  |          | )8         |
| Timing                                               | G = 17.0     | G =        |                             | =<br>G      |          | G =      |           |                                      |             | = 13     | .0       |          | = 60.0                                     |                                                  | i =                |                     | G =      |            |
| -                                                    | Y = 5        | Y = 3      |                             | Υ=          |          | Y =      |           |                                      | Y =         | = 5      |          |          | = 5                                        |                                                  | =                  | 420.4               | Y =      |            |
| Duration of                                          |              |            |                             | I Dala      |          | 1        |           | - D -                                | 4           |          |          | _        | cle Len                                    | gtn C                                            | , =                | 120.0               | ,        |            |
| Lane Gro                                             | up Capac     | ity, C     |                             | Dela        | ay, a    | ana L    |           |                                      | ter         | mir      | iatio    | חכ       |                                            |                                                  | $\overline{}$      |                     |          |            |
| A 11 A1 .                                            |              |            | EB                          | <del></del> |          |          | _         | VB                                   | _           | $\dashv$ |          | _        | NB                                         | _                                                | 4                  |                     | SB       |            |
| Adj. flow rat                                        |              | 215        | 219                         | 79          | _        | 5        | ┿         | 27                                   | L           | -        | 68       | 4        | 650                                        | _                                                | 4                  | 5                   | 1813     |            |
| Lane group                                           | сар.         | 405        | 400                         | 220         | '        | 147      | 1:        | 39                                   |             |          | 194      | $\Box$   | 1771                                       |                                                  | $\perp$            | 194                 | 1723     |            |
| v/c ratio                                            |              | 0.53       | 0.55                        | 0.36        | 3 (      | 0.03     | 0.        | 19                                   |             |          | 0.35     | ١        | 0.37                                       |                                                  | - [                | 0.03                | 1.05     |            |
| Green ratio                                          |              | 0.27       | 0.27                        | 0.14        | 1        | 0.08     | 0.        | 08                                   |             | (        | ).11     |          | 0.50                                       |                                                  | 7                  | 0.11                | 0.50     |            |
| Unif. delay o                                        | 11           | 36.7       | 37.8                        | 46.6        | 3 8      | 50.6     | 51        | 1.2                                  | Г           | 4        | 19.6     | 1        | 18.4                                       |                                                  | 7                  | 47.8                | 30.0     |            |
| Delay factor                                         | k            | 0.13       | 0.15                        | 0.11        | 1        | ).11     | 0.        | 11                                   |             |          | 0.11     | 1        | 0.11                                       | <del>                                     </del> | 7                  | 0.11                | 0.50     | †          |
| Increm. dela                                         |              | 1.3        | 1.6                         | 1.0         | 十        | 0.1      | 0         | .7                                   | Т           | 十        | 1.1      | $\dashv$ | 0.1                                        |                                                  | 十                  | 0.1                 | 36.9     | 1          |
| PF factor                                            | <del>-</del> | 1.000      | 1.000                       |             | -        | .000     | +-        | 000                                  | Т           | -        | .919     | 7        | 0.333                                      |                                                  | -                  | 0.919               | 0.333    |            |
| Control dela                                         | ıy           | 38.1       | 39.4                        | 47.6        | 3 5      | 0.7      | 51        | 1.9                                  |             | 4        | 16.7     | 7        | 6.3                                        | <del>                                     </del> | 7                  | 44.0                | 46.9     | 1          |
| Lane group                                           | LOS          | D          | D                           | D           | 十        | D        | ı         | D                                    | Г           | _        | D        | 7        | Α                                          | 1                                                | +                  | D                   | D        |            |
| Apprch. dela                                         | •            | -          | 0.1                         | <u> </u>    | <u> </u> | 5        | 1.7       |                                      |             | 十        |          | 10       | ).1                                        |                                                  | 十                  |                     | 46.9     |            |
| Approach L                                           |              |            | D                           |             | 十        |          | D         |                                      |             | 十        |          | Ε        |                                            |                                                  | 十                  |                     | D ·      |            |
| Intersec. de                                         |              | 3          | 7.2                         |             | 十        |          |           | In                                   | ters        | ection   | on LO    |          |                                            |                                                  | 十                  |                     | D        |            |
| HC\$2000TM                                           |              | 1          | Co                          | nurioht @   | 2000     | Universi | tr of     |                                      |             |          |          |          |                                            |                                                  | L                  |                     |          | ersion 4.1 |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |              |              |                             |           | SI        | IORT     | ۲R  | EPO                                   | R           | Г        |             |           |                          |                                                  |                                                  |              |              |
|------------------------------------------------------|--------------|--------------|-----------------------------|-----------|-----------|----------|-----|---------------------------------------|-------------|----------|-------------|-----------|--------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------|
| General Inf                                          | ormation     |              |                             |           |           |          | s   | ite In                                | fori        | mati     | on          |           |                          |                                                  |                                                  |              |              |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med          | U.<br>05/0   | SAI<br>SAI<br>01/12<br>PEAK |           |           |          | A   | nterse<br>rea Ty<br>urisdio<br>nalysi | ype<br>ctio | n        | E           | C         | CARLS<br>All of<br>ARLSE | SBAD<br>her a<br>BAD-l                           |                                                  | e <b>r</b>   |              |
| Volume an                                            | d Timing In  | put          |                             |           |           |          |     |                                       |             |          |             |           |                          |                                                  |                                                  |              |              |
|                                                      |              |              |                             | EB        |           |          | _   | WB                                    |             |          | <u> </u>    |           | NB                       |                                                  | <b>-</b>                                         | SB           | T ==         |
| Num, of Lar                                          | nes          |              | _ LT<br>                    | TH<br>1   | R1<br>1   | 1 L      |     | TH<br>1                               | +           | RT<br>0  | <u>L</u>    |           | TH<br>2                  | RT<br>0                                          | LT<br>1                                          | TH<br>2      | RT<br>0      |
| Lane group                                           |              |              | L                           | LT        | R         |          |     | TR                                    | ╅           |          | 1           |           | TR                       | <u> </u>                                         | $\frac{1}{L}$                                    | TR           | <del>ٺ</del> |
| Volume (vpl                                          | h)           |              | 425                         | 10        | 60        | 5        |     | 5                                     | +           | 15       | 15          | 5         | 1555                     | 5                                                | 15                                               | 950          | 400          |
| % Heavy v                                            |              |              | 1                           | 1         | 1         | 1        |     | 1                                     | +           | 1        | 1           | _         | 2                        | 1                                                | 1 1                                              | 2            | 1            |
| PHF                                                  |              |              | 0.95                        | 0.95      | 0.98      |          |     | 0.95                                  | 0           | ).95     | 0.9         | 5         | 0.95                     | 0.95                                             | 0.95                                             | 0.95         | 0.95         |
| Actuated (P                                          | /A)          |              | Α                           | Α         | Α         | Α        |     | Α                                     | _           | Α        | Α           |           | Α                        | Α                                                | Α                                                | Α            | Α            |
| Startup lost                                         |              |              | 2.0                         | 2.0       | 2.0       |          |     | 2.0                                   |             |          | 2.0         |           | 2.0                      |                                                  | 2.0                                              | 2.0          |              |
| Ext. eff. gre                                        | en           |              | 2.0                         | 2.0       | 2.0       |          |     | 2.0                                   | 4           |          | 2.0         | )         | 2.0                      | ļ                                                | 2.0                                              | 2.0          | <b></b>      |
| Arrival type<br>Unit Extensi                         |              |              | 4                           | 4         | 4         | 4        |     | 4                                     | +           |          | 5           | _         | 5                        |                                                  | 5                                                | 5            | <u> </u>     |
| Ped/Bike/R                                           |              | ,            | 3.0<br>5                    | 3.0<br>5  | 3.0<br>0  | 3.0<br>5 |     | 3.0<br>5                              | ┿           | 0        | 3.0         | ,         | 3.0<br>5                 | 0                                                | 3.0                                              | 3.0<br>5     | 150          |
| Lane Width                                           | TOR VOIUITIE | <del>}</del> | 12.0                        | 5<br>12.0 | 12.0      | _        |     | 12.0                                  | ╁           | U        | 12.         | 0         | 12.0                     | 0                                                | 12.0                                             | 12.0         | 150          |
| Parking/Gra                                          | de/Parking   |              | N                           | 0         | Ν         | N        |     | 0                                     | $\dagger$   | N        | N           |           | 0                        | Ν                                                | N                                                | 0            | N            |
| Parking/hr                                           |              |              |                             |           |           |          |     |                                       |             |          |             |           |                          |                                                  |                                                  |              |              |
| Bus stops/h                                          | r            |              | 0                           | 0         | 0         | 0        |     | 0                                     | ┪           |          | 0           |           | 0                        |                                                  | 0                                                | 0            |              |
| Unit Extensi                                         | ion          |              | 3.0                         | 3.0       | 3.0       | 3.0      | )   | 3.0                                   |             |          | 3.0         | )         | 3.0                      |                                                  | 3.0                                              | 3.0          |              |
| Phasing                                              | EB Only      | EW           | Perm                        | 03        | }         |          | 04  |                                       | Ex          | cl. L    | eft         | Th        | ru & R1                  | r                                                | 07                                               |              | 08           |
| Timing                                               | G = 17.0     | G =          |                             | G =       |           | G≔       |     |                                       |             | - 14     |             |           | = 59.0                   | G                                                |                                                  | G =          |              |
|                                                      | Y = 5        | Y = 0.3      |                             | Υ =       |           | Y =      |     |                                       | Y =         | : 5      | _           |           | = 5                      | Y                                                |                                                  | Y =          |              |
|                                                      | Analysis (hr |              |                             | I Dolo    |           | nad I    |     | S Do                                  | tor         | mair     |             |           | le Lenç                  | jin C                                            | - 120 <i>.</i>                                   | 0            |              |
| Lane Gro                                             | up Capac     | ity, C       | EB                          | Dela      | T, i      | and L    |     | VB                                    | ter         | 11111    | iauc        | 7[]       | NB                       |                                                  | Т                                                | SB           |              |
| Adi flow rot                                         | ^            | 224          | 234                         | 63        | -         | 5        |     | vБ<br>?1                              | Π           | +        | 460         | _         |                          | Г                                                | 16                                               |              | <del></del>  |
| Adj. flow rat<br>Lane group                          |              | 410          | 406                         | 220       | +         | 5<br>147 | +   | 34                                    | _           | -+       | 163<br>208  | -         | 1642<br>1743             |                                                  | 16<br>208                                        | 1263<br>1682 |              |
| v/c ratio                                            | сар.         | 0.55         | 0.58                        | 0.29      | -         | 0.03     | -   | 16                                    |             |          | 208<br>2.78 | +         | 0.94                     | <del> </del>                                     | 0.08                                             | 0.75         |              |
| Green ratio                                          |              | 0.27         | 0.38                        | 0.29      |           | 0.08     | +   | 08                                    | -           |          | 0.12        | -+        | 0.49                     | <b> </b>                                         | 0.12                                             | 0.79         |              |
| Unif. delay o                                        | <del></del>  | 36.9         | 38.1                        | 46.1      | -         | 50.6     | ╌   | 1.1                                   |             | -+       | 51.5        | +         | 28.9                     |                                                  | 47.2                                             | 24.6         |              |
| Delay factor                                         |              | 0.15         | 0.17                        | 0.11      | -         | ).11     | +   | 11                                    |             | -+       | 0.33        | +         | 0.45                     |                                                  | 0.11                                             | 0.31         |              |
| -                                                    | •            | 1.5          | 2.0                         | 0.77      |           | 0,1      | -   | .5                                    | $\vdash$    | _        | 17.6        | -         | 10.8                     | <del>                                     </del> | 0.2                                              | 1.9          | _            |
| PF factor                                            | <del>`</del> |              |                             | _         | -         | .000     |     | 200                                   | $\vdash$    | _        | 0.912       | -         | 0.355                    | $\vdash$                                         | 0.912                                            | 0.355        | <u> </u>     |
| Control dela                                         | ıv           | 38.5         | 1.000<br>40.2               | 46.8      |           | 50.7     | ₩   | 1.6                                   |             |          | 54.6        | +         | 21.1                     |                                                  | 43.2                                             | 10.7         |              |
| Lane group                                           | •            | D            | D                           | D         | ╁         | D        | ┿   | )                                     |             | +        | E           | $\dagger$ | C                        |                                                  | D                                                | В            | 1            |
| Apprch. dela                                         |              |              | 0.2                         |           | $\dagger$ |          | 1.4 |                                       |             | $\dashv$ |             | <br>25    |                          |                                                  | <del>                                     </del> | 11.1         |              |
| Approach Lo                                          |              |              | D                           | ·         | 十         |          | D   |                                       |             | $\dashv$ |             | C         |                          |                                                  | 1                                                | В            | •            |
| Intersec. de                                         |              |              | $\dagger$                   |           |           | Int      | ers | ection                                | on LO       |          |             |           |                          | С                                                |                                                  |              |              |
| HC\$2000 <sup>TM</sup>                               | -            | 2.           | nvright ©                   | 2000      | T Induced | rr o F   |     |                                       |             |          |             |           |                          | -                                                |                                                  | ersion 4.1   |              |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                   | <u> </u>     |                             |          | S            | HOF         | RT R           | EPC                                  | R           | T       |               |               |               |                             |              |          |                                                  |
|------------------------------------------------------|-----------------------------------|--------------|-----------------------------|----------|--------------|-------------|----------------|--------------------------------------|-------------|---------|---------------|---------------|---------------|-----------------------------|--------------|----------|--------------------------------------------------|
| General Inf                                          | ormation                          |              |                             |          |              |             |                | ite In                               |             |         | ion           |               |               |                             |              |          |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med                               | U:<br>05/0   | SAI<br>SAI<br>01/12<br>PEAK |          |              |             | A<br>J         | nterse<br>krea T<br>urisdi<br>knalys | ypo<br>ctic | e<br>on | Б             | c             | ARLSE         | SBAD \<br>her are<br>SAD-IN | /ILL.<br>eas | OT.      |                                                  |
| Volume an                                            | ıd Timing In                      | put          |                             |          |              |             |                |                                      |             |         |               |               |               |                             |              |          |                                                  |
| ŀ                                                    |                                   |              |                             | EB       |              | _           |                | WE                                   | 3           |         | +-            | _             | NB            |                             |              | SB       | L DŦ                                             |
| Num. of Lar                                          | nes                               |              | LT<br>1                     | TH<br>1  | R'           | _           | <u>LT</u><br>1 | TH<br>1                              | $\dashv$    | RT<br>0 | L<br>  1      |               | TH<br>2       | RT<br>0                     | LT<br>1      | TH<br>2  | RT<br>0                                          |
|                                                      | 100                               |              | L                           | LT       | R            | _           | ·<br>L         | TR                                   | $\dashv$    |         | $\frac{1}{i}$ |               | TR            |                             | L            | TR       | ۰                                                |
| Lane group<br>Volume (vpl                            | h)                                |              | 451                         | 10       | 60           |             | 5              | 5                                    | +           | 15      | 15            |               | 1609          | 5                           | 15           | 976      | 413                                              |
| % Heavy v                                            |                                   |              | 1                           | 1        | 1            | <del></del> | 1              | 1                                    | ╅           | 1       | 1             |               | 2             | 1                           | 1            | 2        | 1                                                |
| PHF                                                  | 011                               |              | 0.95                        | 0.95     | 0.9          | 5 0         | 0.95           | 0.95                                 |             | 0.95    | 0.9           |               | 0.95          | 0.95                        | 0.95         | 0.95     | 0.95                                             |
| Actuated (P                                          | /A)                               |              | Α                           | Α        | Α            |             | Α              | Α                                    | 丁           | Α       | 1             |               | Α             | A                           | Α            | Α        | Α                                                |
| Startup lost                                         |                                   |              | 2.0                         | 2.0      | 2.0          |             | 2.0            | 2.0                                  |             |         | 2.            |               | 2.0           |                             | 2.0          | 2.0      |                                                  |
| Ext. eff. gree                                       | en                                |              | 2.0                         | 2.0      | 2.0          |             | 2.0            | 2.0                                  | 4           |         | 2.            |               | 2.0           |                             | 2.0          | 2.0      | <del>                                     </del> |
| Arrival type                                         |                                   |              | 4                           | 4        | 4            |             | 4              | 4                                    | +           |         | 5             |               | 5             |                             | 5<br>3.0     | 5<br>3.0 | <del>                                     </del> |
| Unit Extensi                                         | ion<br>TOR Volume                 |              | 3.0<br>5                    | 3.0<br>5 | 3.0<br>0     | <u> </u>    | 3.0<br>5       | 3.0<br>5                             | +           | 0       | 3.<br>5       |               | 3.0<br>5      | 0                           | 5.0          | 5.0      | 150                                              |
| Lane Width                                           | TOR Volume                        | <del>)</del> | 12.0                        | 12.0     | 12.          | 0 1         | 2.0            | 12.0                                 | $\dagger$   |         | 12            |               | 12.0          | U                           | 12.0         | 12.0     | 130                                              |
| Parking/Gra                                          | de/Parking                        |              | N                           | 0        | N            | -+          | N              | 0                                    | 1           | Ν       | ^             |               | 0             | N                           | N            | 0        | N                                                |
| Parking/hr                                           |                                   |              |                             |          |              |             |                |                                      |             |         |               |               |               |                             |              |          |                                                  |
| Bus stops/h                                          | r                                 |              | 0                           | 0        | 0            |             | 0              | 0                                    |             |         | (             | )             | 0             |                             | 0            | 0        |                                                  |
| Unit Extensi                                         | ion                               |              | 3.0                         | 3.0      | 3.0          | ) ;         | 3.0            | 3.0                                  |             |         | 3.            | .0            | 3.0           |                             | 3.0          | 3.0      |                                                  |
| Phasing                                              | EB Only                           | EW           | Perm                        | 03       | 3            |             | 04             |                                      | E:          | xcl. L  | .eft          | Th            | ru & R        |                             | 07           |          | )8                                               |
| Timing                                               | G = 17.0                          | G =          |                             | G =      |              | G           |                |                                      |             | = 14    | 1.0           |               | = <i>59.0</i> | G =                         |              | G =      | _                                                |
| Duration of a                                        | Y = 5<br>Analysis (hrs            | Y =          |                             | Y =      |              | ΙY          | =              | L                                    | Υ:          | = 5     |               |               | = 5           | = Y                         | = 120.0      | Y =      |                                                  |
|                                                      | up Capac                          |              |                             | l Dela   | 31/          | and         | 10             | S De                                 | to          | rmii    | nati          |               | JIC LOT       | Jui 0 -                     | 120.0        |          |                                                  |
| Lane Gro                                             | up Capac                          | l            | EB                          | i Dele   | 1 <b>y</b> , | and         |                | VB                                   |             |         | iau           | 011           | NB            |                             |              | SB       |                                                  |
| Adj. flow rat                                        | ρ                                 | 238          | 248                         | 63       | $\dashv$     | 5           |                | 21                                   | Т           |         | 163           | П             | 1699          | T                           | 16           | 1304     | Т                                                |
| Lane group                                           |                                   | 410          | 406                         | 220      |              | 147         |                | 34                                   | ╁           |         | 208           | $\rightarrow$ | 1743          |                             | 208          | 1682     | +                                                |
| v/c ratio                                            |                                   | 0.58         | 0.61                        | 0.29     | -            | 0.03        |                | .16                                  | t           | _       | 0.78          |               | 0.97          |                             | 0.08         | 0.78     | +-                                               |
| Green ratio                                          |                                   | 0.27         | 0.27                        | 0.14     | -+           | 0.08        | -              | .08                                  | t           | _       | 0.12          | -             | 0.49          |                             | 0.12         | 0.49     |                                                  |
| Unif. delay o                                        |                                   | 37.3         | 38.5                        | 46.1     | -+           | 50.6        | -              | 1.1                                  | T           |         | 51.5          | $\rightarrow$ | 29.8          |                             | 47.2         | 25.1     | 1                                                |
| Delay factor                                         | ·k                                | 0.17         | 0.20                        | 0.11     |              | 0.11        | 0.             | .11                                  | T           |         | 0.33          |               | 0.48          |                             | 0.11         | 0.32     | †                                                |
|                                                      |                                   | 2.1          | 2.7                         | 0.7      | -+           | 0.1         | 10             | ).5                                  | T           | $\neg$  | 17.6          | $\dashv$      | 15.9          |                             | 0.2          | 2.3      | 1                                                |
| PF factor                                            |                                   |              |                             | 1.00     | 0 1          | 1.000       | 1.             | 000                                  | T           | (       | 0.912         | 2             | 0.355         |                             | 0.912        | 0.355    | 1                                                |
| Control dela                                         | ıy                                | 39.4         | 41.2                        | 46.8     | ,            | 50.7        | 5              | 1.6                                  | T           |         | 64.6          | 1             | 26.5          |                             | 43.2         | 11.2     | 1                                                |
| Lane group                                           | LOS                               | D            | D                           |          | D            |             | D              |                                      |             | E       |               | С             |               | D                           | В            |          |                                                  |
| Apprch. dela                                         | ay                                | 4            | 1.1                         |          |              |             | 51.4           |                                      |             |         |               | 29            | .8            |                             |              | 11.6     |                                                  |
| Approach L                                           | pproach LOS D ntersec. delay 25.2 |              |                             |          |              |             |                |                                      |             |         |               | C             | ;             |                             |              | В        |                                                  |
| Intersec. de                                         | lay                               |              |                             |          |              | In          | iter           | secti                                | on L        | os      |               |               |               | С                           |              |          |                                                  |
| HC52000TM                                            |                                   | nvright ©    | 2000                        | Maire    | waite of     | FElorida    | Α1             | 1 Diabt                              | n Daca      | n ad    |               |               | _             | 1/                          | ersion 4.1   |          |                                                  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                   |                |                             |                | SH       | ORT R      | EPC                                  | R          | T             |             |               |                      |                       |             |            | •     |
|------------------------------------------------------|-------------------|----------------|-----------------------------|----------------|----------|------------|--------------------------------------|------------|---------------|-------------|---------------|----------------------|-----------------------|-------------|------------|-------|
| General Inf                                          | formation         |                |                             |                |          | s          | ite In                               | foı        | rmatio        | n           |               |                      |                       |             |            |       |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med<br>d          | U<br>05/<br>AM | SAI<br>SAI<br>01/12<br>PEAK |                |          | A<br>Ji    | nterse<br>irea T<br>urisdi<br>inalys | yp<br>ctic | e<br>on       | В           | C<br>A<br>CAR | ANI<br>II oti<br>LSE | NON<br>her a<br>BAD-l |             | ì          |       |
| Volume ar                                            | nd Timing I       | nput           | <u> </u>                    |                |          | 1          | 10/5                                 |            |               | <del></del> |               |                      |                       |             | 0.0        |       |
|                                                      |                   |                | LT                          | EB<br>TH       | RT       | LT         | WE<br>TH                             | ;<br>      | RT            | LT          | $\frac{N}{T}$ | B<br>H               | RT                    | LT          | SB<br>TH   | RT    |
| Num, of Lar                                          | nes               | ·              | 2                           | 2              | 0        | 2          | 2                                    | 1          | 0             | 2           | + 2           |                      | 1                     | 2           | 2          | 1     |
| Lane group                                           |                   |                | L                           | TR             |          | L          | TR                                   | T          | -             | L           | 17            | -                    | R                     | L           | 7          | R     |
| Volume (vp                                           |                   |                | 205                         | 400            | 50       | 515        | 800                                  | +          | 50            | 110         | 45            |                      | 550                   | 65          | 1115       | 270   |
| % Heavy v                                            |                   |                | 2                           | 2              | 2        | 2          | 2                                    | ┪          | 2             | 2           | 2             | _                    | 2                     | 2           | 2          | 2     |
| PHF                                                  |                   |                | 0.95                        | 0.95           | 0.95     | 0.95       | 0.95                                 |            | 0.95          | 0.95        | 0.9           |                      | 0.95                  | 0.95        | 0.95       | 0.95  |
| Actuated (P                                          |                   |                | A                           | A              | Α        | A          | A                                    | _[         | Α             | A           | A             | _                    | A                     | A           | A          | A     |
| Startup lost                                         |                   |                | 2.0                         | 2.0            | <b></b>  | 2.0        | 2.0                                  | +          |               | 2.0<br>2.0  | 2.<br>2.      |                      | 2.0                   | 2.0         | 2.0        | 2.0   |
| Ext. eff. gre<br>Arrival type                        | en                |                | 2.0<br>5                    | 2.0<br>5       | -        | 2.0<br>5   | 2.0<br>5                             | +          |               | 2.0<br>5    |               | _                    | 2.0                   | 5           | 5          | 5     |
| Unit Extens                                          | ion               |                | 3.0                         | 3.0            |          | 3.0        | 3.0                                  | 寸          |               | 3.0         | 3.            | _                    | 3.0                   | 3.0         | 3.0        | 3.0   |
| Ped/Bike/R                                           |                   | e              | 5                           |                | 0        | 5          | 5.0                                  | _          | 0             | 5           | 5             | _                    | 0                     | 5           | 5          | 0     |
| Lane Width                                           | 110               |                | 12.0                        | 12.0           |          | 12.0       | 12.0                                 |            |               | 12.0        | 12            | .0                   | 12.0                  | 12.0        | 12.0       | 12.0  |
| Parking/Gra                                          | ade/Parking       |                | Ν                           | 0              | N        | N          | 0                                    |            | Ν             | Ν           | 0             |                      | Ν                     | N           | 0          | N     |
| Parking/hr                                           |                   |                |                             |                |          |            |                                      |            |               |             |               |                      |                       |             |            |       |
| Bus stops/h                                          | nr                |                | 0                           | 0              |          | 0          | 0                                    |            |               | 0           | (             | )                    | 0                     | 0           | 0          | 0     |
| Unit Extens                                          | ion               |                | 3.0                         | 3.0            |          | 3.0        | 3.0                                  |            |               | 3.0         | 3.            | o                    | 3.0                   | 3.0         | 3.0        | 3.0   |
| Phasing                                              | Excl. Left        |                | Only                        | Thru           |          | 04         |                                      |            | xcl. Le       |             | hru ا         |                      |                       | 07          |            | 08    |
| Timing                                               | G = 11.0<br>Y = 5 | G =<br>Y =     |                             | G = 2<br>Y = 5 |          | G =<br>Y = |                                      |            | = 17.6<br>= 5 |             | = 4<br>= 5    |                      | G<br>Y                |             | G =<br>Y = |       |
| Duration of                                          |                   |                |                             | Y = 2          | )        | Υ =        |                                      | Υ :        | = 5           |             |               |                      |                       | <u> </u>    | _          |       |
|                                                      | up Capa           |                |                             | l Del:         | av aı    | nd I O     | S De                                 | te         | rmin          |             |               | _0115                | <u> </u>              | 7.70        |            |       |
| Lanc Oic                                             | up Oupu           | <br>           | EB                          | n DCI          | l y, u   | WB         | 0 00                                 |            | 1             |             | NB            |                      |                       |             | SB         |       |
| Adj. flow rat                                        | te                | 216            | 474                         | T              | 542      | 895        |                                      |            | 116           | 4           |               | 57                   | 9                     | 68          | 1174       | 284   |
| Lane group                                           |                   | 270            | 523                         |                | 884      | 1155       |                                      |            | 417           | 11          | 65            | 96                   | 6                     | 417         | 1165       | 688   |
| v/c ratio                                            |                   | 0.80           | 0.91                        |                | 0.61     | 0.77       |                                      |            | 0.28          | 0.          | 41            | 0.6                  | 60                    | 0.16        | 1.01       | 0.41  |
| Green ratio                                          | ***               | 0.08           | 0.15                        |                | 0.26     | 0.33       |                                      |            | 0.12          | 0.          | 33            | 0.6                  | 32                    | 0.12        | 0.33       | 0.44  |
| Unif. delay                                          | d1                | 63.4           | 58.5                        |                | 45.9     | 42.3       |                                      |            | 55.9          | 36          | .4            | 16.                  | .0                    | 55.1        | 47.0       | 26.6  |
| Delay factor                                         | r k               | 0.34           | 0.43                        |                | 0.20     | 0.32       |                                      |            | 0.11          | 0.          | 11            | 0.1                  | 19                    | 0.11        | 0.50       | 0.11  |
| Increm. dela                                         | ay d2             | 15.6           | 19.5                        |                | 1.3      | 3.4        | 十                                    |            | 0.4           | 0.          | 2             | 1.0                  | 0                     | 0.2         | 28.3       | 0.4   |
| PF factor                                            |                   | 0.943          | 0.882                       |                | 0.769    | 0.674      | 1                                    |            | 0.908         | 3 0.6       | 674           | 1.0                  | 00                    | 0.908       | 0.674      | 0.470 |
| Control dela                                         | эу                | 75.4           | 71.1                        |                | 36.5     | 31.9       |                                      |            | 51.1          | 24          | .8            | 17.                  | .0                    | 50.2        | 59.9       | 12.9  |
| Lane group                                           | ane group LOS E   |                |                             |                | D        | С          |                                      |            | D             |             | >             | В                    |                       | D           | Ε          | В     |
| Apprch. del                                          | ay                | 72             | 2.5                         |                |          | 33.6       | •                                    |            |               | 23.6        |               |                      |                       |             | 50.7       |       |
| Approach L                                           | os                | l i            | <u> </u>                    |                |          | С          |                                      |            |               | С           |               |                      |                       |             | D          |       |
| Intersec. de                                         | elay              |                |                             |                | Inte     | rse        | ction I                              | _os        | •••           |             |               |                      | D                     |             |            |       |
| HC\$2000 <sup>TM</sup>                               |                   | opuriaht (     | ት ኃላለላ II                   | niversity of   | FElorida | Δ1         | II Rights                            | Decembe    | 4             |             |               |                      |                       | Version 4.1 |            |       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |                |                             |                | SH                   | ORT R      | EPO                                 | )R       | T             |            |               |                    |                      |                  |              |         |
|------------------------------------------------------|------------------------|----------------|-----------------------------|----------------|----------------------|------------|-------------------------------------|----------|---------------|------------|---------------|--------------------|----------------------|------------------|--------------|---------|
| General Inf                                          | ormation               |                |                             |                |                      | S          | ite Ir                              | ıfoı     | rmatic        | n          |               |                    |                      | _                |              |         |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med<br>I               | U<br>05/<br>AM | SAI<br>SAI<br>01/12<br>PEAK | *** ***        |                      | A<br>Ji    | nterse<br>irea T<br>urisd<br>inalys | yp.      | e<br>on       | C          | -             | INC<br>thei<br>BAL | N F<br>r are<br>D-IN | RD.              | ECT_         |         |
| Volume an                                            | nd Timing I            | nput           |                             |                |                      |            |                                     |          |               |            |               |                    |                      |                  |              |         |
|                                                      |                        |                | <u> </u>                    | EB<br>TH       | I RT                 | +          | W                                   | _        | DT            | 17         | NB<br>TTU     | 1 -                | · T                  | <del>  , _</del> | SB           | Гот     |
| Num. of Lar                                          | nes                    |                | LT<br>2                     | 2              | 0                    | LT<br>2    | T⊦<br>2                             | +        | RT<br>0       | LT<br>2    | TH<br>2       | _                  | RT<br>1              | LT<br>2          | TH<br>2      | RT<br>1 |
| Lane group                                           |                        |                | L                           | TR             |                      | L          | TR                                  |          |               | L          | Т             | 17                 | ₹                    | L                | T            | R       |
| Volume (vpl                                          | h)                     |                | 207                         | 400            | 50                   | 515        | 800                                 |          | 51            | 110        | 463           | 55                 |                      | 68               | 1152         | 277     |
| % Heavy v                                            | <del>'</del>           |                | 2                           | 2              | 2                    | 2          | 2                                   |          | 2             | 2          | 2             | 2                  | 2                    | 2                | 2            | 2       |
| PHF                                                  |                        |                | 0.95                        | 0.95           | 0.95                 | 0.95       | 0.95                                | 5        | 0.95          | 0.95       | 0.95          | 0.9                |                      | 0.95             | 0.95         | 0.95    |
| Actuated (P                                          |                        |                | A 2.0                       | <i>A</i>       | Α                    | A          | A                                   | 4        | Α             | A          | <i>A</i>      | 1 /                |                      | A                | A            | A 2.0   |
| Startup lost<br>Ext. eff. gre                        |                        |                | 2.0<br>2.0                  | 2.0            | <u> </u>             | 2.0<br>2.0 | 2.0<br>2.0                          |          |               | 2.0<br>2.0 | 2.0<br>2.0    | 2.<br>2.           |                      | 2.0              | 2.0          | 2.0     |
| Arrival type                                         | CII                    |                | 5                           | 5              |                      | 5          | 5                                   | $\dashv$ |               | 5          | 5             | 1 3                |                      | 5                | 5            | 5       |
| Unit Extens                                          | ion                    |                | 3.0                         | 3.0            |                      | 3.0        | 3.0                                 |          |               | 3.0        | 3.0           | -                  | .0                   | 3.0              | 3.0          | 3.0     |
| Ped/Bike/R                                           | TOR Volum              | е              | 5                           |                | 0                    | 5          |                                     | 1        | 0             | 5          | 5             | (                  | )                    | 5                | 5            | 0       |
| Lane Width                                           |                        |                | 12.0                        | 12.0           |                      | 12.0       | 12.0                                | )        |               | 12.0       | 12.0          | 12                 | 2.0                  | 12.0             | 12.0         | 12.0    |
| Parking/Gra                                          | de/Parking             |                | Ν                           | 0              | N                    | Ν          | 0                                   |          | Ν             | N          | 0             | ٨                  | V                    | Ν                | 0            | N       |
| Parking/hr                                           |                        |                |                             |                |                      |            |                                     |          |               |            |               |                    |                      |                  |              |         |
| Bus stops/h                                          | r                      |                | 0                           | 0              |                      | 0          | 0                                   |          |               | 0          | 0             | (                  | 9                    | 0                | 0            | 0       |
| Unit Extens                                          | ion                    |                | 3.0                         | 3.0            |                      | 3.0        | 3.0                                 |          |               | 3.0        | 3.0           | 3.                 | .0                   | 3.0              | 3.0          | 3.0     |
| Phasing                                              | Excl. Left             |                | Only                        | Thru           |                      | 04         |                                     | _        | xcl. Le       |            | ru & R        |                    |                      | 07               |              | 08      |
| Timing                                               | G = 11.0<br>Y = 5      | G =<br>Y =     |                             | G = 2<br>Y = 8 |                      | G =<br>Y = |                                     |          | = 17.0<br>= 5 |            | = 46.0<br>= 5 | _                  | G =<br>Y =           |                  | G =<br>Y =   |         |
| Duration of                                          | <u> </u>               |                |                             | 7 - 3          | ,                    | 1 -        |                                     | Υ.       | - 3           |            |               |                    |                      | = 140            |              |         |
|                                                      | up Capa                |                |                             | l Del          | av aı                | nd I O     | S De                                | te       | rmin          |            | 310 E01       | 9                  |                      | 770              |              |         |
| 24110 010                                            | up oupu                | <u> </u>       | EB                          | . 501          | <u>α<b>y</b>, α.</u> | WB         |                                     |          | T             | N          | <br>В         |                    | T                    |                  | SB           |         |
| Adj. flow rat                                        | e                      | 218            | 474                         |                | 542                  | 896        |                                     |          | 116           | 487        |               | 79                 | $\dagger$            | 72               | 1213         | 292     |
| Lane group                                           | сар.                   | 270            | 523                         |                | 884                  | 1155       |                                     |          | 417           | 116        | 5 9           | 66                 | 1                    | 417              | 1165         | 688     |
| v/c ratio                                            |                        | 0.81           | 0.91                        |                | 0.61                 | 0.78       |                                     |          | 0.28          | 0.4        | 2 0.          | 60                 | C                    | ).17             | 1.04         | 0.42    |
| Green ratio                                          |                        | 0.08           | 0.15                        |                | 0.26                 | 0.33       |                                     |          | 0.12          | 0.3        | 3 0.          | 62                 | C                    | ).12             | 0.33         | 0.44    |
| Unif. delay o                                        | d1                     | 63.5           | 58.5                        |                | 45.9                 | 42.4       |                                     |          | 55.9          | 36.        | 6 16          | 5.0                | 5                    | 55.2             | 47.0         | 26.8    |
| Delay factor                                         | ·k                     | 0.35           | 0.43                        |                | 0.20                 | 0.33       |                                     |          | 0.11          | 0.1        | 1 0.          | 19                 | C                    | ).11             | 0.50         | 0.11    |
| Increm. dela                                         | ay d2                  | 16.4           | 19.5                        |                | 1.3                  | 3.4        |                                     |          | 0.4           | 0.2        | 1             | .0                 | ا                    | 0.2              | 37.7         | 0.4     |
| PF factor                                            |                        |                |                             |                | 0.769                | 0.674      | 1                                   |          | 0.908         | 0.67       | 4 1.0         | 000                | 0                    | .908             | 0.674        | 0.470   |
| Control dela                                         | Control delay 76.3 71. |                |                             |                | 36.5                 | 31.9       |                                     |          | 51.1          | 24.        | 9 17          | 7.0                | £                    | 50.3             | 69. <b>4</b> | 13.0    |
| Lane group                                           | LOS                    | E              | Ε                           | <u> </u>       | D                    | С          |                                     |          | D             | С          |               | В                  | $\perp$              | D                | Е            | В       |
| Apprch. dela                                         | ay                     | 72             | 2.7                         |                |                      | 33.7       | · · · · ·                           |          |               | 23.6       |               |                    | $\perp$              |                  | 58.1         |         |
| Approach L                                           | os                     | t              | <b>E</b>                    |                |                      | С          |                                     |          |               | С          |               |                    |                      |                  | Е            |         |
| Intersec. de                                         | lay                    |                |                             | Inte           | rse                  | ction L    | os                                  |          |               |            |               | D                  |                      |                  |              |         |
| HCS2000 <sup>TM</sup>                                |                        | 3 2000 I I     | niversity of                | Florid         | A 11                 | l Diahte I | berenned                            |          |               |            |               |                    | Version 4.1.         |                  |              |         |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                        |            |                             |                | SH       | ORTR                                             | EPC                                  | R          | T            |          |               |                      | -                    | <u></u>                                  |         |                                                |         |
|------------------------------------------------------|------------------------|------------|-----------------------------|----------------|----------|--------------------------------------------------|--------------------------------------|------------|--------------|----------|---------------|----------------------|----------------------|------------------------------------------|---------|------------------------------------------------|---------|
| General Inf                                          | ormation               |            |                             |                |          | S                                                | ite In                               | fo         | rmatic       | n        |               |                      |                      |                                          |         |                                                |         |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                    | U<br>05/   | SAI<br>SAI<br>01/12<br>PEAK |                |          | A<br>J                                           | nterse<br>irea T<br>urisdi<br>inalys | yp<br>ctio | e<br>on      |          | C<br>A<br>CAR | ANN<br>II oth<br>LSB | ION<br>ier a<br>AD-i | RLVD.@<br>RD.<br>reas<br>INT.#1<br>PROJE | 6       |                                                |         |
| Volume an                                            | d Timing I             | nput       |                             |                |          | 1                                                |                                      |            |              |          |               |                      |                      |                                          |         |                                                |         |
|                                                      |                        |            | <u> </u>                    | EB             | l o=     | <del>                                     </del> | WE                                   | _          |              | <u> </u> |               | В                    |                      |                                          |         | SB                                             | Lot     |
| Num. of Lar                                          | nes                    |            | LT<br>2                     | TH<br>2        | RT<br>0  | LT<br>2                                          | TH<br>2                              | ┪          | RT<br>0      | LT<br>2  | T 2           | $\dashv$             | RT<br>1              | LT 2                                     |         | TH<br>2                                        | RT<br>1 |
| Lane group                                           |                        |            | L                           | TR             |          | L                                                | TR                                   | 1          |              | L        | 7             | .                    | R                    | L                                        |         | Т                                              | R       |
| Volume (vpl                                          | h)                     |            | 270                         | 600            | 65       | 450                                              | 600                                  | 7          | 65           | 50       | 144           | 15                   | 600                  | 67                                       | 7       | 10                                             | 210     |
| % Heavy v                                            | eh                     |            | 2                           | 2              | 2        | 2                                                | 2                                    |            | 2            | 2        | 2             | _                    | 2                    | 2                                        |         | 2                                              | 2       |
| PHF                                                  |                        |            | 0.95                        | 0.95           | 0.95     | 0.95                                             | 0.95                                 | _          | 0.95         | 0.95     | 0.9           | $\rightarrow$        | 0.95                 |                                          | _       | 95                                             | 0.95    |
| Actuated (P<br>Startup lost                          |                        |            | A<br>2.0                    | A<br>2.0       | A        | 2.0                                              | 2.0                                  | +          | Α            | A<br>2.0 | 2.0           | _                    | A<br>2.0             | 2.0                                      |         | <u>A</u><br>2.0                                | 2.0     |
| Ext. eff. gre                                        |                        |            | 2.0                         | 2.0            |          | 2.0                                              | 2.0                                  | +          |              | 2.0      | 2.0           |                      | 2.0                  | 2.0                                      |         | 2.0                                            | 2.0     |
| Arrival type                                         |                        |            | 5                           | 5              |          | 5                                                | 5                                    | 1          |              | 5        | 5             | _                    | 3                    | 5                                        | _       | 5                                              | 5       |
| Unit Extens                                          | ion                    |            | 3.0                         | 3.0            |          | 3.0                                              | 3.0                                  |            |              | 3.0      | 3.            | 0                    | 3.0                  | 3.0                                      | 3       | 3.0                                            | 3.0     |
| Ped/Bike/R                                           | TOR Volum              | е          | 5                           |                | 0        | 5                                                |                                      |            | 0            | 5        | 5             |                      | 0                    | 5                                        |         | 5                                              | 0       |
| Lane Width                                           |                        |            | 12.0                        | 12.0           |          | 12.0                                             | 12.0                                 |            |              | 12.0     | 12.           | 0                    | 12.0                 | 12.0                                     | ) 1:    | 2.0                                            | 12.0    |
| Parking/Gra                                          | de/Parking             |            | Ν                           | 0              | Ν        | Ν                                                | 0                                    |            | Ν            | N        | 0             |                      | Ν                    | N                                        |         | 0                                              | N       |
| Parking/hr                                           |                        |            |                             |                |          |                                                  |                                      |            |              |          | <u> </u>      |                      |                      |                                          | $\perp$ |                                                |         |
| Bus stops/h                                          |                        |            | 0                           | 0              |          | 0                                                | 0                                    |            |              | 0        | 0             |                      | 0                    | 0                                        | _       | 0                                              | 0       |
| Unit Extens                                          |                        |            | 3.0                         | 3.0            |          | 3.0                                              | 3.0                                  |            |              | 3.0      | 3.            |                      | 3.0                  | 3.0                                      | 3       | 3.0                                            | 3.0     |
| Phasing                                              | Excl. Left             |            | Only                        | Thru           |          | 04                                               |                                      |            | xcl. Le      |          | hru 8         |                      |                      | 07                                       |         |                                                | 80      |
| Timing                                               | G = 13.0<br>Y = 5      | G =<br>Y = |                             | G = 2<br>Y = 5 |          | G =<br>Y =                                       | <del></del>                          |            | = 9.0<br>= 5 |          | = 5<br>= 5    | 7.0                  | G<br>Y               |                                          |         | G =<br>Y =                                     |         |
| Duration of                                          | _                      | -          | _                           | 1 - 0          | , ,      |                                                  |                                      |            |              |          |               | eng                  |                      | = 14                                     |         | <u>.                                      </u> |         |
| Lane Gro                                             |                        |            |                             | l Dela         | av. ar   | nd LO                                            | S De                                 | te         | rmin         |          |               |                      |                      |                                          |         |                                                |         |
|                                                      |                        |            | EB                          |                | <b>.</b> | WB                                               |                                      |            |              |          | √B            |                      |                      |                                          | S       | В                                              |         |
| Adj. flow rat                                        | е                      | 284        | 700                         |                | 474      | 700                                              |                                      |            | 53           | 15.      | 21            | 632                  | 2                    | 71                                       | 74      | 7                                              | 221     |
| Lane group                                           | сар.                   | 319        | 674                         |                | 663      | 1024                                             |                                      |            | 221          | 14       | 14            | 989                  | 7                    | 221                                      | 144     | 14                                             | 834     |
| v/c ratio                                            |                        | 0.89       | 1.04                        |                | 0.71     | 0.68                                             |                                      |            | 0.24         | 1.0      | )5            | 0.6                  | 4                    | 0.32                                     | 0.5     | 2                                              | 0.26    |
| Green ratio                                          |                        | 0.09       | 0.19                        |                | 0.19     | 0.29                                             |                                      |            | 0.06         | 0.4      | 11            | 0.6                  | 4                    | 0.06                                     | 0.4     | 1                                              | 0.54    |
| Unif. delay                                          | <del>1</del> 1         | 62.8       | 56.5                        |                | 52.9     | 43.8                                             |                                      |            | 62.2         | 41       | .5            | 15.                  | 6                    | 62.6                                     | 31.     | 2                                              | 17.6    |
| Delay factor                                         | · k                    | 0.41       | 0.50                        |                | 0.28     | 0.25                                             |                                      |            | 0.11         | 0.5      | 50            | 0.2                  | 2                    | 0.11                                     | 0.1     | 2                                              | 0.11    |
| Increm. dela                                         | ay d2                  | 19.1       | 39.5                        |                | 2.6      | 1.3                                              |                                      |            | 0.4          | 35       | .6            | 1.0                  | )                    | 0.6                                      | 0.2     | 2                                              | 0.1     |
| PF factor                                            |                        |            |                             |                | 0.841    | 0.724                                            | 4                                    |            | 0.954        | 0.5      | 42            | 1.00                 | 00                   | 0.954                                    | 0.5     | 42                                             | 0.231   |
| Control dela                                         | Control delay 77.7 87. |            |                             |                | 47.1     | 33.0                                             |                                      |            | 59.8         | 58       | .1            | 16.                  | 6                    | 60.3                                     | 17.     | 1                                              | 4.2     |
| Lane group                                           | LOS                    | Ε          | F                           |                | D        | С                                                |                                      |            | E            | E        |               | В                    |                      | Ε                                        | В       |                                                | Α       |
| Apprch. dela                                         | ay                     | 84         | 1.3                         |                |          | 38.7                                             |                                      |            |              | 46.3     |               |                      |                      |                                          | 17.3    | 3                                              |         |
| Approach L                                           | os                     | 1          | 5                           |                |          | D                                                |                                      |            |              | D        |               |                      |                      |                                          | В       |                                                |         |
| Intersec. de                                         |                        |            | Inte                        | se             | ection l | os                                               |                                      |            |              |          | D             |                      |                      |                                          |         |                                                |         |
| HCS2000TM                                            |                        | N JOOO TE  | niversity of                | Florido        | Δ1       | I Dichte l                                       | December                             |            |              |          |               |                      | 7                    | Version 4.1                              |         |                                                |         |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                    |            |                             |                | SH                                               | ORT R      | EPC                                  | R          | T            |      |                       |                    |                            |       |            |       |
|------------------------------------------------------|--------------------|------------|-----------------------------|----------------|--------------------------------------------------|------------|--------------------------------------|------------|--------------|------|-----------------------|--------------------|----------------------------|-------|------------|-------|
| General Inf                                          | ormation           |            |                             |                |                                                  |            |                                      |            | rmatic       | n    |                       |                    |                            |       | -          |       |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                | U<br>05/   | SAI<br>SAI<br>01/12<br>PEAK |                |                                                  | A<br>Ji    | nterse<br>Irea T<br>urisdi<br>Inalys | yp<br>ctic | e<br>on      | C    | CAI<br>All C<br>CARLS | NNO<br>othe<br>SBA | ON F<br>er are<br>D-IN     |       | 1          |       |
| Volume an                                            | d Timing I         | nput       |                             |                |                                                  | <u> </u>   |                                      |            |              |      |                       |                    |                            |       |            |       |
|                                                      |                    |            | LT                          | EB<br>TH       | RT                                               | LT         | WE<br>TH                             |            | RT           | LT   | NB<br>TH              | $\overline{}$      | RT                         | LT    | SB<br>TH   | RT    |
| Num, of Lar                                          | nes                |            | 2                           | 2              | 0                                                | 2          | 2                                    | _          | 0            | 2    | 2                     | +                  | 1                          | 2     | 2          | 1     |
| Lane group                                           |                    |            | L                           | TR             |                                                  | L          | TR                                   |            | -            | L    | T                     | 十                  | R                          | 1 7   | 17         | R     |
| Volume (vpl                                          | h)                 |            | 278                         | 600            | 65                                               | 450        | 600                                  | ┪          | 69           | 50   | 1486                  | _                  | 300                        | 67    | 730        | 214   |
| % Heavy v                                            |                    |            | 2                           | 2              | 2                                                | 2          | 2                                    | Ţ          | 2            | 2    | 2                     | Ť                  | 2                          | 2     | 2          | 2     |
| PHF                                                  |                    |            | 0.95                        | 0.95           | 0.95                                             | 0.95       | 0.95                                 |            | 0.95         | 0.95 | 0.95                  |                    | .95                        | 0.95  | 0.95       | 0.95  |
| Actuated (P                                          |                    |            | A                           | <i>A</i>       | Α                                                | A          | A                                    | 4          | Α            | A    | A                     |                    | A                          | A     | A          | A     |
| Startup lost<br>Ext. eff. gree                       |                    |            | 2.0                         | 2.0            | <del> </del>                                     | 2.0        | 2.0                                  | $\dashv$   |              | 2.0  | 2.0<br>2.0            | _                  | 2. <i>0</i><br>2. <i>0</i> | 2.0   | 2.0        | 2.0   |
| Arrival type                                         | 611                | a          | 5                           | 5              | <del>                                     </del> | 5          | 5                                    | +          |              | 5    | 5                     | ╁                  | 3                          | 5     | 5          | 5     |
| Unit Extensi                                         | ion                |            | 3.0                         | 3.0            |                                                  | 3.0        | 3.0                                  | 1          |              | 3.0  | 3.0                   | 1.                 | 3.0                        | 3.0   | 3.0        | 3.0   |
| Ped/Bike/R                                           | ΓOR Volum          | е          | 5                           |                | 0                                                | 5          | <u> </u>                             | t          | 0            | 5    | 5                     | 十                  | 0                          | 5     | 5          | 0     |
| Lane Width                                           |                    |            | 12.0                        | 12.0           |                                                  | 12.0       | 12.0                                 | 1          |              | 12.0 | 12.0                  | 1                  | 2.0                        | 12.0  | 12.0       | 12.0  |
| Parking/Gra                                          | de/Parking         |            | N                           | 0              | N                                                | N          | 0                                    |            | N            | N    | 0                     |                    | N                          | N     | 0          | N     |
| Parking/hr                                           |                    |            |                             |                |                                                  |            |                                      |            |              |      |                       |                    |                            |       |            |       |
| Bus stops/h                                          | r                  |            | 0                           | 0              |                                                  | 0          | 0                                    |            |              | 0    | 0                     |                    | 0                          | 0     | 0          | 0     |
| Unit Extensi                                         | on                 |            | 3.0                         | 3.0            |                                                  | 3.0        | 3.0                                  |            |              | 3.0  | 3.0                   | ;                  | 3.0                        | 3.0   | 3.0        | 3.0   |
| Phasing                                              | Excl. Left         |            | Only                        | Thru           |                                                  | 04         |                                      |            | xcl. Le      |      | ru & F                |                    |                            | 07    | _          | 80    |
| Timing                                               | G = 13.0<br>Y = 5  | G =<br>Y = |                             | G = 2<br>Y = 8 |                                                  | G =<br>Y = |                                      |            | = 9.0<br>= 5 |      | = <i>57.</i><br>= 5   | 0                  | G =<br>Y =                 |       | G =<br>Y = | -     |
| Duration of                                          |                    |            | _                           | Y = 5          | ,                                                | γ =        |                                      | Y          | = 5          |      |                       | natk               |                            | = 140 |            |       |
| Lane Gro                                             |                    |            |                             | l Del:         | av ar                                            | nd I O     | S De                                 | fe         | rmin         |      | JIC EC                | nga                | 10                         | 170   | ,,,        |       |
| Lano Oro                                             | ир Сири            |            | EB                          | , DÇI          | <br>                                             | WB         |                                      |            | T            | N    | B                     |                    | Т                          |       | SB         |       |
| Adj. flow rat                                        | e                  | 293        | 700                         | T              | 474                                              | 705        |                                      |            | 53           | 156  |                       | 32                 | 十                          | 71    | 768        | 225   |
| Lane group                                           |                    | 319        | 674                         |                | 663                                              | 1023       |                                      |            | 221          | 144  | -                     | 989                | 1                          | 221   | 1444       | 834   |
| v/c ratio                                            |                    | 0.92       | 1.04                        |                | 0.71                                             | 0.69       |                                      |            | 0.24         | 1.08 | 3 0                   | .64                |                            | 0.32  | 0.53       | 0.27  |
| Green ratio                                          |                    | 0.09       | 0.19                        |                | 0.19                                             | 0.29       |                                      |            | 0.06         | 0.4  | 1 0                   | .64                |                            | 0.06  | 0.41       | 0.54  |
| Unif. delay o                                        | 11                 | 63.0       | 56.5                        |                | 52.9                                             | 43.9       |                                      |            | 62.2         | 41.  | 5 1                   | 5.6                | $-\epsilon$                | 52.6  | 31.4       | 17.6  |
| Delay factor                                         | k                  | 0.44       | 0.50                        |                | 0.28                                             | 0.26       |                                      |            | 0.11         | 0.50 | 0                     | .22                | (                          | ).11  | 0.13       | 0.11  |
| Increm. dela                                         | y d2               | 23.6       | 39.5                        |                | 2.6                                              | 1.4        |                                      |            | 0.4          | 46.  | 5 /                   | 1.0                |                            | 0.6   | 0.3        | 0.1   |
| PF factor                                            |                    |            |                             |                | 0.841                                            | 0.724      | :                                    |            | 0.954        | 0.54 | 12 1.                 | .000               | ) [0                       | .954  | 0.542      | 0.231 |
| Control dela                                         | Control delay 82.3 |            |                             |                | 47.1                                             | 33.1       |                                      |            | 59.8         | 69.0 | ) 1                   | 6.6                | -                          | 30.3  | 17.3       | 4.2   |
| Lane group                                           | ane group LOS F F  |            |                             |                | D                                                | С          |                                      |            | Ε            | E    |                       | В                  |                            | Ε     | В          | Α     |
| Apprch. dela                                         | ay                 | 85         | 5.6                         |                |                                                  | 38.7       |                                      |            |              | 54.1 |                       |                    |                            |       | 17.4       |       |
| Approach Lo                                          | os                 | I          | <u> </u>                    |                |                                                  | D          |                                      |            |              | D    |                       |                    |                            |       | В          |       |
| Intersec. de                                         |                    |            | Inter                       | se             | ction L                                          | os         |                                      |            |              |      | D                     |                    |                            |       |            |       |
| HCS2000TM                                            |                    | 3 2000 TL  | niversity of                | Trio di dia    | A 1                                              | 1 Diobto I | 2 a a a — r a d                      |            |              |      |                       |                    | Version 4-11               |       |            |       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                    | <u> </u>     | <u> </u>                    |            | S   | НО    | RT F                  | REP                                  | )<br>)     | ₹T             |         |             |                                             | •                    |                 |                                       |            |            |
|------------------------------------------------------|--------------------|--------------|-----------------------------|------------|-----|-------|-----------------------|--------------------------------------|------------|----------------|---------|-------------|---------------------------------------------|----------------------|-----------------|---------------------------------------|------------|------------|
| General Int                                          | formation          |              |                             |            |     |       | S                     | ite Ir                               | ıfo        | rmat           |         |             |                                             |                      |                 |                                       |            |            |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                | U:<br>08/2   | SAI<br>SAI<br>24/12<br>PEAK |            |     |       | Δ<br>J                | nterse<br>krea T<br>urisdi<br>knalys | yr<br>icti | е              |         | 00          | A WAYO<br>ON ,<br>All otl<br>CEANS<br>ALT2/ | RAM<br>ner a<br>IDE- | PS<br>rea<br>IN | :<br>is<br>T.#17                      |            |            |
| Volume ar                                            | nd Timing In       | put          |                             |            |     |       |                       |                                      |            |                |         |             |                                             |                      |                 |                                       |            |            |
|                                                      |                    |              |                             | EB         | _   |       |                       | W                                    |            |                | _       |             | NB                                          | 1                    |                 |                                       | SB         | ania sian  |
| ) (I                                                 |                    |              | LT                          | TH         | R   |       | LT                    | Th                                   | _          | RT             | +       | <u>LT</u>   | TH                                          | RT                   | -               | LT                                    | TH         | RT         |
| Num. of Lar                                          |                    |              | 1                           | 2          | 1   |       | 2                     | 2                                    | _          | 0              | +       | 1           | 1                                           | 1                    | 4               | 0                                     | 2          | 0          |
| Lane group                                           |                    |              | L                           | T          | F   |       | L                     | TR                                   |            |                | 4       | L           | LT                                          | R                    | $\dashv$        | 455                                   | LTR        |            |
| Volume (vp                                           |                    |              | 90                          | 605        | 30  |       | 275                   | 328                                  | 5          | 50             | +       | 515         | 50                                          | 180                  | -               | 45                                    | 70         | 35         |
| % Heavy v<br>PHF                                     | en                 |              | 2<br>0.95                   | 2<br>0.95  | 0.9 |       | 2<br>0.95             | 0.9                                  | 5          | 2<br>0.95      |         | 2<br>).95   | 2<br>0.95                                   | 2<br>0.95            | +               | 2<br>0.95                             | 2<br>0.95  | 2<br>0.95  |
| Actuated (P                                          | P/A)               |              | 0.90<br>A                   | A          | A   |       | A                     | A                                    |            | A              | +       | A           | A                                           | 0.3C                 | ┪               | A                                     | A          | A          |
| Startup lost                                         |                    |              | 3.0                         | 3.0        | 3.  |       | 3.0                   | 3.0                                  | )          | † - ·          | 十.      | 3.0         | 3.0                                         | 3.0                  |                 |                                       | 3.0        |            |
| Ext. eff. gre                                        |                    |              | 2.0                         | 2.0        | 2.  |       | 2.0                   | 2.0                                  | )          |                | 1       | 2.0         | 2.0                                         | 2.0                  |                 |                                       | 2.0        |            |
| Arrival type                                         | ·                  |              | 5                           | 5          | 5   |       | 5                     | 5                                    |            |                | $\perp$ | 3           | 3                                           | 3                    | _               |                                       | 3          |            |
| Unit Extens                                          |                    |              | 3.0                         | 3.0        | 3.  |       | 3.0                   | 3.0                                  |            |                |         | 3.0         | 3.0                                         | 3.0                  |                 | ·                                     | 3.0        |            |
|                                                      | TOR Volume         | •            | 5                           | 10         | 0   |       | 5                     | 10                                   |            | 0              |         | 5           | 10                                          | 0                    | 4               | 5                                     | 10         | 0          |
| Lane Width                                           |                    |              | 12.0                        | 12.0       | 12. |       | 12.0                  | 12.0                                 |            | <u> </u>       | 1       | 2.0         | 12.0                                        | 12.0                 | 4               |                                       | 12.0       |            |
| Parking/Gra                                          | ade/Parking        |              | N                           | 0          | ٨   | _     | Ν                     | 0                                    |            | Ν              | -       | Ν           | 0                                           | Ν                    | 4               | N                                     | 0          | N          |
| Parking/hr                                           |                    |              |                             | _          | _   |       |                       | 4_                                   |            |                | _       |             |                                             |                      | 4               |                                       |            |            |
| Bus stops/h                                          |                    |              | 0                           | 0          | 0   |       | 0                     | 0                                    |            |                | _       | 0           | 0                                           | 0                    | 4               |                                       | 0          |            |
| Unit Extens                                          |                    |              | 3.0                         | 3.0        | 3.  | 0     | 3.0                   | 3.0                                  |            | <u> </u>       |         | 3.0         | 3.0                                         | 3.0                  |                 |                                       | 3.0        |            |
| Phasing                                              | Excl. Left         |              |                             | 03         | 3   | 4     | 04                    |                                      | _          | SB O           |         |             | B Only                                      |                      |                 | 07                                    |            | 08         |
| Timing                                               | G = 11.0<br>Y = 4  | G = .        |                             | G =<br>Y = |     |       | G <del>=</del><br>Y = |                                      | _          | $\dot{i} = 9.$ | U       |             | = 37.0<br>= 4                               | Y                    | =               |                                       | G =<br>Y = |            |
| Duration of                                          | Analysis (hr       |              |                             | <u> </u>   |     |       | <u> </u>              |                                      | <u>'</u>   | _ +            |         |             | le Len                                      |                      |                 | 100.                                  |            |            |
|                                                      | up Capac           |              |                             | l Dela     | ìV. | an    | d LO                  | S De                                 | eto        | ermi           | nat     |             |                                             | 9                    |                 |                                       |            |            |
|                                                      | all amban          | <b>,</b> , _ | EB                          | . =        | 1   | -     |                       | NB                                   |            |                |         |             | NB                                          | •                    |                 |                                       | SB         | •          |
| Adj. flow rat                                        | te                 | 95           | 637                         | 321        |     | 289   |                       | 395                                  | Т          |                | 29      | 8           | 297                                         | 189                  | ,               | +                                     | 158        |            |
| Lane group                                           |                    | 177          | 922                         | 961        | ┪   | 344   |                       | 398                                  | $\dagger$  |                | 63-     | <del></del> | 642                                         | 557                  |                 | †                                     | 265        |            |
| v/c ratio                                            |                    | 0.54         | 0.69                        | 0.33       |     | 0.84  |                       | 44                                   | $\dagger$  |                | 0.4     | -           | 0.46                                        | 0.34                 |                 | †                                     | 0.60       |            |
| Green ratio                                          |                    | 0.10         | 0.26                        | 0.62       | -   | 0.10  |                       | .26                                  | †          |                | 0.3     | -           | 0.36                                        | 0.36                 |                 | 1                                     | 0.08       | +          |
| Unif. delay                                          |                    | 42.8         | 33.4                        | 9.1        | -   | 44.2  |                       | 0.9                                  | $\dagger$  |                | 24.     |             | 24.6                                        | 23.3                 |                 | 1                                     | 44.4       |            |
| Delay factor                                         |                    | 0.14         | 0.26                        | 0.11       | -   | 0.38  |                       | .11                                  | †          |                | 0.1     | 1           | 0.11                                        | 0.1                  |                 | 1                                     | 0.19       |            |
|                                                      |                    | 3.2          | 2.2                         | 0.2        | -+  | 16.7  |                       | 0.3                                  | $\dagger$  |                | 0.6     |             | 0.5                                         | 0.4                  |                 | 1                                     | 3.6        | 1          |
| PF factor                                            |                    |              |                             | 0.13       | 2   | 0.92  | ?6 O.                 | 766                                  | †          |                | 1.0     | 00          | 1.000                                       | 1.00                 | 0               |                                       | 1.000      | 1          |
| Control dela                                         | Control delay 42.8 |              |                             | 1.4        | 1   | 57.7  | 7 2                   | 4.0                                  | †          |                | 25.     | 2           | 25.1                                        | 23.7                 | 7               | 1                                     | 48.1       |            |
| Lane group                                           | Lane group LOS D   |              |                             |            |     | Ε     | 十                     | С                                    | †          |                | С       |             | С                                           | С                    |                 |                                       | D          |            |
| Apprch. del                                          | ay                 | 2            | 1.1                         |            | 1   |       | 38.2                  | 2                                    |            |                |         | 24          | .8                                          |                      |                 |                                       | 48.1       | •          |
| Approach L                                           | os                 |              | С                           |            |     |       | D                     |                                      |            |                |         | C           | ;                                           |                      |                 |                                       | D          |            |
| Intersec. de                                         | lay                | 8.2          | ·                           | 寸          |     |       |                       | Int                                  | ersec      | tior           | LOS     | 3           |                                             |                      | 1               | С                                     |            |            |
| HCS2000 <sup>TM</sup>                                |                    |              | Co                          | pyright ©  | 200 | 0 Uni | versity n             | f Florid                             | n A        | All Right      | ts Re   | served      |                                             |                      |                 | · · · · · · · · · · · · · · · · · · · | V          | ersion 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                                |              |                             |             | Sŀ           | IOR        | ۲R          | EPC                                  | )F         | ₹T          |                                       |           |                                            |                   |                     |                                                  |           |                                                  |
|------------------------------------------------------|------------------------------------------------|--------------|-----------------------------|-------------|--------------|------------|-------------|--------------------------------------|------------|-------------|---------------------------------------|-----------|--------------------------------------------|-------------------|---------------------|--------------------------------------------------|-----------|--------------------------------------------------|
| General Inf                                          | ormation                                       |              |                             |             |              |            | Si          | ite In                               | fo         | rmati       |                                       |           |                                            |                   |                     |                                                  |           |                                                  |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                                            | U:<br>08/2   | SAI<br>SAI<br>24/12<br>PEAK |             |              |            | Ar<br>Ju    | terse<br>rea Ty<br>urisdic<br>nalysi | yp<br>ctic | e<br>on     |                                       | 0         | A WAY<br>ON .<br>All oth<br>CEANS<br>LT2/V | RA.<br>ner<br>IDI | MPS<br>area<br>E-IN | S<br>as<br>T.#17                                 |           |                                                  |
| Volume an                                            | d Timing In                                    | put          |                             |             |              | ·          |             |                                      |            |             | · · · · · · · · · · · · · · · · · · · |           |                                            |                   |                     |                                                  |           |                                                  |
|                                                      |                                                |              |                             | EB          |              |            |             | WE                                   | _          |             | $\top$                                |           | NB                                         |                   |                     |                                                  | SB        |                                                  |
|                                                      |                                                |              | LT                          | TH          | RT           | _          |             | TH                                   |            | RT          | _                                     | <u>LT</u> | TH                                         | _                 | ₹T                  | LT                                               | ΤH        | RT                                               |
| Num. of Lar                                          | nes                                            |              | 1                           | 2           | 1            | 2          | <u>!</u>    | 2                                    |            | 0           | 4                                     | 1         | 1                                          | l                 | 1                   | 0                                                | 2         | 0                                                |
| Lane group                                           |                                                |              | L                           | T           | R            | Ĺ          |             | TR                                   |            |             |                                       | L         | LT                                         |                   | ₹                   |                                                  | LTR       |                                                  |
| Volume (vp                                           |                                                |              | 98                          | 617         | 378          |            |             | 329                                  | _          | 50          | _                                     | 30        | 50                                         | 18                |                     | 45                                               | 70        | 38                                               |
| % Heavy v                                            | <u>en</u>                                      |              | 2<br>0.95                   | 2<br>0.95   | 2<br>0.95    | 2<br>5 0.9 |             | 2<br>0.95                            |            | 2<br>0.95   |                                       | 2<br>.95  | 2<br>0.95                                  | 0.9               | 2                   | 2<br>0.95                                        | 2<br>0.95 | 2<br>0.95                                        |
| Actuated (P                                          | /A)                                            |              | 0.90<br>A                   | 0.95<br>A   | 0.90<br>A    | A          |             | 0.93<br>A                            | _          | 0.93<br>A   |                                       | .95<br>A  | 0.95<br>A                                  | 7                 |                     | 0.90<br>A                                        | 0.95<br>A | 0.95<br>A                                        |
| Startup lost                                         |                                                |              | 3.0                         | 3.0         | 3.0          |            |             | 3.0                                  |            |             |                                       | 3.0       | 3.0                                        | 3.                |                     | <del>                                     </del> | 3.0       | <del>                                     </del> |
| Ext. eff. gre                                        |                                                |              | 2.0                         | 2.0         | 2.0          |            |             | 2.0                                  | $\neg$     |             |                                       | 2.0       | 2.0                                        | 2.                |                     |                                                  | 2.0       |                                                  |
| Arrival type                                         |                                                |              | 5                           | 5           | 5            | 5          | ;           | 5                                    |            |             |                                       | 3         | 3                                          | (                 | 3                   |                                                  | 3         |                                                  |
| Unit Extens                                          | ion                                            |              | 3.0                         | 3.0         | 3.0          | 3.0        | 0           | 3.0                                  |            |             | ;                                     | 3.0       | 3.0                                        | 3                 | .0                  |                                                  | 3.0       |                                                  |
| Ped/Bike/R                                           | TOR Volume                                     | <del>)</del> | 5                           | 10          | 0            | 5          | ;           | 10                                   |            | 0           |                                       | 5         | 10                                         | (                 | )                   | 5                                                | 10        | 0                                                |
| Lane Width                                           |                                                |              | 12.0                        | 12.0        | 12.0         | ) 12.      | .0          | 12.0                                 | <u>'</u>   |             | _                                     | 2.0       | 12.0                                       | 12                |                     |                                                  | 12.0      | <u> </u>                                         |
| Parking/Gra                                          | de/Parking                                     |              | Ν                           | 0           | Ν            | Λ          | <u> </u>    | 0                                    |            | N           |                                       | N         | 0                                          | 1                 | V                   | N                                                | 0         | N                                                |
| Parking/hr                                           |                                                |              |                             |             |              |            |             |                                      |            |             | ┸                                     |           |                                            |                   |                     |                                                  |           |                                                  |
| Bus stops/h                                          |                                                |              | 0                           | 0           | 0            | 0          |             | 0                                    |            |             | ┸                                     | 0         | 0                                          | _                 | 0                   |                                                  | 0         | <u> </u>                                         |
| Unit Extens                                          | ion                                            |              | 3.0                         | 3.0         | 3.0          | 3.6        | 0           | 3.0                                  |            |             | <u></u>                               | 3.0       | 3.0                                        | 3                 | .0                  |                                                  | 3.0       |                                                  |
| Phasing                                              | Excl. Left                                     | Thru         |                             | 03          | }            |            | 04          |                                      |            | SB Or       | _                                     | _         | IB Only                                    | 4                 |                     | 07                                               |           | 08                                               |
| Timing                                               | G = 11.0<br>Y = 4                              | G = .        |                             | G =<br>Y =  |              | G =        |             |                                      |            | = 9.<br>= 4 | 0                                     |           | = 37.0<br>= 4                              |                   | G =<br>Y =          |                                                  | G=<br>Y=  |                                                  |
| Duration of                                          |                                                |              |                             | <u>r – </u> |              | T =        |             |                                      | <u> </u>   | - 4         |                                       | _         | cle Len                                    |                   |                     | 100                                              |           |                                                  |
|                                                      | up Capac                                       |              |                             | l Dela      | V S          | and I      | <u></u>     | S De                                 | te         | rmi         | nat                                   |           | 010 0011                                   | 9                 | <u> </u>            | 700.                                             |           |                                                  |
| Lano Oro                                             | ар Оарао                                       |              | EB                          | 1 1010      | <u> </u>     | 41101 -    |             | VB                                   |            | 1           |                                       |           | NB                                         |                   |                     | T                                                | SB        |                                                  |
| Adj. flow rat                                        | re.                                            | 103          | 649                         | 398         | +;           | 289        | 1           | 99                                   | Т          |             | 446                                   | 3         | 165                                        | 1                 | 89                  |                                                  | 161       |                                                  |
| Lane group                                           |                                                | 177          | 922                         | 961         | _            | 344        | +           | 99                                   | t          | <del></del> | 634                                   | -         | 646                                        | ⊢                 | 57                  |                                                  | 265       | _                                                |
| v/c ratio                                            |                                                | 0.58         | 0.70                        | 0.41        |              | .84        |             | 44                                   | t          | -           | 0.70                                  |           | 0.26                                       | ⊢                 | 34                  | +                                                | 0.61      |                                                  |
| Green ratio                                          |                                                | 0.10         | 0.26                        | 0.62        | $-\!\!\!+$   | 0.10       | <del></del> | 26                                   | ╁          |             | 0.3                                   |           | 0.36                                       | ⊢                 | 36                  | +                                                | 0.08      |                                                  |
| Unif. delay                                          |                                                | 43.0         | 33.5                        | 9.7         | -            | 4.2        | +           | 1.0                                  | $\dagger$  | _           | 27.4                                  | -         | 22.6                                       |                   | 3,3                 |                                                  | 44.5      |                                                  |
| Delay factor                                         |                                                | 0.17         | 0.27                        | 0.11        |              | 0.38       | +           | 11                                   | t          |             | 0.2                                   | -         | 0.11                                       | ⊢                 | 11                  |                                                  | 0.19      | 1                                                |
| <u> </u>                                             |                                                | 4.8          | 2.5                         | 0.3         |              | 6.7        |             | .4                                   | t          |             | 3.5                                   |           | 0.2                                        | ╌                 | .4                  | +                                                | 4.0       |                                                  |
| PF factor                                            | <u>,                                      </u> |              |                             | 0.13        | -            | .926       | +           | 766                                  | ╁          |             | 1.00                                  |           | 1.000                                      | ⊢                 | 000                 |                                                  | 1.000     |                                                  |
|                                                      | Control delay 44.6                             |              |                             | 1.6         | <del>-</del> | 7.7        | ₩           | 4.1                                  | t          |             | 31.0                                  | _         | 22.8                                       | ╄                 | 3.7                 |                                                  | 48.5      |                                                  |
| Lane group                                           | 28.1<br>C                                      | A            | 十                           | E           | ┿            | C          | t           | $\neg \uparrow$                      | С          | 一           | С                                     | ╌         | C                                          | 1                 | D                   |                                                  |           |                                                  |
| Apprch. dela                                         | · · · · · · · · · · · · · · · · · · ·          | D 20         | 0.4                         | <del></del> |              |            | 8.2         |                                      | —          |             |                                       | 27        | 7.5                                        |                   |                     |                                                  | 48.5      |                                                  |
| Approach L                                           | •                                              |              | С                           |             | $\top$       |            | D           |                                      |            |             |                                       |           | 5                                          |                   |                     | 1                                                | D         |                                                  |
| Intersec. de                                         |                                                | $\top$       |                             |             | ŀ            | nte        | ersec       | tion                                 | LOS        | 3           |                                       |           |                                            | С                 |                     |                                                  |           |                                                  |
| HC52000TM                                            |                                                | pyright ©    | 2000                        | I Indusoral | tur of       |            |             |                                      |            |             |                                       |           | <del></del>                                |                   |                     | ersion 4.1                                       |           |                                                  |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                       |              |            |                             |           | SI                                               | НО       | RTR       |                                    | _             |           |              |          |                                         |                      |                     |                  |          |                                                  |
|-------------------------------------------------------|--------------|------------|-----------------------------|-----------|--------------------------------------------------|----------|-----------|------------------------------------|---------------|-----------|--------------|----------|-----------------------------------------|----------------------|---------------------|------------------|----------|--------------------------------------------------|
| General Info                                          | ormation     |            |                             |           |                                                  |          | S         | ite In                             | fo            | rmatio    |              |          |                                         |                      | 5                   |                  |          |                                                  |
| Analyst<br>Agency or C<br>Date Perforr<br>Time Period | ned          | U:<br>08/2 | SAI<br>SAI<br>24/12<br>PEAK |           |                                                  |          | A<br>Ju   | iterse<br>rea T<br>urisdi<br>nalys | yp<br>ctic    | e<br>on   |              | 0        | A WAY<br>ON<br>All oti<br>CEANS<br>ALT2 | RAM<br>her a<br>SIDE | MPS<br>area<br>E-IN | s<br>as<br>T.#17 |          |                                                  |
| Volume an                                             | d Timing In  | put        |                             |           |                                                  |          |           |                                    |               |           |              |          |                                         |                      |                     |                  |          |                                                  |
|                                                       | X            |            |                             | EB        |                                                  |          |           | WE                                 |               |           | Ι.           |          | NB                                      |                      |                     |                  | SB       |                                                  |
|                                                       |              |            | LT                          | TH        | R'                                               | T        | LT        | <u></u> ⊤⊦                         |               | RT        | $\perp$      | LT       | TH                                      | R                    | T                   | 느                | TH       | RT                                               |
| Num. of Lan                                           | es           |            | 1                           | 2         | 1                                                |          | 2         | 2                                  |               | 0         | ┸            | 1        | 1                                       | 1                    | '<br>               | 0                | 2        | 0                                                |
| Lane group                                            |              |            | L                           | Τ         | R                                                |          | L         | TR                                 |               |           |              | L        | LT                                      | F                    | ₹                   |                  | LTR      |                                                  |
| Volume (vph                                           |              |            | 85                          | 520       | 316                                              | 0        | 350       | 425                                | ;             | 45        |              | 65       | 35                                      | 12                   |                     | 65               | 55       | 55                                               |
| % Heavy ve                                            | eh           |            | 2                           | 2         | 2                                                |          | 2         | 2                                  | <u>_</u>      | 2         |              | 2        | 2                                       | 2                    |                     | 2                | 2        | 2                                                |
| PHF                                                   | /A \         |            | 0.95                        | 0.95      | 0.9                                              | 5        | 0.95      | 0.95                               | ,             | 0.95      |              | 95       | 0.95                                    | 0.9                  |                     | 0.95             | 0.95     | 0.95                                             |
| Actuated (P                                           |              |            | <i>A</i> 3.0                | A<br>3.0  | 3.0                                              | _        | A<br>3.0  | 3.0                                | $\dashv$      | Α         |              | A<br>3.0 | 3.0                                     | 3.                   |                     | Α                | A<br>3.0 | A                                                |
| Startup lost<br>Ext. eff. gree                        |              |            | 2.0                         | 2.0       | 2.0                                              |          | 2.0       | 2.0                                | _             |           | _            | 2.0      | 2.0                                     | 2.                   |                     |                  | 2.0      | ├──                                              |
| Arrival type                                          | 511<br>      |            | 5                           | 5         | 5                                                | -        | 5         | 5                                  | _             |           | _            | 3        | 3                                       | 3                    |                     |                  | 3        |                                                  |
| Unit Extensi                                          |              |            | 3.0                         | 3.0       | 3.0                                              | )        | 3.0       | 3.0                                | $\vdash$      |           | _            | 3.0      | 3.0                                     | 3.                   | -                   |                  | 3.0      | <del>                                     </del> |
| Ped/Bike/R1                                           |              |            | 5                           | 3.0       | 0                                                | _        | 5         | 10                                 | $\dashv$      | 0         |              | 5        | 10                                      | 0                    |                     | 5                | 10       | 0                                                |
| Lane Width                                            | OIT VOIGITIE |            | 12.0                        | 12.0      | 12.                                              | 0        | 12,0      | 12.0                               | $\overline{}$ | Ť         | <del>-</del> | 2.0      | 12.0                                    | 12                   | _                   |                  | 12.0     | ╁┷╌                                              |
| Parking/Gra                                           | de/Parking   |            | N                           | 0         | N                                                |          | N         | 0                                  | $\dashv$      | N         | _            | N        | 0                                       |                      | _                   | N                | 0        | N                                                |
| Parking/hr                                            |              |            |                             |           | <del>                                     </del> |          |           | ╁                                  |               |           | T            |          |                                         |                      |                     |                  |          |                                                  |
| Bus stops/hi                                          |              |            | 0                           | 0         | 0                                                |          | 0         | 0                                  |               |           | 十            | 0        | 0                                       | (                    | )                   |                  | 0        |                                                  |
| Unit Extensi                                          |              |            | 3.0                         | 3.0       | 3.0                                              | )        | 3.0       | 3.0                                |               |           | 13           | 3.0      | 3.0                                     | 3.                   | 0                   |                  | 3.0      |                                                  |
| Phasing                                               | Excl. Left   | WB         | Only                        | Thru &    | <u>\$</u> R1                                     | ΓŢ       | 04        |                                    |               | SB Or     | ily          | N        | IB Only                                 | <del>,</del> T       |                     | 07               | T        | 08                                               |
| Timing                                                | G = 10.0     | G =        | 10.0                        | G = 2     | 20.0                                             |          | G =       |                                    |               | = 7.0     | 0            | G        | = 43.0                                  |                      | G =                 |                  | G =      |                                                  |
|                                                       | Y = 4        | Y = 4      |                             | Y = 4     | !                                                | <u>`</u> | Y =       |                                    | Y             | = 4       |              |          | = 4                                     |                      | Y =                 | 110              | Y =      |                                                  |
| Duration of A                                         |              |            |                             | <u> </u>  |                                                  |          |           |                                    | _             |           |              |          | cle Len                                 | gth                  | <u>C</u> =          | 110.             | 0        |                                                  |
| Lane Gro                                              | up Capac     | ity, C     |                             | l Dela    | ay,                                              | an       |           |                                    | <u>te</u>     | ermir     | nat          | ion      |                                         |                      |                     | <b>T</b>         |          |                                                  |
|                                                       |              |            | EB                          |           |                                                  |          | V         | VB_                                | _             |           |              |          | NB                                      |                      |                     |                  | SB       |                                                  |
| Adj. flow rate                                        | e            | 89         | 547                         | 326       |                                                  | 368      | 3 4       | 94                                 | $\perp$       |           | 385          | 5        | 352                                     | 12                   | 26                  |                  | 184      |                                                  |
| Lane group                                            | сар.         | 145        | 613                         | 878       |                                                  | 719      | 9 10      | 043                                |               |           | 672          | ?        | 678                                     | 59                   | 92                  |                  | 176      |                                                  |
| v/c ratio                                             |              | 0.61       | 0.89                        | 0.37      | 7 (                                              | 0.5      | 1 0.      | .47                                | Τ             | (         | 0.57         | 7        | 0.52                                    | 0.2                  | 21                  |                  | 1.05     |                                                  |
| Green ratio                                           |              | 0.08       | 0.17                        | 0.55      | 5 (                                              | 0.21     | 1 0.      | .30                                | T             |           | 0.38         | 3        | <b>0.3</b> 8                            | 0.3                  | 38                  |                  | 0.05     |                                                  |
| Unif. delay o                                         | 11           | 48.8       | 44.5                        | 13.7      | 7                                                | 38.5     | 5 3       | 1.4                                | Ť             | 12        | 26.9         | ,        | 26.2                                    | 22                   | 2.9                 | -                | 52.0     |                                                  |
| Delay factor                                          | k            | 0.20       | 0.42                        | 0.11      | , (                                              | 0.12     | 2 0.      | .11                                | T             | - 1       | 0.17         | 7        | 0.12                                    | 0.                   | 11                  | 1                | 0.50     |                                                  |
| Increm. dela                                          | y d2         | 7.5        | 15.4                        | 0.3       | 1                                                | 0.6      |           | ).3                                | ┪             |           | 1.2          | 一        | 0.7                                     | 0.                   | 2                   |                  | 80.3     | 1                                                |
| PF factor                                             |              | 0.941      | 0.861                       | 0.17      | o d                                              | 0.82     | 24 0.     | 714                                | 十             | 1         | 1.00         | 0        | 1.000                                   | 1.0                  | 000                 |                  | 1.000    |                                                  |
| Control delay 53.4                                    |              |            | 53.7                        | 2.6       |                                                  | 32.4     | 4 2       | 2.8                                | T             |           | 28.1         | 1        | 26.9                                    | 23                   | 3.1                 | 1                | 132.3    |                                                  |
| Lane group LOS D                                      |              |            | D                           | Α         | 7                                                | С        |           | C .                                | T             |           | С            |          | С                                       | (                    | )                   |                  | F        | 1                                                |
| Apprch. dela                                          | 6.3          | •          |                             |           | 26.9                                             |          |           |                                    |               | 26        | 3.9          |          |                                         |                      | 132.3               | <del>-</del>     |          |                                                  |
| Approach L0                                           |              |            | D                           |           | $\top$                                           |          | С         |                                    |               |           |              | (        | )                                       |                      |                     |                  | F        |                                                  |
| Intersec. del                                         | 6.8          |            |                             |           |                                                  |          | Int       | ersect                             | tion          | LOS       | 5            |          |                                         |                      | D                   |                  |          |                                                  |
| HCS2000 <sup>TM</sup>                                 |              |            | Co                          | pyright © | 2000                                             | ) Uni    | versity o | f Florid                           | a, A          | Il Rights | s Res        | erved    |                                         |                      |                     |                  | V        | ersion 4.1                                       |

|                                |                   | •••          |               |                | SH       | IORT               | R             | EPC              | R.           | T            |             |                                              |               |         |              |            |             |
|--------------------------------|-------------------|--------------|---------------|----------------|----------|--------------------|---------------|------------------|--------------|--------------|-------------|----------------------------------------------|---------------|---------|--------------|------------|-------------|
| General Inf                    | ormation          | · ·          |               |                |          |                    | Si            | te Inf           | or           | mati         | on          |                                              | ••            |         |              |            |             |
| Analyst<br>Agency or C         |                   | U.           | SAI<br>SAI    |                |          |                    | 1             | tersed<br>ea Ty  |              |              | V           | ISTA                                         |               | ŘAMP    |              | FF-        |             |
| Date Perfor<br>Time Perioc     |                   |              | 24/12<br>PEAK |                |          |                    | Ju            | risdic<br>nalysi | ctio         | n            | В           |                                              | CEANS         | IDE-IN  |              | CT         |             |
| Volume an                      | d Timing In       | put          |               |                |          |                    |               |                  |              |              |             |                                              |               |         |              |            |             |
|                                |                   |              | LT            | EB<br>TH       | ГЭТ      | <del>-   _</del> - | _             | WB               | <del>}</del> | DT           |             | _T                                           | NB            | l bit   | 1 1 +        | SB         | LDT         |
| Num. of Lar                    | nes               |              | 1             | 2              | RT<br>1  | 2                  |               | <u>TH</u> 2      | $\dagger$    | RT<br>0      |             | <u>-                                    </u> | TH<br>1       | RT<br>1 | LT<br>0      | TH 2       | RT 0        |
| Lane group                     |                   |              | L             | Т              | R        | L                  | ᅱ             | TR               | $\dagger$    |              | +           |                                              | LT            | R       |              | LTR        | $\Box$      |
| Volume (vpl                    | n)                |              | 90            | 526            | 349      |                    |               | 438              | $\dagger$    | 45           |             | 10                                           | 35            | 120     | 65           | 55         | 65          |
| % Heavy v                      |                   |              | 2             | 2              | 2        | 2                  |               | 2                | +            | 2            | -           | 2                                            | 2             | 2       | 2            | 2          | 2           |
| PHF                            |                   |              | 0.95          | 0.95           | 0.95     | 5 0.9              | 5             | 0.95             | (            | 0.95         | 0.          | 95                                           | 0.95          | 0.95    | 0.95         | 0.95       | 0.95        |
| Actuated (P                    |                   |              | Α             | Α              | Α        | Α                  |               | Α                |              | Α            |             |                                              | Α             | Α       | Α            | Α          | Α           |
| Startup lost                   |                   |              | 3.0           | 3.0            | 3.0      |                    | _             | 3.0              | 4            |              |             | .0                                           | 3.0           | 3.0     | <del> </del> | 3.0        |             |
| Ext. eff. gree<br>Arrival type | en                |              | 2.0<br>5      | 2.0<br>5       | 2.0<br>5 | 2.0                |               | 2.0<br>5         | ╬            |              |             | . <i>0</i><br>3                              | 2.0<br>3      | 2.0     |              | 2.0        |             |
| Unit Extensi                   | ion               |              | 3.0           | 3.0            | 3.0      |                    | $\overline{}$ | 3.0              | ╅            | <del></del>  |             | .0                                           | 3.0           | 3.0     | +            | 3.0        | ┼┼┼         |
| Ped/Bike/R                     |                   | ,            | 5             | 5.0            | 0        | 5                  | -             | 10               | ╁            | 0            |             | 5                                            | 10            | 0       | 5            | 10         | 0           |
| Lane Width                     | TOTA VOIGING      | ,            | 12.0          | 12.0           | 12.0     |                    | 0             | 12.0             | $\top$       |              | _           | 2.0                                          | 12.0          | 12.0    | †            | 12.0       | Ш           |
| Parking/Gra                    | de/Parking        |              | N             | 0              | Ν        | N                  |               | 0                |              | Ν            | 7           | V                                            | 0             | N       | N            | 0          | N           |
| Parking/hr                     |                   |              |               |                |          |                    |               |                  |              |              |             |                                              |               |         |              |            |             |
| Bus stops/h                    | r                 |              | 0             | 0              | 0        | 0                  |               | 0                |              |              |             | 0                                            | 0             | 0       |              | 0          |             |
| Unit Extensi                   | on                | · ·          | 3.0           | 3.0            | 3.0      | 3.0                | )             | 3.0              |              |              | 3           | .0                                           | 3.0           | 3.0     |              | 3.0        |             |
| Phasing                        | Excl. Left        |              | Only          | Thru 8         |          |                    | 04            |                  |              | B On         | _           | _                                            | B Only        |         | 07           |            | 80          |
| Timing                         | G = 10.0<br>Y = 4 | G =<br>Y = 4 |               | G = 2<br>Y = 4 | 0.0      | G =<br>Y =         |               |                  |              | = 7.(<br>= 4 | )           |                                              | = 43.0<br>= 4 | G =     |              | G =<br>Y = |             |
| Duration of <i>i</i>           |                   | <u> </u>     | _             | 1 - 4          |          |                    |               | L                | <u>' -</u>   |              | <del></del> | 1                                            |               |         | = 110.       |            |             |
| ,                              | up Capac          |              |               | l Dela         | v. a     | and L              | OS            | De               | teı          | rmir         | nati        |                                              | •             |         |              |            |             |
|                                |                   | <u> </u>     | EB            |                | 1        |                    | W             |                  |              |              |             |                                              | NB            |         |              | SB         | $\neg \neg$ |
| Adj. flow rat                  | e                 | 95           | 554           | 367            | 3        | 368                | 50            | 08               |              | 1            | 411         |                                              | 373           | 126     |              | 194        | Т           |
| Lane group                     | сар.              | 145          | 613           | 878            | 7        | 719                | 104           | 43               |              |              | 672         |                                              | 678           | 592     |              | 175        |             |
| v/c ratio                      |                   | 0.66         | 0.90          | 0.42           | 0        | ).51               | 0.4           | 49               |              | (            | 0.61        |                                              | 0.55          | 0.21    |              | 1.11       |             |
| Green ratio                    |                   | 0.08         | 0.17          | 0.55           | 0        | .21                | 0.3           | 30               |              | (            | 0.38        | ŀ                                            | 0.38          | 0.38    |              | 0.05       |             |
| Unif. delay o                  | <del>1</del> 1    | 49.0         | 44.6          | 14.2           | 3        | 8.5                | 31            | .6               |              | 2            | 27.4        |                                              | 26.6          | 22.9    |              | 52.0       |             |
| Delay factor                   | k                 | 0.23         | 0.42          | 0.11           | 0        | ).12               | 0.1           | 11               |              | (            | 0.20        |                                              | 0.15          | 0.11    |              | 0.50       |             |
| Increm. dela                   | ıy d2             | 10.2         | 16.9          | 0.3            | (        | 0.6                | 0.            | 4                |              |              | 1.6         |                                              | 1.0           | 0.2     |              | 100.1      |             |
| PF factor                      |                   |              |               | 0.170          | 0.       | .824               | 0.7           | 714              |              | 1            | .00.        | 0 1                                          | 1.000         | 1.000   | 1            | 1.000      |             |
| Control dela                   | у                 | 56.3         | 55.3          | 2.7            | 3.       | 2.4                | 22            | 2.9              |              | 2            | 29.1        |                                              | 27.6          | 23.1    |              | 152.1      |             |
| Lane group                     | ane group LOS E   |              |               |                |          | С                  | C             |                  |              |              | С           |                                              | С             | С       |              | F          |             |
| Apprch, dela                   | эу                | 3            | 6.4           |                |          | 26                 | 5.9           |                  |              |              |             | 27.                                          | .6            |         |              | 152.1      |             |
| Approach L0                    | OS                |              | D             |                |          | (                  | С             |                  |              |              |             | С                                            |               |         |              | F          |             |
| Intersec. del                  |                   |              |               |                | lr       | nte                | rsect         | ion              | LOS          | }            |             |                                              | D             |         |              |            |             |
| ттепласаТМ                     |                   |              |               | nyright @      | 2000 1   | T. 1               | . 01          | Pl. Ja.          | 4.11         | D: 1         | D           |                                              |               |         |              |            | emion 4.1f  |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                     |              |                                                  |                                       | SH           | ORT R         | EPC                                | RT           | -           |     |                                               |                                               |                               | •            | ***       |               |
|------------------------------------------------------|---------------------|--------------|--------------------------------------------------|---------------------------------------|--------------|---------------|------------------------------------|--------------|-------------|-----|-----------------------------------------------|-----------------------------------------------|-------------------------------|--------------|-----------|---------------|
| General Inf                                          | ormation            |              | *                                                |                                       |              | S             | ite In                             | forn         | natio       | n   |                                               |                                               |                               |              |           |               |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med<br>I            | 08/2<br>AM 1 | SAI<br>SAI<br>24/12<br>PEAK                      | · · · · · · · · · · · · · · · · · · · |              | A<br>Ju       | nterse<br>rea T<br>urisdi<br>nalys | ype<br>ctior | า           |     | 00                                            | OFF<br>All of<br>CEANS                        | -ON RA<br>ther are<br>SIDE-II |              |           |               |
| Volume an                                            | d Timing In         | put          | ı                                                |                                       |              | 1             | 147                                |              |             |     |                                               | N IPN                                         |                               | ,            |           |               |
|                                                      |                     |              | LT                                               | EB<br>TH                              | RT           | LT            | WE<br>TH                           |              | RT          | L   | r                                             | NB<br>TH                                      | RT                            | LT           | SB<br>TH  | RT            |
| Num, of Lar                                          | nes                 |              | 2                                                | 2                                     | 0            | 1             | 2                                  | _            | 0           | 1   | <u>'                                     </u> | 1                                             | 1                             | 1            | 1         | 0             |
| Lane group                                           |                     |              | 7                                                | TR                                    | <u> </u>     | 1             | TR                                 | +            |             | L   |                                               | LT                                            | R                             | L            | TR        |               |
| Volume (vpl                                          | h)                  |              | 775                                              | 220                                   | 37           | 30            | 345                                | +-           | 45          | 20  | )                                             | 5                                             | 10                            | 85           | 10        | 45            |
| % Heavy v                                            |                     |              | 2                                                | 2                                     | 2            | 2             | 2                                  | _            | 2           | 2   |                                               | 2                                             | 2                             | 2            | 2         | 2             |
| PHF                                                  |                     |              | 0.95                                             | 0.95                                  | 0.95         | 0.95          | 0.95                               | 0            | .95         | 0.9 | 5                                             | 0.95                                          | 0.95                          | 0.95         | 0.95      | 0.95          |
| Actuated (P                                          |                     |              | Α                                                | Α                                     | Α            | A             | Α                                  |              | Α           | Α   |                                               | Α                                             | Α                             | Α            | Α         | Α             |
| Startup lost                                         |                     |              | 3.0                                              | 3.0                                   |              | 3.0           | 3.0                                | 4            |             | 3.0 |                                               | 3.0                                           | 3.0                           | 3.0          | 3.0       |               |
| Ext. eff. gre                                        | en                  | ·            | 2.0                                              | 2.0                                   |              | 2.0           | 2.0                                | +            |             | 2.0 | )                                             | 2.0<br>3                                      | 2.0                           | 2.0<br>3     | 2.0       | -             |
| Arrival type<br>Unit Extensi                         | ion                 |              | <i>4</i><br>3.0                                  | 3.0                                   |              | 3.0           | 3.0                                | -            |             | 3.0 | <u> </u>                                      | 3.0                                           | 3.0                           | 3.0          | 3.0       | <del> </del>  |
|                                                      | TOR Volume          |              | 5                                                | 10                                    | 0            | 5             | 10                                 |              | 0           | 5.0 | ,                                             | 10                                            | 0                             | 5            | 10        | 0             |
| Lane Width                                           | TOR Volume          | ·            | 12.0                                             | 12.0                                  | ۲            | 12.0          | 12.0                               |              | <u> </u>    | 12. | 0                                             | 12.0                                          | 12.0                          | 12.0         | 12.0      | <del>Ľ</del>  |
| Parking/Gra                                          | de/Parking          |              | N                                                | 0                                     | N            | N             | 0                                  | 十            | N           | Ν   |                                               | 0                                             | N                             | N            | 0         | N             |
| Parking/hr                                           |                     |              |                                                  |                                       |              |               |                                    |              |             |     |                                               |                                               |                               |              |           |               |
| Bus stops/h                                          | r                   | -            | 0                                                | 0                                     |              | 0             | 0                                  |              |             | 0   |                                               | 0                                             | 0                             | 0            | 0         |               |
| Unit Extensi                                         | ion                 |              | 3.0                                              | 3.0                                   |              | 3.0           | 3.0                                |              |             | 3.0 | )                                             | 3.0                                           | 3.0                           | 3.0          | 3.0       |               |
| Phasing                                              | Excl. Left          | EB           | Only                                             | Thru 8                                | ₹ RT         | 04            | Ī                                  | ŞE           | 3 Onl       | у   | N                                             | B Only                                        | <i>'</i>                      | 07           |           | )8            |
| Timing                                               | G = 5.0             | G =          |                                                  | G = 2                                 |              | G =           |                                    |              | 10.0        |     |                                               | = 5.0                                         | G =                           |              | G =       |               |
|                                                      | Y = 4               | Y = .        | <del>`                                    </del> | Y = 4                                 |              | Y =           |                                    | Y =          | 4           |     | Y =                                           |                                               | Y =                           | = 100.       | Y =       |               |
|                                                      | Analysis (hrs       |              |                                                  | l Dale                                |              | -4 I O        | <u> </u>                           | 40.5         | main        |     |                                               | ie Len                                        | gui C -                       | - 100.       |           |               |
| Lane Gro                                             | up Capac            | ity, C       | EB                                               | n Deia                                | iy, ai       | WE            |                                    | ter          | <u> </u>    | auc |                                               | NB                                            |                               | <u> </u>     | SB        |               |
| ۸ ما: ۱۹۵۰۰۰ سمه                                     |                     | 046          | _                                                |                                       | 22           | 410           |                                    |              | 12          |     | _                                             | 4 T                                           | 11                            | 89           | 58        | $\overline{}$ |
| Adj. flow rat                                        |                     | 816<br>1610  | 271<br>2177                                      |                                       | 32<br>71     | 695           | _                                  |              | 68          |     | ┝                                             | 0                                             | 57                            | 157          | 141       | +             |
| Lane group                                           | сар.                |              |                                                  |                                       | +            |               |                                    |              | +           |     | 0.2                                           |                                               | 0.19                          | 0.57         | 0.41      | -             |
| v/c ratio                                            | *** ***             | 0.51         | 0.12<br>0.63                                     | _                                     | 0.45         | <del>}</del>  | _                                  |              | 0.1         |     | ┝                                             | _                                             | 0.04                          | 0.09         | 0.09      |               |
| Green ratio                                          |                     | 0.47         | +                                                |                                       | 0.04<br>46.9 |               |                                    |              | 46.4        |     | 46                                            | _                                             | 46.4                          | 43.6         | 43.0      | +             |
| Unif. delay                                          |                     | 18.4         | 7.4                                              |                                       | +            |               |                                    |              |             |     | ₩                                             | -                                             |                               |              | 0.11      | _             |
| Delay factor                                         |                     | 0.12         | 0.11                                             |                                       | 0.11         |               | _                                  |              | 0.1         |     | 0.                                            |                                               | 0.11                          | 0.16         | 1.9       | +             |
| Increm. dela<br>PF factor                            | ay u∠               | 0.3          | 0.0<br>0.497                                     | ,                                     | 4.5<br>1.00  | 1.3<br>0 1.00 |                                    |              | 1.2         |     | ├—                                            | 4 000 1                                       | 1.7                           | 4.8<br>1.000 | 1.000     | _             |
|                                                      |                     | 0.810        | 3.7                                              |                                       | 51.4         |               |                                    |              | 1.00<br>47. |     | 47                                            | <del></del>                                   | 48.1                          | 48.4         | 44.9      |               |
| Control delay 15.2  Lane group LOS B                 |                     |              | 3.7<br>A                                         | _                                     | D D          | D D           | +                                  |              | D D         |     | 41<br>[                                       |                                               | +0.1<br>D                     | 40.4<br>D    | D D       | _             |
|                                                      | Apprch. delay 12.3  |              |                                                  |                                       | 10           | 38.6          |                                    |              | 10          | 1   | 7.9                                           | <u>′                                     </u> | υ                             |              | 47.0      |               |
| Approach L                                           | <del> </del>        | <b>.</b>     | <u>2.3</u><br>В                                  |                                       | <del> </del> | D             |                                    |              | ┼           |     | 7.9<br>D                                      |                                               |                               |              | 47.0<br>D | -             |
|                                                      | ntersec. delay 22.9 |              |                                                  |                                       |              |               | l-+                                | orco         | l<br>vetice |     |                                               |                                               |                               |              | С         |               |
| intersec. de                                         | ıay                 |              |                                                  | nivonaitus o f                        |              |               | ection                             |              |             |     |                                               | 1                                             |                               | Varoion 4.1  |           |               |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       | ·            | -          |                             |          | SH           | ORT R    | EPC                                | RT           | -       |           |     |                         |                              |                |            |          |
|-------------------------------------------------------|--------------|------------|-----------------------------|----------|--------------|----------|------------------------------------|--------------|---------|-----------|-----|-------------------------|------------------------------|----------------|------------|----------|
| General Inf                                           | ormation     |            |                             |          |              |          | ite In                             |              |         |           |     |                         |                              |                | н.,        |          |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med          | U:<br>08/2 | SAI<br>SAI<br>24/12<br>PEAK |          |              | A<br>Ji  | iterse<br>rea T<br>urisdi<br>nalys | ype<br>ctior | ı       |           | 00  | OFF-<br>All of<br>CEANS | ·ON RA<br>her are<br>SIDE-IN | as             |            |          |
| Volume an                                             | d Timing In  | put        |                             |          |              |          |                                    |              | •       |           |     |                         |                              |                |            |          |
|                                                       |              |            |                             | EB       |              | <b>-</b> | WE                                 |              |         |           |     | NB                      |                              | <del> </del> _ | SB         | L D.T.   |
| NI afl au                                             |              |            | LT                          | TH       | RT<br>0      | LT       | TH<br>2                            | _            | RT<br>0 | LT<br>1   | -   | TH<br>1                 | RT<br>1                      | LT<br>1        | TH<br>1    | RT<br>0  |
| Num. of Lar                                           | ies          |            | 2                           | 2        | 0            | 1        | <del>├</del>                       | +            | 0       | _         |     |                         | -                            |                | TR         |          |
| Lane group                                            |              |            | L                           | TR       | 07           | L        | TR                                 | 4            | 45      | L         | _   | LT                      | R                            | L              |            | AE.      |
| Volume (vpl                                           |              |            | 816<br>2                    | 235<br>2 | 37<br>2      | 30<br>2  | 351<br>2                           | _            | 45<br>2 | 24<br>2   | -   | 5<br>2                  | 10<br>2                      | 85<br>2        | 10         | 45<br>2  |
| % Heavy ve<br>PHF                                     | en           |            | ∠<br>0.95                   | 0.95     | 0.95         | 0.95     | 0.95                               |              | 9.95    | 0.9       | 5   | 0.95                    | 0.95                         | 0.95           | 0.95       | 0.95     |
| Actuated (P.                                          | /A)          |            | A                           | A        | A            | A        | A                                  |              | A       | A         |     | A                       | A                            | A              | A          | A        |
| Startup lost                                          |              |            | 3.0                         | 3.0      |              | 3.0      | 3.0                                | 丁            |         | 3.0       |     | 3.0                     | 3.0                          | 3.0            | 3.0        |          |
| Ext. eff. gree                                        | en           |            | 2.0                         | 2.0      |              | 2.0      | 2.0                                |              |         | 2.0       |     | 2.0                     | 2.0                          | 2.0            | 2.0        |          |
| Arrival type                                          |              |            | 4                           | 4        |              | 4        | 4                                  | _            |         | 3         |     | 3                       | 3                            | 3              | 3          |          |
| Unit Extensi                                          |              |            | 3.0                         | 3.0      |              | 3.0      | 3.0                                | _            |         | 3.0       | )   | 3.0                     | 3.0                          | 3.0            | 3.0        |          |
|                                                       | TOR Volume   | )          | 5                           | 10       | 0            | 5        | 10                                 | _            | 0       | 5         |     | 10                      | 0                            | 5              | 10         | 0        |
| Lane Width                                            | de /Daddaa   |            | 12.0                        | 12.0     | N            | 12.0     | 12.0                               |              | N       | 12.0<br>N | _   | 12.0                    | 12.0<br>N                    | 12.0<br>N      | 12.0<br>0  | N        |
| Parking/Gra                                           | de/Parking   |            | N                           | 0        | I N          | N        | 0                                  | +            | IV      | IV        | _   | 0                       | IV                           | IV             | U          | //       |
| Parking/hr                                            |              | =          | 0                           | 0        |              | 0        | 0                                  | +            |         | 0         |     | 0                       | 0                            | 0              | 0          | -        |
| Bus stops/h                                           |              |            | 3.0                         | 3.0      |              | 3.0      | 3.0                                |              |         | 3.0       |     | 3.0                     | 3.0                          | 3.0            | 3.0        | <u> </u> |
| Unit Extensi                                          | Excl. Left   | LED        |                             | Thru 8   | DT           | 04       | <u> </u>                           |              | 3 Onl   | 1         |     | B Only                  | <u> </u>                     | 07             | <u> </u>   | 1<br>08  |
| Phasing                                               | G = 5.0      | G=         | Only<br>39.0                | G = 2    |              | G =      |                                    |              | : 10.0  |           |     | = 5.0                   | G =                          |                | G =        | 30       |
| Timing                                                | Y = 4        | Y =        |                             | Y = 4    |              | Y =      |                                    | <u>Y</u> =   |         |           |     | : 4                     | Y =                          |                | Y =        |          |
| Duration of                                           | Analysis (hr | s) = 0.2   | ?5                          |          |              |          |                                    |              |         |           | Эус | le Len                  | gth C =                      | = 100.         | 0          |          |
| Lane Gro                                              | up Capac     | ity, C     | ontro                       | l Dela   | ay, ar       | nd LO    | S De                               | ter          | min     | atio      | n   |                         |                              |                |            |          |
|                                                       |              |            | EB                          |          |              | WE       | 3                                  |              |         |           | 1   | <b>V</b> B              |                              |                | SB         |          |
| Adj. flow rat                                         | е            | 859        | 286                         |          | 32           | 416      | 3                                  |              | 25      |           | 5   | 5                       | 11                           | 89             | 58         |          |
| Lane group                                            | сар.         | 1610       | 2180                        |          | 71           | 698      | 5                                  |              | 68      |           | 7.  | 5                       | 57                           | 157            | 141        |          |
| v/c ratio                                             |              | 0.53       | 0.13                        | 1        | 0.45         | 0.6      | 0                                  |              | 0.3     | 7         | 0.0 | 07 (                    | 0.19                         | 0.57           | 0.41       |          |
| Green ratio                                           | ··           | 0.47       | 0.63                        |          | 0.04         | 0.2      | 0                                  |              | 0.0     | 4         | 0.0 | 04 (                    | 0.04                         | 0.09           | 0.09       |          |
| Unif. delay of                                        | <del></del>  | 18.7       | 7.5                         |          | 46.9         | 36.      | 4                                  |              | 46.     | 8         | 46  | .2 4                    | 46.4                         | 43.6           | 43.0       |          |
| Delay factor                                          | ·k           | 0.14       | 0.11                        |          | 0.11         | 0.1      | 9                                  |              | 0.1     | 1         | 0.1 | 11 (                    | 0.11                         | 0.16           | 0.11       |          |
| Increm. dela                                          | ay d2        | 0.3        | 0.0                         |          | 4.5          | 1.4      |                                    |              | 3.3     | 3         | 0.  | 4                       | 1.7                          | 4.8            | 1.9        |          |
| PF factor                                             |              | 0.810      | 0.497                       | 7        | 1.00         | 0 1.00   | 00                                 |              | 1.00    | 20        | 1.0 | 000 1                   | .000                         | 1.000          | 1.000      |          |
| Control delay 15.5                                    |              | 15.5       | 3.7                         |          | 51.4         | 37.      | 8                                  |              | 50.     | 1         | 46  | .6                      | 48.1                         | 48.4           | 44.9       |          |
| Lane group LOS B A                                    |              |            | Α                           |          | D            | D        |                                    |              | D       |           | L   | )                       | D                            | D              | D          |          |
| Apprch. dela                                          | ay           | 1          | 2.6                         |          |              | 38.8     |                                    |              |         | 49        | 9.1 |                         |                              |                | 47.0       |          |
| Approach L                                            | os           |            | В                           |          |              | D        |                                    |              |         | I         | כ   |                         |                              |                | D          |          |
| Intersec. de                                          | lay          |            |                             | -10-300  | Int          | erse     | ection                             | LO:          | S       |           |     |                         | С                            |                |            |          |
| HC\$2000TM                                            |              |            | anuriaht @                  | 3000 II  | niversity of | EFloride | A11                                | Rights 1     | Recer   | ed        |     |                         |                              |                | ersion 4.1 |          |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |             |                                         |                             |             | SH     | ORT R    | EPO                               | OR           | Γ                 |         |          |                       |                               |          |          |      |
|------------------------------------------------------|-------------|-----------------------------------------|-----------------------------|-------------|--------|----------|-----------------------------------|--------------|-------------------|---------|----------|-----------------------|-------------------------------|----------|----------|------|
| General Inf                                          | ormation    |                                         |                             |             |        | S        | ite Ir                            | ıforı        | matio             | n       |          |                       |                               |          |          |      |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med         | U:<br>08/2                              | SAI<br>SAI<br>24/12<br>PEAK |             |        | A<br>J   | nterse<br>rea 1<br>urisd<br>nalys | ype<br>ictio | n                 |         | 0        | OFF<br>All of<br>CEAN | -ON RA<br>ther are<br>SIDE-II | as       |          |      |
| Volume an                                            | d Timing In | put                                     | ***                         |             |        |          |                                   |              |                   |         |          |                       |                               | ·        |          |      |
|                                                      |             |                                         | LT                          | EB<br>TH    | RT     | LT       | WI<br>TH                          |              | RT                | L       |          | NB<br>TH              | I RT                          | LT       | SB<br>TH | RT   |
| Num, of Lar                                          | nes         |                                         | 2                           | 2           | 0      | 1        | 2                                 | 1            | 0                 | 1       | <u> </u> | 1                     | 1                             | 1        | 1        | 0    |
| Lane group                                           |             |                                         | L                           | TR          |        |          | TR                                | _            |                   | L       |          | LT                    | R                             | L        | TR       |      |
| Volume (vpl                                          | <u> </u>    |                                         | 740                         | 345         | 80     | 115      | 485                               |              | 135               | 16      | 5        | 50                    | 15                            | 170      | 65       | 40   |
| % Heavy v                                            |             |                                         | 2                           | 2           | 2      | 2        | 2                                 |              | 2                 | 2       | <u> </u> | 2                     | 2                             | 2        | 2        | 2    |
| PHF                                                  |             |                                         | 0.95                        | 0.95        | 0.95   | 0.95     | 0.9                               | 5 (          | ).95              | 0.9     | 5        | 0.95                  | 0.95                          | 0.95     | 0.95     | 0.95 |
| Actuated (P                                          |             |                                         | Α                           | Α           | Α      | Α        | Α                                 |              | Α                 | Α       |          | Α                     | Α                             | Α        | Α        | Α    |
| Startup lost                                         | *******     |                                         | 3.0                         | 3.0         |        | 3.0      | 3.0                               |              |                   | 3.0     |          | 3.0                   | 3.0                           | 3.0      | 3.0      |      |
| Ext. eff. gree                                       | en          |                                         | 2.0<br>5                    | 2.0<br>5    |        | 2.0<br>5 | 2.0<br>5                          | -            |                   | 2.0     | )        | 2.0<br>3              | 2.0<br>3                      | 2.0<br>5 | 2.0<br>3 |      |
| Arrival type<br>Unit Extensi                         | ion         |                                         | 3.0                         | 3.0         |        | 3.0      | 3.0                               |              |                   | 3.      | <u></u>  | 3.0                   | 3.0                           | 3.0      | 3.0      |      |
|                                                      | TOR Volume  |                                         | 5                           | 10          | 0      | 5        | 10                                | +            | 0                 | 5.<br>5 |          | 10                    | 0                             | 5        | 10       | 0    |
| Lane Width                                           | OTT VOIGING |                                         | 12.0                        | 12.0        | Ů      | 12.0     | 12.0                              | 7            |                   | 12.     | 0        | 12.0                  | 12.0                          | 12.0     | 12.0     | Ť    |
| Parking/Gra                                          | de/Parking  |                                         | N                           | 0           | N      | N        | 0                                 | _            | Ν                 | N       |          | 0                     | N                             | N        | 0        | N    |
| Parking/hr                                           |             |                                         |                             |             |        |          |                                   |              |                   |         |          |                       |                               |          |          |      |
| Bus stops/h                                          | r           |                                         | 0                           | 0           |        | 0        | 0                                 |              |                   | 0       |          | 0                     | 0                             | 0        | 0        |      |
| Unit Extensi                                         | ion         |                                         | 3.0                         | 3.0         |        | 3.0      | 3.0                               | )            |                   | 3.      | 0        | 3.0                   | 3.0                           | 3.0      | 3.0      |      |
| Phasing                                              | Excl. Left  | EB                                      | Only                        | Thru δ      | ≩ RT   | 04       |                                   |              | 3 Onl             |         |          | B Only                |                               | 07       |          | 08   |
| Timing                                               | G = 14.0    | G =                                     |                             | G = 2       |        | =<br>G   |                                   |              | = 15.             |         |          | = 12.0                |                               |          | G =      |      |
| Duration of                                          | Y = 4       | Y = A                                   |                             | Y = 4       |        | Υ =      |                                   | Υ =          | : 4               |         |          | : 4                   | Y=                            | = 110.   | Y =      |      |
|                                                      | up Capac    |                                         | _                           | l Dola      |        | 24 I O   | s n                               | stor         | min               | _       |          | ie Lei                | giii C -                      | - 110.   |          |      |
| Laile Gro                                            | up Capac    | l C                                     | EB                          | Deia        | ly, ai | WE       |                                   | , LCI        | <del>111111</del> | auc     |          | NB                    |                               | T        | SB       |      |
| Adj. flow rat                                        | e           | 779                                     | 447                         |             | 121    |          |                                   |              | 96                | 1       | 13       |                       | 16                            | 179      | 110      | 1    |
| Lane group                                           |             | 1338                                    | 1620                        | _           | 209    | -        | -                                 |              | 174               |         | ⊢        | -                     | 151                           | 223      | 220      | +    |
| v/c ratio                                            |             | 0.58                                    | 0.28                        | -           | 0.58   |          |                                   |              | 0.5               |         | 0.       | -                     | 0.11                          | 0.80     | 0.50     | +    |
| Green ratio                                          |             | 0.39                                    | 0.47                        |             | 0.12   | _        |                                   |              | 0.1               |         | ├        |                       | 0.10                          | 0.13     | 0.13     |      |
| Unif. delay                                          | <u> </u>    | 26.4                                    | 17.6                        |             | 45.9   |          | $\rightarrow$                     |              | 47.               |         | 48       | -                     | 45.0                          | 46.7     | 44.7     |      |
| Delay factor                                         |             | 0.17                                    | 0.11                        |             | 0.17   | _        | _                                 |              | 0.1               |         | ┢        | -                     | 0.11                          | 0.35     | 0.11     | 1    |
|                                                      |             | 0.7                                     | 0.1                         |             | 4.0    | 24.      | 4                                 |              | 3.8               | }       | 14       | .3                    | 0.3                           | 18.8     | 1.8      | 1    |
| PF factor                                            |             |                                         |                             | ?           | 0.91   | 1 0.83   | 33                                |              | 1.00              | 00      | 1.0      | 000 1                 | 1.000                         | 0.903    | 1.000    | 1    |
| Control delay 15.8                                   |             |                                         | 7.2                         | 1           | 45.8   | 60.      | 7                                 |              | 50.               | 9       | 62       | .3 .                  | 45.3                          | 60.9     | 46.5     | 1    |
| Lane group                                           | LOS         | В                                       | Α                           |             | D      | E        |                                   |              | D                 |         | E        | =                     | D                             | E        | D        |      |
| Apprch. dela                                         | ∍y          | 1.                                      | 2.6                         |             |        | 58.3     | •                                 |              |                   | 5       | 6.7      |                       |                               |          | 55.4     | 7    |
| Approach L                                           | os          |                                         | В                           | <del></del> |        | Е        |                                   |              |                   |         | E        |                       |                               |          | E        |      |
| Intersec. de                                         |             | - · · · · · · · · · · · · · · · · · · · | In                          | terse       | ection | LO       | S                                 |              |                   |         | D        |                       |                               |          |          |      |
| HCS2000 <sup>TM</sup>                                |             | 2000 11                                 | niversity of                | FFlorid     | a All  | Righte 1 | Reger                             | ved          |                   | -       | -        | v                     | ersion 4.11                   |          |          |      |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                    |              | -                           |            | SH          | ORT R        | REPO                              | ORT                | •          |          |          |                       |                           |                                                  |           |            |
|------------------------------------------------------|--------------------|--------------|-----------------------------|------------|-------------|--------------|-----------------------------------|--------------------|------------|----------|----------|-----------------------|---------------------------|--------------------------------------------------|-----------|------------|
| General Inf                                          | ormation           |              |                             |            |             | S            | ite Ir                            | nforn              | natio      |          |          |                       |                           |                                                  |           |            |
| Analyst<br>Agency or (<br>Date Perfor<br>Time Period | med                | U:<br>08/2   | SAI<br>SAI<br>24/12<br>PEAK |            |             | A<br>J       | nterse<br>irea<br>urisd<br>inalys | Type<br>ictior     | ו          |          | 0        | OFF<br>All of<br>CEAN | -ON F<br>ther ar<br>SIDE- |                                                  |           |            |
| Volume an                                            | nd Timing In       | put          |                             |            |             |              |                                   |                    |            |          |          |                       |                           |                                                  |           |            |
|                                                      |                    |              |                             | EB         |             |              | W                                 |                    |            | L.,      |          | NB                    | T                         |                                                  | SB        | T ==       |
|                                                      |                    |              | LT                          | TH         | RT          | LT           | Th                                | 1                  | <u>RT</u>  | L        | <u> </u> | TH                    | RT                        | LT<br>,                                          | TH        | RT         |
| Num. of Lar                                          | nes                |              | 2                           | 2          | 0           | 1            | 2                                 |                    | 0          | 1        |          | 1                     | 1                         | 1                                                | 1         | 0          |
| Lane group                                           |                    |              | L                           | TR         |             | L            | TR                                |                    |            | <u> </u> |          | LT                    | R                         | L                                                | TR        |            |
| Volume (vp                                           |                    |              | 762                         | 353        | 86          | 115          | 502                               |                    | 35         | 17       |          | 50                    | 15                        | 170                                              | 65        | 40         |
| % Heavy v<br>PHF                                     | en                 |              | 2<br>0.95                   | 2<br>0.95  | 2<br>0.95   | 2<br>0.95    | 0.9                               |                    | 2<br>.95   | 2<br>0.9 |          | 2<br>0.95             | 2<br>0.95                 | 2<br>0.95                                        | 2<br>0.95 | 2<br>0.95  |
| Actuated (P                                          | /Δ\                |              | 0.95<br>A                   | 0.95<br>A  | 0.95<br>A   | 0.95<br>A    | 0.9.                              |                    | .95<br>A   | O.S      |          | 0.95<br>A             | 0.95<br>A                 | 0.95<br>A                                        | 0.95<br>A | 0.95<br>A  |
| Startup lost                                         |                    |              | 3.0                         | 3.0        | <i>-</i> 71 | 3.0          | 3.0                               | _                  | <i>1</i> 7 | 3.       |          | 3.0                   | 3.0                       | 3.0                                              | 3.0       |            |
| Ext. eff. gre                                        |                    |              | 2.0                         | 2.0        |             | 2.0          | 2.0                               |                    |            | 2.       |          | 2.0                   | 2.0                       | 2.0                                              | 2.0       |            |
| Arrival type                                         |                    |              | 5                           | 5          |             | 5            | 5                                 |                    |            | 3        |          | 3                     | 3                         | 5                                                | 3         |            |
| Unit Extens                                          | ion                |              | 3.0                         | 3.0        |             | 3.0          | 3.0                               | 7                  |            | 3.       | 0        | 3.0                   | 3.0                       | 3.0                                              | 3.0       |            |
| Ped/Bike/R                                           | TOR Volume         | <del>)</del> | 5                           | 10         | 0           | 5            | 10                                |                    | 0          | 5        |          | 10                    | 0                         | 5                                                | 10        | 0          |
| Lane Width                                           |                    |              | 12.0                        | 12.0       |             | 12.0         | 12.0                              | )                  |            | 12.      | 0        | 12.0                  | 12.0                      | 12.0                                             | 12.0      |            |
| Parking/Gra                                          | de/Parking         |              | Ν                           | 0          | N           | Ν            | 0                                 |                    | N          | ٨        | ·        | 0                     | N                         | N                                                | 0         | N          |
| Parking/hr                                           |                    |              |                             |            |             |              |                                   |                    |            |          |          |                       |                           |                                                  |           |            |
| Bus stops/h                                          | r                  |              | 0                           | 0          |             | 0            | 0                                 |                    |            | C        | )        | 0                     | 0                         | 0                                                | 0         |            |
| Unit Extens                                          | ion                |              | 3.0                         | 3.0        |             | 3.0          | 3.0                               | )                  |            | 3.       | 0        | 3.0                   | 3.0                       | 3.0                                              | 3.0       |            |
| Phasing                                              | Excl. Left         |              | Only                        | Thru 8     |             | 04           |                                   | _                  | 3 Only     |          |          | B Only                |                           | 07                                               |           | 08         |
| Timing                                               | G = 14.0           | G =          |                             | G = 2      |             | G =          |                                   |                    | 15.0       | )        |          | = 12.0                |                           |                                                  | G =       |            |
|                                                      | Y = 4              | Y = 4        |                             | Y = 4      |             | Υ =          |                                   | Υ =                | 4          |          |          | = 4                   | Y                         |                                                  | Y =       |            |
|                                                      | Analysis (hr       |              |                             | I Dala     |             | ا الم        | <u>C D</u>                        | . 4                | !          | _        |          | ie Ler                | giii C                    | = 110.                                           | U         |            |
| Lane Gro                                             | up Capac           | ity, C       |                             | Dela       | ıy, ar      |              |                                   | eter               | mina<br>T  | atic     |          | UD.                   |                           | 1                                                |           |            |
|                                                      |                    |              | EB                          |            | ļ           | WE           |                                   |                    | 1          |          | т -      | NB                    |                           | <del>                                     </del> | SB        | 1          |
| Adj. flow rat                                        | e                  | 802          | 463                         |            | 121         |              |                                   |                    | 103        |          | +        | 37                    | 16                        | 179                                              | 110       |            |
| Lane group                                           | cap.               | 1338         | 1617                        |            | 209         | 682          | 2                                 |                    | 174        | 1        | 17       | 79                    | 151                       | 223                                              | 220       |            |
| v/c ratio                                            |                    | 0.60         | 0.29                        |            | 0.58        | 0.9          | 8                                 |                    | 0.5        | 9        | 0.       | 77                    | 0.11                      | 0.80                                             | 0.50      |            |
| Green ratio                                          | ٠, ٠               | 0.39         | 0.47                        |            | 0.12        | 0.20         | 0                                 |                    | 0.10       | 0        | 0.       | 10                    | 0.10                      | 0.13                                             | 0.13      |            |
| Unif. delay                                          | d1                 | 26.6         | 17.7                        |            | 45.9        | 43.          | 8                                 |                    | 47.4       | 4        | 48       | 3.2                   | 45.0                      | 46.7                                             | 44.7      |            |
| Delay factor                                         | ·k                 | 0.19         | 0.11                        |            | 0.17        | 0.4          | 9                                 |                    | 0.1        | 8        | 0.       | 32                    | 0.11                      | 0.35                                             | 0.11      |            |
| Increm. dela                                         | ay d2              | 0.8          | 0.1                         |            | 4.0         | 30.          | 0                                 |                    | 5.3        | }        | 17       | 7.8                   | 0.3                       | 18.8                                             | 1.8       |            |
| PF factor                                            | •                  |              |                             | ?          | 0.91        | 1 0.83       | 33                                | •                  | 1.00       | 00       | 1.0      | 000                   | 1.000                     | 0.903                                            | 1.000     |            |
| Control dela                                         | Control delay 16.0 |              |                             |            | 45.8        | 66.          | 5                                 |                    | 52.        | 7        | 66       | 6.0                   | 45.3                      | 60.9                                             | 46.5      |            |
| Lane group                                           | LOS                | В            | Α                           |            | D           | Ε            |                                   |                    | D          |          | E        | =                     | D                         | E                                                | D         |            |
| Apprch. dela                                         | ay                 | 1.           | 2.8                         |            |             | 63.3         |                                   |                    |            | 5        | 9.4      |                       |                           |                                                  | 55.4      |            |
| Approach L                                           | os                 |              | В                           |            |             | Ε            |                                   |                    |            |          | Ε        |                       |                           |                                                  | E         |            |
| Intersec. de                                         | lay                | 3            | 7.5                         |            |             |              | In                                | terse              | ction      | LC       | S        |                       |                           |                                                  | D         |            |
| HCS2000 <sup>TM</sup>                                |                    |              | Co                          | noveight © | 2000 II     | niversity of | f Elorid                          | <sub>α</sub> Δ11.1 | Diahte 1   | Dacar    | wed      |                       |                           |                                                  | v         | ersion 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                |            |                             |            | SH           | ORT       | R        | EPC                              | )F       | ₹T          |          |              |                                           | _               |                 |             |          |                                                  |
|------------------------------------------------------|----------------|------------|-----------------------------|------------|--------------|-----------|----------|----------------------------------|----------|-------------|----------|--------------|-------------------------------------------|-----------------|-----------------|-------------|----------|--------------------------------------------------|
| General Inf                                          | ormation       |            |                             |            |              |           | Sit      | te Inf                           | or       | mati        | ion      |              |                                           |                 |                 |             |          |                                                  |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med            | U:<br>08/2 | SAI<br>SAI<br>24/12<br>PEAK |            |              |           | Ar<br>Ju | erse<br>ea Ty<br>risdic<br>alysi | ype      | е           |          | 00           | E BLVE<br>L<br>All oth<br>CEANS<br>ALT2/I | DR<br>Ier<br>ID | area<br>E-IN    | as<br>T.#19 |          |                                                  |
| Volume an                                            | d Timing In    | out        |                             |            |              |           |          |                                  |          |             |          |              |                                           |                 |                 |             |          |                                                  |
|                                                      |                |            | 1                           | EB         | T 5=         | 4         | _        | WE                               | _        |             | _        | 1 -          | NB                                        | Г               |                 | , -         | SB       | I DT                                             |
| Num. of Lar                                          | 200            |            | LT<br>1                     | TH<br>2    | RT<br>0      | L 1       | _        | TH<br>2                          | _        | RT<br>0     | +        | <u>LT</u>    | TH<br>1                                   | +-              | RT<br>0         | LT<br>1     | TH<br>1  | RT<br>0                                          |
|                                                      | 103            |            |                             | TR         | <del>Ľ</del> |           |          | TR                               | _        | ١Ů          | $\dashv$ | <del>.</del> | TR                                        |                 |                 | 1           | TR       | <del>                                     </del> |
| Lane group                                           | - N            |            | L 450                       |            | 40           |           |          |                                  |          | 00          | 4        |              |                                           | L               | 5               | 60          | 5 5      | 200                                              |
| Volume (vpl                                          |                |            | 150<br>2                    | 270<br>2   | 10<br>2      | 5<br>2    |          | 530<br>2                         | _        | 90<br>2     | +        | 5<br>2       | 5                                         | _               | <u>ე</u><br>2   | 2           | 2        | 200                                              |
| % Heavy v                                            | en             |            | 0.92                        | 0.92       | 0.92         | 0.9       |          | 0.92                             | -        | 0.92        | +        | 0.92         | 0.92                                      | 1—              | <u>2</u><br>.92 | 0.92        | 0.92     | 0.92                                             |
| Actuated (P                                          | /A)            |            | A                           | A          | 0.32<br>A    | 0.3<br>A  |          | 0.32<br>A                        | $\dashv$ | 0.32<br>A   | ┪        | A            | A                                         | -               | A               | A           | A        | A                                                |
| Startup lost                                         |                |            | 3.0                         | 3.0        | <u> </u>     | 3.0       |          | 3.0                              |          |             |          | 2.0          | 3.0                                       | T               |                 | 3.0         | 3.0      |                                                  |
| Ext. eff. gre                                        |                |            | 2.0                         | 2.0        |              | 2.0       |          | 2.0                              |          |             | 7        | 2.0          | 2.0                                       | Г               |                 | 2.0         | 2.0      |                                                  |
| Arrival type                                         |                |            | 3                           | 3          |              | 3         |          | 3                                |          |             |          | 3            | 3                                         |                 |                 | 3           | 3        |                                                  |
| Unit Extens                                          | ion            |            | 3.0                         | 3.0        |              | 3.0       | )        | 3.0                              |          |             | П        | 3.0          | 3.0                                       |                 |                 | 3.0         | 3.0      |                                                  |
| Ped/Bike/R                                           | TOR Volume     |            | 5                           | 10         | 0            | 5         |          | 10                               |          | 0           | 1        | 5            |                                           |                 | 0               | 5           |          | 0                                                |
| Lane Width                                           |                |            | 12.0                        | 12.0       |              | 12.       | 0        | 12.0                             | )        |             |          | 12.0         | 12.0                                      |                 |                 | 12.0        | 12.0     |                                                  |
| Parking/Gra                                          | ide/Parking    |            | N                           | 0          | N            | N         | !        | 0                                |          | Ν           |          | Ν            | 0                                         | L.              | N               | N           | 0        | N                                                |
| Parking/hr                                           |                |            |                             |            |              |           |          |                                  |          |             |          |              |                                           | <u> </u>        |                 |             |          |                                                  |
| Bus stops/h                                          | r              |            | 0                           | 0          |              | 0         |          | 0                                |          |             |          | 0            | 0                                         | L               |                 | 0           | 0        |                                                  |
| Unit Extens                                          | ion            |            | 3.0                         | 3.0        |              | 3.0       | )        | 3.0                              |          |             |          | 3.0          | 3.0                                       |                 |                 | 3.0         | 3.0      |                                                  |
| Phasing                                              | Excl. Left     |            | & RT                        | 03         | 3            |           | 04       |                                  |          | xcl.        |          | _            | ıru & R                                   | Т               |                 | 07          |          | 08                                               |
| Timing                                               | G = 13.0       | G =        |                             | G =        |              | G =       |          |                                  | _        | = 8         |          |              | = 19.1                                    |                 | G =             |             | G =      |                                                  |
|                                                      | Y = 4.2        | Y = 0.0    |                             | Y =        |              | Y =       |          |                                  | <u>Y</u> | = 4.        | 2        |              | = <i>4.2</i><br>cle Len                   | atk             | Υ =             |             | Y = 0    |                                                  |
|                                                      | Analysis (hrs  |            |                             | I Dale     |              | al I      | 0        | 2 Da                             | 4.       | . wwo i     | <b>.</b> |              |                                           | yu              | 10-             | - 100.      | <u> </u> |                                                  |
| Lane Gro                                             | up Capac       | ity, C     |                             | n Deia     | ay, a        | na L      |          |                                  | ; LE     | #171711<br> | ma       | llion        |                                           |                 |                 |             | CD.      |                                                  |
| <u>-</u>                                             |                |            | EB                          |            | +-           |           | W        |                                  | _        |             |          |              | NB                                        | 1               | -               |             | SB       |                                                  |
| Adj. flow rat                                        | e              | 163        | 304                         | _          | 5            |           | 67       |                                  | _        |             | 5        |              | 10                                        | L               |                 | 65          | 222      |                                                  |
| Lane group                                           | cap.           | 212        | 1444                        |            | 21           | 2         | 141      |                                  | L        |             | 14       |              | 312                                       | L               |                 | 124         | 288      | ļ                                                |
| v/c ratio                                            |                | 0.77       | 0.21                        |            | 0.0          | )2        | 0.4      | 18                               | L        |             | 0.0      | )4           | 0.03                                      |                 |                 | 0.52        | 0.77     |                                                  |
| Green ratio                                          |                | 0.12       | 0.41                        |            | 0.1          | 2         | 0.4      | 11                               | L        |             | 0.0      | 8            | 0.18                                      | L               |                 | 0.07        | 0.18     |                                                  |
| Unif. delay                                          | d <b>1</b>     | 42.7       | 19.0                        |            | 38.          | .8        | 21.      | .6                               |          |             | 42.      | .4           | 33.7                                      | L               |                 | 44.9        | 39.0     |                                                  |
| Delay factor                                         | · k            | 0.32       | 0.11                        |            | 0.1          | 1         | 0.1      | 1                                | L        |             | 0.1      | 1            | 0.11                                      | L               |                 | 0.13        | 0.32     |                                                  |
| Increm. dela                                         | ay factor k 0. |            |                             |            | 0.0          | 0         | 0.       | 3                                |          |             | 0.       | 1            | 0.0                                       |                 |                 | 4.0         | 12.1     |                                                  |
| PF factor                                            |                |            |                             | 0          | 1.0          | 00        | 1.0      | 00                               | L        |             | 1.0      | 00           | 1.000                                     | <u> </u>        |                 | 1.000       | 1.000    |                                                  |
| Control dela                                         | ntrol delay 5  |            |                             |            | 38.          | 9         | 21.      | .9                               |          |             | 42.      | .5           | 33.8                                      |                 | ]               | 48.9        | 51.1     |                                                  |
| Lane group                                           | ne group LOS E |            |                             |            | D            |           | С        | ;                                |          |             | D        | )            | С                                         |                 |                 | D           | D        |                                                  |
| Apprch. del                                          | ay             |            | 32.8                        |            |              | 22        | .0       |                                  |          |             |          | 36           | .7                                        |                 |                 |             | 50.6     |                                                  |
| Approach L                                           | os             |            | С                           |            |              | C         | )        |                                  |          |             |          | D            | )                                         |                 |                 |             | D        |                                                  |
| Intersec. de                                         | lay            | ;          | 31.3                        |            |              |           |          | In                               | ter      | rsecti      | ion      | LOS          |                                           |                 |                 |             | С        |                                                  |
| uceannaTM                                            |                |            |                             | onvright © | 2000 T       | Iniversit | tr of    | Tloride                          |          | II Diob     | ate D    | anarrad      |                                           |                 |                 | 4           |          | rersion 4.1                                      |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                       |              |                             |            | SH            | ORT F       | REP                                  | OR          | T              |              |          |                        |                         |           |            |                                                  |
|------------------------------------------------------|---------------------------------------|--------------|-----------------------------|------------|---------------|-------------|--------------------------------------|-------------|----------------|--------------|----------|------------------------|-------------------------|-----------|------------|--------------------------------------------------|
| General Inf                                          | ormation                              |              |                             |            |               | S           | ite In                               | for         | mati           | ion          |          |                        |                         |           |            |                                                  |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                                   | U:<br>08/2   | SAI<br>SAI<br>24/12<br>PEAK |            |               | A<br>J      | nterse<br>.rea T<br>urisdi<br>.nalys | ype<br>ctio | e<br>n         |              | 00       | D<br>All oth<br>CEANSI | DR.<br>er are<br>IDE-II |           |            |                                                  |
| Volume an                                            | ıd Timing In                          | put          |                             |            |               |             |                                      |             |                |              |          |                        |                         |           |            |                                                  |
|                                                      |                                       |              |                             | EB         |               |             | W                                    | _           |                |              |          | NB                     |                         | <u> </u>  | SB         |                                                  |
|                                                      |                                       |              | LT                          | TH         | RT            | LT          | Th-                                  | 1           | RT             | <del></del>  |          | TH                     | RT                      | LT        | TH         | RT                                               |
| Num. of Lar                                          | nes                                   |              | 1                           | 2          | 0             | 1           | 2                                    |             | 0              | 1            |          | 1                      | 0                       | 1         | 1          | 0                                                |
| Lane group                                           |                                       |              | L                           | TR         |               | L           | TF                                   |             |                | <u> </u>     |          | TR                     |                         | L         | TR         |                                                  |
| Volume (vpl                                          |                                       |              | 152                         | 284        | 10            | 5           | 535                                  | 5           | 90             | 5            |          | 5                      | 5                       | 60        | 5          | 201                                              |
| % Heavy v                                            | eh                                    |              | 2<br>0.92                   | 2<br>0.92  | 2<br>0.92     | 2<br>0.92   | 0.9                                  | 2           | 2<br>0.92      | 2 0.9        |          | 2<br>0.92              | 2<br>0.92               | 2<br>0.92 | 2<br>0.92  | 2<br>0.92                                        |
| Actuated (P                                          | /Δ\                                   |              | 0.92<br>A                   | 0.9∠<br>A  | 0.92<br>A     | 0.92<br>A   | 0.9.                                 | -           | 0.92<br>A      | A.S          | _        | 0.92<br>A              | 0.92<br>A               | 0.92<br>A | 0.92<br>A  | 0.92<br>A                                        |
| Startup lost                                         |                                       |              | 3.0                         | 3.0        |               | 3.0         | 3.0                                  | _           |                | 2.           |          | 3.0                    | /\ ·                    | 3.0       | 3.0        | <del>                                     </del> |
| Ext. eff. gre                                        |                                       |              | 2.0                         | 2.0        |               | 2.0         | 2.0                                  |             |                | 2.           |          | 2.0                    |                         | 2.0       | 2.0        |                                                  |
| Arrival type                                         |                                       |              | 3                           | 3          |               | 3           | 3                                    |             |                | 3            | }        | 3                      |                         | 3         | 3          |                                                  |
| Unit Extens                                          |                                       |              | 3.0                         | 3.0        |               | 3.0         | 3.0                                  | )           |                | 3.           |          | 3.0                    |                         | 3.0       | 3.0        |                                                  |
| ***************************************              | TOR Volume                            |              | 5                           | 10         | 0             | 5           | 10                                   |             | 0              | 5            | _        |                        | 0                       | 5         |            | 0                                                |
| Lane Width                                           |                                       |              | 12.0                        | 12.0       |               | 12.0        | 12.                                  | )           |                | 12           |          | 12.0                   |                         | 12.0      | 12.0       | <u> </u>                                         |
| Parking/Gra                                          | de/Parking                            |              | N                           | 0          | N             | N           | 0                                    |             | Ν              | ^            | <u> </u> | 0                      | N                       | N         | 0          | N                                                |
| Parking/hr                                           |                                       |              |                             |            |               |             | ╀                                    |             |                | _            |          |                        |                         |           |            |                                                  |
| Bus stops/h                                          |                                       |              | 0                           | 0          |               | 0           | 0                                    |             |                | (            |          | 0                      |                         | 0         | 0          |                                                  |
| Unit Extens                                          | ion                                   |              | 3.0                         | 3.0        |               | 3.0         | 3.0                                  |             |                | 3.           |          | 3.0                    |                         | 3.0       | 3.0        |                                                  |
| Phasing                                              | Excl. Left                            |              | & RT                        | 03         | 3             | 04          | ļ                                    | _           | xcl. l         |              |          | ru & R                 |                         | 07        |            | 80                                               |
| Timing                                               | G = 13.0<br>Y = 4.2                   | G =<br>Y = : |                             | G =<br>Y = |               | G =<br>Y =  |                                      | _           | = 8.<br>= 4.   |              | G<br>V   | = 19.1<br>= 4.2        | G<br>Y:                 |           | G =<br>Y = |                                                  |
| Duration of                                          | <u>I i − 4.∠</u><br>Analysis (hrs     |              |                             | 1 -        |               | <u> </u>    |                                      | L'          | <u> </u>       |              |          |                        |                         | = 100.    |            | <del></del>                                      |
|                                                      | up Capac                              |              |                             | l Dola     | N/ a          | nd I O      | S D                                  | ate         | rmi            |              |          | olo Long               | 9 0                     | 100.      |            |                                                  |
| Lanc Olo                                             | up Capaci                             | l J          | EB                          | · DCIC     | ι <u>γ, α</u> |             | VB                                   |             | <u> </u>       | ia i ca ca · | <u> </u> | NB                     |                         |           | SB         |                                                  |
| Adj. flow rat                                        | · · · · · · · · · · · · · · · · · · · | 165          | 320                         | <u> </u>   | 5             |             | 80                                   | T           | +              | 5            | Т        | 10                     | Γ                       | 65        | 223        | <u> </u>                                         |
|                                                      |                                       | <u> </u>     | <del></del>                 | _          | +-            |             |                                      | ╁           | $\dashv$       |              | +        |                        |                         |           | +          | -                                                |
| Lane group                                           | cap.                                  | 212          | 144                         |            | 21            | <del></del> | 116                                  | _           |                | 142          | -        | 312                    |                         | 124       | 288        |                                                  |
| v/c ratio                                            |                                       | 0.78         | 0.22                        | <u></u>    | 0.0           |             | 48                                   |             |                | 0.04         | -        | 0.03                   |                         | 0.52      | 0.77       |                                                  |
| Green ratio                                          |                                       | 0.12         | 0.41                        | <u> </u>   | 0.1           | 2 0.        | 41                                   |             |                | 0.08         |          | 0.18                   |                         | 0.07      | 0.18       |                                                  |
| Unif. delay                                          | d <b>1</b>                            | 42.7         | 19.1                        |            | 38.           | 8 2         | 1.7                                  |             |                | 42.4         |          | 33.7                   |                         | 44.9      | 39.0       |                                                  |
| Delay factor                                         | r k                                   | 0.33         | 0.11                        |            | 0.1           | 1 0.        | 11                                   |             |                | 0.11         |          | 0.11                   |                         | 0.13      | 0.32       |                                                  |
| Increm. dela                                         | ay d2                                 | 16.7         | 0.1                         |            | 0.0           | 0           | .3                                   | Τ           |                | 0.1          | T        | 0.0                    |                         | 4.0       | 12.4       |                                                  |
| PF factor                                            | <u>-</u>                              | 1.000        | 1.00                        | 0          | 1.0           | 00 1.0      | 000                                  |             | T.             | 1.000        | 7        | 1.000                  |                         | 1.000     | 1.000      |                                                  |
|                                                      | ay                                    | 59.4         | 19.2                        |            | 38.           |             | 1.9                                  |             | $\rightarrow$  | 42.5         | -        | 33.8                   |                         | 48.9      | 51.4       |                                                  |
|                                                      | ontrol delay 59<br>ane group LOS E    |              |                             |            | D             |             | С                                    | T           | 一              | D            | 十        | С                      |                         | D         | D          |                                                  |
| Apprch. del                                          |                                       | 1            | 32. <i>9</i>                |            | $\top$        | 22.1        |                                      | .1          | $\neg \dagger$ |              | 36.      | 7                      |                         | <u> </u>  | 50.8       |                                                  |
| Approach L                                           |                                       |              | С                           |            | $\top$        | С           |                                      |             | _              |              | D        | 1                      |                         |           | D          |                                                  |
| Intersec. de                                         |                                       |              | 31.4                        |            | +             |             | lr                                   | ters        | secti          | ion LO       | )S       |                        |                         | <u> </u>  | С          |                                                  |
| HCS2000 <sup>TM</sup>                                | -                                     | ·            |                             | vovright © | 2000 II       | niversity o |                                      |             |                |              |          |                        |                         | 1         |            | Version 4.1                                      |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                      |                    |                                               |                             |                | SH        | ORT F         | REPO                                 | DR'           | Τ              |                |                                              |                                              |              |          |                                                  |
|------------------------------------------------------|--------------------|-----------------------------------------------|-----------------------------|----------------|-----------|---------------|--------------------------------------|---------------|----------------|----------------|----------------------------------------------|----------------------------------------------|--------------|----------|--------------------------------------------------|
| General Inf                                          | ormation           |                                               |                             |                |           | s             | ite In                               | forr          | natio          |                |                                              |                                              |              |          |                                                  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                | U:<br>08/2                                    | SAI<br>SAI<br>24/12<br>PEAK |                |           | A<br>J        | nterse<br>irea T<br>urisdi<br>inalys | ype<br>ctior  | ו              | (              | KE BLVI<br>I<br>All oth<br>DCEANS<br>D.ALT2/ | DR.<br>ier are<br>IDE-IN                     | as<br>IT.#19 |          |                                                  |
| Volume an                                            | d Timing In        | put                                           |                             |                |           |               |                                      |               |                |                |                                              |                                              |              |          |                                                  |
|                                                      | · •                |                                               |                             | EB             |           |               | W                                    |               |                |                | NB                                           |                                              |              | SB       |                                                  |
|                                                      |                    |                                               | LT                          | TH             | RT        | LT            | T⊦                                   | 4             | RT             | LT             | TH                                           | RT                                           | <u>  LT</u>  | TH       | RT                                               |
| Num, of Lar                                          | nes                |                                               | 1                           | 2              | 0         | 1             | 2                                    | 4             | 0              | 1              | 1                                            | 0                                            | 1            | 1        | 0                                                |
| Lane group                                           |                    |                                               | L                           | TR             | <u> </u>  | L             | TR                                   |               |                | Ĺ              | TR                                           | <u> </u>                                     | L            | TR       | <u> </u>                                         |
| Volume (vpl                                          |                    |                                               | 275                         | 820            | 15        | 10            | 500                                  | <del>\</del>  | 110            | 5<br>2         | 5                                            | 5<br>2                                       | 135          | 5<br>2   | 135                                              |
| % Heavy vo                                           | en                 |                                               | 2<br>0.92                   | 2<br>0.92      | 2<br>0.92 | 0.92          | 0.9                                  | 2 /           | 2<br>0.92      | 0.92           | 2 0.92                                       | 0.92                                         | 0.92         | 0.92     | 2<br>0.92                                        |
| Actuated (P                                          | /A)                |                                               | 0.92<br>A                   | 0.32<br>A      | 0.92<br>A | A             | A                                    |               | A.32           | A              | A A                                          | A                                            | A            | A        | A                                                |
| Startup lost                                         |                    |                                               | 3.0                         | 3.0            |           | 3.0           | 3.0                                  |               |                | 3.0            | 3.0                                          |                                              | 3.0          | 3.0      |                                                  |
| Ext. eff. gre                                        |                    |                                               | 2.0                         | 2.0            |           | 2.0           | 2.0                                  |               |                | 2.0            | 2.0                                          |                                              | 2.0          | 2.0      |                                                  |
| Arrival type                                         |                    |                                               | 3                           | 3              |           | 3             | 3                                    |               |                | 3              | 3                                            |                                              | 3            | 3        |                                                  |
| Unit Extens                                          |                    |                                               | 3.0                         | 3.0            | <u> </u>  | 3.0           | 3.0                                  |               |                | 3.0            | 3.0                                          |                                              | 3.0          | 3.0      | <u> </u>                                         |
|                                                      | TOR Volume         |                                               | 5                           | 10             | 0         | 5             | 10                                   | _             | 0              | 5              | 40.0                                         | 0                                            | 5            | 40.0     | 0                                                |
| Lane Width                                           |                    |                                               | 12.0                        | 12.0           |           | 12.0          | 12.0                                 | $\rightarrow$ |                | 12.0           |                                              |                                              | 12.0         | 12.0     | <del>                                     </del> |
| Parking/Gra                                          | ide/Parking        |                                               | N                           | 0              | N         | N             | 0                                    | $\dashv$      | Ν              | N              | 0                                            | N                                            | N            | 0        | N                                                |
| Parking/hr                                           |                    | •••                                           |                             |                | <u> </u>  |               | +_                                   | $\dashv$      |                | <del>  _</del> |                                              |                                              | +            | <u> </u> |                                                  |
| Bus stops/h                                          |                    |                                               | 0                           | 0              |           | 0             | 0                                    | +             |                | 0              | 0                                            |                                              | 0            | 0        | <del> </del>                                     |
| Unit Extens                                          |                    | T                                             | 3.0                         | 3.0            | <u> </u>  | 3.0           | 3.0                                  |               |                | 3.0            |                                              | <u>                                     </u> | 3.0          | 3.0      | <u></u>                                          |
| Phasing                                              | Excl. Left         |                                               | Perm                        | Thru 8         |           | 04            | 1                                    |               | (cl. Le        | _              | Thru & R                                     | _                                            | 07           | G =      | 80                                               |
| Timing                                               | G = 4.0<br>Y = 4.2 | G =<br>Y =                                    |                             | G = 4<br>Y = 5 |           | G =<br>Y =    |                                      |               | = 13.<br>= 4.2 |                | 3 = 14.8<br>( = 4.2                          | Y =                                          |              | Y =      |                                                  |
| Duration of                                          | Analysis (hrs      |                                               |                             | , <u> </u>     |           | <b>!</b>      |                                      |               | ,              |                | ycle Len                                     |                                              |              |          |                                                  |
|                                                      | up Capac           |                                               |                             | l Dela         | av. a     | nd LO         | S De                                 | ete           | rmin           |                |                                              |                                              |              |          |                                                  |
|                                                      |                    | , , <u>, , , , , , , , , , , , , , , , , </u> | EB                          |                | 1         |               | VB                                   |               |                |                | NB                                           |                                              |              | SB       |                                                  |
| Adj. flow rat                                        | e                  | 299                                           | 907                         | ·              | 1         |               | 63                                   | Π             |                | 5              | 10                                           |                                              | 147          | 152      | T                                                |
| Lane group                                           |                    | 357                                           | 1906                        |                | 11        |               | 215                                  |               |                | 93             | 216                                          |                                              | 193          | 200      |                                                  |
| v/c ratio                                            |                    | 0.84                                          | 0.48                        | <del></del>    | 0.0       | -             | 55                                   | $t^-$         |                | .03            | 0.05                                         |                                              | 0.76         | 0.76     | +                                                |
| Green ratio                                          |                    | 0.20                                          | 0.54                        |                | 0.2       | <del></del>   | 35                                   |               |                | .11            | 0.13                                         |                                              | 0.11         | 0.13     |                                                  |
| Unif. delay                                          |                    | 42.2                                          | 15.7                        | _              | 37        |               | 8.4                                  |               | _              | 3.8            | 42.3                                         |                                              | 47.6         | 46.5     |                                                  |
| Delay factor                                         |                    | 0.37                                          | 0.11                        |                | 0.1       |               | 15                                   | ┢             | -              | .11            | 0.11                                         |                                              | 0.31         | 0.31     |                                                  |
| Increm. dela                                         |                    | 15.9                                          | 0.2                         | _              | 0.        | -             | ).5                                  | t             |                | ).1            | 0.1                                          |                                              | 16.3         | 15.6     | 1                                                |
| PF factor                                            |                    | 1.000                                         |                             |                | 1.0       | 00 1.         | 000                                  | T             | 1.             | 000            | 1.000                                        |                                              | 1.000        | 1.000    |                                                  |
| Control dela                                         | ay                 | 58.1                                          | 15.9                        | ,              | 37        | .3 28         | 8.9                                  |               | 4              | 3.8            | 42.4                                         |                                              | 63.9         | 62.1     |                                                  |
| Lane group                                           | ane group LOS E    |                                               |                             |                | [         | )             | С                                    |               |                | D              | D                                            |                                              | Ε            | Ε        |                                                  |
| Apprch. dela                                         |                    | 26.4                                          | <u> </u>                    | 1              | 29.1      |               | 4,                                   |               | 4              | 2.9            | -                                            |                                              | 63.0         |          |                                                  |
| Approach L                                           | os                 |                                               | С                           |                |           | С             |                                      |               |                |                | D                                            |                                              |              | E        |                                                  |
| Intersec. de                                         | lay                | ,                                             | 32.3                        |                |           |               | Ir                                   | ters          | ectio          | n LO           | S                                            |                                              |              | С        |                                                  |
| HCS2000 <sup>TM</sup>                                | ·                  |                                               | C                           | onvright ©     | 2000 t    | Jniversity of | of Florid                            | a. All        | Rights         | Reserv         | ed.                                          |                                              | -            | 1        | ersion 4.1                                       |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |                                 |            |                             | • .           | SH      | ORT       | RE           | ΞPC                              | R           | Γ              |        |                 |                                          |                  |                   |                |         |            |
|------------------------------------------------------|---------------------------------|------------|-----------------------------|---------------|---------|-----------|--------------|----------------------------------|-------------|----------------|--------|-----------------|------------------------------------------|------------------|-------------------|----------------|---------|------------|
| General Inf                                          | ormation                        |            | •                           |               |         |           | Site         | e Inf                            | orr         | nati           | on     |                 |                                          |                  |                   |                |         |            |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med                             | U:<br>08/2 | SAI<br>SAI<br>24/12<br>PEAK |               |         |           | Are<br>Juri  | ersec<br>ea Ty<br>isdic<br>alysi | /pe<br>tior | า              |        | 00              | E BLVE<br>E<br>All oth<br>EANSI<br>LT2/W | DR.<br>er<br>IDE | area<br>E-IN      | as<br>T.#19    |         |            |
| Volume an                                            | ıd Timing In                    | put        |                             |               |         |           |              |                                  |             |                |        |                 |                                          |                  |                   |                |         |            |
|                                                      |                                 |            |                             | EB            |         | 1         |              | WE                               |             |                | _ _    |                 | NB                                       |                  |                   |                | SB      | T 5-       |
| Num. of Lar                                          |                                 |            | LT                          | TH<br>2       | RT<br>0 | 1         |              | <u>TH</u><br>2                   | +           | RT<br>0        | +      | <u>LT</u><br>1  | TH<br>1                                  | _                | <u>2T</u>         | LT<br>1        | TH<br>1 | RT<br>0    |
|                                                      | ies                             |            | 1                           |               | - ·     | -         | -            |                                  | +           | U              | +      |                 |                                          | <u> </u>         | <i>.</i>          |                |         | "          |
| Lane group                                           |                                 |            | L 070                       | TR            | 45      | L         | _            | TR                               | 4           | 440            |        | L               | TR                                       | _                |                   | L 425          | TR<br>5 | 137        |
| Volume (vp                                           |                                 |            | 276<br>2                    | 827<br>2      | 15<br>2 | 10        | -            | 515<br>2                         | +           | 110<br>2       |        | 5<br>2          | 5<br>2                                   |                  | 5<br>2            | 135<br>2       | 2       | 2          |
| % Heavy v<br>PHF                                     |                                 |            | 0.92                        | 0.92          | 0.92    | 0.9       | 2            | 0.92                             | - 1         | ).92           |        | <u>2</u><br>.92 | 0.92                                     |                  | 92                | 0.92           | 0.92    | 0.92       |
| Actuated (P                                          | /A)                             |            | A                           | A             | A       | A         |              | A                                | Ť           | A              |        | <u> </u>        | A                                        | -                | 4                 | A              | A       | A          |
| Startup lost                                         |                                 |            | 3.0                         | 3.0           |         | 3.0       | 2_1          | 3.0                              | 丁           |                | _      | 3.0             | 3.0                                      |                  |                   | 3.0            | 3.0     |            |
| Ext. eff. gre                                        |                                 |            | 2.0                         | 2.0           |         | 2.0       |              | 2.0                              |             |                | _      | 2.0             | 2.0                                      |                  |                   | 2.0            | 2.0     |            |
| Arrival type                                         |                                 |            | 3                           | 3             |         | 3         | _            | 3                                | 4           |                |        | 3               | 3                                        |                  |                   | 3              | 3       |            |
| Unit Extens                                          |                                 |            | 3.0                         | 3.0           |         | 3.0       |              | 3.0                              |             |                | I      | 3.0             | 3.0                                      |                  |                   | 3.0            | 3.0     |            |
|                                                      | TOR Volume                      |            | 5                           | 10            | 0       | 5         | _            | 10                               | 4           | 0              | _      | 5               |                                          | _                | )                 | 5              |         | 0          |
| Lane Width                                           |                                 |            | 12.0                        | 12.0          |         | 12.       | <del>-</del> | 12.0                             | 4           |                | -      | 2.0             | 12.0                                     | <u> </u>         |                   | 12.0           | 12.0    | .,         |
| Parking/Gra                                          | ide/Parking                     |            | N                           | 0             | N       | N         | -            | 0                                | 4           | Ν              | -      | N               | 0                                        |                  | <u>V</u>          | N              | 0       | N          |
| Parking/hr                                           |                                 |            |                             | _             |         |           | $\dashv$     |                                  | _           |                | +      |                 |                                          | _                |                   | <del>   </del> | -       |            |
| Bus stops/h                                          |                                 |            | 0                           | 0             |         | 0         | _            | 0                                | +           |                | -      | 0               | 0                                        | <u> </u>         |                   | 0              | 0       |            |
| Unit Extens                                          |                                 |            | 3.0                         | 3.0           |         | 3.0       |              | 3.0                              |             |                |        | 3.0             | 3.0                                      |                  |                   | 3.0            | 3.0     | <u> </u>   |
| Phasing                                              | Excl. Left<br>G = 4.0           | G=         | Perm                        | Thru $\delta$ |         | G =       | 04           | $\dashv$                         |             | ccl. L<br>= 13 |        |                 | ru & R <sup>-</sup><br>= <i>14.8</i>     | Ӵ                | G =               | . 07           | G =     | 08         |
| Timing                                               | Y = 4.0                         | Y = .      |                             | Y = 5         |         | Y =       |              |                                  |             | = 1.<br>= 4.   |        |                 | - 14.6<br>= 4.2                          | ┪                | <u>G -</u><br>Y = |                | Y =     |            |
| Duration of                                          | Analysis (hrs                   |            |                             | , ,           |         |           |              |                                  | •           |                |        |                 | de Leng                                  | _                |                   |                |         |            |
|                                                      | up Capaci                       |            |                             | l Dela        | ıv. a   | nd L      | os           | De                               | te          | rmi            | nat    | ion             |                                          |                  |                   |                |         |            |
|                                                      |                                 | Ĭ          | EB                          |               | Ť       |           | WE           | •                                |             | П              |        |                 | NB                                       |                  |                   |                | SB      | •          |
| Adj. flow rat                                        | :e                              | 300        | 915                         |               | 1:      | 1         | 680          | )                                |             |                | 5      |                 | 10                                       | Г                |                   | 147            | 154     |            |
| Lane group                                           |                                 | 357        | 1900                        | 3             | 11      | 6         | 121          | 6                                |             | 一              | 193    |                 | 216                                      | Г                |                   | 193            | 200     |            |
| v/c ratio                                            |                                 | 0.84       | 0.48                        | 3             | 0.0     | 9         | 0.56         | 6                                |             | - (            | 0.03   |                 | 0.05                                     |                  |                   | 0.76           | 0.77    |            |
| Green ratio                                          |                                 | 0.20       | 0.54                        |               | 0.2     | 20        | 0.35         | 5                                |             | - (            | 0.11   |                 | 0.13                                     |                  |                   | 0.11           | 0.13    |            |
| Unif. delay                                          | d1                              | 42.2       | 15.8                        | ,             | 36.     | .8        | 28.6         | 6                                |             | 1              | 43.8   |                 | 42.3                                     |                  |                   | 47.6           | 46.6    |            |
| Delay factor                                         | r k                             | 0.38       | 0.11                        |               | 0.1     | 1         | 0.16         | 6                                |             | (              | 0.11   |                 | 0.11                                     | Γ                |                   | 0.31           | 0.32    |            |
| Increm. dela                                         |                                 |            |                             |               | 0.      | 4         | 0.6          | ;                                |             |                | 0.1    |                 | 0.1                                      | Г                |                   | 16.3           | 16.6    |            |
| PF factor                                            | ay factor k 6<br>em. delay d2 1 |            |                             | 0             | 1.0     | 00        | 1.00         | 00                               |             | 1              | 1.00   | 0               | 1.000                                    |                  |                   | 1.000          | 1.000   |            |
| Control dela                                         | factor 1                        |            |                             | )             | 37.     | .2        | 29.2         | 2                                |             |                | 43.8   |                 | 42.4                                     |                  |                   | 63.9           | 63.2    |            |
| Lane group                                           | ne group LOS E                  |            |                             |               | D       | )         | С            |                                  |             |                | D      |                 | D                                        |                  |                   | Ε              | E       |            |
| Apprch. del                                          | ay                              |            | 26. <b>4</b>                |               |         | 29.       | .3           |                                  |             |                |        | 42.             | 9                                        |                  |                   |                | 63.5    |            |
| Approach L                                           | os                              |            | С                           |               |         | C         | ;            |                                  |             |                |        | D               | 1                                        |                  |                   |                | Е       |            |
| Intersec. de                                         | lay                             |            | 32.5                        |               |         |           |              | Int                              | ters        | ecti           | on L   | .os             |                                          |                  |                   |                | С       |            |
| HCS2000 <sup>TM</sup>                                |                                 |            | C                           | opyright ©    | 2000 T  | Iniversit | voff         | Florida                          | A11         | Rich           | ts Res | erved           |                                          |                  |                   |                |         | ersion 4.1 |

 $HCS2000^{\rm TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                      |               |         |                                  | <u></u>     | SHO       | ORT R        | EPC                                | R           | T          |           |                       |                         |                            |                   |           |              |
|------------------------------------------------------|---------------|---------|----------------------------------|-------------|-----------|--------------|------------------------------------|-------------|------------|-----------|-----------------------|-------------------------|----------------------------|-------------------|-----------|--------------|
| General Inf                                          | ormation      |         | •                                |             |           | s            | ite In                             | for         | matio      |           |                       |                         |                            |                   |           |              |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med           | 08)     | JSAI<br>JSAI<br>/24/12<br>I PEAK |             |           | A<br>Ji      | iterse<br>rea T<br>urisdi<br>nalys | ype<br>ctic | e<br>on    | c         | All (<br>CEAI<br>LDOU | NRING<br>other<br>NSIDE | RD<br>area<br>-IN7<br>T.#2 | ).<br>is<br>T#20/ | vo        |              |
| Volume an                                            | d Timing Ir   | nput    |                                  |             |           |              |                                    |             |            |           |                       |                         |                            |                   |           | ·            |
|                                                      |               |         |                                  | EB          |           |              | WE                                 | }           |            |           | NB                    |                         |                            |                   | SB        |              |
|                                                      |               |         | LT                               | TH          | RT        | LT           | TH                                 | 4           | RT         | LT        | TH                    | R'                      | <u> </u>                   | LT                | TH        | RT           |
| Num. of Lan                                          | es            |         | 0                                | 1           | 1         | 1            | 1                                  | 4           | 0          | 2         | 2                     | 1                       | _                          | 1                 | 2         | 1            |
| Lane group                                           |               |         |                                  | LT          | R         | L            | TR                                 |             |            | L         | T                     | R                       | _                          | L                 | T         | R            |
| Volume (vpl                                          |               |         | 30                               | 35          | 180       | 110          | 50                                 | 4           | 45         | 440       | 670                   | 20                      | 9                          | 75                | 1455      | 140          |
| % Heavy ve                                           | eh            |         | 2                                | 2           | 2         | 2            | 2                                  |             | 2          | 2<br>0.92 | 2<br>0.92             | 2                       | -                          | 2<br>0.92         | 2<br>0.92 | 2<br>0.92    |
| PHF<br>Actuated (P                                   | / <b>/</b> \) |         | 0.92<br>A                        | 0.92<br>A   | 0.92<br>A | 0.92<br>A    | 0.92<br>A                          | +           | 0.92<br>A  | 0.92<br>A | 0.92<br>A             | 0.9<br>A                | <del>-  </del>             | 0.92<br>A         | 0.92<br>A | 0.92<br>A    |
| Startup lost                                         |               |         | +~                               | 2.0         | 2.0       | 2.0          | 2.0                                | $\dashv$    |            | 2.0       | 2.0                   | 2.0                     | <del>,  </del>             | 2.0               | 2.0       | 2.0          |
| Ext. eff. gree                                       |               |         | <del>-</del>                     | 2.0         | 2.0       | 2.0          | 2.0                                | $\dagger$   |            | 2.0       | 2.0                   | 2.0                     | _                          | 2.0               | 2.0       | 2.0          |
| Arrival type                                         |               |         |                                  | 4           | 4         | 4            | 4                                  |             |            | 5         | 5                     | 5                       |                            | 5                 | 5         | 5            |
| Unit Extensi                                         | on            |         |                                  | 3.0         | 3.0       | 3.0          | 3.0                                |             |            | 3.0       | 3.0                   | 3.0                     | 7                          | 3.0               | 3.0       | 3.0          |
| Ped/Bike/R1                                          | OR Volum      | е       | 5                                | 5           | 0         | 5            | 5                                  |             | 0          | 5         | 5                     | 0                       |                            | 5                 | 5         | 0            |
| Lane Width                                           |               |         |                                  | 12.0        | 12.0      | 12.0         | 12.0                               |             |            | 12.0      | 12.0                  | 12.                     | 0                          | 12.0              | 12.0      | 12.0         |
| Parking/Gra                                          | de/Parking    |         | N                                | 0           | N         | Ν            | 0                                  |             | Ν          | Ν         | 0                     | N                       |                            | Ν                 | 0         | N            |
| Parking/hr                                           |               |         |                                  |             |           |              |                                    |             |            |           |                       |                         |                            |                   |           |              |
| Bus stops/h                                          | ſ             |         |                                  | 0           | 0         | 0            | 0                                  |             |            | 0         | 0                     | 0                       |                            | 0                 | Ö         | 0            |
| Unit Extensi                                         | on            |         |                                  | 3.0         | 3.0       | 3.0          | 3.0                                |             |            | 3.0       | 3.0                   | 3.                      | )                          | 3.0               | 3.0       | 3.0          |
| Phasing                                              | EB Only       | WE      | 3 Only                           | 0:          | 3         | 04           |                                    |             | xcl. Le    |           | nru &                 |                         |                            | )7                |           | 08           |
| Timing                                               | G = 14.0      |         | 7.0                              | G =         |           | G =          |                                    |             | = 15.      |           | = 44.                 |                         | 3 =                        |                   | G =       |              |
| Duration of                                          | Y = 4.6       | Y =     |                                  | Y =         |           | Y =          |                                    | Υ:          | = 4.6      |           | = 6.7<br>cle Le       |                         | <u> </u>                   | 100.              | Y =       |              |
|                                                      | <u></u>       |         |                                  | - I Dal     |           | -410         | C D.                               | 4-          |            |           |                       | ngui                    | <u> </u>                   | 700.              |           |              |
| Lane Gro                                             | up Capac      | oity, i |                                  | oi Deia     | ay, ar    |              | 2 De                               | :te         | rmina<br>T |           |                       |                         | Т                          |                   | CD        |              |
| A 1' 5'                                              |               |         | EB                               | 400         | 400       | WB           |                                    |             | 470        |           | IB                    | 047                     | ╀┈                         | 0 1               | SB        | 450          |
| Adj. flow rate                                       |               |         | 71                               | 196         | 120       | 103          | -                                  |             | 478        | 72        | -                     | 217                     | 8.                         | <del>-</del> -    | 1582      | 152          |
| Lane group                                           | сар.          |         | 254                              | 449         | 121       | 118          | +                                  |             | 519        | 156       | -                     | 676                     | 26                         | $\overline{}$     | 1561      | 684          |
| v/c ratio                                            |               |         | 0.28                             | 0.44        | 0.99      | 0.87         | _                                  |             | 0.92       | 0.4       | -                     | 0.32                    | 0.3                        | $\rightarrow$     | 1.01      | 0.22         |
| Green ratio                                          |               | -       | <del></del>                      | 0.29        | 0.07      | 0.07         | _                                  |             | 0.15       | 0.4       |                       | ).44                    | 0.1                        |                   | 0.44      | 0.44         |
| Unif. delay o                                        |               |         | 38.5                             | 28.8        | 46.5      | 46.1         |                                    |             | 41.9       | 19.       | -                     | 18.3                    | 37                         |                   | 28.0      | 17.4         |
| Delay factor                                         | k             | 1       | 0.11                             | 0.11        | 0.49      | 0.40         |                                    |             | 0.44       | 0.1       | - +                   | ).11                    | 0.                         | -                 | 0.50      | 0.11         |
| Increm, dela                                         | ıy d2         |         | 0.6                              | 0.7         | 79.1      | 46.4         |                                    |             | 21.9       | 0.5       | 2                     | 0.3                     | 0.                         | .7                | 26.2      | 0.2          |
| PF factor                                            |               | 1       | 1.000                            | 0.993       | 1.000     | 1.000        | )                                  |             | 0.881      | 0.4       | 76 C                  | .476                    | 0.8                        | 381               | 0.476     | 0.476        |
| Control dela                                         | у             | 29.3    | 125.6                            | 92.4        |           |              | 58.8                               | 9.          | 5          | 9.0       | 34                    | 1.0                     | 39.5                       | 8.4               |           |              |
| Lane group                                           | LOS           | С       | F                                | F           |           |              | E                                  | Α           |            | Α         |                       | )                       | D                          | Α                 |           |              |
| Apprch. dela                                         | ay            |         | 7                                | 110.3       |           |              |                                    | 26.0        |            |           |                       | 3                       | 6.6                        |                   |           |              |
| Approach Lo                                          | OS            | •       |                                  | F           | ·         |              |                                    | С           |            |           |                       | •                       | D                          |                   |           |              |
| Intersec. del                                        | lay           | 3       | 36.7                             |             |           |              | Inte                               | rse         | ction [    | OS        |                       |                         |                            |                   | D         |              |
| HCS2000 <sup>TM</sup>                                |               | 1       |                                  | Copyright © | 2000 U    | niversity of |                                    |             |            |           |                       |                         | -                          |                   | 7         | Jersion 4,11 |

|                                                       | •                   |             |                                  |                                                  | SHO       | ORT R        | EPO                                  | R           | T                  |           |             |                               |                                    |           |           |             |
|-------------------------------------------------------|---------------------|-------------|----------------------------------|--------------------------------------------------|-----------|--------------|--------------------------------------|-------------|--------------------|-----------|-------------|-------------------------------|------------------------------------|-----------|-----------|-------------|
| General Inf                                           | ormation            |             |                                  |                                                  |           | S            | ite In                               | for         | rmatio             | n         |             |                               |                                    |           |           |             |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med                 | U<br>08     | JSAI<br>JSAI<br>/24/12<br>I PEAK |                                                  |           | A<br>Ji      | nterse<br>irea T<br>urisdi<br>inalys | ype<br>ctic | e<br>on            |           | OCE<br>BL   | WAF<br>All of<br>EANS<br>IILD | RING .<br>her ai<br>SIDE-<br>DUT A |           | /         |             |
| Volume an                                             | d Timing Ir         | nput        |                                  |                                                  |           |              |                                      |             |                    |           |             |                               |                                    |           |           |             |
|                                                       |                     |             |                                  | EB                                               |           |              | WE                                   |             |                    |           |             | NB                            |                                    |           | SB        |             |
|                                                       |                     |             | LT                               | TH                                               | RT        | LT           | TH                                   | 4           | RT                 | LΊ        |             | TH                            | RT                                 | LT        | TH        | RT          |
| Num. of Lan                                           | es                  |             | 0                                | 1                                                | 1         | 1            | 1                                    | _           | 0                  | 2         | _           | 2                             | 1                                  | 1         | 2         | 1           |
| Lane group                                            |                     |             |                                  | LT                                               | R         | L            | TR                                   |             |                    | L         | $\perp$     | T                             | R                                  | L         | T         | R           |
| Volume (vpl                                           |                     |             | 30                               | 35                                               | 184       | 110          | 50                                   | 4           | 45                 | 450       |             | 04                            | 200                                | 75        | 1467      | 140         |
| % Heavy ve<br>PHF                                     | en                  |             | 2<br>0.92                        | 2<br>0.92                                        | 2<br>0.92 | 2<br>0.92    | 0.92                                 | ,           | 2<br>0.92          | 0.9       | _           | 2<br>.92                      | 2<br>0.92                          | 2<br>0.92 | 2<br>0.92 | 2<br>0.92   |
| Actuated (P                                           | /A)                 |             | 0.92<br>A                        | 0.92<br>A                                        | 0.92<br>A | 0.92<br>A    | 0.92<br>A                            | $\dashv$    | 0.92<br>A          | 0.9.<br>A |             | . <u>92</u><br>A              | 0.92<br>A                          | A         | A         | A A         |
| Startup lost                                          |                     |             | + ^`                             | 2.0                                              | 2.0       | 2.0          | 2.0                                  | +           |                    | 2.0       |             | 2.0                           | 2.0                                | 2.0       | 2.0       | 2.0         |
| Ext. eff. gree                                        |                     |             |                                  | 2.0                                              | 2.0       | 2.0          | 2.0                                  |             |                    | 2.0       | 2           | 2.0                           | 2.0                                | 2.0       | 2.0       | 2.0         |
| Arrival type                                          |                     |             |                                  | 4                                                | 4         | 4            | 4                                    |             |                    | 5         | _           | 5                             | 5                                  | 5         | 5         | 5           |
| Unit Extensi                                          |                     |             |                                  | 3.0                                              | 3.0       | 3.0          | 3.0                                  |             |                    | 3.0       |             | 3.0                           | 3.0                                | 3.0       | 3.0       | 3.0         |
| Ped/Bike/R1                                           | OR Volume           | 9           | 5                                | 5                                                | 0         | 5            | 5                                    |             | 0                  | 5         | _           | 5                             | 0                                  | 5         | 5         | 0           |
| Lane Width                                            |                     |             | ļ <u> </u>                       | 12.0                                             | 12.0      | 12.0         | 12.0                                 | `           |                    | 12.       |             | 2.0                           | 12.0                               |           | 12.0      | 12.0        |
| Parking/Gra                                           | de/Parking          |             | N                                | 0                                                | N         | N            | 0                                    | 4           | Ν                  | Ν         | _           | 0                             | Ν                                  | N         | 0         | N           |
| Parking/hr                                            |                     |             | <u> </u>                         |                                                  | <u></u>   | -            | <b>├</b>                             | 4           |                    |           | _           |                               |                                    |           |           | 1           |
| Bus stops/h                                           |                     |             | ļ                                | 0                                                | 0         | 0            | 0                                    | 4           |                    | 0         | $\perp$     | 0                             | 0                                  | 0         | 0         | 0           |
| Unit Extensi                                          |                     |             | <u> </u>                         | 3.0                                              | 3.0       | 3.0          | 3.0                                  |             |                    | 3.0       |             | 3.0                           | 3.0                                | 3.0       | 3.0       | 3.0         |
| Phasing                                               | EB Only             |             | 3 Only                           | G =                                              | 3         | 04<br>G =    |                                      |             | xcl. Le<br>= 15.   |           | Thru<br>G = |                               | _                                  | 07        | G =       | 08          |
| Timing                                                | G = 14.0<br>Y = 4.6 | Y =         | 7.0                              | Y =                                              |           | Y=           |                                      |             | $\frac{-15.}{4.6}$ |           | Y =         |                               |                                    |           | Y =       |             |
| Duration of                                           |                     |             |                                  | <del>                                     </del> | 1         |              |                                      | <u> </u>    |                    |           |             |                               | gth C                              |           |           |             |
|                                                       | up Capac            |             |                                  | ol Dela                                          | av. ar    | nd LO        | S De                                 | te          | rmin               |           |             |                               | <u> </u>                           |           |           |             |
|                                                       |                     | , <b></b> . | EB                               |                                                  | <u> </u>  | WB           |                                      |             | 1                  |           | NB          |                               |                                    |           | SB        |             |
| Adj. flow rat                                         | e                   |             | 71                               | 200                                              | 120       | 103          |                                      |             | 489                | 7         | 765         | 2                             | 17                                 | 82        | 1595      | 152         |
| Lane group                                            | cap.                |             | 254                              | 449                                              | 121       | 118          |                                      |             | 519                | 1         | 561         | 67                            | 76                                 | 267       | 1561      | 684         |
| v/c ratio                                             |                     |             | 0.28                             | 0.45                                             | 0.99      | 0.87         |                                      |             | 0.94               | 0         | .49         | 0.                            | 32                                 | 0.31      | 1.02      | 0.22        |
| Green ratio                                           |                     | (           | 0.14                             | 0.29                                             | 0.07      | 0.07         |                                      |             | 0.15               | 0         | .44         | 0.                            | 44                                 | 0.15      | 0.44      | 0.44        |
| Unif. delay o                                         | 11                  | ,           | 38.5                             | 28.9                                             | 46.5      | 46.1         |                                      |             | 42.0               | 2         | 0.0         | 18                            | 3.3                                | 37.8      | 28.0      | 17.4        |
| Delay factor                                          | ·k                  | . (         | 0.11                             | 0.11                                             | 0.49      | 0.40         |                                      |             | 0.45               | C         | ).11        | 0.                            | 11                                 | 0.11      | 0.50      | 0.11        |
| Increm. dela                                          | y d2                |             | 0.6                              | 0.7                                              | 79.1      | 46.4         |                                      |             | 25.8               |           | 0.2         | 0.                            | 3                                  | 0.7       | 28.4      | 0.2         |
| PF factor                                             |                     |             | .000                             | 0.993                                            | 1.000     | 1.000        | )                                    |             | 0.881              | 0         | .476        | 0.4                           | 176                                | 0.881     | 0.476     | 0.476       |
| Control dela                                          |                     |             |                                  |                                                  |           | 92.4         |                                      |             | 62.9               |           | 9.8         | 9.                            | 0                                  | 34.0      | 41.8      | 8.4         |
| Lane group                                            | ane group LOS D     |             |                                  |                                                  |           | F            |                                      |             | E                  |           | Α           | 1                             | 4                                  | С         | D         | Α           |
| Apprch. dela                                          |                     |             | 110.3                            |                                                  |           |              | 27.                                  | 3           |                    |           |             | 38.7                          |                                    |           |           |             |
| Approach L                                            |                     |             | F                                |                                                  |           |              | С                                    |             |                    |           |             | D                             |                                    |           |           |             |
| Intersec. de                                          | lay                 | 88.0        |                                  |                                                  |           | Inte         | rse                                  | ection I    | LOS                |           |             |                               |                                    | D         |           |             |
| HCS2000 <sup>TM</sup>                                 |                     |             |                                  | Copyright ©                                      | 2000 U    | niversity of | f Florida                            | a, Al       | ll Rights l        | Reserv    | red         |                               |                                    |           |           | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

|                                                      |                     |          |                                                  |            | SH             | ORT R        | EPC                                 | R           | Т                |           |                         |                         |                                   | -                  |            |              |
|------------------------------------------------------|---------------------|----------|--------------------------------------------------|------------|----------------|--------------|-------------------------------------|-------------|------------------|-----------|-------------------------|-------------------------|-----------------------------------|--------------------|------------|--------------|
| General Inf                                          | ormation            |          |                                                  |            |                | s            | ite In                              | for         | matio            |           |                         |                         |                                   |                    |            |              |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med                 | 08,      | ISAI<br>ISAI<br>/24/12<br>PEAK                   |            |                | A<br>J       | nterse<br>rea T<br>urisdi<br>.nalys | ype<br>ctic | e<br>on          | 00        | All of<br>EANS:<br>LDOU | RING<br>ther a<br>IDE-l | 6 RD.<br>areas<br>INT#2<br>T.#2-F | OPN                |            |              |
| Volume an                                            | d Timing Ir         | nput     |                                                  |            |                |              |                                     |             |                  |           |                         |                         |                                   |                    |            |              |
|                                                      |                     |          |                                                  | EB         |                |              | WE                                  |             |                  |           | NB                      |                         |                                   |                    | SB         |              |
|                                                      |                     |          | LT                                               | ΤΉ         | RT             | LT           | TH                                  |             | RT               | LT        | TH                      | R                       |                                   | _T_                | TH         | RT           |
| Num. of Lar                                          | nes                 |          | 0                                                | 1          | 1              | 1            | 1                                   | 4           | 0                | 2         | 2                       | 1                       | -                                 | 1                  | 2          | 1            |
| Lane group                                           |                     |          |                                                  | LT         | R              | L            | TR                                  | _           |                  | L         | T                       | R                       |                                   | L                  | T          | R            |
| Volume (vpl                                          |                     |          | 105                                              | 55         | 390            | 130          | 55                                  | _           | 120              | 380       | 1855                    | 163                     | _                                 | 0                  | 960        | 80           |
| % Heavy v                                            | en                  |          | 0.92                                             | 1<br>0.92  | 1 <sup>-</sup> | 0.92         | 0.92                                | ,           | 1<br>0.92        | 1<br>0.92 | 2<br>0.92               | 0.9                     |                                   | 1<br>92            | 2<br>0.92  | 0.92         |
| Actuated (P                                          | /A)                 |          | 0.92<br>A                                        | 0.92<br>A  | 0.92<br>A      | A            | 0.92<br>A                           | +           | 0.92<br>A        | 0.92<br>A | 0.92<br>A               | 0.9<br>A                | _                                 | <del>92</del><br>4 | A          | 0.92<br>A    |
| Startup lost                                         |                     |          | <del>                                     </del> | 2.0        | 2.0            | 2.0          | 2.0                                 | 7           | 7,               | 2.0       | 2.0                     | 2.0                     |                                   | .0                 | 2.0        | 2.0          |
| Ext. eff. gre                                        |                     |          |                                                  | 2.0        | 2.0            | 2.0          | 2.0                                 |             |                  | 2.0       | 2.0                     | 2.0                     | ) 2                               | .0                 | 2.0        | 2.0          |
| Arrival type                                         |                     |          |                                                  | 4          | 4              | 4            | 4                                   |             |                  | 5         | 5                       | 5                       | _                                 | 5                  | 5          | 5            |
| Unit Extens                                          |                     |          |                                                  | 3.0        | 3.0            | 3.0          | 3.0                                 | 4           |                  | 3.0       | 3.0                     | 3.0                     |                                   | 3.0                | 3.0        | 3.0          |
| Ped/Bike/R                                           | FOR Volum           | е        | 5                                                | 5          | 0              | 5            | 5                                   | _           | 0                | 5         | 5                       | 0                       |                                   | 5                  | 5          | 0            |
| Lane Width                                           |                     |          |                                                  | 12.0       | 12.0           | 12.0         | 12.0                                | 4           |                  | 12.0      | 12.0                    | 12.                     |                                   | 2.0                | 12.0       | 12.0         |
| Parking/Gra                                          | de/Parking          |          | N                                                | 0          | N              | N            | 0                                   | _           | N                | N         | 0                       | N                       |                                   | V                  | 0          | N            |
| Parking/hr                                           |                     |          |                                                  |            |                |              | ļ                                   | 4           |                  |           | <u> </u>                | _                       |                                   |                    | <u> </u>   | <u> </u>     |
| Bus stops/h                                          |                     |          | -                                                | 0          | 0              | 0            | 0                                   | 4           |                  | 0         | 0                       | 0                       |                                   | 0                  | 0          | 0            |
| Unit Extens                                          |                     |          |                                                  | 3.0        | 3.0            | 3.0          | 3.0                                 |             |                  | 3.0       | 3.0                     | 3.0                     |                                   | 3.0                | 3.0        | 3.0          |
| Phasing                                              | EB Only             |          | Only                                             | 0:         | 3              | 04           |                                     |             | xcl. Le          |           | IB Only                 |                         | Thru 8                            |                    |            | 80           |
| Timing                                               | G = 12.0<br>Y = 4.6 | Y =      | 10.0                                             | G =<br>Y = |                | G =<br>Y =   |                                     |             | = 10.0<br>= 4.6  |           | = 11.1<br>= 5           |                         | 6 = 4 $6 = 6$                     |                    | G =<br>Y = |              |
| Duration of                                          |                     |          |                                                  | <u> </u>   |                |              |                                     | <u>'</u>    | <del>- +.U</del> |           | cle Ler                 |                         |                                   | <u>,</u><br>110.   |            |              |
| Lane Gro                                             |                     |          |                                                  | ol Dela    | av. aı         | nd LO        | S De                                | te          | rmin             |           |                         |                         |                                   |                    |            |              |
|                                                      |                     | <b>,</b> | EB                                               |            | <u> </u>       | WB           |                                     |             |                  |           | B                       |                         |                                   |                    | SB         |              |
| Adj. flow rat                                        | e                   | 1        | 174                                              | 424        | 141            | 190          | Т                                   |             | 413              | 201       |                         | 79                      | 76                                |                    | 1043       | 87           |
| Lane group                                           |                     |          | 197                                              | 532        | 160            | 149          |                                     |             | 811              | 187       | '3 8.                   | 21                      | 162                               |                    | 1354       | 599          |
| v/c ratio                                            |                     | (        | 0.88                                             | 0.80       | 0.88           | 1.28         |                                     |             | 0.51             | 1.0       | 8 <i>0.</i>             | 22                      | 0.47                              | 7 ,                | 0.77       | 0.15         |
| Green ratio                                          |                     | (        | ).11                                             | 0.34       | 0.09           | 0.09         |                                     |             | 0.23             | 0.5       | з О.                    | 53                      | 0.09                              | ,                  | 0.38       | 0.38         |
| Unif. delay                                          | <u> </u>            |          | 18.3                                             | 32.7       | 49.4           | 50.0         |                                     |             | 36.7             | 25.       | 9 13                    | 3.8                     | 47.5                              | <del>,</del>       | 29.8       | 22.3         |
| Delay factor                                         | ·k                  | (        | ).41                                             | 0.34       | 0.41           | 0.50         |                                     |             | 0.12             | 0.5       | o o.                    | 11                      | 0.11                              | 7 ,                | 0.32       | 0.11         |
| Increm. dela                                         | ay d2               | 3        | 34.2                                             | 8.3        | 39.2           | 165.7        | 7                                   |             | 0.5              | 44.       | 8 0                     | .1                      | 2.1                               |                    | 2.8        | 0.1          |
| PF factor                                            |                     | 1        | .000                                             | 0.950      | 1.000          | 1.000        | ,                                   |             | 0.797            | 0.2       | 54 0                    | 254                     | 0.93                              | 3 (                | ).588      | 0.588        |
| Control dela                                         | ıy                  | 8        | 32.5                                             | 39.4       | 88.6           | 215.7        | 7                                   |             | 29.8             | 51.       | 3 3                     | .6                      | 46.5                              | <del>,</del>       | 20.3       | 13.2         |
| Lane group                                           | LOS                 | D        | F                                                | F          | $\neg$         |              | С                                   | D           |                  | 4         | D                       | 寸                       | С                                 | В                  |            |              |
| Apprch. dela                                         | ay                  |          |                                                  | 161.6      |                |              |                                     | 44.6        |                  |           |                         | 2                       | 1.4                               |                    |            |              |
| Approach L                                           | os                  |          |                                                  | F          |                |              |                                     | D           |                  |           |                         |                         | С                                 |                    |            |              |
| Intersec. de                                         | lay                 | 4        | 7.8                                              |            |                |              | Inte                                | rse         | ction 1          | os        |                         |                         |                                   |                    | D          |              |
| HCS2000 <sup>TM</sup>                                |                     |          | C                                                | opyright © | 2000 U         | niversity of | Florida                             | a, Al       | l Rights l       | Reserved  |                         | _                       |                                   |                    | 7          | Version 4.11 |

|                                                       |                     |        |                                    |              | SH        | ORT F       | REP                                                                                                                                                                                                                                                                                                                                                 | OR            | RT.       |          |      |                                  |                                   |                 |              |              |
|-------------------------------------------------------|---------------------|--------|------------------------------------|--------------|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|----------|------|----------------------------------|-----------------------------------|-----------------|--------------|--------------|
| General Inf                                           | ormation            |        |                                    |              |           | 8           | ite lı                                                                                                                                                                                                                                                                                                                                              | nfo           | rmatic    | n        |      |                                  |                                   |                 |              |              |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med                 | 08     | USAI<br>USAI<br>8/23/12<br>1/ PEAK |              |           | J.          | ntersontersontersontersontersontersontersontersontersontersontersontersontersontersontersontersontersontersonte<br>Transportersontersontersontersontersontersontersontersontersontersontersontersontersontersontersontersonterson<br>Transportersontersontersontersontersontersontersontersontersontersontersontersontersontersontersontersonterson | Гур<br>lictio | e         |          | OC.  | WAI<br>All oi<br>EANS:<br>BUILD: | RING<br>ther a<br>IDE-II<br>OUT I |                 | PΜ<br>-      |              |
| Volume an                                             | d Timing I          | nput   |                                    |              |           | L           |                                                                                                                                                                                                                                                                                                                                                     |               |           |          |      | 101/ 001                         | ,,,,,                             | TOOLO           |              |              |
|                                                       |                     |        |                                    | EB           |           |             | W                                                                                                                                                                                                                                                                                                                                                   | В             |           |          |      | NB                               |                                   |                 | SE           | 3            |
|                                                       |                     |        | LT                                 | TH           | RT        | LT          | Th                                                                                                                                                                                                                                                                                                                                                  | _             | RT        | L        | T    | TH                               | RT                                | LT              | TH           | RT           |
| Num. of Lar                                           | nes                 |        | 0                                  | 1            | 1         | 1           | 1                                                                                                                                                                                                                                                                                                                                                   |               | 0         | 2        |      | 2                                | 1                                 | 1               | 2            | 1            |
| Lane group                                            |                     |        |                                    | LT           | R         | L           | TR                                                                                                                                                                                                                                                                                                                                                  | ?             |           | L        |      | T                                | R                                 | L               | T            | R            |
| Volume (vpl                                           | n)                  |        | 105                                | 55           | 401       | 130         | 55                                                                                                                                                                                                                                                                                                                                                  |               | 120       | 38       |      | 1873                             | 165                               |                 | 978          |              |
| % Heavy ve                                            | eh                  |        | 1                                  | 1            | 1         | 1           | 1                                                                                                                                                                                                                                                                                                                                                   |               | 1         | 1        |      | 2                                | 1                                 | 1               | 2            | 1            |
| PHF                                                   | F.W.3               |        | 0.92                               | 0.92         | 0.92      | 0.92        | 0.9                                                                                                                                                                                                                                                                                                                                                 | 2             | 0.92      | 0.5      |      | 0.92                             | 0.92                              |                 |              |              |
| Actuated (P.                                          |                     |        | A                                  | A            | A         | A 2.0       | A                                                                                                                                                                                                                                                                                                                                                   | ,             | Α         | A        |      | A                                | A                                 | A 2.0           | A            | A 2.0        |
| Startup lost                                          |                     |        | +                                  | 2.0          | 2.0       | 2.0         | 2.0                                                                                                                                                                                                                                                                                                                                                 | _             |           | 2.<br>2. |      | 2.0                              | 2.0                               | _               | 2.0          | 2.0          |
| Ext. eff. gree<br>Arrival type                        | 311                 |        |                                    | 4            | 4         | 4           | 4                                                                                                                                                                                                                                                                                                                                                   | _             |           | 5        | _    | 5                                | 5                                 | 5               | 5            | 5            |
| Unit Extensi                                          | on.                 |        | +                                  | 3.0          | 3.0       | 3.0         | 3.0                                                                                                                                                                                                                                                                                                                                                 | ,             |           | 3.       |      | 3.0                              | 3.0                               | _               | <del>_</del> | _            |
| Ped/Bike/R1                                           |                     | e      | 5                                  | 5            | 0         | 5           | 5                                                                                                                                                                                                                                                                                                                                                   | ,             | 0         | 5        |      | 5                                | 0                                 | 5               | 5            | 0.0          |
| Lane Width                                            | ·                   |        | <u> </u>                           | 12.0         | 12.0      | 12.0        | 12.                                                                                                                                                                                                                                                                                                                                                 | 0             |           | 12.      |      | 12.0                             | 12.0                              |                 |              |              |
| Parking/Gra                                           | de/Parking          |        | N                                  | 0            | N         | N           | 0                                                                                                                                                                                                                                                                                                                                                   |               | Ν         | ٨        | 1    | 0                                | N                                 | N               | 0            | Ν            |
| Parking/hr                                            |                     |        |                                    |              |           | :           |                                                                                                                                                                                                                                                                                                                                                     |               |           |          |      |                                  |                                   |                 |              |              |
| Bus stops/h                                           | r                   |        |                                    | 0            | 0         | 0           | 0                                                                                                                                                                                                                                                                                                                                                   |               |           | C        | )    | 0                                | 0                                 | 0               | 0            | 0            |
| Unit Extensi                                          | on                  |        |                                    | 3.0          | 3.0       | 3.0         | 3.0                                                                                                                                                                                                                                                                                                                                                 | )             |           | 3.       | 0    | 3.0                              | 3.0                               | 3.0             | 3.0          | 3.0          |
| Phasing                                               | EB Only             | W      | B Only                             | 0            | 3         | 04          |                                                                                                                                                                                                                                                                                                                                                     | E             | xcl. Le   | eft      | N    | B Only                           | / T                               | hru & F         | ₹T           | 08           |
| Timing                                                | G = 12.0<br>Y = 4.6 |        | = 10.0<br>= 4                      | G =<br>Y =   |           | G =<br>Y =  |                                                                                                                                                                                                                                                                                                                                                     | _             | = 10.     | 0        |      | = 11.1<br>= 5                    |                                   | = 42.0<br>= 6.7 | 0 G:<br>Y:   |              |
| Duration of                                           |                     | s) = ( | 0.25                               |              |           |             |                                                                                                                                                                                                                                                                                                                                                     | _             |           |          | Сус  | le Ler                           | gth C                             | ;= 11           | 0.0          | 140.17       |
| Lane Gro                                              | up Capa             | city,  | Contr                              | ol Del       | ay, aı    | nd LO       | S D                                                                                                                                                                                                                                                                                                                                                 | ete           | rmin      | ati      | on   |                                  |                                   |                 |              |              |
|                                                       | · ·                 |        | EB                                 |              | Ī         | WB          |                                                                                                                                                                                                                                                                                                                                                     |               |           |          | N    | В                                |                                   |                 | SB           |              |
| Adj. flow rat                                         | e                   |        | 174                                | 436          | 141       | 190         |                                                                                                                                                                                                                                                                                                                                                     |               | 420       | Z        | 203  | 6 1                              | 79                                | 76              | 1063         | 87           |
| Lane group                                            | сар.                |        | 197                                | 532          | 160       | 149         |                                                                                                                                                                                                                                                                                                                                                     |               | 811       | 1        | 187  | 3 8.                             | 21                                | 162             | 1354         | 599          |
| v/c ratio                                             |                     |        | 0.88                               | 0.82         | 0.88      | 1.28        |                                                                                                                                                                                                                                                                                                                                                     |               | 0.52      |          | 1.09 | 9 0.                             | 22                                | 0.47            | 0.79         | 0.15         |
| Green ratio                                           |                     |        | 0.11                               | 0.34         | 0.09      | 0.09        |                                                                                                                                                                                                                                                                                                                                                     |               | 0.23      |          | 0.53 | 3 0.                             | 53                                | 0.09            | 0.38         | 0.38         |
| Unif. delay o                                         | 11                  |        | 48.3                               | 33.0         | 49.4      | 50.0        |                                                                                                                                                                                                                                                                                                                                                     |               | 36.7      |          | 25.9 | ) 1:                             | 3.8                               | 47.5            | 30.0         | 22.3         |
| Delay factor                                          | k                   |        | 0.41                               | 0.36         | 0.41      | 0.50        |                                                                                                                                                                                                                                                                                                                                                     |               | 0.12      |          | 0.50 | 0.                               | 11                                | 0.11            | 0.33         | 0.11         |
| Increm. dela                                          | ay d2               |        | 34.2                               | 9.8          | 39.2      | 165.        | 7                                                                                                                                                                                                                                                                                                                                                   |               | 0.6       | ]        | 48.8 | 3 0                              | .1                                | 2.1             | 3.1          | 0.1          |
| PF factor                                             |                     | 1.000  | 0.950                              | 1.000        | 1.00      | 0           |                                                                                                                                                                                                                                                                                                                                                     | 0.797         | 7 (       | 0.26     | 7 0  | 254                              | 0.933                             | 0.588           | 0.588        |              |
| Control dela                                          | ıy                  | 82.5   | 41.2                               | 88.6         | 215.      | 7           |                                                                                                                                                                                                                                                                                                                                                     | 29.9          | [.        | 55.7     | 7 3  | .6                               | 46.5                              | 20.8            | 13.2         |              |
| Lane group                                            | ne group LOS F      |        |                                    |              |           | F           |                                                                                                                                                                                                                                                                                                                                                     |               | С         |          | Ε    |                                  | 4                                 | D               | С            | В            |
| Apprch. dela                                          | ay                  |        | 53.0                               |              |           | 161.6       |                                                                                                                                                                                                                                                                                                                                                     |               |           | 48       | .1   |                                  |                                   | <u> </u>        | 21.8         |              |
| Approach L                                            | os                  |        | D                                  |              |           | F           |                                                                                                                                                                                                                                                                                                                                                     |               |           | E        | )    |                                  |                                   |                 | С            |              |
| Intersec. de                                          | lay                 |        | 49.8                               |              |           |             | Inte                                                                                                                                                                                                                                                                                                                                                | erse          | ection l  | LOS      | 3    |                                  |                                   | <u></u>         | D            |              |
| HCS2000 <sup>TM</sup>                                 |                     |        |                                    | Converient 6 | ት ኃስለስ TI | niversity e | f Floric                                                                                                                                                                                                                                                                                                                                            | la A          | Il Piohte | Decer    | rved |                                  |                                   |                 |              | Version 4.1: |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

WHILL MIT:

JABLE 9-3-A

|                                                      |                    |            |                             |            | SH     | ORT       |                                  | _            |            |       |      |                                       |                                |                            |                       |         |  |  |  |
|------------------------------------------------------|--------------------|------------|-----------------------------|------------|--------|-----------|----------------------------------|--------------|------------|-------|------|---------------------------------------|--------------------------------|----------------------------|-----------------------|---------|--|--|--|
| General Inf                                          | ormation           |            |                             |            |        | -10       | Site                             | Info         | rmatic     | n     |      |                                       | . = =                          |                            |                       |         |  |  |  |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Perioc | med                | US<br>08/2 | SAI<br>SAI<br>24/12<br>PEAK |            |        |           | Inters<br>Area<br>Juris<br>Analy | Typ<br>dicti | ре         |       | CE.  | WAR<br>All oth<br>ANSIDI<br>M<br>DOUT | ING<br>ner ai<br>E-IN<br>/IIT. | reas<br>T#20/WI<br>#2-AM/I |                       |         |  |  |  |
| Volume an                                            | d Timing Inp       | out        |                             |            |        |           |                                  |              |            |       |      |                                       |                                |                            |                       |         |  |  |  |
|                                                      | 14 Cm 5/45         |            |                             | EB         |        |           |                                  | VB           |            |       |      | NB                                    |                                |                            | SB                    |         |  |  |  |
|                                                      |                    |            | LT                          | TH         | RT     | LT        | _                                | H            | RT         | -     | T    | TH                                    | RT                             |                            | TH                    | RT      |  |  |  |
| Num. of Lar                                          | nes                | 0          | 1                           | 1          | 1      | _         | 1                                | 0            | 2          | _     | 3    | 0                                     | 1                              | 2                          | 1                     |         |  |  |  |
| Lane group                                           |                    |            |                             | LT         | R      | L         | T                                | R            |            | L     |      | TR                                    |                                | L                          | T                     | R       |  |  |  |
| Volume (vpl                                          |                    |            | 30                          | 35         | 180    | 110       | 5                                | _            | 45         | 44    | _    | 670                                   | 200                            |                            | 1455                  | 140     |  |  |  |
| % Heavy v                                            | eh                 |            | 2                           | 2          | 2      | 2         | 2                                |              | 2          | 2     |      | 2                                     | 2                              | 2                          | 2                     | 2       |  |  |  |
| PHF                                                  | /A)                |            | 0.92                        | 0.92       | 0.92   | 0.92      |                                  | _            | 0.92       | 0.9   |      | 0.92                                  | 0.92                           |                            | 0.92                  | 0.92    |  |  |  |
| Actuated (P<br>Startup lost                          |                    |            | Α                           | A 2.0      | A 2.0  | 2.0       | 2.                               |              | Α          | 2.    |      | A 2.0                                 | Α                              | 2.0                        | 2.0                   | 2.0     |  |  |  |
| Ext. eff. gre                                        |                    | -          |                             | 2.0        | 2.0    | 2.0       | 2.                               |              | -          | 2.    | _    | 2.0                                   | -                              | 2.0                        | 2.0                   | 2.0     |  |  |  |
| Arrival type                                         | CII                |            |                             | 4          | 4      | 4         | 4                                | _            |            | 5     | _    | 5                                     |                                | 5                          | 5                     | 5       |  |  |  |
| Unit Extensi                                         | ion                |            |                             | 3.0        | 3.0    | 3.0       | _                                | .0           |            | 3.    | _    | 3.0                                   |                                | 3.0                        | 3.0                   | 3.0     |  |  |  |
|                                                      | TOR Volume         |            | 5                           | 5          | 0      | 5         |                                  |              | 0          | 5     |      | 5                                     | 0                              | 5                          | 5                     | 0       |  |  |  |
| Lane Width                                           | e Width            |            |                             | 12.0       | 12.0   | 12.0      | 12                               | 2.0          |            | 12    | .0   | 12.0                                  |                                | 12.0                       | 12.0                  | 12.0    |  |  |  |
| Parking/Gra                                          | ng/Grade/Parking N |            |                             |            | N      | N         |                                  | 0            | N          | 1     | 1    | 0                                     | N                              | N                          | 0                     | N       |  |  |  |
| Parking/hr                                           | arking/hr          |            |                             |            |        |           |                                  |              |            |       |      |                                       |                                |                            |                       |         |  |  |  |
| Bus stops/h                                          | r                  |            |                             | 0          | 0      | 0         |                                  | 0            |            | 0     | )    | 0                                     |                                | 0                          | N 0<br>0 0<br>3.0 3.0 |         |  |  |  |
| Unit Extensi                                         |                    |            |                             | 3.0        | 3.0    | 3.0       | 3                                | .0           |            | 3.    | 0    | 3.0                                   |                                | 3.0                        | 3.0                   | 3.0     |  |  |  |
| Phasing                                              | EB Only            | I WB       | Only                        | 03         | 7      | 0.        |                                  |              | Excl. Le   | eft   | Th   | ru & R1                               |                                | 07                         |                       | 08      |  |  |  |
|                                                      | G = 14.0           | G =        |                             | G=         |        | G =       |                                  |              | 3 = 15.    |       |      | = 44.0                                |                                | =                          | G=                    |         |  |  |  |
| Timing                                               | Y = 4.6            | Y = .      |                             | Y =        |        | Y =       |                                  | Υ            | = 4.6      |       |      | 6.7                                   |                                | =                          | Y =                   |         |  |  |  |
|                                                      | Analysis (hrs      |            |                             |            |        |           |                                  |              |            |       |      | le Lenç                               | gth C                          | = 100                      | .0                    |         |  |  |  |
| Lane Gro                                             | up Capaci          | ty, Co     | ontro                       | Dela       | y, an  | d LO      | S De                             | ete          | rmina      | tio   | n    |                                       |                                |                            |                       |         |  |  |  |
|                                                      |                    |            | EB                          |            |        | V         | VB                               |              |            |       | 1    | NB                                    |                                |                            | SB                    |         |  |  |  |
| Adj. flow rat                                        | e                  |            | 71                          | 196        | 120    | 1         | 03                               |              | 47         | 8     | 9    | 45                                    | 4                              | 82                         | 1582                  | 152     |  |  |  |
| Lane group                                           | cap.               |            | 254                         | 449        | 121    | 1         | 18                               | T            | 51         | 9     | 21   | 41                                    |                                | 267                        | 1561                  | 684     |  |  |  |
| v/c ratio                                            |                    |            | 0.28                        | 0.44       | 0.99   | _         | 87                               |              | 0.9        |       | -    | 44                                    |                                | 0.31                       | 1.01                  | 0.22    |  |  |  |
| Green ratio                                          |                    |            | 0.14                        | 0.29       | 0.07   | 0.        | 07                               |              | 0.1        | 5     | 0.   | 44                                    |                                | 0.15                       | 0.44                  | 0.44    |  |  |  |
| Unif. delay                                          | d1                 |            | 38.5                        | 28.8       | 46.5   | 5 46      | 5.1                              |              | 41         | 9     | 1    | 9.5                                   |                                | 37.8                       | 28.0                  | 17.4    |  |  |  |
| Delay factor                                         | k                  |            | 0.11                        | 0.11       | 0.49   | 0.        | 40                               |              | 0.4        | 14    | 0.   | 11                                    |                                | 0.11                       | 0.50                  | 0.11    |  |  |  |
| Increm. dela                                         | ay d2              |            | 0.6                         | 0.7        | 79.1   | 46        | 5.4                              |              | 21         | 9     | 0    | .1                                    |                                | 0.7                        | 26.2                  | 0.2     |  |  |  |
| PF factor                                            |                    |            | 1.000                       | 0.993      | 1.00   | 0 1.      | 000                              |              | 0.8        | 81    | 0.   | 476                                   |                                | 0.881                      | 0.476                 | 0.47    |  |  |  |
| Control dela                                         | ay                 |            | 39.1                        | 29.3       | 125.   | 6 92      | 2.4                              |              | 58         | 8     | 9    | .4                                    |                                | 34.0                       | 39.5                  | 8.4     |  |  |  |
| Lane group                                           | LOS                |            | D                           | С          | F      |           | F                                |              | E          |       |      | A                                     |                                | С                          | D                     | Α       |  |  |  |
| pprch. delay 31                                      |                    |            | 31.9                        |            |        | 110.3     | }                                |              |            | 2     | 26.0 |                                       |                                |                            | 36.6                  |         |  |  |  |
| Approach L                                           | pproach LOS C      |            |                             |            |        | F         |                                  |              |            |       | С    |                                       |                                |                            | D                     |         |  |  |  |
| Intersec. de                                         | ersec. delay 36.6  |            |                             |            |        |           | lr                               | nter         | section    | LO    | S    |                                       |                                |                            | D                     |         |  |  |  |
| HCS2000 <sup>TM</sup>                                |                    | •          | C                           | onvright ( | 2000 U | niversity | of Flor                          | ida A        | All Rights | Reser | ved  |                                       |                                |                            |                       | Version |  |  |  |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

WITH MT. SHR THROUGH LANGE

|                                                       |                     |            |                            |            | SH    | ORT          | REF                            | POF  | RT         |        |               |                              |                                       | IF (MI                     |       | 11000     |
|-------------------------------------------------------|---------------------|------------|----------------------------|------------|-------|--------------|--------------------------------|------|------------|--------|---------------|------------------------------|---------------------------------------|----------------------------|-------|-----------|
| General Inf                                           | ormation            |            |                            |            |       |              | Site                           | Info | orma       | ation  |               |                              |                                       |                            |       |           |
| Analyst<br>Agency or C<br>Date Perfori<br>Time Period | med                 | US<br>08/2 | SAI<br>SAI<br>4/12<br>PEAK |            |       |              | Inter<br>Area<br>Juris<br>Anal | Typ  | pe<br>tion |        | OCE<br>I      | WAR<br>All oth<br>ANSID<br>I | ING<br>er a.<br>E-IN<br>/IIT.<br>UT / | reas<br>T#20/Wi<br>ALT.#2- | ITH   |           |
| Volume an                                             | d Timing Inp        | out        |                            |            |       |              |                                | _    |            |        |               |                              |                                       |                            |       |           |
|                                                       |                     |            |                            | EB         |       |              | V                              | VΒ   |            | - 5    | -             | NB                           |                                       |                            | SB    |           |
|                                                       |                     |            | LT                         | TH         | RT    | LT           | 3 3                            | ГН   | R          | T      | LT            | TH                           | RT                                    | LT                         | TH    | RT        |
| Num. of Lar                                           | nes                 |            | 0                          | 1          | 1     | 1            | _                              | 1    | 0          |        | 2             | 3                            | 0                                     | 1                          | 2     | 1         |
| Lane group                                            |                     |            |                            | LT         | R     | L            | 7                              | R    |            |        | L             | TR                           |                                       | L                          | T     | R         |
| Volume (vpł                                           | n)                  |            | 30                         | 35         | 184   | 110          |                                | 0    | 43         |        | 450           | 704                          | 200                                   |                            | 1467  | 140       |
| % Heavy ve                                            | eh                  |            | 2                          | 2          | 2     | 2            | _                              | 2    | 2          |        | 2             | 2                            | 2                                     | 2                          | 2     | 2         |
| PHF                                                   | (A)                 |            | 0.92                       | 0.92       | 0.92  | 0.92         |                                | 92   | 0.9        | _      | 0.92          | 0.92                         | 0.92                                  |                            | 0.92  | 0.92      |
| Actuated (P.<br>Startup lost                          |                     |            | Α                          | A 2.0      | A 2.0 | 2.0          |                                | .0   | A          |        | A<br>2.0      | A<br>2.0                     | Α                                     | 2.0                        | 2.0   | 2.0       |
| Ext. eff. gree                                        |                     |            |                            | 2.0        | 2.0   | 2.0          |                                | .0   | +          | _      | 2.0           | 2.0                          | -                                     | 2.0                        | 2.0   | 2.0       |
| Arrival type                                          | 011                 |            |                            | 4          | 4     | 4            | _                              | 4    |            |        | 5             | 5                            |                                       | 5                          | 5     | 5         |
| Unit Extensi                                          | on                  |            |                            | 3.0        | 3.0   | 3.0          | _                              | .0   |            |        | 3.0           | 3.0                          |                                       | 3.0                        | 3.0   | 3.0       |
| Ped/Bike/R7                                           | TOR Volume          |            | 5                          | 5          | 0     | 5            | 1                              | 5    | 0          |        | 5             | 5                            | 0                                     | 5                          | 5     | 0         |
| Lane Width                                            | e Width             |            |                            | 12.0       | 12.0  | 12.0         | ) 12                           | 2.0  |            | 1      | 2.0           | 12.0                         |                                       | 12.0                       | 12.0  | 12.0      |
| Parking/Gra                                           | king/Grade/Parking  |            |                            | 0          | N     | N            |                                | 0    | ٨          | 1      | N             | 0                            | Ν                                     | N                          | 0     | N         |
| Parking/hr                                            | ing/hr              |            |                            |            |       | 7            |                                |      |            |        |               |                              |                                       |                            |       |           |
| Bus stops/h                                           | g/hr                |            |                            |            |       | 0            |                                | 0    |            |        | 0             | 0                            |                                       | 0                          | 0     | 0         |
| Unit Extensi                                          | on                  |            |                            | 3.0        | 3.0   | 3.0          | 3                              | 0.0  |            |        | 3.0           | 3.0                          |                                       | 3.0                        | 3.0   | 3.0       |
| Phasing                                               | EB Only             | WB         | Only                       | 03         | 3     | 0            | 4                              |      | Excl       | . Left | Th            | ru & R                       |                                       | 07                         |       | 08        |
| Timing                                                | G = 14.0            | G =        |                            | G =        |       | G =          |                                |      | 3 =        |        |               | = 44.0                       | _                                     | i =                        | G =   |           |
|                                                       | Y = 4.6             | Y = 4      |                            | Y =        |       | Y =          |                                | Y    | / = ·      | 4.6    |               | = 6.7                        |                                       | = 400                      | Y =   |           |
|                                                       | Analysis (hrs       |            |                            | 5.1        |       | 110          | 0.5                            |      | LCAA.      |        |               | cie Len                      | gth C                                 | = 100                      | .0    |           |
| Lane Gro                                              | up Capaci           | ty, Co     |                            | Dela       | y, an |              |                                | ete  | rmi        | nati   |               |                              |                                       | 1                          |       |           |
|                                                       | 100                 |            | EB                         |            |       |              | NB                             | _    |            |        | _             | NB                           |                                       |                            | SB    | 1000      |
| Adj. flow rat                                         | е                   |            | 71                         | 200        | 120   | ) 1          | 03                             |      |            | 489    | 9             | 982                          |                                       | 82                         | 1595  | 152       |
| Lane group                                            | cap.                |            | 254                        | 449        | 121   | 1            | 18                             |      |            | 519    | 2             | 145                          |                                       | 267                        | 1561  | 684       |
| v/c ratio                                             |                     |            | 0.28                       | 0.45       | 0.99  | 9 0          | .87                            |      |            | 0.94   | C             | .46                          |                                       | 0.31                       | 1.02  | 0.22      |
| Green ratio                                           |                     |            | 0.14                       | 0.29       | 0.07  | 7 0          | .07                            |      |            | 0.15   | 0             | .44                          |                                       | 0.15                       | 0.44  | 0.44      |
| Unif. delay o                                         | 11                  |            | 38.5                       | 28.9       | 46.5  | 5 4          | 6.1                            | T    |            | 42.0   | 1             | 9.6                          |                                       | 37.8                       | 28.0  | 17.4      |
| Delay factor                                          |                     |            | 0.11                       | 0.11       | 0.49  | 9 0          | .40                            | T    |            | 0.45   | 0             | .11                          |                                       | 0.11                       | 0.50  | 0.11      |
| Increm. dela                                          |                     |            | 0.6                        | 0.7        | 79.1  | 1 4          | 6.4                            | 1    |            | 25.8   |               | 0.2                          |                                       | 0.7                        | 28.4  | 0.2       |
| PF factor                                             |                     |            | 1.000                      | 0.993      | 1.00  |              | 000                            | t    |            | 0.881  | 1 0           | .476                         |                                       | 0.881                      | 0.476 | 0.476     |
| Control dela                                          | ny                  | -          | 39.1                       | 29.4       | 125.  | -            | 2.4                            | +    |            | 62.9   | -             | 9.5                          |                                       | 34.0                       | 41.8  | 8.4       |
| Lane group                                            |                     |            | D                          | С          | F     | _            | F                              | +    |            | E      | $\rightarrow$ | Α                            |                                       | С                          | D     | A         |
|                                                       |                     | 3          |                            | ا          | 1     | 110.         | _                              |      |            |        | 27.           |                              |                                       |                            | 38.7  | 1         |
| Approach LOS C                                        |                     |            |                            |            | 1     | F            |                                |      |            |        | С             |                              |                                       |                            | D     |           |
|                                                       | ntersec. delay 38.0 |            |                            |            | 1     |              | 1                              | nter | rsect      | ion L  | 100           |                              |                                       |                            | D     |           |
| HCS2000 <sup>TM</sup>                                 | , G y               |            |                            | opyright © | 30001 | furti munite |                                |      |            | 200    |               |                              |                                       |                            |       | Version 4 |

 $HCS2000^{TM}$ 

Copyright © 2000 University of Florida, All Rights Reserved

CUITAL MIT : 3NB THOUGHLANGS

|                                                      |               |            |                             |            | SH        | ORT        | REP                               | OR   | T            |          |     |           |                              |                                           | 0.372,0   | VICE IT   |
|------------------------------------------------------|---------------|------------|-----------------------------|------------|-----------|------------|-----------------------------------|------|--------------|----------|-----|-----------|------------------------------|-------------------------------------------|-----------|-----------|
| General Inf                                          | formation     |            |                             |            |           |            | Site I                            | nfoi | rmatio       | n        |     |           |                              |                                           |           |           |
| Analyst<br>Agency or 0<br>Date Perfor<br>Time Period | med           | US<br>08/2 | SAI<br>SAI<br>24/12<br>PEAK |            |           |            | Inters<br>Area<br>Jurisd<br>Analy | Typ  | e<br>on      |          | INT | DOUT      | NG I<br>er ai<br>NSI<br>I/WI | RD.<br>reas<br>IDE-<br>TH MIT.<br>#2-PM/I | VO        |           |
| Volume ar                                            | nd Timing Inp | out        |                             |            |           |            |                                   |      |              |          |     |           |                              |                                           |           |           |
|                                                      |               |            |                             | EB         |           |            |                                   | /B   |              |          |     | NB        |                              |                                           | SB        |           |
|                                                      |               |            | LT                          | TH         | RT        | LT         | T                                 | _    | RT           | L        | _   | TH        | R                            |                                           | TH        | RT        |
| Num. of Lar                                          | nes           |            | 0                           | 1          | 1         | 1          | 1                                 |      | 0            | 2        |     | 3         | 0                            | 1                                         | 2         | 1         |
| Lane group                                           |               |            |                             | LT         | R         | L          | TF                                |      | M - [        | L        | _   | TR        |                              | L                                         | T         | R         |
| Volume (vp                                           |               |            | 105                         | 55         | 390       | 130        | _                                 |      | 120          | 38       | 0   | 1855      | 165                          |                                           | 960       | 80        |
| % Heavy v                                            | eh            |            | 1                           | 1          | 1         | 1          | 1                                 |      | 1            | 1        | _   | 2         | 1                            | 1                                         | 2         | 1         |
| PHF<br>Actuated (P                                   | 9/Λ\          | -          | 0.92<br>A                   | 0.92<br>A  | 0.92<br>A | 0.92<br>A  | 0.9<br>A                          |      | 0.92<br>A    | 0.9<br>A | 2   | 0.92<br>A | 0.92<br>A                    | 2 0.92<br>A                               | 0.92<br>A | 0.92<br>A |
| Startup lost                                         |               |            | A                           | 2.0        | 2.0       | 2.0        | 2.0                               |      | A            | 2.0      | 7   | 2.0       | A                            | 2.0                                       | 2.0       | 2.0       |
| Ext. eff. gre                                        |               |            |                             | 2.0        | 2.0       | 2.0        | 2.0                               |      |              | 2.0      | _   | 2.0       |                              | 2.0                                       | 2.0       | 2.0       |
| Arrival type                                         | 7.0           |            |                             | 4          | 4         | 4          | 4                                 |      |              | 5        |     | 5         | -                            | 5                                         | 5         | 5         |
| Unit Extens                                          | ion           |            |                             | 3.0        | 3.0       | 3.0        | 3.                                | 0    |              | 3.       | 0   | 3.0       |                              | 3.0                                       | 3.0       | 3.0       |
| Ped/Bike/R                                           | TOR Volume    | -          | 5                           | 5          | 0         | 5          | 5                                 |      | 0            | 5        |     | 5         | 0                            | 5                                         | 5         | 0         |
| Lane Width                                           |               |            |                             | 12.0       | 12.0      | 12.0       | 12.                               | 0    |              | 12.      | 0   | 12.0      |                              | 12.0                                      | 12.0      | 12.0      |
| Parking/Gra                                          | de/Parking    |            | N                           | 0          | N         | N          | (                                 | )    | Ν            | N        |     | 0         | N                            | N                                         | 0         | N         |
| Parking/hr                                           |               |            |                             |            |           | 13.        | 3 [ ]                             |      |              |          |     |           |                              |                                           |           |           |
| Bus stops/h                                          | r             |            | 0                           | 0          | 0         | 0          | )                                 |      | 0            | 5        | 0   |           | 0                            | 0                                         | 0         |           |
| Unit Extens                                          | ion           |            |                             | 3.0        | 3.0       | 3.0        | 3.                                | 0    | 1: =:        | 3.       | 0   | 3.0       |                              | 3.0                                       | 3.0       | 3.0       |
| Phasing                                              | EB Only       | WB         | Only                        | 03         | 3         | 0          | 4                                 | E    | xcl. Le      | ft       | N   | B Only    | T                            | hru & R                                   |           | 08        |
| Timing                                               | G = 12.0      | G =        |                             | G =        |           | G =        |                                   |      | = 10.        |          |     | = 11.1    |                              | 6 = 42.0                                  |           |           |
| 2                                                    | Y = 4.6       | Y =        |                             | Y =        |           | Y =        |                                   | Y    | = 4.6        | _        |     | 5         |                              | = 6.7                                     | Y =       |           |
|                                                      | Analysis (hrs |            |                             |            |           |            |                                   |      |              |          | _   | le Leng   | ith C                        | C = 110                                   | .0        |           |
| Lane Gro                                             | up Capaci     | ty, C      |                             | Dela       | y, an     | _          |                                   | ter  | mina         | tioi     |     | 72        |                              |                                           | 5.10.0    |           |
|                                                      |               |            | EB                          |            |           | ٧,         | VB                                | _    |              |          | _   | NB.       |                              |                                           | SB        |           |
| Adj. flow rat                                        | te            |            | 174                         | 424        | 141       | 1          | 90                                |      | 41           | 3        | 21  | 195       |                              | 76                                        | 1043      | 87        |
| Lane group                                           | сар.          |            | 197                         | 532        | 160       | ) 1        | 49                                |      | 81           | 1        | 26  | 644       |                              | 162                                       | 1354      | 599       |
| v/c ratio                                            |               |            | 0.88                        | 0.80       | 0.88      | 3 1.       | 28                                |      | 0.5          | 1        | 0.  | 83        |                              | 0.47                                      | 0.77      | 0.15      |
| Green ratio                                          |               |            | 0.11                        | 0.34       | 0.09      | 0.         | 09                                |      | 0.2          | 3        | 0.  | 53        |                              | 0.09                                      | 0.38      | 0.38      |
| Unif. delay                                          | d1            | in th      | 48.3                        | 32.7       | 49.4      | 1 5        | 0.0                               |      | 36.          | 7        | 2   | 1.8       |                              | 47.5                                      | 29.8      | 22.3      |
| Delay factor                                         | r k           |            | 0.41                        | 0.34       | 0.41      | 1 0.       | 50                                |      | 0.1          | 2        | 0.  | 37        |                              | 0.11                                      | 0.32      | 0.11      |
| Increm. dela                                         | ay d2         |            | 34.2                        | 8.3        | 39.2      | 2 16       | 55.7                              |      | 0.           | 5        | 2   | 2.4       |                              | 2.1                                       | 2.8       | 0.1       |
| PF factor                                            |               |            | 1.000                       | 0.950      | 1.00      | 0 1.       | 000                               |      | 0.7          | 97       | 0.  | 254       |                              | 0.933                                     | 0.588     | 0.588     |
| Control dela                                         | ау            |            | 82.5                        | 39.4       | 88.6      |            | 15.7                              |      | 29.          |          | +   | .9        |                              | 46.5                                      | 20.3      | 13.2      |
|                                                      | -             | 1          | F                           | D          | F         |            | F                                 |      | C            |          | +   | A         |                              | D                                         | С         | В         |
| ane group LOS<br>pprch. delay                        |               |            | 51.9                        |            |           | 161.6      |                                   | _    | 1            |          | 1.4 |           |                              |                                           | 21.4      |           |
| approh. delay 51.8 approach LOS D                    |               |            |                             |            |           | F          |                                   |      |              |          | В   |           |                              |                                           | С         |           |
|                                                      |               |            | 29.5                        |            | +         |            | In                                | ters | section      | LOS      |     |           |                              |                                           | С         |           |
| HCS2000 <sup>TM</sup>                                |               |            |                             | opyright © | 3000 II   | Iniversity |                                   |      | 000 E 00 E 0 |          | _   |           |                              |                                           |           | Version 4 |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

MIT: 3NS THROUGH LANES

|                                                       |                                   |                                     |        | SHC   | ORT R   |                                     |              |         |          |                                                       |                                   |                                      |            |         |
|-------------------------------------------------------|-----------------------------------|-------------------------------------|--------|-------|---------|-------------------------------------|--------------|---------|----------|-------------------------------------------------------|-----------------------------------|--------------------------------------|------------|---------|
| General Inf                                           | ormation                          |                                     |        |       | S       | ite In                              | forma        | ation   |          | 201150                                                | ) F DI                            | VD @                                 |            |         |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med                               | USAI<br>USAI<br>08/23/12<br>PM PEAK |        |       | A<br>Ji | iterse<br>rea T<br>urisdio<br>nalys | ype<br>ction | ar      | IN       | COLLEG<br>WARI<br>All oth<br>OCEA<br>T#20PN<br>DOUT A | ING R<br>er are<br>ANSIE<br>M/WIT | D.<br>eas<br>DE-<br>H MIT.<br>2-PM/W | ITH        |         |
| Volume an                                             | d Timing Inp                      | out                                 |        |       |         |                                     |              |         |          |                                                       |                                   |                                      |            |         |
|                                                       |                                   | 1                                   | EB     |       | 1.7     | WE                                  |              | -       | 1.7      | NB                                                    | LDT                               | 1.7                                  | SB         | Lot     |
|                                                       |                                   | LT                                  | TH     | RT    | LT      | TH                                  | _            | RT<br>O | LT<br>2  | TH<br>3                                               | RT<br>0                           | LT<br>1                              | TH 2       | RT<br>1 |
| Num. of Lar                                           | ies                               | 0                                   | 1      | 1     | 1       | 1<br>TD                             | -            | -       |          |                                                       | -                                 | _                                    | T          | R       |
| Lane group                                            |                                   | 405                                 | LT     | R     | L 100   | TR                                  | 11           | 20      | L 206    | TR                                                    | 165                               | 70                                   | 978        | 80      |
| Volume (vpl                                           |                                   | 105                                 | 55     | 401   | 130     | 55<br>1                             | 12           | _       | 386<br>1 | 1873                                                  | 105                               | 1                                    | 2          | 1       |
| % Heavy ve                                            | 311                               | 0.92                                | 0.92   | 0.92  | 0.92    | 0.92                                |              |         | 0.92     | 0.92                                                  | 0.92                              | 0.92                                 | 0.92       | 0.92    |
| Actuated (P                                           | /A)                               | A                                   | A      | A     | A       | A                                   | 7            | _       | A        | A                                                     | A                                 | A                                    | A          | A       |
| Startup lost                                          |                                   |                                     | 2.0    | 2.0   | 2.0     | 2.0                                 |              |         | 2.0      | 2.0                                                   |                                   | 2.0                                  | 2.0        | 2.0     |
| Ext. eff. gree                                        | en                                |                                     | 2.0    | 2.0   | 2.0     | 2.0                                 |              |         | 2.0      | 2.0                                                   |                                   | 2.0                                  | 2.0        | 2.0     |
| Arrival type                                          |                                   |                                     | 4      | 4     | 4       | 4                                   | - 1          |         | 5        | 5                                                     |                                   | 5                                    | 5          | 5       |
| Unit Extensi                                          |                                   |                                     | 3.0    | 3.0   | 3.0     | 3.0                                 | _            |         | 3.0      | 3.0                                                   |                                   | 3.0                                  | 3.0        | 3.0     |
|                                                       | TOR Volume                        | 5                                   | 5      | 0     | 5       | 5                                   | (            | _       | 5        | 5                                                     | 0                                 | 5                                    | 5          | 0       |
| Lane Width                                            |                                   |                                     | 12.0   | 12.0  | 12.0    | 12.0                                | _            | _       | 12.0     | 12.0                                                  |                                   | 12.0                                 | 12.0       | 12.0    |
| Parking/Gra                                           | de/Parking                        | N                                   | 0      | N     | N       | 0                                   | 1            | N       | N        | 0                                                     | N                                 | N                                    | 0          | N       |
| Parking/hr                                            |                                   |                                     |        |       |         |                                     |              |         |          |                                                       |                                   |                                      |            |         |
| Bus stops/h                                           | r                                 |                                     | 0      | 0     | 0       | 0                                   |              |         | 0        | 0                                                     |                                   | 0                                    | 0          | 0       |
| Unit Extens                                           | on                                |                                     | 3.0    | 3.0   | 3.0     | 3.0                                 |              |         | 3.0      | 3.0                                                   |                                   | 3.0                                  | 3.0        | 3.0     |
| Phasing                                               | EB Only                           | WB Only                             | 03     |       | 04      |                                     |              | I. Lef  |          | NB Only                                               |                                   | ru & R                               |            | 08      |
| Timing                                                | G = 12.0                          | G = 10.0                            | G=     |       | G =     |                                     | G =          |         |          | = 11.1<br>= 5                                         |                                   | = 42.0<br>= 6.7                      | G =<br>Y = | _       |
|                                                       | Y = 4.6<br>Analysis (hrs          | Y = 4                               | Y =    |       | Y =     |                                     | Y =          | 4.0     |          | cle Len                                               |                                   | 134.5                                |            |         |
|                                                       | up Capaci                         |                                     | I Dola | v 200 | 4100    | Dot                                 | orm          | inat    |          | CIG LOT                                               | guio                              | - 110                                |            |         |
| Lane Gio                                              | up Capaci                         | EB                                  |        | y, am | W       | 7                                   | CIIII        | Illat   |          | NB                                                    |                                   |                                      | SB         |         |
| A al: flavor and                                      |                                   |                                     |        | 111   | 19      |                                     |              | 420     |          | 215                                                   |                                   | 76                                   | 1063       | 87      |
| Adj. flow rat                                         |                                   | 174                                 | 436    | 141   | _       | -                                   |              | -       | _        |                                                       |                                   |                                      | A          |         |
| Lane group                                            | cap.                              | 197                                 | 532    | 160   | 14      | _                                   |              | 811     |          | 644                                                   |                                   | 162                                  | 1354       | 599     |
| v/c ratio                                             |                                   | 0.88                                | 0.82   | 0.88  |         |                                     |              | 0.52    |          | 0.84                                                  |                                   | 0.47                                 | 0.79       | 0.15    |
| Green ratio                                           |                                   | 0.11                                | 0.34   | 0.09  | 0.0     | 9                                   |              | 0.23    | _        | 0.53                                                  |                                   | 0.09                                 | 0.38       | 0.38    |
| Unif, delay                                           | 11                                | 48.3                                | 33.0   | 49.4  | 50.     | 0                                   |              | 36.7    | 7 2      | 22.0                                                  |                                   | 47.5                                 | 30.0       | 22.3    |
| Delay factor                                          | k                                 | 0.41                                | 0.36   | 0.41  | 0.5     | 0                                   |              | 0.12    | 2 (      | 0.37                                                  |                                   | 0.11                                 | 0.33       | 0.11    |
| Increm. dela                                          | ay d2                             | 34.2                                | 9.8    | 39.2  | 165     | 5.7                                 |              | 0.6     |          | 2.5                                                   |                                   | 2.1                                  | 3.1        | 0.1     |
| PF factor                                             |                                   | 1.000                               | 0.950  | 1.000 | 0 1.0   | 00                                  |              | 0.79    | 7 0      | .254                                                  |                                   | 0.933                                | 0.588      | 0.588   |
| Control dela                                          | ay                                | 82.5                                | 41.2   | 88.6  | 215     | 5.7                                 |              | 29.9    | 9        | 8.1                                                   |                                   | 46.5                                 | 20.8       | 13.2    |
| Lane group                                            | •                                 | F                                   | D      | F     | F       | 5.0                                 |              | С       | Ţ        | Α                                                     |                                   | D                                    | С          | В       |
|                                                       |                                   |                                     |        | 161.6 | -4      |                                     |              | 11.     |          |                                                       | 124-1                             | 21.8                                 |            |         |
|                                                       | Approach LOS D                    |                                     |        | 1     | F       |                                     |              | 1       | В        |                                                       |                                   |                                      | С          |         |
|                                                       | pproach LOS D ntersec. delay 29.8 |                                     |        |       |         | Int                                 | ersec        | tion    | _        |                                                       |                                   |                                      | С          |         |
| millordo. uc                                          | ntersec. delay                    |                                     |        |       |         | 11.11                               | 2,000        |         |          |                                                       |                                   |                                      |            |         |

HCS2000<sup>TM</sup>

Copyright © 2000 University of Florida, All Rights Reserved

Page 1 of 1

|                                                      |                   |            |                             |            | SH                                               | ORT R        | EPO                                              | RT             |        |           |               |                    |                   |         |            | ***         |
|------------------------------------------------------|-------------------|------------|-----------------------------|------------|--------------------------------------------------|--------------|--------------------------------------------------|----------------|--------|-----------|---------------|--------------------|-------------------|---------|------------|-------------|
| General Inf                                          | ormation          |            |                             |            |                                                  | Si           | ite Inf                                          | orma           | tion   |           |               |                    |                   |         |            |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med               | U<br>06/   | SAI<br>SAI<br>06/12<br>PEAK |            |                                                  | Aı<br>Ji     | tersed<br>rea Ty<br>urisdic<br>nalysis           | pe<br>tion     | Γ      |           | CRI<br>All o  | EEK<br>thei<br>EAN | CT<br>are<br>VSIL | eas     |            |             |
| Volume an                                            | d Timing I        | nput       |                             |            |                                                  |              |                                                  |                |        |           |               |                    |                   |         |            |             |
|                                                      |                   |            |                             | EB         |                                                  |              | WB                                               |                | _      |           | NB            |                    |                   | 1       | SB         | T ==        |
| NI <b>C</b> I                                        |                   |            | LT                          | TH<br>2    | RT<br>0                                          | LT           | TH<br>2                                          | R'             | 1      | <u>LT</u> | TH<br>1       | _                  | RT<br>1           | LT<br>1 | 1 TH       | RT<br>1     |
| Num. of Lar                                          | ies               |            | 2                           |            | Ι                                                | 2            | <del>                                     </del> |                | +      | U         |               | _                  |                   | + -     | <u> </u>   | +           |
| Lane group                                           |                   |            | L                           | TR         | <u> </u>                                         | L            | 16                                               | R              |        | 0         | LTR<br>5      | _                  | R<br>75           | 135     | LT<br>5    | R<br>  0    |
| Volume (vpl<br>% Heavy v                             | - f               |            | 2                           | 15<br>2    | 0<br>2                                           | 160<br>2     | 2                                                | 14.            | +      | 2         | 2             | _                  | 2                 | 2       | 2          | 2           |
| PHF                                                  |                   |            | 0.92                        | 0.92       | 0.92                                             | 0.92         | 0.92                                             | 0.9            | 2 (    | 0.92      | 0.92          |                    | 92                | 0.92    | 0.92       | 0.92        |
| Actuated (P                                          | /A)               |            | Α                           | Α          | Α                                                | Α            | Α                                                | Α              |        | Α         | Α             | 1                  | Α                 | Α       | Α          | Α           |
| Startup lost                                         |                   |            | 2.0                         | 2.0        |                                                  | 2.0          | 2.0                                              | 2.0            |        |           | 2.0           | _                  | 2.0               | 2.0     | 2.0        | 2.0         |
| Ext. eff. gre                                        | en                |            | 2.0                         | 2.0<br>3   | ├                                                | 2.0<br>3     | 2.0                                              | 2.0            | +      |           | 2.0<br>3      |                    | 2.0<br>3          | 2.0     | 2.0        | 2.0<br>5    |
| Arrival type<br>Unit Extens                          | ion               |            | 3.0                         | 3.0        | <del>                                     </del> | 3.0          | 3.0                                              | 3.0            | 7      |           | 3.0           | —                  | 3<br>3.0          | 3.0     | 3.0        | 3.0         |
| Ped/Bike/R                                           |                   | e          | 5                           | 10         | 0                                                | 5            | 10                                               | 0              | +      | 5         | 10            | 4-                 | 0                 | 5       | 10         | 0.0         |
| Lane Width                                           | (Ork (Glain)      |            | 12.0                        | 12.0       | Ť                                                | 12.0         | 12.0                                             | 12.            | ō      |           | 12.0          | _                  | 2.0               | 12.0    | 12.0       | 12.0        |
| Parking/Gra                                          | de/Parking        |            | N                           | 0          | N                                                | N            | 0                                                |                | 7      | N         | 0             | 7                  | N                 | N       | 0          | N           |
| Parking/hr                                           |                   |            |                             |            |                                                  |              |                                                  |                |        |           |               |                    |                   |         |            |             |
| Bus stops/h                                          | r                 |            | 0                           | 0          |                                                  | 0            | 0                                                | 0              |        |           | 0             |                    | 0                 | 0       | 0          | 0           |
| Unit Extens                                          | ion               |            | 3.0                         | 3.0        |                                                  | 3.0          | 3.0                                              | 3.6            | )      |           | 3.0           | 3                  | 3.0               | 3.0     | 3.0        | 3.0         |
| Phasing                                              | Excl. Left        |            | & RT                        | 0.         | 3                                                | 04           |                                                  | NB (           |        | _         | B Onl         | <b>-</b>           |                   | 07      |            | 80          |
| Timing                                               | G = 10.0<br>Y = 5 | G =<br>Y = | 20.0                        | G =<br>Y = |                                                  | G =<br>Y =   |                                                  | G = '<br>Y = { |        |           | = 10.0<br>= 5 | 0                  | G :               |         | G =<br>Y = |             |
| Duration of                                          |                   |            |                             | 1 -        |                                                  | 1 -          |                                                  | 1 – 1          | ,      |           |               | nath               |                   | = 70.0  |            |             |
| Lane Gro                                             |                   |            |                             | l Dela     | av. ai                                           | nd LO        | S De                                             | term           | ina    |           |               | -3.                |                   |         |            | ***         |
| Laire Oro                                            | ир очри           |            | EB                          |            | <br>                                             | WB           |                                                  | 1              |        |           | NB            | <del></del>        | Т                 |         | SB         |             |
| Adj. flow rat                                        | ·e                | 0          | 16                          | T          | 174                                              | 17           | 15                                               | 7              |        | 17        |               | 70                 | $\dashv$          | 88      | 64         | 0           |
| Lane group                                           |                   | 491        | 1013                        |            | 491                                              | 1013         | _                                                | -              |        | 226       | 2             | 12                 | $\dashv$          | 248     | 250        | 218         |
| v/c ratio                                            |                   | 0.00       | 0.02                        | T          | 0.35                                             | 0.02         | 0.2                                              | $\rightarrow$  |        | 0.08      |               | .33                | -                 | 0.35    | 0.26       | 0.00        |
| Green ratio                                          |                   | 0.14       | 0.29                        | $\dagger$  | 0.14                                             | 0.29         | 0.4                                              |                |        | 0.14      |               | .14                | -                 | 0.14    | 0.14       | 0.14        |
| Unif. delay                                          |                   | 25.7       | 17.9                        | +          | 27.1                                             | 17.9         | 12.                                              |                |        | 26.0      | -             | 7.0                |                   | 27.1    | 26.7       | 25.7        |
| Delay factor                                         |                   | 0.11       | 0.11                        | +          | 0.11                                             | 0.11         | 0.1                                              | 11             |        | 0.11      | 0             | .11                | 1                 | 0.11    | 0.11       | 0.11        |
| Increm. dela                                         |                   | 0.0        | 0.0                         |            | 0.4                                              | 0.0          | 0                                                | 2              |        | 0.1       | 7             | ).9                | $\dashv$          | 0.9     | 0.5        | 0.0         |
| PF factor                                            |                   | 1.000      | 1.000                       |            | 1.000                                            | 1.000        | 1.0                                              | 00             |        | 1.00      | 0 1.          | 000                | ,                 | 1.000   | 1.000      | 1.000       |
| Control dela                                         | ay                | 25.7       | 17.9                        |            | 27.5                                             | 17.9         | 12.                                              | .9             |        | 26.1      | 2             | 7.9                |                   | 28.0    | 27.2       | 25.7        |
| Lane group                                           | LOS               | С          | В                           |            | С                                                | В            | В                                                | 3              |        | С         |               | С                  |                   | С       | С          | С           |
| Apprch. del                                          | ay                | 1          | 7.9                         |            |                                                  | 20.5         |                                                  |                |        | 27.6      | 3             |                    |                   |         | 27.7       |             |
| Approach L                                           | os                |            | В                           |            | C C                                              |              |                                                  | С              |        |           |               | С                  |                   |         |            |             |
| Intersec. de                                         | lay               | 2.         | 3.2                         |            | Intersection LOS                                 |              |                                                  |                |        |           |               |                    |                   | С       |            |             |
| HCS2000 <sup>TM</sup>                                |                   |            | C                           | anyriaht ( | a 2000 II                                        | niversity of | Florida                                          | All Ric        | hts Re | eserved   |               |                    |                   |         |            | Version 4.1 |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                   |            |                             |            | SH        | ORT R        | EPO                                      | RT               |         |          |                           |                          |                       |                   |            |             |
|-------------------------------------------------------|-------------------|------------|-----------------------------|------------|-----------|--------------|------------------------------------------|------------------|---------|----------|---------------------------|--------------------------|-----------------------|-------------------|------------|-------------|
| General Inf                                           | ormation          |            |                             |            |           | Si           | te Info                                  | ormat            | ion     |          |                           |                          |                       |                   |            |             |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med               | U<br>06/0  | SAI<br>SAI<br>06/12<br>PEAK |            |           | Ar<br>Ju     | tersec<br>rea Tyl<br>ırisdict<br>nalysis | pe<br>tion       | •       |          | CR<br>All o<br>OC<br>B.O. | REE<br>othe<br>CEA<br>AL | K Čī<br>er ar<br>NSII | eas<br>DE<br>WITH | ₹Y         |             |
| Volume an                                             | d Timing I        | nput       |                             |            |           |              |                                          | •                |         |          |                           |                          |                       |                   |            |             |
|                                                       |                   |            |                             | EB         |           |              | WB                                       |                  | $\perp$ |          | NE                        |                          |                       | <b>_</b>          | SB         | <del></del> |
|                                                       |                   |            | LT                          | TH         | RT        | LT           | TH                                       | RT               | _       | LT       | TH                        | 4                        | RT                    | LT                | TH         | RT          |
| Num. of Lar                                           | ies               |            | 2                           | 2          | 0         | 2            | 2                                        | 1                | $\bot$  | 0        | 1                         | 4                        | 1                     | 1                 | 1          | 1           |
| Lane group                                            |                   |            | L                           | TR         |           | L            | T                                        | R                |         |          | LTF                       | 1                        | R                     | L                 | LT         | R           |
| Volume (vpl                                           |                   |            | 10                          | 169        | 7         | 160          | 77                                       | 144              | -       | 2        | 5                         | +                        | 75                    | 150               | 5          | 0           |
| % Heavy ve                                            | ∍n                |            | 2<br>0.92                   | 2<br>0.92  | 2<br>0.92 | 2<br>0.92    | 2<br>0.92                                | 0.92             | 2 0     | 2<br>.92 | 2<br>0.92                 | ,                        | 2<br>).92             | 0.92              | 2<br>0.92  | 0.92        |
| Actuated (P.                                          | /Δ\               |            | 0.92<br>A                   | 0.92<br>A  | 0.92<br>A | 0.92<br>A    | 0.92<br>A                                | 0.9 <sub>2</sub> | _       | A.92     | 0.92<br>A                 | . '                      | 7.92<br>A             | 0.92<br>A         | A A        | 0.92<br>A   |
| Startup lost                                          |                   |            | 2.0                         | 2.0        |           | 2.0          | 2.0                                      | 2.0              |         |          | 2.0                       | 7                        | 2.0                   | 2.0               | 2.0        | 2.0         |
| Ext. eff. gree                                        |                   |            | 2.0                         | 2.0        |           | 2.0          | 2.0                                      | 2.0              | T       |          | 2.0                       |                          | 2.0                   | 2.0               | 2.0        | 2.0         |
| Arrival type                                          |                   |            | 3                           | 3          |           | 3            | 3                                        | 3                |         |          | 3                         |                          | 3                     | 3                 | 3          | 5           |
| Unit Extensi                                          | on                |            | 3.0                         | 3.0        |           | 3.0          | 3.0                                      | 3.0              |         |          | 3.0                       |                          | 3.0                   | 3.0               | 3.0        | 3.0         |
| Ped/Bike/R                                            | FOR Volum         | е          | 5                           | 10         | 0         | 5            | 10                                       | 0                |         | 5        | 10                        | 4                        | 10                    | 5                 | 10         | 0           |
| Lane Width                                            |                   |            | 12.0                        | 12.0       |           | 12.0         | 12.0                                     | 12.0             |         |          | 12.0                      | <u> </u>                 | 12.0                  | 12.0              | 12.0       | 12.0        |
| Parking/Gra                                           | de/Parking        |            | N                           | 0          | N         | N            | 0                                        | Ν                | _       | N        | 0                         | 4                        | Ν                     | N                 | 0          | N           |
| Parking/hr                                            |                   |            |                             |            | ļ         | _            |                                          |                  | 4       |          |                           | 4                        |                       |                   |            |             |
| Bus stops/h                                           |                   |            | 0                           | 0          |           | 0            | 0                                        | 0                | _       |          | 0                         | 4                        | 0                     | 0                 | 0          | 0           |
| Unit Extensi                                          |                   |            | 3.0                         | 3.0        |           | 3.0          | 3.0                                      | 3.0              |         |          | 3.0                       |                          | 3.0                   | 3.0               | 3.0        | 3.0         |
| Phasing                                               | Excl. Left        |            | & RT                        | 0:         | 3         | 04           |                                          | NB C             |         |          | B Or                      |                          | <u> </u>              | 07.               |            | 80          |
| Timing                                                | G = 10.0<br>Y = 5 | G =<br>Y = |                             | G =<br>Y = |           | G =<br>Y =   |                                          | 3=1 $1=5$        |         |          | = 10<br>= 5               | .0                       | G<br>Y                |                   | G =<br>Y = |             |
| Duration of a                                         |                   | _          |                             | T -        |           | 1 -          |                                          | _ 0              |         |          |                           | ena                      |                       | = 70.0            |            |             |
|                                                       | up Capa           |            |                             | I Del:     | av aı     | ad I Os      | S Det                                    | ermi             | nat     |          |                           |                          |                       |                   | <u> </u>   |             |
| Larie Oio                                             | up Oapa           | l          | EB                          | I DCI      | ay, ai    | WB           |                                          | <u> </u>         | IIIG    |          | ΝB                        |                          | I                     |                   | SB         |             |
| Adj. flow rat                                         | е                 | 11         | 192                         |            | 174       | 84           | 15                                       | 7                |         | 7        | ΪŢ                        | 71                       | $\dashv$              | 163               | 5          | 0           |
| Lane group                                            |                   | 491        | 1006                        | 1          | 491       | 1013         | 663                                      | +                |         | 262      |                           | 212                      |                       | 248               | 266        | 218         |
| v/c ratio                                             |                   | 0.02       | 0.19                        |            | 0.35      | 0.08         | 0.2                                      |                  |         | 0.03     | -                         | 0.33                     | $\overline{}$         | 0.66              | 0.02       | 0.00        |
| Green ratio                                           |                   | 0.14       | 0.29                        |            | 0.14      | 0.29         | 0.4                                      | -                |         | 0.14     | $\rightarrow$             | 0.14                     | $\rightarrow$         | 0.14              | 0.14       | 0.14        |
| Unif. delay o                                         | <br>11            | 25.8       | 18.9                        |            | 27.1      | 18.3         | 12.                                      | 7                |         | 25.8     | ,                         | 27.0                     | ,                     | 28.4              | 25.8       | 25.7        |
| Delay factor                                          |                   | 0.11       | 0.11                        |            | 0.11      | 0.11         | 0.1                                      | 1                |         | 0.11     | , ,                       | 0.11                     | 7                     | 0.23              | 0.11       | 0.11        |
| Increm. dela                                          | ay d2             | 0.0        | 0.1                         |            | 0.4       | 0.0          | 0.2                                      | 2                |         | 0.0      |                           | 0.9                      |                       | 6.2               | 0.0        | 0.0         |
| PF factor                                             | *1.               | 1.000      | 1.000                       |            | 1.000     | 1.000        | 1.00                                     | 00               |         | 1.00     | 0 1                       | 1.00                     | 0                     | 1.000             | 1.000      | 1.000       |
| Control dela                                          | ıy                | 25.8       | 19.0                        |            | 27.5      | 18.3         | 12.                                      | 9                |         | 25.9     | ) [                       | 27.9                     | -                     | 34.6              | 25.8       | 25.7        |
| Lane group                                            | LOS               | С          | В                           |            | С         | В            | В                                        |                  |         | С        |                           | С                        |                       | С                 | С          | С           |
| Apprch. dela                                          | ay                | 19         | 9.4                         |            |           | 20.1         |                                          |                  |         | 27.8     | }                         |                          |                       | ,                 | 34.3       |             |
| Approach L                                            | os                | i          | 3                           |            |           | С            |                                          |                  |         | С        |                           |                          | $\Box$                |                   | С          |             |
| Intersec. de                                          | lay               | 23         | 3.4                         |            |           |              | Inters                                   | sectio           | n LC    | os       |                           |                          | _ [                   |                   | С          |             |
| HCS2000 <sup>TM</sup>                                 |                   |            | Co                          | pyright ©  | 2000 U    | niversity of | Florida,                                 | All Rigl         | ıts Re  | served   |                           |                          |                       |                   | ,          | Version 4.1 |

Page 1 of 1

|                                                      |                   |            |                             |            | SH                                               | ORT R        | EPO               | RT                             |          |                |               |                    |                        |         |            |             |
|------------------------------------------------------|-------------------|------------|-----------------------------|------------|--------------------------------------------------|--------------|-------------------|--------------------------------|----------|----------------|---------------|--------------------|------------------------|---------|------------|-------------|
| General Inf                                          | ormation          |            |                             | ,          |                                                  | S            | ite In            | form                           | atio     | n              | •             |                    |                        |         |            |             |
| Analyst<br>Agency or C<br>Date Perfor<br>Time Period | med               | U<br>06/   | SAI<br>SAI<br>06/12<br>PEAK |            |                                                  | A<br>Ju      | rea T<br>urisdi   | ction<br>ype<br>ction<br>is Ye | ar       |                | A,            | REE<br>I oth<br>CE | EK Č<br>ner ai<br>ANS: | reas    |            |             |
| Volume an                                            | d Timing I        | nput       |                             | •          |                                                  |              |                   |                                |          |                |               |                    |                        |         |            |             |
|                                                      |                   |            | L                           | EB         | T ==                                             | <del> </del> | WE                |                                |          |                |               | IB                 |                        | +       | SB         | <del></del> |
| Num. of Lar                                          | 106               |            | LT<br>2                     | TH<br>2    | RT<br>0                                          | LT<br>2      | TH<br>2           | _                              | ₹T       | <u>LT</u><br>0 |               | H<br>,             | RT<br>1                | LT<br>1 | 1 TH       | RT<br>1     |
|                                                      | 103               |            |                             | TR         | <del>                                     </del> |              | T                 | +                              |          |                | L7            |                    | R                      | + +     | LT         | R           |
| Lane group<br>Volume (vpl                            | 2).               |            | L<br>0                      | 55         | 0                                                | 338          | 34                | 30                             |          | 0              | L 1           |                    | 273                    |         | 5          | 0           |
| % Heavy ve                                           |                   |            | 2                           | 2          | 2                                                | 2            | 2                 | 2                              |          | 2              | 2             |                    | 2/3                    | 2       | 2          | 2           |
| PHF                                                  | ,                 |            | 0.92                        | 0.92       | 0.92                                             | 0.92         | 0.92              |                                |          | 0.92           | 0.9           |                    | 0.92                   |         | 0.92       | 0.92        |
| Actuated (P.                                         | /A)               |            | Α                           | Α          | Α                                                | Α            | Α                 | -                              | 1        | Α              | 1             | 1                  | Α                      | Α       | Α          | Α           |
| Startup lost                                         |                   |            | 2.0                         | 2.0        |                                                  | 2.0          | 2.0               | 2.                             |          |                | 2.            |                    | 2.0                    | 2.0     | 2.0        | 2.0         |
| Ext. eff. gree                                       | en                |            | 2.0                         | 2.0        | ļ                                                | 2.0          | 2.0               | 2.                             |          |                | 2.            | _                  | 2.0<br>3               | 2.0     | 2.0        | 2.0<br>3    |
| Arrival type<br>Unit Extensi                         | 00                |            | 3<br>3.0                    | 3.0        | +                                                | 3.0          | 3.0               | _                              | .0       |                | 3.            | _                  | 3.0                    |         | 3.0        | 3.0         |
| Ped/Bike/R                                           |                   | ne         | 5                           | 10         | 0                                                | 5            | 10                | (                              |          | 5              | 1             |                    | 40                     | 5       | 10         | 0           |
| Lane Width                                           | TOTE VOIGITI      |            | 12.0                        | 12.0       | Ť                                                | 12.0         | 12.0              |                                |          | Ť              | 12            | _                  | 12.0                   |         | _          | 12.0        |
| Parking/Gra                                          | de/Parking        |            | Ν                           | 0          | N                                                | N            | 0                 | 7                              | V        | N              | 0             |                    | N                      | N       | 0          | N           |
| Parking/hr                                           |                   |            |                             |            |                                                  |              |                   |                                |          |                |               |                    |                        |         |            |             |
| Bus stops/h                                          | r                 | ·          | 0                           | 0          |                                                  | 0            | 0                 | (                              | 2        |                | (             | )                  | 0                      | 0       | 0          | 0           |
| Unit Extensi                                         | on                |            | 3.0                         | 3.0        |                                                  | 3.0          | 3.0               | 3.                             | .0       |                | 3.            | 0                  | 3.0                    | 3.0     | 3.0        | 3.0         |
| Phasing                                              | Excl. Left        |            | & RT                        | 0          | 3                                                | 04           |                   |                                | Onl      | _              | SB C          | _                  |                        | 07      |            | 08          |
| Timing                                               | G = 15.0<br>Y = 5 | G =<br>Y = | 15.0<br>-                   | G =<br>Y = |                                                  | G =<br>Y =   |                   | G =<br>Y =                     |          |                | $\dot{s} = 3$ |                    | G<br>Y                 |         | G =<br>Y = |             |
| Duration of                                          |                   |            | _                           | 1 -        |                                                  | 1 -          |                   | T -                            | <u> </u> |                |               |                    | _                      | = 100   |            |             |
| Lane Gro                                             |                   |            |                             | l Del      | av. ar                                           | nd LOS       | S De              | tern                           | nina     |                |               |                    | , <u>C</u>             |         |            |             |
|                                                      | <u></u>           |            | EB                          |            |                                                  | WB           |                   |                                |          |                | NB            |                    |                        |         | SB         |             |
| Adj. flow rat                                        | e                 | 0          | 60                          |            | 367                                              | 37           | 3.                | 33                             |          | 5              | 6             | 20:                | 2                      | 379     | 167        | 0           |
| Lane group                                           | сар.              | 516        | 532                         |            | 516                                              | 532          | 7.                | 25                             |          | 27             | '6            | 270                | 0                      | 562     | 564        | 495         |
| v/c ratio                                            |                   | 0.00       | 0.11                        |            | 0.71                                             | 0.07         | 0.                | 46                             |          | 0.2            | 20            | 0.7                | 5                      | 0.67    | 0.30       | 0.00        |
| Green ratio                                          | *                 | 0.15       | 0.15                        |            | 0.15                                             | 0.15         | 0.                | 47                             |          | 0.             | 18            | 0.1                | 8                      | 0.32    | 0.32       | 0.32        |
| Unif. delay o                                        | 11                | 36.1       | 36.7                        |            | 40.4                                             | 36.5         | 17                | 7.9                            |          | 34             | .9            | 38.                | 9                      | 29.5    | 25.5       | 23.1        |
| Delay factor                                         | k                 | 0.11       | 0.11                        |            | 0.27                                             | 0.11         | 0.                | 11                             |          | 0.             | 11            | 0.3                | 0                      | 0.25    | 0.11       | 0.11        |
| Increm. dela                                         | ay d2             | 0.0        | 0.1                         |            | 4.6                                              | 0.1          | 0                 | .5                             |          | 0.             | 4             | 11.                | 0                      | 3.2     | 0.3        | 0.0         |
| PF factor                                            |                   | 1.000      | 1.000                       |            | 1.000                                            | 1.000        | 1.0               | 200                            |          | 1.0            | 000           | 1.00               | 00                     | 1.000   | 1.000      | 1.000       |
| Control dela                                         | y                 | 36.1       | 36.8                        |            | 45.0                                             | 36.6         | 18                | 3.4                            |          | 35             | .3            | 49.                | 8                      | 32.7    | 25.8       | 23.1        |
| Lane group                                           | LOS               | D          | D                           |            | D                                                | D            |                   | 3                              |          | E              | )             | D                  |                        | С       | С          | С           |
| Apprch. dela                                         | ay                | 36.8       |                             |            | 32.5                                             |              |                   |                                | 46.7     |                |               |                    |                        | 30.6    |            |             |
| Approach L                                           | os                |            | D                           |            | C D                                              |              |                   |                                |          | D C            |               |                    |                        |         |            |             |
| Intersec. de                                         | lay               | 3,         | 4.3                         |            | Intersection LOS                                 |              |                   |                                |          |                |               | С                  |                        |         |            |             |
| HCS2000 <sup>TM</sup>                                |                   |            |                             |            |                                                  | niversity of | l Rights Reserved |                                |          |                |               | Version            |                        |         |            |             |

 $HCS2000^{\mathrm{TM}}$ 

Copyright © 2000 University of Florida, All Rights Reserved

|                                                       |                   |            |                                                             |            | SHO              | ORT R      | EPC                                  | RT           |               |           |                             |                     |                          |           |            |           |
|-------------------------------------------------------|-------------------|------------|-------------------------------------------------------------|------------|------------------|------------|--------------------------------------|--------------|---------------|-----------|-----------------------------|---------------------|--------------------------|-----------|------------|-----------|
| General Inf                                           | ormation          |            |                                                             |            |                  | Si         | ite In                               | orma         | ation         | n         |                             |                     |                          |           |            |           |
| Analyst<br>Agency or C<br>Date Perfort<br>Time Period | med               | U<br>06/0  | SAI<br>SAI<br>06/12<br>PEAK                                 |            |                  | Ai<br>Ju   | terse<br>rea Ty<br>urisdic<br>nalysi | /pe<br>ction | ar            |           | C:<br>Al.<br>O              | REE<br>l oth<br>CEA | EK ČT<br>er are<br>ANSIE | as        |            |           |
| Volume an                                             | d Timing lı       | nput       |                                                             |            |                  |            | <u></u>                              |              |               |           |                             |                     |                          |           |            |           |
|                                                       |                   |            |                                                             | EB         |                  |            | WE                                   |              |               |           | N                           |                     |                          |           | SB         |           |
|                                                       |                   |            | LT                                                          | TH         | RT               | LT         | TH                                   | R            |               | LT        | Ţ                           | $\overline{}$       | RT                       | LT        | TH         | RT        |
| Num. of Lar                                           | ies               |            | 2                                                           | 2          | 0                | 2          | 2                                    | 1            |               | 0         | 1                           | -                   | 1                        | 1         | 1          | 1         |
| Lane group                                            |                   |            | L                                                           | TR         |                  | L          | T                                    | F            |               |           | LT                          |                     | R                        | L         | LT         | R         |
| Volume (vpl                                           | •                 |            | 6                                                           | 91         | 4                | 338        | 222                                  | 30           | _             | 8         | 5                           |                     | 273                      | 545       | 5          | 11        |
| % Heavy ve                                            | eh                |            | 2                                                           | 2          | 2                | 2          | 2                                    | 2            |               | 2         | 0.9                         | _                   | 2<br>0.92                | 2<br>0.92 | 2          | 2<br>0.92 |
| PHF<br>Actuated (P                                    | /Λ\               |            | 0.92<br>A                                                   | 0.92<br>A  | 0.92<br>A        | 0.92<br>A  | 0.92<br>A                            | 0.9<br>A     |               | 0.92<br>A | 0.S                         | _                   | 0.92<br>A                | 0.92<br>A | 0.92<br>A  | 0.92<br>A |
| Startup lost                                          |                   |            | 2.0                                                         | 2.0        | <u> </u>         | 2.0        | 2.0                                  | 2.           | $\rightarrow$ |           | 2.                          |                     | 2.0                      | 2.0       | 2.0        | 2.0       |
| Ext. eff. gre                                         |                   |            | 2.0                                                         | 2.0        |                  | 2.0        | 2.0                                  | 2.           | _             |           | 2.                          |                     | 2.0                      | 2.0       | 2.0        | 2.0       |
| Arrival type                                          |                   |            | 3                                                           | 3          | İ                | 3          | 3                                    | 3            | 1             |           | 3                           |                     | 3                        | 3         | 3          | 3         |
| Unit Extensi                                          | on                |            | 3.0                                                         | 3.0        |                  | 3.0        | 3.0                                  | 3.           | 0             |           | 3.                          | 0                   | 3.0                      | 3.0       | 3.0        | 3.0       |
| Ped/Bike/R <sup>*</sup>                               | FOR Volum         | е          | 5                                                           | 10         | 0                | 5          | 10                                   | 0            | $\dashv$      | 5         | 10                          | _                   | 40                       | 5         | 10         | 0         |
| Lane Width                                            |                   |            | 12.0                                                        | 12.0       |                  | 12.0       | 12.0                                 | _            | -             |           | 12                          | -                   | 12.0                     | 12.0      | 12.0       | 12.0      |
| Parking/Gra                                           | de/Parking        |            | N                                                           | 0          | N                | N          | 0                                    | ٨            | /             | Ν         | 0                           |                     | Ν                        | N         | 0          | N         |
| Parking/hr                                            |                   |            |                                                             |            |                  | _          | <u> </u>                             |              |               |           |                             | _                   |                          |           |            |           |
| Bus stops/h                                           | r                 |            | 0                                                           | 0          |                  | 0          | 0                                    | (            |               |           | (                           | -                   | 0                        | 0         | 0          | 0         |
| Unit Extens                                           | on                |            | 3.0                                                         | 3.0        |                  | 3.0        | 3.0                                  | 3.           | 0             |           | 3.                          | 0                   | 3.0                      | 3.0       | 3.0        | 3.0       |
| Phasing                                               | Excl. Left        |            | & RT                                                        | 0;         | 3                | 04         |                                      | NB           |               |           | SB C                        | _                   | <del> </del>             | 07        |            | 08        |
| Timing                                                | G = 15.0<br>Y = 5 | G =<br>Y = |                                                             | G =<br>Y = |                  | G =<br>Y = |                                      | G =<br>Y = . |               |           | $\hat{s} = 3$ $\hat{s} = 5$ |                     | G =                      |           | G =<br>Y = |           |
| Duration of                                           |                   |            |                                                             | Υ =        |                  | τ –        |                                      | 1 -          | <u> </u>      |           |                             |                     |                          | = 100     |            |           |
|                                                       | up Capa           |            |                                                             | l Dal      | 2V 21            | ad I O     | S De                                 | torn         | nina          |           |                             | -0116               | j O                      | 700       |            |           |
| Lane Gio                                              | up Capai          | l          | EB                                                          | Del        | ay, aı           | WB         |                                      | (CIII        |               | 20101     | NB                          |                     |                          |           | SB         |           |
| Adj. flow rat                                         |                   | 7          | 103                                                         | 1          | 367              | 241        |                                      | 33           |               | T 6       |                             | 20                  | 2                        | 385       | 212        | 12        |
| Lane group                                            |                   | 516        | 528                                                         |            | 516              | 532        | -                                    | 25           |               | 28        |                             | 270                 | -                        | 562       | 564        | 495       |
| v/c ratio                                             | Cap.              | 0.01       | 0.20                                                        | +          | 0.71             | 0.45       |                                      | 46           |               | 0.2       |                             | 0.7                 |                          |           | 0.38       | 0.02      |
| Green ratio                                           |                   | 0.15       | 0.20                                                        |            | 0.15             | 0.45       |                                      | 47           |               | 0.        |                             | 0.1                 |                          |           | 0.32       | 0.32      |
| Unif. delay                                           |                   | 36.2       | 37.2                                                        | +          | 40.4             | 38.8       | -                                    | <br>9        |               | 35        |                             | 38.                 |                          |           | 26.3       | 23.3      |
| Delay factor                                          |                   | 0.11       | 0.11                                                        | 1          | 0.27             | 0.11       | -                                    | 11           |               | 0.        |                             | 0.3                 |                          |           | 0.11       | 0.11      |
| Increm. dela                                          |                   | 0.0        | 0.2                                                         | _          | 4.6              | 0.6        |                                      | 5            |               | 0.        |                             | 11.                 | -                        | 3.5       | 0.4        | 0.0       |
| PF factor                                             |                   | 1.000      | 1.000                                                       |            | 1.000            | +          |                                      | 000          |               | 1.0       | 000                         | 1.00                | 00 1                     | .000      | 1.000      | 1.000     |
| Control dela                                          | ay                | 36.2       | 37.4                                                        |            | 45.0             | 39.4       | 18                                   | 3.4          |               | 35        | .5                          | 49.                 | 8 3                      | 33.1      | 26.7       | 23.3      |
| Lane group                                            | <u> </u>          | D          | D                                                           |            | D                | D          | 1                                    | 3            |               | I         | <del></del>                 | D                   |                          | С         | С          | С         |
| Apprch. dela                                          |                   | 37         | 7.3                                                         |            |                  | 34.1       | <u> </u>                             |              |               | 46        | .3                          |                     |                          |           | 30.7       | ·         |
| Approach L                                            | os                | ı          | D                                                           |            |                  | С          |                                      |              |               |           | )                           |                     |                          |           | С          |           |
| Intersec. de                                          | lay               | 34         | 4.9                                                         |            | Intersection LOS |            |                                      |              |               |           |                             | С                   |                          |           |            |           |
| HCS2000 <sup>TM</sup>                                 |                   |            | Copyright © 2000 University of Florida, All Rights Reserved |            |                  |            |                                      |              |               |           |                             | ,                   | Version 4.1              |           |            |           |



| General Inf                                           | ormation                                  |      | Site Informat                                 | ion                                          |      |
|-------------------------------------------------------|-------------------------------------------|------|-----------------------------------------------|----------------------------------------------|------|
| Analyst<br>Agency/Co.<br>Date Performe<br>Time Period | USAI<br>USAI<br>d 6/7/2012<br>AM PEAK HOU | lR   | Intersection<br>Jurisdiction<br>Analysis Year | MARRON RD./ST<br>CARLSBAI<br>ALT. #2 PLUS PR | D    |
| Project Descrip                                       |                                           |      |                                               |                                              |      |
| Volume Ad                                             | ustments                                  |      |                                               |                                              |      |
|                                                       |                                           | EB   | WB                                            | NB                                           | SB   |
|                                                       | Volume, veh/h                             | 30   | 0                                             | 0                                            | 149  |
| _T Traffic                                            | PHF                                       | 0.90 | 0.90                                          | 0.90                                         | 0.90 |
|                                                       | Flow rate, veh/h                          | 33   | 0                                             | 0                                            | 165  |
|                                                       | Volume, veh/h                             | 36   | 12                                            | 0                                            | 0    |
| TH Traffic                                            | PHF                                       | 0.90 | 0.90                                          | 0.90                                         | 0.90 |
| 2 2 2 2                                               | Flow rate, veh/h                          | 40   | 13                                            | 0                                            | 0    |
|                                                       | Volume, veh/h                             | 0    | 52                                            | 0                                            | 10   |
| RT Traffic                                            | PHF                                       | 0.90 | 0.90                                          | 0.90                                         | 0.90 |
|                                                       | Flow rate, veh/h                          | 0    | 57                                            | 0                                            | 11   |
| Approach F                                            | low Computation                           |      |                                               |                                              |      |
| Ap                                                    | proach Flow (veh/h)                       |      |                                               | Va (veh/h)                                   |      |
|                                                       | Vae                                       |      |                                               | 73                                           |      |
|                                                       | Vaw                                       |      |                                               | 70                                           |      |
|                                                       | Van                                       |      |                                               | 0                                            |      |
| Circulation                                           | Vas                                       |      |                                               | 176                                          |      |
|                                                       | Flow Computation proach Flow (veh/h)      |      |                                               | Vc (veh/h)                                   |      |
| AL                                                    | Vce                                       |      |                                               | 165                                          |      |
|                                                       | Vcw                                       |      |                                               | 33                                           |      |
|                                                       | Vcn                                       |      |                                               | 238                                          |      |
|                                                       | Vcs                                       |      |                                               | 13                                           |      |
| Capacity Co                                           | omputation                                |      |                                               |                                              |      |
|                                                       |                                           | EB   | WB                                            | NB                                           | SB   |
|                                                       | Upper bound                               | 1217 | 1349                                          | 1149                                         | 1370 |
| Capacity                                              | Lower bound                               | 1008 | 1129                                          | 947                                          | 1148 |
| 0. 25da                                               | Upper bound                               | 0.06 | 0.05                                          | 0.00                                         | 0.13 |
| v/c Ratio                                             | Lower bound                               | 0.07 | 0.06                                          | 0.00                                         | 0.15 |

Copyright © 2003 University of Florida, All Rights Reserved



PM

| General Info                                          | ormation                                  |      | Site Informat                                 | ion                                        |      |
|-------------------------------------------------------|-------------------------------------------|------|-----------------------------------------------|--------------------------------------------|------|
| Analyst<br>Agency/Co.<br>Date Performe<br>Time Period | USAI<br>USAI<br>d 6/7/2012<br>PM PEAK HOU | R    | Intersection<br>Jurisdiction<br>Analysis Year | MARRON RD./ST<br>CARLSBA<br>ALT #2 PLUS PF | D    |
| Project Descrip                                       |                                           |      |                                               |                                            |      |
| Volume Adj                                            | ustments                                  |      |                                               |                                            |      |
|                                                       |                                           | EB   | WB                                            | NB                                         | SB   |
|                                                       | Volume, veh/h                             | 15   | 0                                             | 0                                          | 83   |
| LT Traffic                                            | PHF                                       | 0.90 | 0.90                                          | 0.90                                       | 0.90 |
|                                                       | Flow rate, veh/h                          | 16   | 0                                             | 0                                          | 92   |
|                                                       | Volume, veh/h                             | 18   | 42                                            | 0                                          | 0    |
| TH Traffic                                            | PHF                                       | 0.90 | 0.90                                          | 0.90                                       | 0.90 |
|                                                       | Flow rate, veh/h                          | 20   | 46                                            | 0                                          | 0    |
|                                                       | Volume, veh/h                             | 0    | 164                                           | 0                                          | 34   |
| RT Traffic                                            | PHF                                       | 0.90 | 0.90                                          | 0.90                                       | 0.90 |
|                                                       | Flow rate, veh/h                          | 0    | 182                                           | 0                                          | 37   |
| Approach F                                            | low Computation                           |      |                                               |                                            |      |
| Ар                                                    | proach Flow (veh/h)                       |      |                                               | Va (veh/h)                                 |      |
|                                                       | Vae                                       |      |                                               | 36                                         |      |
|                                                       | Vaw                                       |      |                                               | 228                                        |      |
|                                                       | Van                                       |      |                                               | 0                                          |      |
|                                                       | Vas                                       |      |                                               | 129                                        |      |
|                                                       | Flow Computation                          |      |                                               | 11 1 1 1 1 1 1                             |      |
| Ap                                                    | proach Flow (veh/h)                       |      |                                               | Vc (veh/h)                                 |      |
|                                                       | Vce                                       |      |                                               | 92                                         |      |
|                                                       | Vcw                                       |      |                                               | 16<br>128                                  |      |
|                                                       | Vcs                                       |      |                                               | 46                                         |      |
| Capacity Co                                           |                                           |      |                                               | 40                                         |      |
| capacity of                                           | Imputation                                | EB   | l WB                                          | NB                                         | SB   |
|                                                       | Upper bound                               | 1288 | 1367                                          | 1252                                       | 1335 |
| Capacity                                              | Lower bound                               | 1073 | 1145                                          | 1041                                       | 1116 |
|                                                       | Upper bound                               | 0.03 | 0.17                                          | 0.00                                       | 0.10 |
|                                                       |                                           |      |                                               |                                            |      |

HCS2000<sup>TM</sup>

Copyright © 2003 University of Florida, All Rights Reserved



FAIR-SHARE %

CULLEGE BLUD (VISTA WAY TO PLAZA DR)

SEGMONT ALT. #2

I. TOTAL VOLUME AT BUILDOUT

BUILDOUT WITH PROJECT 58,300 ADT

BUILDOUT WITHOUT PROJECT

-55,600 ADT

2,700 ADT PROJECT ONLY INCREASE =

I. EXISTING VOLUME

EXISTING

44,884 ADT

III. TOTAL INCREASE

BUILDOUT

58,300 ADT

EXISTING

-44,884 ADT

TOTAL NUCREASE =

13, 416 ADT

II . PROJECT PERCENTAGE OF TOTAL INCREASE

PROJECT UNLY

13,416 ADT = 20,176

## FAIR-SHARE 70 BASED ON ADT

COLLEGE BLVO. ( PLAZA OR. TO MARRON RD.)

SECMENT ALT. #2

### I. TOTAL VOLUME AT BUILDOUT

45,300 ADT BUILDOUT WITH PROJECT

BUILDOUT WITHOUT PROJECT - 42,700 LOT PROJECT ONLY INCREASE = 2,600 A DT

ILS EXISTING YOLUME

36,219 ADT EXISTING

III. TOTAL INCREASE

BUILDOUT

TOTAL INCREASE =

II. PROJECT PERCENTAGE OF TOTAL INCREASE

PROJECT UNLY = 2.600 = 28,6%

FAIR-SHARE 76

COLLEGE BLYO. (MARRON RD. TO S. CITY LIMIT)

SEGMENT ALT. #2

### I. TOTAL VOLUME AT BUILDOUT

BUILDOUT WITH PROJECT 43,600 ADT

BUILDOUT WITHOUT PROJECT -42,200 ADT

PROJECT ONLY INCREASE = 1,400 ADT

I EXISTING VOLUME

EXISTING

24,475 ADT

III. TOTAL INCREME

BUILDOUT A3,600 ADT

EXISTING -24,475 ADT

TOTAL INCREASE = 19,125 ADT

II. PROJECT PERCENTAGE UF TOTAL INCREASE

TOTAL INCREASE = 1,400 ADT = 7.3%

FAIR- SHARE 70

VISTAWAY (COLLEGE BLYD TO SE-78 WE RAMPS)

SEGMENT ALT, #2

### I. TOTAL VOLUME AT BUILDOUT

BUILDOUT WITH PROSECT

31,900 NOT

BUILPOUT WITHOUT PROJECT

-30,700 ADT

PROJECT ONLY INCREASE = 1,200 ADT

I EXISTING VOLUME

EXISTING

28,000 ADT

III. TOTAL INCREASE

BUILDOUT

31,900 ADT

EXISTING

- 28,000 AST

TOTAL INCREASE =

3,900 AST

II . PROJECT PERCENTAGE OF TOTAL INCREASE

PROJECT UNLY = 1,200 ADT = 30.8°

# FAIR-SHARE 70 ALT:- 2 INTERSECTION (COLLEGE/MARROW\_LAKE)

II. PROJECT PERCENTAGE UT TOTAL INCREASE

ARTERIAL MULLYSIS WORKS WEETS

16 PAGES

#### **URBAN STREET WORKSHEET #1** General Information Site Information COLLEGE BLVD. Urban Street USAL Analyst Direction of Travel North-bound Agency/Co. USAI Jurisdiction **OCEANSIDE** Date Performed 09/04/12 BUILDOUT NO PROJECT/ALT-2 Time Period AM PEAK HOUR Analysis Year Project Description: QUARRY CREEK/COLL2AMNPNB Input Parameters Segments Analysis Period(h) T = 0.252 3 5 6 8 4 100.0 100.0 100.0 100.0 100.0 Cycle length, C (s) 0.300 0.640 0.400 0.440 Eff. green to cycle ratio, g/C 0.310 0.829 0.293 0.459 0.466 0.765 v/c ratio for lane group, X 1561 Cap of lane group, c (veh/h) 1100 1466 4330 2030 Pct Veh on Grn., PVG 5 Arrival type, AT 5 5 5 5 3.0 3.0 3.0 3.0 3.0 Unit Extension, UE (sec) 0.10 0.16 0.27 0.05 0.34 ength of segment, L (mi) Initial Queue, Qb (veh) 0 0 0 0 0 2 2 2 2 Urban street class, SC 2 40 40 40 40 40 Free-flow speed, FSS (mi/h) Running Time, TR (s) 33.9 28.8 5.8 11.5 18.4 0.0 0.0 0.0 0.0 0.0 Other delay, (s) **Delay Computation** Uniform delay, d1 (s) 22.0 19.7 5.4 5.4 5.4 31.2 32.6 8.0 0.11 0.50 0.50 0.50 Incremental delay adj, k 0.32 0.37 0.11 0.11 0.887 Upstream filtering adj factor, I 1.000 0.555 0.450 0.966 Incremental delay, d2 (s) 3.3 2.3 0.0 0.2 0.2 3.9 Initial queue delay, d3 (s) 0 0 0 0.555 0.476 0.256 Progression adj factor, PF 0.700 0.714 0.000 0.256 0.256 Control delay, d (s) 25.1 25.6 0.0 12.4 9.6 Segment LOS Determination Travel time, ST (s) 59.0 54.5 5.8 23.9 28.0 20.7 17.8 31.2 15.1 20.6 Travel speed, SA (mi/h) Segment LOS D B E D Urban Street LOS Determination Total travel time (s) MARRON 11572 way

HCS2000<sup>TM</sup>

Total length (mi)

Total travel speed, SA (mi/h)

Total urban street LOS

Copyright © 2003 University of Florida, All Rights Reserved

WARLUG

NOT SIGNIFICANT

DLAZA

SINIHONI

0.92

19.4

D

| General Information                                                                  |         |          | Site Inf | ormatio                 | n                             |             |          |       |
|--------------------------------------------------------------------------------------|---------|----------|----------|-------------------------|-------------------------------|-------------|----------|-------|
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 09/04/12<br>Time Period AM PEAK Ho | OUR     |          | Urban St | reet<br>of Travel<br>on | COLLEG<br>North-box<br>OCEANS | und<br>SIDE | PROJECT/ | ALT-  |
| Project Description: QUARRY                                                          | CREEK/C | COLL2AMV | NPNB     |                         |                               |             |          |       |
| Input Parameters                                                                     |         |          |          |                         |                               |             |          |       |
|                                                                                      | 5 44 5  |          |          | Segmer                  | nts                           |             |          |       |
| Analysis Period(h) $T = 0.25$                                                        | 1       | 2        | 3        | 4                       | 5                             | 6           | 7        | 8     |
| Cycle length, C (s)                                                                  | 100.0   | 100.0    | 100.0    | 100.0                   | 100.0                         |             |          |       |
| Eff. green to cycle ratio, g/C                                                       | 0.320   | 0.300    | 0.640    | 0.400                   | 0.440                         |             | -        |       |
| v/c ratio for lane group, X                                                          | 0.757   | 0.913    | 0.329    | 0.482                   | 0.490                         |             |          |       |
| Cap of lane group, c (veh/h)                                                         | 1135    | 1464     | 4330     | 2030                    | 1561                          |             |          |       |
| Pct Veh on Grn., PVG                                                                 |         |          |          |                         |                               |             |          |       |
| Arrival type, AT                                                                     | 5       | 5        | 5        | 5                       | 5                             |             |          |       |
| Unit Extension, UE (sec)                                                             | 3.0     | 3.0      | 3.0      | 3.0                     | 3.0                           |             |          |       |
| Length of segment, L (mi)                                                            | 0.34    | 0.27     | 0.05     | 0.10                    | 0.16                          |             |          |       |
| Initial Queue, Qb (veh)                                                              | 0       | 0        | 0        | 0                       | 0                             |             |          |       |
| Urban street class, SC                                                               | 2       | 2        | 2        | 2                       | 2                             |             |          |       |
| Free-flow speed, FSS (mi/h)                                                          | 40      | 40       | 40       | 40                      | 40                            |             |          |       |
| Running Time, TR (s)                                                                 | 33.9    | 28.8     | 5.8      | 11.5                    | 18.4                          |             |          |       |
| Other delay, (s)                                                                     | 0.0     | 0.0      | 0.0      | 0.0                     | 0.0                           |             |          |       |
| Delay Computation                                                                    |         |          |          |                         |                               |             |          |       |
| Uniform delay, d1 (s)                                                                | 30.5    | 33.7     | 8.2      | 22.3                    | 20.0                          | 5.4         | 5.4      | 5.4   |
| Incremental delay adj, k                                                             | 0.31    | 0.43     | 0.11     | 0.11                    | 0.11                          | 0.50        | 0.50     | 0.50  |
| Upstream filtering adj factor, I                                                     | 1.000   | 0.569    | 0.288    | 0.954                   | 0.871                         |             |          |       |
| Incremental delay, d2 (s)                                                            | 3.0     | 5.5      | 0.0      | 0.2                     | 0.2                           | 3.8         |          |       |
| Initial queue delay, d3 (s)                                                          | 0       | 0        | 0        | 0                       | 0                             |             |          |       |
| Progression adj factor, PF                                                           | 0.686   | 0.714    | 0.000    | 0.555                   | 0.476                         | 0.256       | 0.256    | 0.256 |
| Control delay, d (s)                                                                 | 23.9    | 29.6     | 0.0      | 12.6                    | 9.7                           |             |          |       |
| Segment LOS Determina                                                                |         | 1000000  |          |                         |                               |             |          |       |
| Travel time, ST (s)                                                                  | 57.8    | 58.5     | 5.8      | 24.1                    | 28.1                          |             | 1        |       |
| Travel speed, SA (mi/h)                                                              | 21.2    | 16.6     | 31.2     | 15.0                    | 20.5                          |             |          |       |
| Segment LOS                                                                          | D       | E        | B        | E                       | D                             |             |          |       |
| Urban Street LOS Deterr                                                              |         |          |          |                         | 4                             |             | -        |       |
| Total travel time (s)                                                                | 174.2   |          | 7        |                         | VISTAWI                       | 4)          |          |       |
| Total length (mi)                                                                    | 0.92    | PLAZA    | - d      | >                       | WARWE                         | 7           |          |       |
| Total travel speed, SA (mi/h)                                                        | 19.0    | 17.8     | 7        |                         | OK                            |             |          |       |
| Total urban street LOS                                                               | D       | -16.6 M  | pt       | (                       |                               |             |          |       |

9/4/2012

| General Information  Analyst USAI                      |         |          | Site IIII                                       | ormatio                 | 11                            |             |          |       |
|--------------------------------------------------------|---------|----------|-------------------------------------------------|-------------------------|-------------------------------|-------------|----------|-------|
| Agency/Co. USAI Date Performed 09/04/12 Time Period PM |         |          | Urban St<br>Direction<br>Jurisdicti<br>Analysis | reet<br>of Travel<br>on | COLLEG<br>North-box<br>OCEANS | und<br>SIDE | OJECT/AL | _T-2  |
| Project Description: QUARRY                            | CREEK/C | COLL2PMI | NPNB                                            |                         |                               |             |          |       |
| Input Parameters                                       |         |          |                                                 |                         |                               |             |          |       |
| Analysis Period(h) T = 0.25                            |         |          |                                                 | Segmen                  | nts                           |             |          |       |
| Analysis Feriod(II) 1 = 0.25                           | 1       | 2        | 3                                               | 4                       | 5                             | 6           | 7        | 8     |
| Cycle length, C (s)                                    | 99.5    | 110.0    | 100.0                                           | 110.0                   | 110.0                         |             |          |       |
| Eff. green to cycle ratio, g/C                         | 0.311   | 0.375    | 0.540                                           | 0.434                   | 0.528                         |             |          |       |
| v/c ratio for lane group, X                            | 1.084   | 1.055    | 0.638                                           | 0.875                   | 1.076                         |             |          |       |
| Cap of lane group, c (veh/h)                           | 1102    | 1843     | 3653                                            | 2200                    | 1873                          |             |          |       |
| Pct Veh on Grn., PVG                                   |         |          |                                                 |                         |                               |             |          |       |
| Arrival type, AT                                       | 5       | 5        | 5                                               | 5                       | 5                             |             |          |       |
| Unit Extension, UE (sec)                               | 3.0     | 3.0      | 3.0                                             | 3.0                     | 3.0                           |             |          |       |
| Length of segment, L (mi)                              | 0.34    | 0.27     | 0.05                                            | 0.10                    | 0.16                          | 1           |          |       |
| nitial Queue, Qb (veh)                                 | 0       | 0        | 0                                               | 0                       | 0                             |             |          |       |
| Urban street class, SC                                 | 2       | 2        | 2                                               | 2                       | 2                             |             |          |       |
| Free-flow speed, FSS (mi/h)                            | 40      | 40       | 40                                              | 40                      | 40                            | -           |          |       |
| Running Time, TR (s)                                   | 33.9    | 28.8     | 5.8                                             | 11.5                    | 18.4                          |             |          |       |
| Other delay, (s)                                       | 0.0     | 0.0      | 0.0                                             | 0.0                     | 0.0                           |             |          |       |
| Delay Computation                                      |         |          |                                                 |                         |                               |             |          |       |
| Uniform delay, d1 (s)                                  | 34.3    | 34.4     | 16.1                                            | 28.4                    | 25.9                          | 5.4         | 5.4      | 5.4   |
| ncremental delay adj, k                                | 0.50    | 0.50     | 0.22                                            | 0.40                    | 0.50                          | 0.50        | 0.50     | 0.50  |
| Upstream filtering adj factor, I                       | 1.000   | 0.090    | 0.090                                           | 0.727                   | 0.363                         |             |          |       |
| ncremental delay, d2 (s)                               | 53.0    | 26.3     | 0.0                                             | 3.2                     | 38.7                          | 0.4         |          |       |
| nitial queue delay, d3 (s)                             | 0       | 0        | 0                                               | 0                       | 0                             |             |          |       |
| Progression adj factor, PF                             | 0.700   | 0.601    | 0.217                                           | 0.489                   | 0.253                         | 0.256       | 0.256    | 0.256 |
| Control delay, d (s)                                   | 77.0    | 46.9     | 3.5                                             | 17.1                    | 45.3                          | 0.20        | 7.22     |       |
| Segment LOS Determina                                  |         | 10.0     | 0.0                                             | 1                       | 10.0                          |             |          |       |
| Travel time, ST (s)                                    | 110.9   | 75.7     | 9.3                                             | 28.6                    | 63.7                          |             |          |       |
| Travel speed, SA (mi/h)                                | 11.0    | 12.8     | 19.4                                            | 12.6                    | 9.0                           | 1           |          | 1     |
| Segment LOS                                            | F F     | F        | D D                                             | F                       | F                             | 1           |          | 1     |
| Urban Street LOS Deterr                                |         | -        |                                                 |                         | 4                             | 1           |          |       |
|                                                        |         |          |                                                 |                         | 1                             | -           |          |       |
| Total travel time (s)                                  | 288.2   | (MARRON  | 3                                               |                         | WARMIN ARM                    | 1)          |          |       |
| Total length (mi)                                      | 0.92    | PLUZA    | DI?                                             | (                       | LIARIN                        | 6.5         |          |       |
| Total travel speed, SA (mi/h)                          | 11.5    |          | 1                                               |                         | 7                             |             |          |       |
| Total urban street LOS                                 | F       | -0       |                                                 |                         |                               |             |          |       |

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                 |         |         | Site Inf                                          | ormatio         | n                                        |           |           |       |
|---------------------------------------------------------------------|---------|---------|---------------------------------------------------|-----------------|------------------------------------------|-----------|-----------|-------|
| Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period PM |         |         | Urban St<br>Direction<br>Jurisdiction<br>Analysis | of Travel<br>on | COLLEG<br>North-box<br>OCEANS<br>BUILDOX | und       | PROJECT/  | ALT-  |
| Project Description: QUARRY                                         | CREEK/C | OLL2PMV | VPNB                                              |                 |                                          |           |           |       |
| Input Parameters                                                    |         |         |                                                   |                 |                                          |           |           |       |
|                                                                     |         |         |                                                   | Segmer          | nts                                      |           |           |       |
| Analysis Period(h) T = 0.25                                         | 1       | 2       | 3                                                 | 4               | 5                                        | 6         | 7         | 8     |
| Cycle length, C (s)                                                 | 99.5    | 110.0   | 100.0                                             | 110.0           | 110.0                                    |           |           |       |
| Eff. green to cycle ratio, g/C                                      | 0.311   | 0.375   | 0.540                                             | 0.434           | 0.528                                    |           |           |       |
| v/c ratio for lane group, X                                         | 1.129   | 1.090   | 0.661                                             | 0.887           | 1.087                                    |           |           |       |
| Cap of lane group, c (veh/h)                                        | 1102    | 1842    | 3653                                              | 2200            | 1873                                     |           |           |       |
| Pct Veh on Grn., PVG                                                |         |         | 777                                               |                 | TEE L                                    |           |           |       |
| Arrival type, AT                                                    | 5       | 5       | 5                                                 | 5               | 5                                        |           |           |       |
| Unit Extension, UE (sec)                                            | 3.0     | 3.0     | 3.0                                               | 3.0             | 3.0                                      |           |           |       |
| Length of segment, L (mi)                                           | 0.34    | 0.27    | 0.05                                              | 0.10            | 0.16                                     |           |           |       |
| Initial Queue, Qb (veh)                                             | 0       | 0       | 0                                                 | 0               | 0                                        |           |           |       |
| Urban street class, SC                                              | 2       | 2       | 2                                                 | 2               | 2                                        |           |           |       |
| Free-flow speed, FSS (mi/h)                                         | 40      | 40      | 40                                                | 40              | 40                                       |           |           |       |
| Running Time, TR (s)                                                | 33.9    | 28.8    | 5.8                                               | 11.5            | 18.4                                     |           |           |       |
| Other delay, (s)                                                    | 0.0     | 0.0     | 0.0                                               | 0.0             | 0.0                                      |           |           | dr.   |
| Delay Computation                                                   |         |         |                                                   |                 |                                          |           | _         |       |
| Uniform delay, d1 (s)                                               | 34.3    | 34.4    | 16.5                                              | 28.7            | 25.9                                     | 5.4       | 5.4       | 5.4   |
| Incremental delay adj, k                                            | 0.50    | 0.50    | 0.24                                              | 0.41            | 0.50                                     | 0.50      | 0.50      | 0.50  |
| Upstream filtering adj factor, I                                    | 1.000   | 0.090   | 0.090                                             | 0.700           | 0.340                                    |           |           |       |
| Incremental delay, d2 (s)                                           | 69.9    | 41.6    | 0.0                                               | 3.5             | 42.9                                     | 0.4       |           |       |
| Initial queue delay, d3 (s)                                         | 0       | 0       | 0                                                 | 0               | 0                                        |           |           |       |
| Progression adj factor, PF                                          | 0.700   | 0.601   | 0.217                                             | 0.489           | 0.253                                    | 0.256     | 0.256     | 0.256 |
| Control delay, d (s)                                                | 93.9    | 62.3    | 3.6                                               | 17.5            | 49.5                                     |           |           |       |
| Segment LOS Determina                                               |         |         |                                                   |                 |                                          |           |           |       |
| Travel time, ST (s)                                                 | 127.7   | 91.1    | 9.4                                               | 29.0            | 67.9                                     |           |           | 1     |
| Travel speed, SA (mi/h)                                             | 9.6     | 10.7 -  | 19.2                                              | 12.4            | 8.5                                      |           |           |       |
| Segment LOS                                                         | F       | F.      | D                                                 | F               | F                                        |           |           |       |
| Urban Street LOS Deterr                                             |         |         |                                                   |                 | 4                                        |           |           |       |
| Total travel time (s)                                               | 325.0   |         |                                                   | -               |                                          | <u> </u>  |           |       |
|                                                                     |         | MARRO   | N                                                 | 1               |                                          | WAY       | 1         |       |
| Total length (mi)                                                   | 0.92    | PLINZA  |                                                   | 3               | ( VISTA<br>WAR                           | 1. 0      | 7         |       |
| Total travel speed, SA (mi/h)                                       | 10.2    | 12,8    |                                                   | )               | to to                                    | _         | . ]       |       |
| Total urban street LOS                                              | F       | 1- 10:  | MOH SIGNIS                                        | VOLT )          | 11166                                    | THAN IMPH | DELINGAGE | )     |

| General Information                                                                 |         |          | Site Inf                                          | ormatio                 | n                            |       |          |       |
|-------------------------------------------------------------------------------------|---------|----------|---------------------------------------------------|-------------------------|------------------------------|-------|----------|-------|
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 09/04/12<br>Time Period AM PEAK H |         |          | Urban St<br>Direction<br>Jurisdiction<br>Analysis | reet<br>of Travel<br>on | COLLEG<br>South-bo<br>OCEANS | und   | OJECT/AL | _T-2  |
| Project Description: QUARRY                                                         | CREEK/C | COLL2AMI | NPSB                                              |                         |                              |       |          |       |
| Input Parameters                                                                    |         |          |                                                   |                         |                              |       |          |       |
| Analysis Period(h) $T = 0.25$                                                       |         |          |                                                   | Segmen                  |                              |       |          |       |
| Analysis i chod(ii) i = 0.20                                                        | 1       | 2        | 3                                                 | 4                       | 5                            | 6     | 7        | 8     |
| Cycle length, C (s)                                                                 | 100.0   | 100.0    | 100.0                                             | 100.0                   | 100.0                        |       |          |       |
| Eff. green to cycle ratio, g/C                                                      | 0.440   | 0.400    | 0.640                                             | 0.530                   | 0.410                        |       | -        |       |
| v/c ratio for lane group, X                                                         | 1.013   | 0.889    | 0.382                                             | 0.681                   | 0.964                        |       |          |       |
| Cap of lane group, c (veh/h)                                                        | 1561    | 2014     | 5412                                              | 2645                    | 1454                         |       |          |       |
| Pct Veh on Grn., PVG                                                                |         |          |                                                   |                         |                              |       |          |       |
| Arrival type, AT                                                                    | 5       | 5        | 5                                                 | 5                       | 5                            |       |          |       |
| Unit Extension, UE (sec)                                                            | 3.0     | 3.0      | 3.0                                               | 3.0                     | 3.0                          |       |          |       |
| Length of segment, L (mi)                                                           | 0.25    | 0.16     | 0.10                                              | 0.05                    | 0.27                         |       |          |       |
| Initial Queue, Qb (veh)                                                             | 0       | 0        | 0                                                 | 0                       | 0                            |       |          |       |
| Urban street class, SC                                                              | 2       | 2        | 2                                                 | 2                       | 2                            |       |          |       |
| Free-flow speed, FSS (mi/h)                                                         | 40      | 40       | 40                                                | 40                      | 40                           |       |          |       |
| Running Time, TR (s)                                                                | 27.5    | 18.4     | 11.5                                              | 5.8                     | 28.8                         |       |          |       |
| Other delay, (s)                                                                    | 0.0     | 0.0      | 0.0                                               | 0.0                     | 0.0                          |       |          |       |
| Delay Computation                                                                   |         |          |                                                   |                         |                              |       |          |       |
| Uniform delay, d1 (s)                                                               | 28.0    | 27.9     | 8.6                                               | 17.3                    | 28.8                         | 5.4   | 5.4      | 5.4   |
| Incremental delay adj, k                                                            | 0.50    | 0.41     | 0.11                                              | 0.25                    | 0.47                         | 0.50  | 0.50     | 0.50  |
| Upstream filtering adj factor, I                                                    | 1.000   | 0.090    | 0.337                                             | 0.931                   | 0.676                        |       |          |       |
| Incremental delay, d2 (s)                                                           | 26.2    | 0.5      | 0.0                                               | 0.7                     | 12.1                         | 0.8   |          |       |
| Initial queue delay, d3 (s)                                                         | 0       | 0        | 0                                                 | 0                       | 0                            |       |          |       |
| Progression adj factor, PF                                                          | 0.476   | 0.555    | 0.000                                             | 0.248                   | 0.536                        | 0.256 | 0.256    | 0.256 |
| Control delay, d (s)                                                                | 39.5    | 16.0     | 0.0                                               | 5.0                     | 27.6                         |       |          |       |
| Segment LOS Determina                                                               |         |          |                                                   |                         |                              |       |          |       |
| Travel time, ST (s)                                                                 | 67.0    | 34.4     | 11.5                                              | 10.7                    | 56.4                         |       |          |       |
| Travel speed, SA (mi/h)                                                             | 13.4    | 16.7     | 31.3                                              | 16.8                    | 17.2                         |       |          |       |
| Segment LOS                                                                         | E       | E        | В                                                 | E                       | D,                           |       |          |       |
| Urban Street LOS Deteri                                                             |         |          |                                                   |                         | A                            |       |          |       |
| Total travel time (s)                                                               | 180.1   | 1        |                                                   | (                       | PLAZA                        | 1     |          |       |
|                                                                                     | 0.83/   | ATZ ING  | 1                                                 |                         | MARRON -                     | LAKE) |          |       |
| Total length (mi)                                                                   |         | 7 VISTAW | 44}                                               |                         | NoT                          | 1     |          |       |
| Total travel speed, SA (mi/h)                                                       | 16.6    | (        |                                                   |                         | 516                          |       |          |       |
| Total urban street LOS                                                              | E       | ~        |                                                   | 1                       | ~/                           |       |          |       |

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                         |         |        | Site Inf | ormatio                 | n                            |            |          |       |
|-----------------------------------------------------------------------------|---------|--------|----------|-------------------------|------------------------------|------------|----------|-------|
| Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period AM PEAK Ho | OUR     |        | Urban St | reet<br>of Travel<br>on | COLLEG<br>South-bo<br>OCEANS | und<br>IDE | PROJECT/ | ALT-  |
| Project Description: QUARRY                                                 | CREEK/C | OLL2AM | WPSB     |                         |                              |            |          |       |
| Input Parameters                                                            |         |        |          |                         |                              |            |          |       |
|                                                                             |         |        |          | Segmer                  | nts                          |            |          |       |
| Analysis Period(h) $T = 0.25$                                               | 1       | 2      | 3        | 4                       | 5                            | 6          | 7        | 8     |
| Cycle length, C (s)                                                         | 100.0   | 100.0  | 100.0    | 100.0                   | 100.0                        |            |          |       |
| Eff. green to cycle ratio, g/C                                              | 0.440   | 0.400  | 0.640    | 0.530                   | 0.420                        |            |          |       |
| v/c ratio for lane group, X                                                 | 1.022   | 0.896  | 0.390    | 0.710                   | 0.972                        |            |          |       |
| Cap of lane group, c (veh/h)                                                | 1561    | 2015   | 5412     | 2638                    | 1490                         |            |          |       |
| Pct Veh on Grn., PVG                                                        |         |        |          |                         |                              |            |          |       |
| Arrival type, AT                                                            | 5       | 5      | 5        | 5                       | 5                            |            |          |       |
| Unit Extension, UE (sec)                                                    | 3.0     | 3.0    | 3.0      | 3.0                     | 3.0                          |            |          |       |
| Length of segment, L (mi)                                                   | 0.25    | 0.16   | 0.10     | 0.05                    | 0.27                         |            |          |       |
| Initial Queue, Qb (veh)                                                     | 0       | 0      | 0        | 0                       | 0                            |            |          |       |
| Urban street class, SC                                                      | 2       | 2      | 2        | 2                       | 2                            |            |          |       |
| Free-flow speed, FSS (mi/h)                                                 | 40      | 40     | 40       | 40                      | 40                           |            |          |       |
| Running Time, TR (s)                                                        | 27.5    | 18.4   | 11.5     | 5.8                     | 28.8                         |            |          |       |
| Other delay, (s)                                                            | 0.0     | 0.0    | 0.0      | 0.0                     | 0.0                          |            |          |       |
| Delay Computation                                                           |         |        |          |                         |                              |            |          |       |
| Uniform delay, d1 (s)                                                       | 28.0    | 28.1   | 8.6      | 17.7                    | 28.4                         | 5.4        | 5.4      | 5.4   |
| Incremental delay adj, k                                                    | 0.50    | 0.42   | 0.11     | 0.27                    | 0.48                         | 0.50       | 0.50     | 0.50  |
| Upstream filtering adj factor, I                                            | 1.000   | 0.090  | 0.321    | 0.927                   | 0.637                        |            |          |       |
| Incremental delay, d2 (s)                                                   | 28.4    | 0.6    | 0.0      | 0.8                     | 12.8                         | 0.7        |          | 1     |
| Initial queue delay, d3 (s)                                                 | 0       | 0      | 0        | 0                       | 0                            |            |          |       |
| Progression adj factor, PF                                                  | 0.476   | 0.555  | 0.000    | 0.248                   | 0.517                        | 0.256      | 0.256    | 0.256 |
| Control delay, d (s)                                                        | 41.8    | 16.2   | 0.0      | 5.2                     | 27.5                         |            |          |       |
| Segment LOS Determina                                                       |         |        |          |                         |                              |            |          |       |
| Travel time, ST (s)                                                         | 69.3    | 34.6   | 11.5     | 11.0                    | 56.3                         |            |          |       |
| Travel speed, SA (mi/h)                                                     | 13.0    | 16.7   | 31.3     | 16.4                    | 17.3                         |            |          |       |
| Segment LOS                                                                 | F       | E      | В        | E                       | D,                           |            |          |       |
| Urban Street LOS Deterr                                                     |         |        | ^        |                         |                              |            |          | *     |
| Total travel time (s)                                                       | 182.7   |        | 10 }     | 1                       | NUT                          | 1          |          |       |
| Total length (mi)                                                           | 0.83    | VISTA  | YAW      | 1                       | 516.                         | 7          |          |       |
| Total travel speed, SA (mi/h)                                               | 16.4    | Y      |          |                         | PLAZA                        |            |          |       |
| Total urban street LOS                                                      | E       |        |          | 7                       | MARTON -L                    | akt y      |          |       |

|                                                                     |         |             | 12                    |                 |                                         |             |          |       |
|---------------------------------------------------------------------|---------|-------------|-----------------------|-----------------|-----------------------------------------|-------------|----------|-------|
| General Information                                                 |         |             |                       | ormatio         |                                         |             |          |       |
| Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period PM |         |             | Jurisdiction Analysis | of Travel<br>on | COLLEG<br>South-bo<br>OCEANS<br>BUILDOL | und<br>SIDE | OJECT/AL | _T-2  |
| Project Description: QUARRY                                         | CREEK/C | COLL2PMI    | NPSB                  |                 |                                         |             |          |       |
| Input Parameters                                                    |         |             |                       |                 |                                         |             |          |       |
| Analysis Period(h) T = 0.25                                         |         |             |                       | Segmer          |                                         |             |          |       |
| Analysis Feriod(ii) 1 = 0.23                                        | 1       | 2           | 3                     | 4               | 5                                       | 6           | 7        | 8     |
| Cycle length, C (s)                                                 | 110.0   | 110.0       | 100.0                 | 110.0           | 99.5                                    |             |          |       |
| Eff. green to cycle ratio, g/C                                      | 0.382   | 0.328       | 0.540                 | 0.513           | 0.311                                   |             |          |       |
| v/c ratio for lane group, X                                         | 0.770   | 0.899       | 0.386                 | 0.678           | 0.774                                   |             |          |       |
| Cap of lane group, c (veh/h)                                        | 1354    | 1645        | 4567                  | 2572            | 1102                                    |             |          | 1     |
| Pct Veh on Grn., PVG                                                |         |             |                       |                 | 7 117 1                                 |             |          |       |
| Arrival type, AT                                                    | 5       | 5           | 5                     | 5               | 5                                       |             |          |       |
| Unit Extension, UE (sec)                                            | 3.0     | 3.0         | 3.0                   | 3.0             | 3.0                                     |             |          |       |
| Length of segment, L (mi)                                           | 0.25    | 0.16        | 0.10                  | 0.05            | 0.27                                    |             |          |       |
| Initial Queue, Qb (veh)                                             | 0       | 0           | 0                     | 0               | 0                                       | 0 =         |          |       |
| Urban street class, SC                                              | 2       | 2           | 2                     | 2               | 2                                       |             |          | -     |
| Free-flow speed, FSS (mi/h)                                         | 40      | 40          | 40                    | 40              | 40                                      |             |          | -     |
| Running Time, TR (s)                                                | 27.5    | 18.4        | 11.5                  | 5.8             | 28.8                                    |             |          |       |
| Other delay, (s)                                                    | 0.0     | 0.0         | 0.0                   | 0.0             | 0.0                                     |             |          |       |
| Delay Computation                                                   |         |             | -                     |                 | T 20000                                 |             | 200      |       |
| Uniform delay, d1 (s)                                               | 29.8    | 35.2        | 13.4                  | 20.0            | 31.1                                    | 5.4         | 5.4      | 5.4   |
| Incremental delay adj, k                                            | 0.32    | 0.42        | 0.11                  | 0.25            | 0.32                                    | 0.50        | 0.50     | 0.50  |
| Upstream filtering adj factor, I                                    | 1.000   | 0.548       | 0.316                 | 0.929           | 0.679                                   |             |          |       |
| Incremental delay, d2 (s)                                           | 2.8     | 4.1         | 0.0                   | 0.7             | 2.4                                     | 2.4         |          |       |
| Initial queue delay, d3 (s)                                         | 0       | 0           | 0                     | 0               | 0                                       |             |          |       |
| Progression adj factor, PF                                          | 0.588   | 0.674       | 0.217                 | 0.298           | 0.700                                   | 0.256       | 0.256    | 0.256 |
| Control delay, d (s)                                                | 20.3    | 27.9        | 2.9                   | 6.6             | 24.2                                    |             |          |       |
| Segment LOS Determina                                               | tion    |             |                       |                 |                                         |             |          |       |
| Travel time, ST (s)                                                 | 47.8    | 46.3        | 14.4                  | 12.4            | 53.0                                    |             |          |       |
| Travel speed, SA (mi/h)                                             | 18.8    | 12.4        | 25.0                  | 14.5            | 18.3                                    |             |          |       |
| Segment LOS                                                         | D       | F           | С                     | E               | D,                                      |             |          |       |
| Urban Street LOS Deterr                                             |         | -           |                       |                 | 1                                       |             | ¥ -      |       |
| Total travel time (s)                                               | 173.9   | C VILLEY NE | 1                     |                 | S PLAZA                                 | Take 1      |          |       |
| Total length (mi)                                                   | 0.83    | VISTA W     | to the                |                 | MARRON                                  | -LAKE)      |          |       |
| Total travel speed, SA (mi/h)                                       | 17.2    | 1           |                       |                 | 4                                       |             |          |       |
| Total urban street LOS                                              | D.      |             |                       |                 |                                         |             |          |       |
| Total urbail street LOS                                             | U       |             |                       |                 |                                         |             |          |       |

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                          |         |         | Site Information                                            |        |                   |        |       |       |  |
|------------------------------------------------------------------------------|---------|---------|-------------------------------------------------------------|--------|-------------------|--------|-------|-------|--|
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 09/04/12<br>Time Period PM |         |         | Urban Street Direction of Travel Jurisdiction Analysis Year |        | COLLEGE BLVD.     |        |       |       |  |
| Project Description: QUARRY                                                  | CREEK/C | COLL2PM | WPSB                                                        |        |                   |        |       |       |  |
| Input Parameters                                                             |         |         |                                                             |        |                   |        |       |       |  |
|                                                                              |         |         |                                                             | Segmer | nts               |        |       |       |  |
| Analysis Period(h) T = 0.25                                                  |         | 2       | 3                                                           | 4      | 5                 | 6      | 7     | 8     |  |
| Cycle length, C (s)                                                          | 110.0   | 110.0   | 100.0                                                       | 110.0  | 99.5              |        |       |       |  |
| Eff. green to cycle ratio, g/C                                               | 0.382   | 0.328   | 0.540                                                       | 0.513  | 0.311             |        |       |       |  |
| v/c ratio for lane group, X                                                  | 0.785   | 0.930   | 0.416                                                       | 0.730  | 0.796             |        |       | 7     |  |
| Cap of lane group, c (veh/h)                                                 | 1354    | 1646    | 4567                                                        | 2548   | 1102              |        |       |       |  |
| Pct Veh on Grn., PVG                                                         |         |         |                                                             |        |                   |        | l     |       |  |
| Arrival type, AT                                                             | 5       | 5       | 5                                                           | 5      | 5                 |        |       | -     |  |
| Unit Extension, UE (sec)                                                     | 3.0     | 3.0     | 3.0                                                         | 3.0    | 3.0               |        |       |       |  |
| Length of segment, L (mi)                                                    | 0.25    | 0.16    | 0.10                                                        | 0.05   | 0.27              |        |       |       |  |
| Initial Queue, Qb (veh)                                                      | 0       | 0       | 0                                                           | 0      | 0                 |        | 7     |       |  |
| Urban street class, SC                                                       | 2       | 2       | 2                                                           | 2      | 2                 |        |       |       |  |
| Free-flow speed, FSS (mi/h)                                                  | 40      | 40      | 40                                                          | 40     | 40                |        |       | -     |  |
| Running Time, TR (s)                                                         | 27.5    | 18.4    | 11.5                                                        | 5.8    | 28.8              |        |       |       |  |
| Other delay, (s)                                                             | 0.0     | 0.0     | 0.0                                                         | 0.0    | 0.0               |        |       |       |  |
| Delay Computation                                                            |         |         |                                                             |        |                   |        |       |       |  |
| Uniform delay, d1 (s)                                                        | 30.0    | 35.7    | 13.6                                                        | 20.9   | 31.4              | 5.4    | 5.4   | 5.4   |  |
| Incremental delay adj, k                                                     | 0.33    | 0.45    | 0.11                                                        | 0.29   | 0.34              | 0.50   | 0.50  | 0.50  |  |
| Upstream filtering adj factor, I                                             | 1.000   | 0.524   | 0.252                                                       | 0.913  | 0.609             |        |       |       |  |
| Incremental delay, d2 (s)                                                    | 3.1     | 5.7     | 0.0                                                         | 1.0    | 2.6               | 2.3    |       |       |  |
| Initial queue delay, d3 (s)                                                  | 0       | 0       | 0                                                           | 0      | 0                 |        |       |       |  |
| Progression adj factor, PF                                                   | 0.588   | 0.674   | 0.217                                                       | 0.298  | 0.700             | 0.256  | 0.256 | 0.256 |  |
| Control delay, d (s)                                                         | 20.8    | 29.8    | 3.0                                                         | 7.2    | 24.5              |        |       |       |  |
| Segment LOS Determina                                                        | tion    |         |                                                             |        |                   |        |       |       |  |
| Travel time, ST (s)                                                          | 48.3    | 48.2    | 14.5                                                        | 13.0   | 53.4              |        |       |       |  |
| Travel speed, SA (mi/h)                                                      | 18.6    | 12.0    | 24.9                                                        | 13.9   | 18.2              |        |       |       |  |
| Segment LOS                                                                  | D       | F       | С                                                           | E      | D                 |        |       |       |  |
| Urban Street LOS Deterr                                                      |         | P       |                                                             | -      | t                 |        |       | *     |  |
| Total travel time (s)                                                        | 177.3   | WARING  | 10                                                          |        | PLAZA             |        |       |       |  |
| Total length (mi)                                                            | 0.83    | VISTAW  | Jan J                                                       |        | MARROW. NOT SUNIS | -LAKE) |       |       |  |
| Total travel speed, SA (mi/h)                                                | 16.9    | Y SIGNS | ( Dus)                                                      |        | 7 NOT             | LANT   |       |       |  |
| Lorar traver speed, SA (mi/h)                                                | 70.9    | YALLAN  | -                                                           |        | 1.116             | 10019  |       |       |  |

Copyright © 2003 University of Florida, All Rights Reserved

|                                                                               | URBA     | AN STR  | EET WO                                          |                 | 40.70                                                                    |       |          |       |  |  |
|-------------------------------------------------------------------------------|----------|---------|-------------------------------------------------|-----------------|--------------------------------------------------------------------------|-------|----------|-------|--|--|
| General Information                                                           |          |         | Site Information                                |                 |                                                                          |       |          |       |  |  |
| Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period AM PEAK HOUR |          |         | Urban St<br>Direction<br>Jurisdicti<br>Analysis | of Travel<br>on | VISTA WAY/COLLEGE TO 78WB<br>RAMP<br>East-bound<br>2030 ALT-2/NO PROJECT |       |          |       |  |  |
| Project Description:                                                          |          |         |                                                 |                 |                                                                          |       |          |       |  |  |
| nput Parameters                                                               |          |         |                                                 |                 |                                                                          |       |          |       |  |  |
| Applysis Deried(h) T = 0.25                                                   |          |         | Segments                                        |                 |                                                                          |       |          |       |  |  |
| Analysis Period(h) $T = 0.25$                                                 | 1        | 2       | 3                                               | 4               | 5                                                                        | 6     | 7        | 8     |  |  |
| Cycle length, C (s)                                                           | 100.0    | 110.0   |                                                 |                 |                                                                          |       |          |       |  |  |
| Eff. green to cycle ratio, g/C                                                | 0.260    | 0.224   |                                                 |                 |                                                                          |       |          |       |  |  |
| //c ratio for lane group, X                                                   | 0.691    | 0.947   |                                                 |                 |                                                                          |       |          |       |  |  |
| Cap of lane group, c (veh/h)                                                  | 922      | 717     |                                                 |                 |                                                                          |       |          |       |  |  |
| Pct Veh on Grn., PVG                                                          |          |         |                                                 |                 |                                                                          |       |          |       |  |  |
| Arrival type, AT                                                              | 5        | 5       |                                                 |                 |                                                                          |       |          |       |  |  |
| Jnit Extension, UE (sec)                                                      | 3.0      | 3.0     |                                                 |                 | 1                                                                        |       |          |       |  |  |
| ength of segment, L (mi)                                                      | 0.09     | 0.09    |                                                 |                 |                                                                          |       |          |       |  |  |
| nitial Queue, Qb (veh)                                                        | .0       | 0       |                                                 |                 |                                                                          |       |          |       |  |  |
| Jrban street class, SC                                                        | 2        | 2       |                                                 |                 |                                                                          |       |          |       |  |  |
| Free-flow speed, FSS (mi/h)                                                   | 40       | 40      |                                                 |                 |                                                                          |       |          |       |  |  |
| Running Time, TR (s)                                                          | 10.4     | 10.4    |                                                 |                 |                                                                          | _     |          |       |  |  |
| Other delay, (s)                                                              | 0.0      | 0.0     |                                                 |                 |                                                                          |       | <u> </u> |       |  |  |
| Delay Computation                                                             | 1        |         |                                                 |                 | 1 2                                                                      | 1 - 1 | 1 - 2    | 1 - 0 |  |  |
| Jniform delay, d1 (s)                                                         | 33.4     | 42.1    | 5.4                                             | 5.4             | 5.4                                                                      | 5.4   | 5.4      | 5.4   |  |  |
| ncremental delay adj, k                                                       | 0.26     | 0.46    | 0.50                                            | 0.50            | 0.50                                                                     | 0.50  | 0.50     | 0.50  |  |  |
| Jpstream filtering adj factor, I                                              | 1.000    | 0.662   |                                                 |                 |                                                                          |       |          |       |  |  |
| ncremental delay, d2 (s)                                                      | 2.2      | 16.2    | 1.0                                             |                 |                                                                          |       |          |       |  |  |
| nitial queue delay, d3 (s)                                                    | 0        | 0       |                                                 |                 |                                                                          |       |          |       |  |  |
| Progression adj factor, PF                                                    | 0.766    | 0.808   | 0.256                                           | 0.256           | 0.256                                                                    | 0.256 | 0.256    | 0.256 |  |  |
| Control delay, d (s)                                                          | 27.8     | 50.2    |                                                 |                 |                                                                          |       |          |       |  |  |
| Segment LOS Determina                                                         | ation    |         |                                                 |                 |                                                                          | 77.   |          |       |  |  |
| Fravel time, ST (s)                                                           | 38.1     | 60.5    |                                                 | -               |                                                                          |       |          |       |  |  |
| Travel speed, SA (mi/h)                                                       | 8.5      | 5.4     |                                                 | ,               |                                                                          |       |          |       |  |  |
| Segment LOS                                                                   | F        | F       |                                                 |                 |                                                                          |       |          |       |  |  |
| Urban Street LOS Deteri                                                       | mination |         |                                                 |                 |                                                                          |       |          |       |  |  |
| Total travel time (s)                                                         | 98.7     | (mati   | 3 WB                                            |                 |                                                                          |       |          |       |  |  |
| Total length (mi)                                                             | 0.18     | C 20 br | SINB I                                          | )               |                                                                          |       |          |       |  |  |
| Total travel speed, SA (mi/h)                                                 | 6.6      | 6       | BLYD P                                          |                 |                                                                          |       |          |       |  |  |
| Total urban street LOS                                                        | F        |         | 13m                                             |                 |                                                                          |       |          |       |  |  |

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                         |          |       | Site Information       |                                                               |                                         |       |       |       |  |  |
|-----------------------------------------------------------------------------|----------|-------|------------------------|---------------------------------------------------------------|-----------------------------------------|-------|-------|-------|--|--|
| Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period AM PEAK He | OUR      |       | Urban St               | Street VISTA WAY/COLLEGE TO RAMP  n of Travel East-bound tion |                                         |       |       |       |  |  |
| Project Description:                                                        |          |       | p                      |                                                               |                                         |       | 10125 |       |  |  |
| Input Parameters                                                            |          |       |                        |                                                               |                                         |       |       |       |  |  |
|                                                                             |          |       | Segments               |                                                               |                                         |       |       |       |  |  |
| Analysis Period(h) $T = 0.25$                                               | 1        | 2     | 3                      | 1 4                                                           | 5                                       | 6     | 7     | 8     |  |  |
| Cycle length, C (s)                                                         | 100.0    | 110.0 |                        |                                                               |                                         |       |       |       |  |  |
| Eff. green to cycle ratio, g/C                                              | 0.260    | 0.224 |                        |                                                               |                                         |       |       |       |  |  |
| v/c ratio for lane group, X                                                 | 0.704    | 0.947 |                        | 1                                                             |                                         |       |       |       |  |  |
| Cap of lane group, c (veh/h)                                                | 922      | 717   |                        |                                                               |                                         |       |       |       |  |  |
| Pct Veh on Grn., PVG                                                        |          |       |                        |                                                               |                                         |       |       | y l   |  |  |
| Arrival type, AT                                                            | 5        | 5     |                        |                                                               |                                         |       |       |       |  |  |
| Unit Extension, UE (sec)                                                    | 3.0      | 3.0   |                        |                                                               |                                         |       |       |       |  |  |
| Length of segment, L (mi)                                                   | 0.09     | 0.09  |                        |                                                               |                                         |       |       |       |  |  |
| Initial Queue, Qb (veh)                                                     | 0        | 0     |                        |                                                               |                                         |       |       | 1     |  |  |
| Urban street class, SC                                                      | 2        | 2     |                        |                                                               |                                         |       |       |       |  |  |
| Free-flow speed, FSS (mi/h)                                                 | 40       | 40    |                        |                                                               |                                         |       |       |       |  |  |
| Running Time, TR (s)                                                        | 10.4     | 10.4  |                        |                                                               |                                         |       |       |       |  |  |
| Other delay, (s)                                                            | 0.0      | 0.0   | -                      |                                                               |                                         |       |       | 101   |  |  |
| Delay Computation                                                           |          |       |                        |                                                               |                                         | -     | _     |       |  |  |
| Uniform delay, d1 (s)                                                       | 33.5     | 42.1  | 5.4                    | 5.4                                                           | 5.4                                     | 5.4   | 5.4   | 5.4   |  |  |
| Incremental delay adj, k                                                    | 0.27     | 0.46  | 0.50                   | 0.50                                                          | 0.50                                    | 0.50  | 0.50  | 0.50  |  |  |
| Upstream filtering adj factor, I                                            | 1.000    | 0.645 |                        |                                                               |                                         |       |       |       |  |  |
| Incremental delay, d2 (s)                                                   | 2.5      | 15.9  | 1.0                    |                                                               |                                         |       |       |       |  |  |
| Initial queue delay, d3 (s)                                                 | 0        | 0     | 4                      |                                                               |                                         |       |       |       |  |  |
| Progression adj factor, PF                                                  | 0.766    | 0.808 | 0.256                  | 0.256                                                         | 0.256                                   | 0.256 | 0.256 | 0.256 |  |  |
| Control delay, d (s)                                                        | 28.1     | 49.9  |                        |                                                               |                                         |       |       |       |  |  |
| Segment LOS Determina                                                       | ation    |       |                        |                                                               |                                         |       |       |       |  |  |
| Travel time, ST (s)                                                         | 38.5     | 60.2  |                        |                                                               | , ===================================== |       |       |       |  |  |
| Travel speed, SA (mi/h)                                                     | 8.4      | 5.4   |                        |                                                               |                                         |       |       |       |  |  |
| Segment LOS                                                                 | F        | F     |                        | J                                                             |                                         |       |       |       |  |  |
| Urban Street LOS Deterr                                                     | nination | 1     | 1                      |                                                               |                                         |       |       |       |  |  |
| Total travel time (s)                                                       | 98.7     |       | 18 WB                  | 7                                                             |                                         |       |       |       |  |  |
| Total length (mi)                                                           | 0.18     | (500  | MAPS GLY               | 0 3                                                           |                                         |       |       |       |  |  |
| Total travel speed, SA (mi/h)                                               | 6.6      | C 0   | TO BLY<br>DLLLEST SIGN | 15ica)                                                        |                                         |       |       |       |  |  |
| Total urban street LOS                                                      | F        |       | Tale                   |                                                               |                                         |       |       |       |  |  |

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                         |       |       | Site Information |                         |                                                                          |       |       |        |  |  |
|-----------------------------------------------------------------------------|-------|-------|------------------|-------------------------|--------------------------------------------------------------------------|-------|-------|--------|--|--|
| Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period PM PEAK HO | OUR   |       | Urban St         | reet<br>of Travel<br>on | VISTA WAY/COLLEGE TO 78WB<br>RAMP<br>East-bound<br>2030 ALT-2/NO PROJECT |       |       |        |  |  |
| Project Description:                                                        |       |       | posterij ase     |                         |                                                                          |       |       |        |  |  |
| Input Parameters                                                            |       |       |                  |                         |                                                                          |       |       |        |  |  |
| Analysis Pariad(h) T = 0.25                                                 |       |       | Segments         |                         |                                                                          |       |       |        |  |  |
| Analysis Period(h) T = 0.25                                                 | 1     | 2     | 3                | 4                       | 5                                                                        | 6     | 7     | 8      |  |  |
| Cycle length, C (s)                                                         | 110.0 | 110.0 |                  |                         |                                                                          |       |       | 1      |  |  |
| Eff. green to cycle ratio, g/C                                              | 0.173 | 0.224 |                  |                         |                                                                          |       |       |        |  |  |
| v/c ratio for lane group, X                                                 | 0.892 | 0.947 |                  |                         |                                                                          | 7     |       | We are |  |  |
| Cap of lane group, c (veh/h)                                                | 613   | 717   |                  |                         |                                                                          |       |       |        |  |  |
| Pct Veh on Grn., PVG                                                        |       |       |                  |                         |                                                                          |       |       |        |  |  |
| Arrival type, AT                                                            | 5     | 5     |                  |                         |                                                                          |       |       |        |  |  |
| Unit Extension, UE (sec)                                                    | 3.0   | 3.0   | H I              |                         |                                                                          | Į —   |       |        |  |  |
| Length of segment, L (mi)                                                   | 0.09  | 0.09  |                  |                         |                                                                          |       |       |        |  |  |
| Initial Queue, Qb (veh)                                                     | 0     | 0     |                  |                         |                                                                          |       |       |        |  |  |
| Urban street class, SC                                                      | 2     | 2     |                  |                         | 1.7                                                                      |       |       |        |  |  |
| Free-flow speed, FSS (mi/h)                                                 | 40    | 40    |                  |                         |                                                                          |       |       |        |  |  |
| Running Time, TR (s)                                                        | 10.4  | 10.4  |                  |                         |                                                                          |       |       |        |  |  |
| Other delay, (s)                                                            | 0.0   | 0.0   |                  |                         |                                                                          |       |       |        |  |  |
| Delay Computation                                                           |       |       |                  |                         |                                                                          |       | _     | _      |  |  |
| Uniform delay, d1 (s)                                                       | 44.5  | 42.1  | 5.4              | 5.4                     | 5.4                                                                      | 5.4   | 5.4   | 5.4    |  |  |
| Incremental delay adj, k                                                    | 0.42  | 0.46  | 0.50             | 0.50                    | 0.50                                                                     | 0.50  | 0.50  | 0.50   |  |  |
| Upstream filtering adj factor, I                                            | 1.000 | 0.329 |                  |                         |                                                                          | 1     |       |        |  |  |
| Incremental delay, d2 (s)                                                   | 15.4  | 9.7   | 1.0              |                         |                                                                          |       |       |        |  |  |
| Initial queue delay, d3 (s)                                                 | 0     | 0     |                  |                         |                                                                          |       |       |        |  |  |
| Progression adj factor, PF                                                  | 0.861 | 0.808 | 0.256            | 0.256                   | 0.256                                                                    | 0.256 | 0.256 | 0.256  |  |  |
| Control delay, d (s)                                                        | 53.7  | 43.6  |                  |                         |                                                                          |       |       | 1      |  |  |
| Segment LOS Determina                                                       | tion  |       |                  |                         |                                                                          |       |       |        |  |  |
| Travel time, ST (s)                                                         | 64.0  | 54.0  |                  |                         |                                                                          |       |       |        |  |  |
| Travel speed, SA (mi/h)                                                     | 5.1   | 6.0   |                  |                         |                                                                          |       |       |        |  |  |
| Segment LOS                                                                 | F     | FA    |                  |                         | -                                                                        |       |       |        |  |  |
| Urban Street LOS Deterr                                                     |       |       |                  |                         |                                                                          |       |       |        |  |  |
| Total travel time (s)                                                       | 118.0 | 4     | 27mps -10        |                         |                                                                          |       |       |        |  |  |
| Total length (mi)                                                           | 0.18  | ( >1  | TO BE BLYD       | )                       |                                                                          |       |       |        |  |  |
| Total travel speed, SA (mi/h)                                               | 5.5   | 7 (0  | LLEGI            | 1                       |                                                                          |       |       |        |  |  |
| 1 5.61 11 61 61 60 60 61 (111/11)                                           | 0.0   |       |                  | -                       |                                                                          |       |       |        |  |  |

 $HCS2000^{\text{TM}}$ 

Copyright © 2003 University of Florida, All Rights Reserved

| Conoral Information                                                                              |          |               | Site Information           |                         |                                                                   |       |       |       |  |  |
|--------------------------------------------------------------------------------------------------|----------|---------------|----------------------------|-------------------------|-------------------------------------------------------------------|-------|-------|-------|--|--|
| General Information  Analyst USAI Agency/Co. USAI Date Performed 09/04/12 Time Period PM PEAK He | OUR      |               | Urban St                   | reet<br>of Travel<br>on | VISTA WAY/COLLEGE TO 78WB RAMP East-bound 2030 ALT-2/WITH PROJECT |       |       |       |  |  |
| Project Description:                                                                             |          |               | ritaryolo                  | 1001                    | 2000712                                                           |       |       |       |  |  |
| Input Parameters                                                                                 |          |               |                            |                         |                                                                   |       |       |       |  |  |
|                                                                                                  |          |               | Segments                   |                         |                                                                   |       |       |       |  |  |
| Analysis Period(h) $T = 0.25$                                                                    | 1        | 2             | 3                          | 4                       | 5                                                                 | 6     | 7     | 8     |  |  |
| Cycle length, C (s)                                                                              | 110.0    | 110.0         |                            |                         |                                                                   |       |       |       |  |  |
| Eff. green to cycle ratio, g/C                                                                   | 0.173    | 0.224         |                            |                         |                                                                   |       |       |       |  |  |
| v/c ratio for lane group, X                                                                      | 0.904    | 0.947         |                            |                         |                                                                   |       |       |       |  |  |
| Cap of lane group, c (veh/h)                                                                     | 613      | 717           |                            |                         |                                                                   |       |       |       |  |  |
| Pct Veh on Grn., PVG                                                                             |          |               |                            |                         |                                                                   |       |       |       |  |  |
| Arrival type, AT                                                                                 | 5        | 5             |                            |                         |                                                                   |       |       |       |  |  |
| Unit Extension, UE (sec)                                                                         | 3.0      | 3.0           |                            |                         |                                                                   |       |       |       |  |  |
| Length of segment, L (mi)                                                                        | 0.09     | 0.09          |                            |                         |                                                                   |       |       |       |  |  |
| Initial Queue, Qb (veh)                                                                          | 0        | 0             |                            |                         |                                                                   |       |       |       |  |  |
| Urban street class, SC                                                                           | 2        | 2             |                            |                         |                                                                   |       |       |       |  |  |
| Free-flow speed, FSS (mi/h)                                                                      | 40       | 40            |                            |                         |                                                                   |       |       |       |  |  |
| Running Time, TR (s)                                                                             | 10.4     | 10.4          |                            |                         |                                                                   |       |       |       |  |  |
| Other delay, (s)                                                                                 | 0.0      | 0.0           |                            |                         |                                                                   |       |       | 3     |  |  |
| Delay Computation                                                                                | 1 200    |               |                            |                         | -                                                                 |       |       |       |  |  |
| Uniform delay, d1 (s)                                                                            | 44.6     | 42.1          | 5.4                        | 5.4                     | 5.4                                                               | 5.4   | 5.4   | 5.4   |  |  |
| Incremental delay adj, k                                                                         | 0.42     | 0.46          | 0.50                       | 0.50                    | 0.50                                                              | 0.50  | 0.50  | 0.50  |  |  |
| Upstream filtering adj factor, I                                                                 | 1.000    | 0.306         |                            |                         |                                                                   |       |       |       |  |  |
| Incremental delay, d2 (s)                                                                        | 16.9     | 9.1           | 1.0                        |                         |                                                                   |       |       |       |  |  |
| Initial queue delay, d3 (s)                                                                      | 0        | 0             |                            |                         |                                                                   |       |       |       |  |  |
| Progression adj factor, PF                                                                       | 0.861    | 0.808         | 0.256                      | 0.256                   | 0.256                                                             | 0.256 | 0.256 | 0.256 |  |  |
| Control delay, d (s)                                                                             | 55.3     | 43.1          |                            |                         |                                                                   |       |       |       |  |  |
| Segment LOS Determina                                                                            | ation    |               |                            |                         |                                                                   |       |       |       |  |  |
| Travel time, ST (s)                                                                              | 65.6     | 53.4          |                            |                         |                                                                   |       | ,     |       |  |  |
| Travel speed, SA (mi/h)                                                                          | 4.9      | 6.1           |                            |                         |                                                                   |       |       |       |  |  |
| Segment LOS                                                                                      | F        | F             |                            |                         |                                                                   |       |       |       |  |  |
| Urban Street LOS Deterr                                                                          | nination | 1             |                            | 1                       |                                                                   |       |       |       |  |  |
| Total travel time (s)                                                                            | 119.0    |               | WB                         |                         |                                                                   |       |       |       |  |  |
| Total length (mi)                                                                                | 0.18     | / SETS        | MIS<br>TO BLY<br>LINGT SHI | THAN .                  | 5                                                                 |       |       |       |  |  |
| Total travel speed, SA (mi/h)                                                                    | 5.4      | (0)           | which I SHI                | il Sie                  |                                                                   |       |       |       |  |  |
| Total urban street LOS                                                                           | 5.4<br>F | 7 00          | hol                        | 1                       |                                                                   |       |       |       |  |  |
| Total dibali Street LOS                                                                          |          | tht © 2003 Un |                            |                         |                                                                   |       |       |       |  |  |

 $HCS2000^{\text{TM}}$ 

Copyright © 2003 University of Florida, All Rights Reserved

| General Information                                                                  |       |                 | Site Inf                                                    | ormatio       | n                                                                        |       |           |         |  |  |
|--------------------------------------------------------------------------------------|-------|-----------------|-------------------------------------------------------------|---------------|--------------------------------------------------------------------------|-------|-----------|---------|--|--|
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 8/27/2012<br>Time Period AM PEAK H | OUR   |                 | Urban Street Direction of Travel Jurisdiction Analysis Year |               | VISTA WAY/COLLEGE TO 78WB<br>RAMP<br>West-bound<br>2030 ALT-2/NO PROJECT |       |           |         |  |  |
| Project Description:                                                                 |       |                 | a.yolo                                                      | . 00,         |                                                                          |       |           |         |  |  |
| Input Parameters                                                                     |       |                 |                                                             |               |                                                                          |       |           |         |  |  |
|                                                                                      |       |                 | Segments                                                    |               |                                                                          |       |           |         |  |  |
| Analysis Period(h) $T = 0.25$                                                        | 1     | 2               | 3                                                           | 1 4           | 5                                                                        | 6     | 7         | 8       |  |  |
| Cycle length, C (s)                                                                  | 100.0 | 100.0           |                                                             |               |                                                                          |       |           |         |  |  |
| Eff. green to cycle ratio, g/C                                                       | 0.260 | 0.206           |                                                             |               |                                                                          |       |           |         |  |  |
| v/c ratio for lane group, X                                                          | 0.440 | 0.532           |                                                             |               |                                                                          |       | 1 1 2 2 2 |         |  |  |
| Cap of lane group, c (veh/h)                                                         | 898   | 647             |                                                             |               |                                                                          |       |           | 1       |  |  |
| Pct Veh on Grn., PVG                                                                 | A) E  |                 |                                                             |               |                                                                          |       |           | 4       |  |  |
| Arrival type, AT                                                                     | 5     | 5               |                                                             |               |                                                                          |       |           |         |  |  |
| Unit Extension, UE (sec)                                                             | 3.0   | 3.0             |                                                             |               |                                                                          |       |           |         |  |  |
| Length of segment, L (mi)                                                            | 0.09  | 0.09            |                                                             |               |                                                                          |       |           | A.      |  |  |
| Initial Queue, Qb (veh)                                                              | 0     | 0               |                                                             |               |                                                                          | 99    |           |         |  |  |
| Urban street class, SC                                                               | 2     | 2               |                                                             |               |                                                                          |       |           |         |  |  |
| Free-flow speed, FSS (mi/h)                                                          | 40    | 40              |                                                             |               |                                                                          |       |           |         |  |  |
| Running Time, TR (s)                                                                 | 10.4  | 10.4            |                                                             |               |                                                                          |       |           | 1       |  |  |
| Other delay, (s)                                                                     | 0.0   | 0.0             |                                                             |               |                                                                          |       |           |         |  |  |
| Delay Computation                                                                    |       | ,               |                                                             |               |                                                                          |       |           |         |  |  |
| Uniform delay, d1 (s)                                                                | 30.9  | 35.4            | 5.4                                                         | 5.4           | 5.4                                                                      | 5.4   | 5.4       | 5.4     |  |  |
| Incremental delay adj, k                                                             | 0.11  | 0.13            | 0.50                                                        | 0.50          | 0.50                                                                     | 0.50  | 0.50      | 0.50    |  |  |
| Upstream filtering adj factor, I                                                     | 1.000 | 0.899           |                                                             |               |                                                                          |       |           |         |  |  |
| Incremental delay, d2 (s)                                                            | 0.3   | 0.8             | 3.7                                                         |               |                                                                          |       |           |         |  |  |
| Initial queue delay, d3 (s)                                                          | 0     | 0               |                                                             |               |                                                                          |       |           |         |  |  |
| Progression adj factor, PF                                                           | 0.766 | 0.827           | 0.256                                                       | 0.256         | 0.256                                                                    | 0.256 | 0.256     | 0.256   |  |  |
| Control delay, d (s)                                                                 | 24.0  | 30.0            |                                                             |               |                                                                          |       |           |         |  |  |
| Segment LOS Determina                                                                | ation |                 |                                                             |               |                                                                          |       |           |         |  |  |
| Travel time, ST (s)                                                                  | 34.4  | 40.4            |                                                             |               |                                                                          |       |           |         |  |  |
| Travel speed, SA (mi/h)                                                              | 9.4   | 8.0             |                                                             |               |                                                                          |       |           |         |  |  |
| Segment LOS                                                                          | F     | F               |                                                             |               |                                                                          |       |           |         |  |  |
| Urban Street LOS Deterr                                                              |       |                 |                                                             |               |                                                                          | *     |           |         |  |  |
| Total travel time (s)                                                                | 74.8  |                 | 7                                                           |               |                                                                          |       |           |         |  |  |
| Total length (mi)                                                                    | 0.18  | COLLEGE COLLEGE | s Ismes                                                     | }             |                                                                          |       |           |         |  |  |
| Total travel speed, SA (mi/h)                                                        | 8.7   | 212.            | 1                                                           |               |                                                                          |       |           |         |  |  |
| Total urban street LOS                                                               | F     | 4               |                                                             |               |                                                                          |       |           |         |  |  |
| zane na aTM                                                                          |       | L. @ 2002 II '  |                                                             | do All Diabta | Danamie 4                                                                |       |           | Varaiar |  |  |

Copyright © 2003 University of Florida, All Rights Reserved

|                                                                                         | UKDA     | AN SIK | EET WO           | RKSHE     | =1#1                                                                       |       |       |          |  |  |
|-----------------------------------------------------------------------------------------|----------|--------|------------------|-----------|----------------------------------------------------------------------------|-------|-------|----------|--|--|
| General Information                                                                     |          |        | Site Information |           |                                                                            |       |       |          |  |  |
| Analyst USAI<br>Agency/Co. USAI<br>Date Performed 8/27/2012<br>Time Period AM PEAK HOUR |          |        | Jurisdicti       | of Travel | VISTA WAY/COLLEGE TO 78WB<br>RAMP<br>West-bound<br>2030 ALT-2/WITH PROJECT |       |       |          |  |  |
| Project Description:                                                                    |          |        |                  |           |                                                                            |       |       |          |  |  |
| Input Parameters                                                                        |          |        |                  |           |                                                                            |       |       |          |  |  |
| Analysis Pariod(h) T = 0.25                                                             |          |        | Segments         |           |                                                                            |       |       |          |  |  |
| Analysis Period(h) T = 0.25                                                             | 1        | 2      | 3                | 4         | 5                                                                          | 6     | 7     | 8        |  |  |
| Cycle length, C (s)                                                                     | 100.0    | 100.0  |                  |           |                                                                            | T     |       |          |  |  |
| Eff. green to cycle ratio, g/C                                                          | 0.260    | 0.206  |                  |           |                                                                            |       |       |          |  |  |
| v/c ratio for lane group, X                                                             | 0.444    | 0.532  |                  |           |                                                                            |       |       |          |  |  |
| Cap of lane group, c (veh/h)                                                            | 899      | 647    |                  |           |                                                                            |       |       |          |  |  |
| Pct Veh on Grn., PVG                                                                    |          |        |                  | 1         |                                                                            | 1     |       |          |  |  |
| Arrival type, AT                                                                        | 5        | 5      |                  |           |                                                                            |       |       |          |  |  |
| Unit Extension, UE (sec)                                                                | 3.0      | 3.0    |                  |           |                                                                            |       |       |          |  |  |
| Length of segment, L (mi)                                                               | 0.09     | 0.09   |                  | 11-       |                                                                            |       |       |          |  |  |
| Initial Queue, Qb (veh)                                                                 | 0        | 0      |                  |           |                                                                            |       |       |          |  |  |
| Urban street class, SC                                                                  | 2        | 2      |                  |           |                                                                            |       |       |          |  |  |
| Free-flow speed, FSS (mi/h)                                                             | 40       | 40     |                  |           |                                                                            |       |       |          |  |  |
| Running Time, TR (s)                                                                    | 10.4     | 10.4   |                  |           |                                                                            |       |       | -        |  |  |
| Other delay, (s)                                                                        | 0.0      | 0.0    |                  |           |                                                                            |       |       | <u> </u> |  |  |
| Delay Computation                                                                       | 1        | T non  | 1                | 1         |                                                                            | 1     | 1 2 2 |          |  |  |
| Uniform delay, d1 (s)                                                                   | 31.0     | 35.4   | 5.4              | 5.4       | 5.4                                                                        | 5.4   | 5.4   | 5.4      |  |  |
| Incremental delay adj, k                                                                | 0.11     | 0.13   | 0.50             | 0.50      | 0.50                                                                       | 0.50  | 0.50  | 0.50     |  |  |
| Upstream filtering adj factor, I                                                        | 1.000    | 0.897  |                  |           |                                                                            |       |       |          |  |  |
| Incremental delay, d2 (s)                                                               | 0.4      | 0.8    | 3.7              |           |                                                                            |       |       |          |  |  |
| Initial queue delay, d3 (s)                                                             | 0        | 0      |                  |           |                                                                            |       |       |          |  |  |
| Progression adj factor, PF                                                              | 0.766    | 0.827  | 0.256            | 0.256     | 0.256                                                                      | 0.256 | 0.256 | 0.256    |  |  |
| Control delay, d (s)                                                                    | 24.0     | 30.0   | 10               |           |                                                                            |       |       |          |  |  |
| Segment LOS Determina                                                                   | ition    |        |                  |           |                                                                            |       |       |          |  |  |
| Travel time, ST (s)                                                                     | 34.4     | 40.4   |                  |           |                                                                            |       |       |          |  |  |
| Travel speed, SA (mi/h)                                                                 | 9.4 D    | 8.0    |                  |           |                                                                            |       |       |          |  |  |
| Segment LOS                                                                             | F        | F      |                  |           |                                                                            | E     |       |          |  |  |
| Urban Street LOS Deterr                                                                 | nination |        |                  |           |                                                                            |       |       |          |  |  |
| Total travel time (s)                                                                   | 74.8     | 1      | 1                |           |                                                                            |       |       |          |  |  |
| Total length (mi)                                                                       | 0.18     | 1665   | -11/25           |           |                                                                            |       |       |          |  |  |
| Total travel speed, SA (mi/h)                                                           | 8.7      | (obto  | S BAMPS          | y         |                                                                            |       |       |          |  |  |
| Total urban street LOS                                                                  | F        | 40.70  | 1510NIT          |           |                                                                            |       |       |          |  |  |
| HCS2000 <sup>TM</sup>                                                                   |          | No     | versity of Flor  | 4         |                                                                            |       |       | Versio   |  |  |

| General Information                                                          |                 |         | Site Information |                         |                                                                          |       |             |       |  |  |
|------------------------------------------------------------------------------|-----------------|---------|------------------|-------------------------|--------------------------------------------------------------------------|-------|-------------|-------|--|--|
| Analyst USAI Agency/Co. USAI Date Performed 8/27/2012 Time Period PM PEAK HG | OUR             |         | Urban St         | reet<br>of Travel<br>on | VISTA WAY/COLLEGE TO 78WB<br>RAMP<br>West-bound<br>2030 ALT-2/NO PROJECT |       |             |       |  |  |
| Project Description:                                                         |                 |         | p.m.e.ye.ie      |                         |                                                                          |       | 20027-2-2-1 |       |  |  |
| Input Parameters                                                             |                 |         |                  |                         |                                                                          |       |             |       |  |  |
|                                                                              | Segments        |         |                  |                         |                                                                          |       |             |       |  |  |
| Analysis Period(h) T = 0.25                                                  | 1               | 2       | 3                | 4                       | 5                                                                        | 6     | 7           | 8     |  |  |
| Cycle length, C (s)                                                          | 110.0           | 110.0   |                  |                         |                                                                          |       |             |       |  |  |
| Eff. green to cycle ratio, g/C                                               | 0.300           | 0.224   |                  |                         |                                                                          |       |             |       |  |  |
| v/c ratio for lane group, X                                                  | 0.474           | 0.947   | 7                |                         |                                                                          |       |             |       |  |  |
| Cap of lane group, c (veh/h)                                                 | 1043            | 717     |                  |                         | -                                                                        |       |             |       |  |  |
| Pct Veh on Grn., PVG                                                         |                 |         |                  |                         |                                                                          |       |             |       |  |  |
| Arrival type, AT                                                             | 5               | 5       |                  |                         |                                                                          |       |             |       |  |  |
| Unit Extension, UE (sec)                                                     | 3.0             | 3.0     |                  |                         |                                                                          |       |             |       |  |  |
| Length of segment, L (mi)                                                    | 0.09            | 0.09    |                  |                         |                                                                          |       |             |       |  |  |
| Initial Queue, Qb (veh)                                                      | 0               | 0       |                  |                         |                                                                          |       |             |       |  |  |
| Urban street class, SC                                                       | 2               | 2       |                  |                         |                                                                          |       |             |       |  |  |
| Free-flow speed, FSS (mi/h)                                                  | 40              | 40      |                  |                         |                                                                          |       |             |       |  |  |
| Running Time, TR (s)                                                         | 10.4            | 10.4    |                  |                         |                                                                          |       |             |       |  |  |
| Other delay, (s)                                                             | 0.0             | 0.0     |                  |                         |                                                                          |       |             |       |  |  |
| Delay Computation                                                            |                 |         |                  | 1                       |                                                                          | 1     |             |       |  |  |
| Uniform delay, d1 (s)                                                        | 31.4            | 42.1    | 5.4              | 5.4                     | 5.4                                                                      | 5.4   | 5.4         | 5.4   |  |  |
| Incremental delay adj, k                                                     | 0.11            | 0.46    | 0.50             | 0.50                    | 0.50                                                                     | 0.50  | 0.50        | 0.50  |  |  |
| Upstream filtering adj factor, I                                             | 1.000           | 0.877   |                  |                         |                                                                          |       |             | 4     |  |  |
| Incremental delay, d2 (s)                                                    | 0.3             | 19.7    | 1.0              |                         |                                                                          |       | 1           |       |  |  |
| Initial queue delay, d3 (s)                                                  | 0               | 0       |                  |                         |                                                                          |       |             |       |  |  |
| Progression adj factor, PF                                                   | 0.714           | 0.808   | 0.256            | 0.256                   | 0.256                                                                    | 0.256 | 0.256       | 0.256 |  |  |
| Control delay, d (s)                                                         | 22.8            | 53.7    |                  |                         |                                                                          |       |             |       |  |  |
| Segment LOS Determina                                                        | tion            |         |                  |                         |                                                                          |       |             |       |  |  |
| Travel time, ST (s)                                                          | 33.1            | 64.1    |                  |                         |                                                                          |       |             | -     |  |  |
| Travel speed, SA (mi/h)                                                      | 9.8             | 5.1     | 7                |                         |                                                                          |       |             |       |  |  |
| Segment LOS                                                                  | F               | F       |                  |                         |                                                                          |       |             |       |  |  |
| Urban Street LOS Deterr                                                      | nination        |         |                  |                         |                                                                          |       |             |       |  |  |
| Total travel time (s)                                                        | ALLONE OF LOCAL | 1-/     | \ -              | _                       |                                                                          |       |             |       |  |  |
| Total length (mi)                                                            | 0.18            | 1 at    | 3 was bruks      | 2                       |                                                                          |       |             |       |  |  |
|                                                                              | 6.7             | COLLEGE | and Spr.         |                         |                                                                          |       |             |       |  |  |
| Total travel speed, SA (mi/h)                                                | 0.7             | Chi     | 3                |                         |                                                                          |       |             |       |  |  |
| Total urban street LOS                                                       | F               | 3,      |                  |                         |                                                                          |       |             |       |  |  |

8/27/2012

| General Information                                                          |          |         | Site Information  |                         |                                                                            |       |       |         |  |  |
|------------------------------------------------------------------------------|----------|---------|-------------------|-------------------------|----------------------------------------------------------------------------|-------|-------|---------|--|--|
| Analyst USAI Agency/Co. USAI Date Performed 8/27/2012 Time Period PM PEAK Ho | OUR      |         | Urban St          | reet<br>of Travel<br>on | VISTA WAY/COLLEGE TO 78WE<br>RAMP<br>West-bound<br>2030 ALT-2/WITH PROJECT |       |       |         |  |  |
| Project Description:                                                         |          |         | peye.e            |                         |                                                                            |       |       |         |  |  |
| Input Parameters                                                             |          |         |                   |                         |                                                                            |       |       |         |  |  |
|                                                                              |          |         | Segments          |                         |                                                                            |       |       |         |  |  |
| Analysis Period(h) $T = 0.25$                                                | 1        | 2       | 3                 | 4                       | 5                                                                          | 6     | 7     | 8       |  |  |
| Cycle length, C (s)                                                          | 110.0    | 110.0   |                   |                         |                                                                            |       |       |         |  |  |
| Eff. green to cycle ratio, g/C                                               | 0.300    | 0.224   |                   |                         |                                                                            |       |       |         |  |  |
| v/c ratio for lane group, X                                                  | 0.487    | 0.947   | 4                 |                         |                                                                            |       |       |         |  |  |
| Cap of lane group, c (veh/h)                                                 | 1043     | 717     | 4                 |                         |                                                                            | -     |       |         |  |  |
| Pct Veh on Grn., PVG                                                         |          |         |                   |                         |                                                                            |       |       |         |  |  |
| Arrival type, AT                                                             | 5        | 5       |                   |                         |                                                                            |       |       |         |  |  |
| Unit Extension, UE (sec)                                                     | 3.0      | 3.0     |                   |                         |                                                                            |       |       |         |  |  |
| Length of segment, L (mi)                                                    | 0.09     | 0.09    |                   | 18-11                   |                                                                            |       |       |         |  |  |
| Initial Queue, Qb (veh)                                                      | 0        | 0       |                   |                         |                                                                            |       |       |         |  |  |
| Urban street class, SC                                                       | 2        | 2       |                   |                         |                                                                            |       |       | -       |  |  |
| Free-flow speed, FSS (mi/h)                                                  | 40       | 40      |                   |                         |                                                                            |       |       |         |  |  |
| Running Time, TR (s)                                                         | 10.4     | 10.4    | 1                 |                         |                                                                            |       |       |         |  |  |
| Other delay, (s)                                                             | 0.0      | 0.0     |                   |                         |                                                                            |       |       |         |  |  |
| Delay Computation                                                            |          |         |                   |                         |                                                                            |       |       |         |  |  |
| Uniform delay, d1 (s)                                                        | 31.6     | 42.1    | 5.4               | 5.4                     | 5.4                                                                        | 5.4   | 5.4   | 5.4     |  |  |
| Incremental delay adj, k                                                     | 0.11     | 0.46    | 0.50              | 0.50                    | 0.50                                                                       | 0.50  | 0.50  | 0.50    |  |  |
| Upstream filtering adj factor, I                                             | 1.000    | 0.868   |                   |                         |                                                                            |       |       |         |  |  |
| Incremental delay, d2 (s)                                                    | 0.4      | 19.6    | 1.0               |                         |                                                                            |       |       |         |  |  |
| Initial queue delay, d3 (s)                                                  | 0        | 0       |                   |                         |                                                                            |       |       |         |  |  |
| Progression adj factor, PF                                                   | 0.714    | 0.808   | 0.256             | 0.256                   | 0.256                                                                      | 0.256 | 0.256 | 0.256   |  |  |
| Control delay, d (s)                                                         | 22.9     | 53.6    |                   |                         |                                                                            |       |       | 1       |  |  |
| Segment LOS Determina                                                        | tion     |         |                   |                         |                                                                            |       |       | 9       |  |  |
| Travel time, ST (s)                                                          | 33.2     | 63.9    |                   |                         |                                                                            |       |       |         |  |  |
| Travel speed, SA (mi/h)                                                      | 9.7      | 5.1     |                   |                         |                                                                            |       |       |         |  |  |
| Segment LOS                                                                  | F        | F       |                   |                         |                                                                            |       |       |         |  |  |
| Urban Street LOS Deterr                                                      | nination |         |                   |                         |                                                                            |       |       |         |  |  |
| Total travel time (s)                                                        | 97.2     | 1       |                   | 7                       |                                                                            |       |       |         |  |  |
| Total length (mi)                                                            | 0.18/    | COLLEGE | " PLAPS           | TUAN                    |                                                                            |       |       |         |  |  |
| Total travel speed, SA (mi/h)                                                | 6.7      | 1 12-18 | WERLINGS SILVI    | )                       |                                                                            |       |       |         |  |  |
| Total urban street LOS                                                       | F        | بارج.   | by                |                         |                                                                            |       |       |         |  |  |
|                                                                              |          |         | iversity of Flori | /                       |                                                                            |       |       | Version |  |  |